Современные методы обеззараживания воды

Хохрякова Елена Анатольевна

5. Олигодинамия

 

 

Олигодинамия – это воздействие ионов благородных металлов на микробиологические объекты. Говоря о олигодинамии, как правило, рассматривают три металла – золото, медь и серебро. Наиболее распространенным методом для практических целей является применение серебра, иногда используются бактерицидные растворы на основе меди. Золото не находит реального применения на практике, так как этот металл является очень дорогим.

 

5.1. Серебро

 

Серебро – химический элемент, относится к благородным металлам, обозачается символом Ag (от лат. Silver – светлый, белый, англ. Argentum, франц. Argent, нем. Silber). Имеет порядковый номер 47, атомный вес – 107,8, валентность – I. II, плотность – 10,5 г/см3, температура плавления – 960,5 °С, кипения – 2210 °С.

Несмотря на то, что серебряные руды разбросаны по всему миру (Австралия, Перу, Япония, Канада), основным поставщиком серебра является Мексика. Серебро – хороший проводник тепловой энергии.

 

5.1.1. История

Серебро известно человечеству с древнейших времён, в своё время его добывали в виде самородков, т. е. не приходилось выплавлять из руд, и многие народы считали его священным металлом, например в Ассирии и Вавилоне. В Европе по количеству серебра судили о состоянии королей. В средние века серебро и его соединения были очень популярны среди алхимиков. Позднее из серебра изготавливают посуду, чеканят монеты, делают ювелирные украшения, сейчас применяют при изготовлении электрических контактов и печатных схем, источников питания.

Бактерицидное действие серебра также известно с древнейших времен. В древних индусских трактатах встречается описание об обряде кратковременного погружения в емкость с водой раскаленного серебра.

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ученый Карл Негель, который в 80-е гг. XIX в. установил, что взаимодействие ионов серебра (а не самого металла) с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» – малый, следовой и «динамос» – действие, т. е. действие следов). Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим – медь и золото. Так, дифтерийная палочка погибала на серебряной пластинке через три дня, на медной – через шесть дней, на золотой – через восемь.

 

5.1.2. Описание метода

Большой вклад в изучение антимикробных свойств «серебряной» воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внес академик Л. А. Кульский. Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные в воде распадаться на ионы) вызывают гибель микроорганизмов. Доказано, что чем выше концентрация ионов серебра, тем больше его активность и бактерицидный эффект.

Научно доказано, что серебро в ионном виде обладает бактерицидным, противовирусным, выраженным противогрибковым и антисептическим действием и служит высокоэффективным обеззараживающим средством в отношении патогенных микроорганизмов, вызывающих острые инфекции. Эффект уничтожения бактерий препаратами серебра очень велик. Он в 1750 раз сильнее действия концентрированной карболовой кислоты и в 3,5 раза сильнее действия сулемы. По данным академика Академии наук УССР Л. А. Кульского, действие «серебряной» воды (при одинаковых концентрациях) значительнее действия хлора, хлорной извести, гипохлорида натрия и других сильных окислителей. По научным данным, всего 1 мг/л. серебра в течение 30 мин вызывал полную инактивацию вирусов гриппа А, В, Митре и Сендай. Уже при концентрации 0,1 мг/л серебро обладает выраженным фунгицидным действием.

«Серебряная» вода обладает бактерицидными свойствами при достаточно высоких концентрациях серебра, но при низких концентрациях серебро оказывает только бактериостатическое действия.

Однако, выбирая серебро в качестве обеззараживающего вещества, обязательно нужно помнить, что серебро – тяжелый металл. Как и другие тяжелые металлы, серебро способно накапливаться в организме и вызывать заболевания (аргироз – отравление серебром). В соответствии с СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» допускается содержание в воде серебра не более 0,05 мг/л и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» – не более 0,025 мг/л.

Многие потребители по старинке сутками настаивают воду в доморощенных серебряных водных фильтрах, в емкостях с монетами, ложечками и украшениями, и действительно «серебряная» вода может храниться годами. Но что кроется за таким способом очистки воды от микроорганизмов?

«Серебряная» вода обладает бактерицидными свойствами, при достаточно высоких концентрациях серебра, около 0,015 мг/л. При низких концентрациях (10-4… 10-6 мг/л.), серебро оказывает только бактериостатическое действия, т. е. останавливает рост бактерий, но не убивает их. Спорообразующие разновидности микроорганизмов к серебру практически нечувствительны. Поэтому настаивание воды по старинке в доморощенных серебряных водных фильтрах, в емкостях с монетами, ложечками и украшениями не является гарантированным способом её обеззараживания.

Изложенные выше факты, таким образом, несколько ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения (например, на космических кораблях, в походах или при розливе бутилированной питьевой воды). Серебрение картриджей на основе активированного угля используют в бытовых фильтрах. Это делается с целью предотвращения обрастания фильтров микроорганизмами, так как отфильтрованные органические вещества являются хорошей питательной средой для многих бактерий.

 

5.1.3. Механизм воздействия

Сегодня существуют многочисленные теории, объясняющие механизм действия серебра на микроорганизмы. Наиболее распространенная – адсорбционная теория, в соответствии с которой клетка теряет жизнеспособность в результате взаимодействия электростатических сил, возникающих между клетками бактерий, имеющих отрицательный заряд, и положительно заряженными ионами серебра при адсорбции последних бактериальной клеткой.

Вораз и Тоферн (1957 г.) объясняли антимикробное действие серебра выведением из строя ферментов, содержащих SH- и СООН- группы, а K. Тонли, H. Вилсон – нарушением осмотического равновесия.

По другим теориям, происходит образование комплексов нуклеиновых кислот с тяжелыми металлами, вследствие чего нарушается стабильность ДНК и, соответственно, жизнеспособность бактерий.

Существует противоположное мнение, что серебро не оказывает прямого воздействия на ДНК клеток, а влияет косвенно, увеличивая количество внутриклеточных свободных радикалов, которые снижают концентрацию внутриклеточных активных соединений кислорода. Также допускают, что одной из причин широкого противомикробного действия ионов серебра является ингибирование трансмембранного транспорта Nа+ и Cа++.

На основании данных механизм действия серебра на микробную клетку следующий: ионы серебра сорбируются клеточной оболочкой, которая выполняет защитную функцию. Клетка еще остается жизнеспособной, но при этом нарушаются некоторые ее функции – например, деление (бактериостатический эффект). Как только серебро адсорбировалось на поверхности микробной клетки, оно проникает внутрь её, угнетает ферменты дыхательной цепи, а также разобщает процессы окисления в микробных клетках, в результате чего клетка гибнет.

Коллоидное серебро – продукт, состоящий из микроскопических частиц серебра, взвешенных в деминерализованной и деионизированной воде. Коллоидное серебро, которое получают электролитическим методом, естественный антибиотик, разрешенный к применению в США Федеральной комиссией по питанию и медикаментам еще в 1920 г. Эффективность бактерицидного действия коллоидного серебра объясняется его способностью подавлять работу фермента, с помощью которого обеспечивается кислородный обмен чужеродных простейших микроорганизмов, поэтому они и погибают из-за нарушения снабжения кислородом, необходимого для их жизнедеятельности.

 

5.1.4. Аппаратурное оформление

Приготовить «серебряную» воду в домашних условиях возможно, но не эффективно. Можно настаивать воду в серебряном сосуде, погрузить в емкость с водой серебряные предметы, украшения и т. п… В настоящее время «серебряную» воду производят в электрических приборах – ионаторах. Принцип действия ионатора серебра основан на электролитическом методе. Конструктивно прибор состоит из электролизера с серебряными электродами (серебро Ср 99,99) и блока питания, подключаемого к сети постоянного тока. При пропускании постоянного тока через погруженные в воду серебряные (или серебряно-медные) электроды серебряный электрод (анод), растворяясь, насыщает воду ионами серебра. Концентрация полученного раствора при заданной силе тока зависит от времени работы источника тока и объема обрабатываемой воды. Если грамотно подобрать ионатор, то остаточное содержание растворённого в воде серебра не превысит предельной дозы 10-4…10-5 мг/л (при этом в контактном слое серебрения воды концентрации могут достигать значения 0,015 мг/л), что позволяет осуществлять одновременно бактерицидную и бактериостатическую обработку воды. В табл. 4 приведены условия получения «серебряной» воды на примере ионатора «ЛК-41» (источник питания ионатора – элекотросеть переменного тока напряжением 220 В, ток нагрузки, мА 0±20 %, масса серебра, переводимого ионатором в водный раствор за 1 минуту, мг 0,4±20 %, температура обрабатываемой воды от 1 до 40 °С).

Таблица 4

Готовые растворы серебра необходимо хранить в темном месте или в непрозрачной закрытой посуде, так как на свету ионы серебра восстанавливаются до металла, раствор темнеет, а серебро – выпадает в осадок.

Начало выпуска ионаторов в России относится к далекому 1939 г, когда началось серийное производство стационарных ионаторов, переносных и дорожных серий ЛК. Производство продолжается и сейчас.

Сейчас на российском рынке представлены ионаторы разных производителей и конструктивного исполнения, с электронным управление и самые простые автономные карманные: «Невотон ИС», «Пингвин», «Сильва», «Дельфин», «ЛК», «Акватай» и др.

При работе ионатора на серебряных пластинах выделяется распыленное серебро черного цвета, которое на качество приготавливаемого раствора не влияет. В растворе серебра после отключения ионатора процесс уничтожения бактерий происходит не сразу, а в течение времени, указанного в графе время выдержки.

 

5.1.5. Применение активных углей и катионитов, насыщенных серебром

В настоящее время активированный уголь используется во многих процессах очистки воды, пищевой промышленности, в процессах химических технологий. Основное назначение угля – это адсорбции органических соединений. Именно отфильтрованные органические вещества являются идеальной питательной средой для размножения бактерий при остановке движения воды. Нанесение серебра на активированный уголь препятствует росту бактерий внутри фильтра благодаря бактерицидным свойствам этого металла. Технология нанесения серебра на поверхность угля уникальна тем, что серебро не смывается с поверхности угля в процессе фильтрования. В зависимости от производителя, вида исходного сырья, марки угля на поверхность наносят 0,06–0,12 % массовых серебра.

На российском рынке представлены активированные угли с нанесенным серебром производителей: С-100 Ag или С-150 Ag фирмы Purolite; AGС производится на базе активированного угля 207С компанией Chemviron Carbon; российские производители предлагают УАИ-1, изготавливаемый из древесного активного угля БАУ-А; угли марки КАУСОРБ-213 Ag и КАУСОРБ-222 Ag получены из активных углей марок КАУСОРБ-212 и КАУСОРБ-221 и т. д.

Серебросодержащие катиониты предназначены для умягчения и обеззараживания воды в установках небольшой производительности. В качестве примеров можно привезти смолу отечественного производства КУ-23СМ и КУ-23СП, С100Е Аg – смола фирмы «Пьюролайт».

Несмотря на достаточно высокую эффективность олигодинамии в целом, нельзя говорить об абсолютной универсальности этого способа. Дело в том, что целый ряд вредных микроорганизмов оказывается вне зоны его действия – многие грибы, бактерии (сапрофитные, спорообразующие). Тем не менее пропущенная через такой фильтр, вода обычно долго сохраняет свои бактерицидные свойства и чистоту.

 

5.2. Медь

 

Медь – химический элемент, обозначается символом Сu. Название элемента происходит от названия острова Кипр (лат. Cuprum), на котором изначально добывали медь. Имеет порядковый номер 29, атомный вес – 63,546, валентность – I, II, плотность – 8,92 г/см3, температура плавления – 1083,4 °С, кипения – 2567 °С.

Медь – мягкий, ковкий металл красного цвета, обладает высокой тепло– и электропроводностью (занимает второе место по электропроводности после серебра).

Медь встречается в природе как в различных соединениях, так и в самородном виде. Существуют различные сплавы меди, самые известные из них латунь – сплав с цинком, бронза – сплав с оловом, мельхиор – сплав с никелем и др., как присадка медь присутствует в баббитах.

Медь широко распространена в электротехнике (из-за ее низкого удельного сопротивления) для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Ее широко применяют в различных теплообменниках, к которым относятся радиаторы охлаждения, кондиционирования и отопления из-за очень важного свойства меди – высокой теплопроводности.

Некоторые соединения меди могут быть токсичны при превышении предельно допустимых концентраций в пище и воде. Содержание меди в питьевой воде также регламентируется СанПиН 2.1.4.1074-01 и не должно превышать 2 мг/л. Лимитирующий признак вредности вещества, по которому установлен норматив, – санитарно-токсикологический.

Уровень меди в питьевой воде обычно достаточно низкий и составляет несколько микрограмм на литр. Ионы меди придают воде отчётливый «металлический вкус». Порог чувствительности органолептического определения меди в воде составляет приблизительно 2–10 мг/л.

 

5.2.1. История

Об антибактериальных свойствах меди известно очень давно. В древней Руси для медицинских целей применяли, так называемую, «колокольную» воду. Получали её во время литья колоколов, когда еще раскаленную отливку остужали в емкостях, наполненных водой. Колокола отливали из бронзы – сплава меди и олова, а для улучшения их звучания в этот сплав добавляли серебро. За время остывания вода обогащалась ионами меди, олова и серебра.

Совместное действие ионов меди и серебра превосходит силу «серебряной» воды, даже если в последней концентрация ионов серебра в несколько раз выше. Важно понимать, что даже «колокольная» вода, если ее применять бесконтрольно, может нанести большой вред организму.

Медь и ее сплавы иногда применяют для местного обеззараживания воды, чаще для обеззараживания в бытовых и походных условиях, обогащая воду ионами меди.

Издревле было также замечено, что вода, хранящаяся или перевозимая в медных сосудах, была, более высокого качества и долго не портилась, в отличие от воды, содержащейся или перевозимой в сосудах из других материалов (в такой воде не происходило видимого образования слизи).

Существует огромное количество исследовательских работ, подтверждающих бактерицидные свойства меди.

 

5.2.2. Механизм воздействия

Исследования по выяснению механизма антибактериального действия меди проводили еще в давние времена. Например, в 1973 г. ученые из лаборатории «Колумбус Баттел» провели всесторонний научный и патентный поиск, в котором собрали всю историю исследования бактериостатических и дезинфицирующих свойств меди и поверхностей медных сплавов за период 1892–1973 гг.

Было сделано открытие, а в дальнейшем подтверждено, что поверхности медных сплавов обладают особым свойством – уничтожать широкий спектр микроорганизмов.

Последние 10 лет интенсивно проводились исследования по воздействию меди на возбудителей внутрибольничных инфекций: кишечной палочки, метициллин-устойчивой формы золотистого стафилококка (MRSA), вируса гриппа А, аденовируса, патогенных грибков и пр. Исследования, проводимые в Америке, показали, что поверхность медного сплава (зависит от марки сплава) способна убить кишечную палочку через 1–4 ч контакта, при этом популяции кишечной палочки погибают на 99,9 %, в то время как, например, на поверхности из нержавеющей стали микробы могут выживать в течение недели.

Латунь, из которой часто делают дверные ручки и нажимные пластины, тоже обладает бактерицидным эффектом, но для этого требуется более продолжительное время экспозиции, чем для чистой меди.

В 2008 г. после длительных исследований Федеральное агентство по охране окружающей среды США (US ЕРА) официально присвоило меди и её нескольким сплавам статус материала, обладающего бактерицидной поверхностью.

 

5.2.3. Аппаратурное оформление

Медь и ее сплавы иногда применяют для местного обеззараживания воды (если нет других, более подходящих способов и реактивов, дающих гарантированный обеззараживающий эффект). Чаще ее применяют для обеззараживания воды в бытовых и походных условиях, обогащая воду ионами меди.

На рынке представлено несколько типов ионаторов – устройств, использующих принцип гальванической пары и электрофореза. В качестве второго электрода, обеспечивающего разность потенциалов, используется золото. При этом золото тонким слоем наносится на специальную подложку электрода, полностью делать электрод из одного золота не имеет смысла, поэтому внутренняя часть электрода изготавливается из сплава меди и серебра в определенном соотношении, как правило, сплав 17/1. Конструктивно это может быть простая пластина из медно-серебряного сплава (17/1) с вкраплениями золота, или более сложный прибор проточного типа с микроконтроллерным устройством управления.