Искусство схемотехники. Том 1 [Изд.4-е]

Хоровиц Пауль

Хилл Уинфилд

Глава 3

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

 

 

Введение

Полевые транзисторы (ПТ) — это транзисторы, свойства которых совершенно отличаются от свойств рассмотренных в предыдущей главе обычных транзисторов, называемых также биполярными, чтобы подчеркнуть их отличие от ПТ. В расширенном толковании, однако, они имеют много общего, так что их можно определить как приборы, управляемые зарядом. В обоих случаях мы имеем прибор с тремя выводами, в котором проводимость между двумя электродами зависит от наличия носителей заряда, которое в свою очередь регулируется напряжением, приложенным к третьему управляющему электроду.

Теперь о том, чем они отличаются друг от друга. В биполярном n-p-n-транзисторе переход коллектор-база смещен в обратном направлении и обычно ток через него не течет. Подача на переход база-эмиттер напряжения около 0,6 В преодолевает «потенциальный барьер» диода, приводя к поступлению электронов в область базы, где они испытывают сильное притяжение со стороны коллектора. Хотя при этом через базу будет протекать некоторый ток, большинство такого рода «неосновных носителей» захватывается коллектором. Результатом является коллекторный ток, управляемый (меньшим по величине) током базы. Ток коллектора пропорционален скорости инжекции неосновных носителей в базу, которая является экспоненциальной функцией разности потенциалов база-эмиттер (уравнение Эберса-Молла).

Биполярный транзистор можно рассматривать как усилитель тока (с огрубленно постоянным коэффициентом усиления h 21Э ) или как прибор-преобразователь проводимости (Эберс-Молл). В полевом транзисторе, как следует из его названия, проводимостью канала управляет электрическое поле, создаваемое приложенным к затвору напряжением. Здесь нет прямосмещенных р-n-переходов, так что ток через затвор не течет и это, возможно, — наиболее важное преимущество ПТ перед биполярными транзисторами. Как и последние, ПТ бывают двух полярностей: n-канальные (с проводимостью за счет электронов) и р-канальные (с дырочной проводимостью). Эти полярности аналогичны уже известным нам соответственно n-p-n и p-n-p-транзисторам биполярного типа. Однако разнообразие ПТ этим не ограничивается, что может приводить к путанице. Во-первых, ПТ могут изготавливаться с затворами двух различных типов (в результате мы имеем ПТ с p-n-переходом и ПТ с изолированным затвором, так называемые МОП-транзисторы), а во-вторых, — двумя типами легирования канала (что дает ПТ обогащенного и обедненного типа).

Рассмотрим вкратце возможности, предоставляемые ПТ различного типа. Предварим, однако, это рассмотрение несколькими замечаниями общего плана. Наиболее важной характеристикой ПТ является отсутствие тока затвора. Получаемое, как следствие этого, высокое входное полное сопротивление (оно может быть больше 1014 Ом) существенно во многих применениях и в любом случае упрощает проектирование схем. В качестве аналоговых переключателей и усилителей со сверхвысоким входным полным сопротивлением ПТ не имеют себе равных. Сами по себе или в сочетании с биполярными транзисторами они легко встраиваются в интегральные схемы. В следующей главе мы увидим, насколько успешно это сделано при создании близких к совершенству (и фактически простых в использовании) операционных усилителей, а в гл. 8-11 будет показано, как интегральные схемы на МОП-транзисторах революционизировали цифровую электронику. Так как на малой площади в ИМС может быть размещено большее число слаботочных ПТ, то они особенно полезны для создания больших интегральных микросхем (БИС), применяемых в цифровой технике, таких как микрокалькуляторы, микропроцессоры и устройства памяти. Плюс к тому недавнее появление сильноточных ПТ (30 А или более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.

3.01. Характеристики полевых транзисторов

Иной новичок буквально «впадает в столбняк», впрямую сталкиваясь с обескураживающим разнообразием типов ПТ (см., например, первое издание этой книги!), разнообразием, возникающим как следствие возможных комбинаций полярности (n- и p-канальные), вида изоляции затвора (ПТ с полупроводниковым переходом или МОП-транзисторы с изолятором в виде окисла), а также типа легирования канала (ПТ обогащенного или обедненного типа). Из восьми имеющихся в результате этих комбинаций возможностей шесть могли бы быть реализованы, а пять-реализованы на практике. Основной интерес представляют четыре случая из этих пяти.

Чтобы понять, как работает ПТ (и исходя из здравого смысла), будет правильно, если мы начнем только с одного типа, точно так, как мы сделали с биполярным npn-транзистором. Хорошо разобравшись с ПТ выбранного типа, мы в дальнейшем будем иметь минимум трудностей в изучении остальных членов этого семейства.

Входные характеристики ПТ. Рассмотрим вначале n-канальный МОП-транзистор обогащенного типа, биполярным аналогом которого является n-p-n-транзистор (рис. 3.1).

Рис. 3.1. α — n -канальный МОП-транзистор; б — биполярный n-р-n -транзистор.

В нормальном режиме сток (или соответствующий ему коллектор) имеет положительный потенциал относительно истока (эмиттера). Ток от стока к истоку отсутствует, пока на затвор (базу) не будет подано положительное по отношению к истоку напряжение. В последнем случае затвор становится «прямосмещенным», и возникает ток стока, который весь проходит к истоку. На рис. 3.2 показано, как изменяется ток стока I С в зависимости от напряжения сток-исток U СИ , при нескольких значениях управляющего напряжения затвор-исток U ЗИ .

Рис. 3.2. Измеренные семейства выходных характеристик n -канального МОП-транзистора VN0106 ( а ) и биполярного n-p-n -транзистора 2N3904 ( б ).

Для сравнения здесь же приведено соответствующее семейство кривых зависимости I К от U KЭ для обычного биполярного n-p-n-транзистора. Очевидно, что n-канальные МОП-транзисторы и биполярные n-p-n-транзисторы во многом схожи.

Подобно n-p-n-транзистору, ПТ имеет большое приращение полного сопротивления стока, в результате чего при напряжении U СИ свыше 1–2 В ток стока почти не меняется. Для этой области характеристик ПТ неудачно выбрано название «область насыщения», тогда как у биполярных транзисторов соответствующая область называется «активной». Подобно биполярному транзистору, чем больше смещение затвора ПТ относительно истока, тем больше ток стока. В любом случае поведение ПТ ближе к идеальным устройствам — преобразователям проводимости (постоянный ток стока при неизменном напряжении затвор-исток), чем биполярных транзисторов; согласно уравнению Эберса-Молла у биполярных транзисторов должны быть превосходные характеристики выходной проводимости, однако эти идеальные характеристики не достигаются из-за эффекта Эрли (см. разд. 2.10).

До сих пор ПТ выглядел подобно n-p-n-транзистору. Посмотрим, однако, на ПТ поближе. С одной стороны, свыше нормального диапазона ток насыщения стока растет довольно умеренно при увеличении напряжения затвора (U ЗИ ). Фактически он пропорционален (U ЗИ - U П )2, где U П - «пороговое напряжение затвора», при котором начинает идти ток стока (для ПТ на рис. 3.2 U П  ~= 1,63 В); сравните этот слабый квадратичный закон с крутой экспоненциальной зависимостью, данной нам Эберсом и Моллом. Во-вторых, постоянный ток затвора равен нулю, так что мы не должны смотреть на ПТ как на устройство, усиливающее ток (коэффициент усиления тока был бы равен бесконечности). Вместо этого будем рассматривать ПТ как характеризуемое крутизной устройство — преобразователь проводимости с программированием тока стока напряжением затвор-исток, — так, как это мы делали с биполярным транзистором в толковании Эберса-Молла. Напомним, что крутизна g m есть просто отношение i С /u СИ (как и обычно, строчные буквы используются, чтобы показать «малосигнальные» изменения параметра; т. е. i С /u СИ = δ/I С /U СИ ). В-третьих, у МОП-транзистора затвор действительно изолирован от канала сток-исток; поэтому, в отличие от биполярных транзисторов (и от ПТ p-n-переходом, как мы далее увидим), можно подавать на него положительное (или отрицательное) напряжение до 10 В и более, не заботясь о диодной проводимости. И наконец, ПТ отличается от биполярного транзистора в так называемой линейной области графика, где его поведение довольно точно соответствует поведению резистора, даже при отрицательном U СИ ; это оказывается очень полезным свойством, поскольку, как вы уже могли догадаться, эквивалентное сопротивление сток-исток программируется напряжением затвор-исток.

Два примера. В ПТ еще найдется, чем нас удивить. Однако прежде чем углубляться в детали, посмотрим на две простые переключающие схемы. На рис. 3.3 показан МОП-транзисторный эквивалент рис. 2.3, первого из рассмотренного нами насыщенного транзисторного переключателя.

Рис. 3.3. Ключ на МОП-транзисторе.

Схема на ПТ даже проще, поскольку здесь мы совершенно не должны заботиться о неизбежно возникшем ранее компромиссе между необходимостью задать соответствующий необходимый для переключения ток базы (рассматривая наихудший случай — минимальное значение h 21Э в сочетании с сопротивлением холодной нити лампы) и исключить избыточное расходование энергии. Вместо этого мы всего лишь подаем на затвор, имеющий высокое полное входное напряжение, полное напряжение питания постоянного тока.

Поскольку включенный ПТ ведет себя как резистор с малым по сравнению с нагрузкой сопротивлением, потенциал стока станет при этом близок к потенциалу земли; типичный мощный МОП-транзистор имеет R вкл < 0,2 Ом, что превосходно для данной задачи.

На рис. 3.4 показана схема «аналогового переключателя», которую вообще невозможно выполнить на биполярных транзисторах.

Рис. 3.4.

Идея этой схемы состоит в том, чтобы переключать проводимость ПТ из разомкнутого (затвор смещен в «обратном» направлении) в замкнутое состояние («прямое» смещение затвора), тем самым блокируя или пропуская аналоговый сигнал (позже мы увидим множество причин выполнять такого рода вещи). В данном случае мы должны лишь обеспечить, чтобы на затвор подавалось более отрицательное переключающее напряжение, чем любой размах входного переключаемого сигнала (ключ разомкнут) или на несколько вольт более положительное, чем любой входной сигнал (ключ замкнут). Биполярные' транзисторы для такой схемы непригодны, поскольку база проводит ток и образует с коллектором и эмиттером диоды, что приводит к опасному эффекту «защелкивания». В сравнении с этим МОП-транзистор восхитительно прост, нуждаясь лишь в подаче на затвор (являющийся практически разомкнутой цепью) напряжения, равного размаху входного аналогового сигнала.

Будьте, однако, внимательны: наше рассмотрение этой схемы было до некоторой степени упрощением — например, мы игнорировали влияние емкости затвор-канал, а также вариации R вкл при изменении сигнала. Позже мы еще поговорим об аналоговых ключах.

3.02. Типы ПТ

N -канальные, p -канальные ПТ. Теперь о генеалогическом древе. Во-первых, полевые транзисторы (как и биполярные) могут выпускаться обеих полярностей. Таким образом, зеркальным отображением нашего n-канального МОП-транзистора является p-канальный МОП-транзистор. Его характеристики симметричны и напоминают характеристики р-n-р-транзистора: сток нормально имеет отрицательное смещение по отношению к истоку, и ток стока будет проходить, если на затвор подать отрицательное по отношению к истоку напряжение не менее одного-двух вольт. Симметрия несовершенна, поскольку носителями являются не электроны, а дырки с меньшей «подвижностью» и «временем жизни неосновных носителей». Эти параметры полупроводника важны для свойств транзисторов, а выводы стоит запомнить: p-канальные ПТ имеют обычно более плохие характеристики, а именно более высокое пороговое напряжение, более высокое R вкл и меньший ток насыщения.

МОП-транзисторы, ПТ с р-n -переходом. У МОП-транзисторов (металл-окисел-полупроводник) затвор изолирован от проводящего канала тонким слоем SiO2 (стекла), наращенного на канал (рис. 3.5).

Рис. 3.5. N -канальный МОП-транзистор.

Затвор, который может быть металлическим или легированным полупроводником, действительно изолирован от цепи исток-сток (характеристическое сопротивление > 1014 Ом) и действует на проводимость канала только своим электрическим полем. Иногда МОП-транзисторы называют полевыми транзисторами с изолированным затвором. Изолирующий слой довольно тонкий, обычно его толщина не превышает длины волны видимого света и он может выдержать напряжение затвора до ±20 В и более.

МОП-транзисторы просты в применении, поскольку на затвор можно подавать напряжение любой полярности относительно истока, и при этом через затвор не будет проходить никакой ток. Эти транзисторы, однако, в большой степени подвержены повреждениям от статического электричества, вы можете вывести из строя устройство на МОП-транзисторах буквально одним прикосновением.

Символическое изображение МОП-транзистора показано на рис. 3.6.

Рис. 3.6. a) — n -канальный и б) — p -канальный МОП-транзисторы.

Здесь представлен дополнительный вывод, «тело» или «подложка»-кусок кремния, на котором выполнен ПТ (см. рис. 3.5). Так как подложка образует с каналом диодное соединение, напряжение на ней должно быть ниже напряжения проводимости. Она может быть соединена с истоком или с точкой схемы, в которой напряжение ниже (выше), чем у истока n-канального (р-канального) МОП-транзистора.

Обычно на схемах вывод подложки не показывается; более того, часто инженеры используют символ с симметричным затвором. К сожалению, при этом не остается ничего, что позволило бы вам отличить сток от истока, но что еще хуже, нельзя отличить n-канальный транзистор от p-канального! В этой книге мы будем использовать только нижние схемные изображения, дабы исключить недоразумения, хотя часто мы будем оставлять вывод подложки неподключенным.

В ПТ с p-n-переходом затвор образует с расположенным под ним каналом полупроводниковый переход. Это влечет за собой важное следствие, состоящее в том, что в ПТ с p-n-переходом во избежание прохождения тока через затвор последний не должен быть смещен в прямом направлении относительно канала. Например, у n-канального ПТ с p-n-переходом диодная проводимость будет наблюдаться по мере того как напряжение на затворе приближается к 4–0,6 В по отношению к концу канала с более отрицательным потенциалом (обычно это исток). Поэтому затвор работает, будучи смещен в обратном направлении по отношению к каналу, и в цепи затвора нет никакого тока, кроме тока утечки. Схемные изображения ПТ с p-n-переходом представлены на рис. 3.7.

Рис. 3.7. a) — n -канальный и б) — p -канальный ПТ с p-n -переходом.

И вновь мы предпочитаем символические обозначения со смещенным затвором, что позволяет идентифицировать исток. Как мы увидим далее, ПТ (как с p-n-переходом, так и МОП-транзисторы) почти симметричны, но обычно они изготавливаются таким образом, чтобы получить емкость между стоком и затвором меньше, чем емкость между истоком и затвором, вследствие чего использовать сток в качестве выходного вывода предпочтительнее.

Обогащение, обеднение. N-канальный МОП-транзистор, с которого мы начали эту главу, не проводил ток при нулевом (или отрицательном) смещении затвора и начинал проводить, когда затвор становился положительно смещен относительно истока. Этот тип ПТ известен как ПТ обогащенного типа. Имеется и другая возможность изготовления n-канального ПТ, когда полупроводник канала «легирован» так, что даже при нулевом смещении затвора имеется значительная проводимость канала, и на затвор должно быть подано обратное смещение в несколько вольт для отсечки тока стока. Такой ПТ известен как прибор обедненного типа.

МОП-транзисторы могут быть изготовлены любой разновидности, поскольку здесь нет ограничения на полярность затвора. Однако ПТ с p-n-переходом допускают лишь одну полярность смещения затвора, а посему их выпускают только обедненного типа.

График зависимости тока стока от напряжения затвор-исток при фиксированном значении напряжения стока (рис. 3.8) может помочь нам уяснить, в чем состоит это различие.

Рис. 3.8. Обогащенные ( 1 ) и обедненные ( 2 ) ПТ отличаются только сдвигом напряжения затвор-исток (лог. масштаб).

МОП-транзистор обогащенного типа не проводит ток, пока напряжение затвора не станет положительным (имеются в виду n-канальные ПТ) по отношению к истоку, в то время как ток стока МОП-транзистора обедненного типа будет близок к максимальному при напряжении затвора, равном напряжению истока. В некотором смысле такое разбиение на две категории является искусственным, поскольку два графика на рис. 3.8 отличаются только на сдвиг по оси U ЗИ . Вполне возможно было бы производство «промежуточных» МОП-транзисторов. Тем не менее эта разница становится существенной, когда дело доходит до проектирования схем.

Заметим, что ПТ с р-n-переходом — это всегда приборы обедненного типа и смещение затвора относительно истока не должно быть больше приблизительно +0,5 В (для n-канала), иначе появится проводимость в диодном переходе затвор-канал. МОП-транзисторы могут быть обогащенными или обедненными, но на практике редко можно встретить последние (исключением являются n-канальные ПТ на GaAs и каскодные пары со «сдвоенным затвором» для радиочастотных применений). Отсюда следует, что во всех практически встречающихся случаях мы имеем дело только с ПТ с p-n-переходом обедненного типа либо с обогащенными МОП-транзисторами; и те и другие могут быть любой полярности, т. е. n-канальными либо p-канальными.

3.03. Общая классификация ПТ

Генеалогическое древо (рис. 3.9) и карта входных/выходных напряжений при заземленном истоке (рис. 3.10) помогают разобраться в ситуации.

Рис. 3.9.

Рис. 3.10.

Различные приборы (включая весь «букет» биполярных nрn- и pnp-транзисторов) нарисованы в квадрантах, характеризующих их входное и выходное напряжение в активной области при заземленном истоке (или эмиттере). При этом вовсе не обязательно запоминать свойства каждого из пяти представленных здесь типов ПТ, поскольку они в основном одинаковы.

Во-первых, при заземленном истоке ПТ включается (переходит в проводящее состояние) путем смещения напряжения затвора в сторону напряжения питания стока. Это верно как для всех пяти типов ПТ, так и для биполярных транзисторов. Например, для n-канального ПТ с р-n-переходом (который автоматически является обедненным) используется положительное напряжение питания стока, как и для всех n-канальных приборов. Таким образом, этот ПТ включается положительным смещением затвора. Здесь есть тонкость, состоящая в том, что у приборов обедненного типа для получения нулевого тока стока затвор должен иметь обратное смещение, в то время как у приборов обогащенного типа достаточно для этой цели нулевого напряжения на затворе.

Во-вторых, в связи с примерной симметрией истока и стока любой из этих выводов может работать как исток (исключение составляют мощные МОП-транзисторы, у которых подложка внутри корпуса соединена с истоком). При изучении работы ПТ, а также при расчетах за исток принимается вывод, наиболее «удаленный» по напряжению от активного питания стока. Например, допустим, что ПТ используется для замыкания на землю некоторой линии, в которой присутствуют как положительные, так и отрицательные сигналы. Обычно такая линия подключается к стоку ПТ. Если в качестве ключа взят n-канальный МОП-транзистор обогащенного типа и если случится, что в выключенном состоянии напряжение на стоковом выводе будет отрицательным, то для подсчета отпирающего напряжения затвора этот вывод следует считать в действительности «истоком». Это означает, что для обеспечения надежного запирания ключа отрицательное напряжение на затворе должно быть не только уровня «земли», но и превышать (по абсолютной величине) наибольший отрицательный сигнал.

Характеристики, приведенные на рис. 3.11, помогут вам разобраться в этих запутанных вопросах.

Рис. 3 11. Характеристики ПТ различных типов и полярностей (лог. масштаб).

1 — обогащенный p -канальный МОП-транзистор; 2 — обогащенный n -канальный МОП-транзистор; 3 — n -канальный ПТ с p-n -переходом; 4 — p -канальный ПТ с p-n -переходом.

Еще раз отметим, что разница между обогащенными и обедненными приборами выражается только в сдвиге вдоль оси U ЗИ , т. е. имеется ли большой ток стока или нет совсем никакого тока при напряжении затвора равном напряжению истока. Полевые n-канальные и p-канальные транзисторы симметричны друг другу в том же смысле, в каком являются таковыми биполярные n-р-n- и p-n-p-транзисторы.

На рис. 3.11 мы использовали стандартные обозначения для таких важных параметров ПТ, как ток насыщения и напряжение отсечки. Для ПТ с p-n-переходом величина тока стока при замкнутых накоротко затворе и истоке обозначается в спецификациях как I СИ нач ; она близка к величине максимально допустимого тока стока. (I СИ нач означает ток от стока к истоку при короткозамкнутых затворе и истоке. Здесь и далее в этой главе мы приводим эту нотацию, в которой первые две буквы индекса обозначают соответствующие выводы, а за ними указывается состояние.) Для обогащенных МОП-транзисторов аналогичной спецификацией является I СИ вкл, при некотором заданном напряжении прямого смещения затвора (I СИ нач  у любого прибора с обогащением был бы равен нулю).

Для ПТ с p-n-переходом напряжение затвор-исток, при котором ток стока становится равен нулю, называется «напряжением отсечки» (U отс ) или «напряжением выключения» (U ЗИ выкл ) и типичное его значение лежит в диапазоне от —3 до —10 В (для p-канального прибора оно, разумеется, положительное). Для обогащенного МОП-транзистора аналогичная величина называется «пороговое напряжение», U П (или U ЗИ пор ), — это напряжение перехода затвор-исток, при котором начинает проходить ток стока. Типичная величина U П составляет 0,5–5 В, разумеется в «прямом» направлении. Читая литературу по электронике на английском языке, не спутайте случайно U П  (обозначаемое там как V T ) с V T в уравнении Эберса — Молла, которое обозначает ток коллектора биполярного транзистора; у этих двух величин нет ничего общего.

Имея дело с ПТ, легко запутаться в полярностях. Например, n-канальное устройство, у которого обычно сток положителен по отношению к истоку, может иметь положительное или отрицательное напряжение на затворе, а также положительное (обогащенный тип) или отрицательное (обедненный тип) пороговое напряжение. Еще более усложняет дело то, что сток может быть (и часто бывает) отрицателен по отношению к истоку. Все эти рассуждения, конечно, справедливы с заменой знаков для p-канальных устройств. В дальнейшем, чтобы свести к минимуму ошибки, мы будем всегда иметь в виду n-канальные устройства, если не оговорено противное. Аналогичным образом, поскольку МОП-транзисторы почти всегда обогащенные, а ПТ с p-n-переходом всегда обедненного типа, мы будем далее опускать эти их определения.

3.04. Выходные характеристики ПТ

На рис. 3.2 мы показывали семейство кривых зависимости I C от U СИ , измеренных для n-канального обогащенного МОП-транзистора VN0106. (Транзисторы семейства VN01 работают в различных диапазонах напряжений, что отражается в двух последних цифрах полного обозначения. Например, VN0106 рассчитан на напряжение 60 В.) Мы уже отмечали, что ПТ ведут себя как хорошие преобразователи проводимости (т. е. I C почти не изменяется при заданном U ЗИ ) практически во всем диапазоне изменения U СИ , за исключением его малых значений, где они проявляют себя как сопротивление (т. е. I С пропорционален U СИ ). В обоих случаях приложенное к переходу затвор-исток напряжение управляет поведением ПТ, которое хорошо можно описать аналогом уравнения Эберса-Молла для ПТ. Посмотрим на эти две области более подробно.

На рис. 3.12 схематически представлена указанная ситуация.

Рис. 3.12.

В обеих областях ток стока зависит от U ЗИ - U П , величины, на которую напряжение затвор-исток превышает пороговое напряжение (или напряжение отсечки). Линейная область, в которой ток стока приблизительно пропорционален U ЗИ , простирается до напряжения U ЗИ нас , после чего ток стока почти не изменяется. Крутизна наклона линейного участка, I С /U СИ , пропорциональна напряжению смещения, U ЗИ - U П . Далее, напряжение стока U СИ нас , при котором кривая «выходит на насыщение», равно U ЗИ - U П , в результате чего ток насыщения, U С нас , становится пропорционален (U ЗИ - U П )2 — квадратичный закон, о котором мы упоминали ранее. Итак, имеем универсальные формулы для определения тока стока ПТ:

I С = 2k[(U СИ — U П )U СИ — 0,5U 2 СИ ] (линейный участок)

I С = k[(U ЗИ — U П )2 (участок насыщения)

Если мы назовем U ЗИ — U П (величину, на которую напряжение затвор-исток превышает порог) «напряжением возбуждения затвора», то можно сформулировать три важных результата из сказанного: а) удельное сопротивление ПТ в линейной области обратно пропорционально напряжению возбуждения, б) линейный участок простирается вплоть до напряжения, равного напряжению возбуждения и в) ток насыщения стока пропорционален напряжению возбуждения в квадрате.

Приведенные выражения предполагают, что подложка соединена с истоком. Обратите внимание на то, что «линейный участок» не является строго линейным, поскольку формула содержит нелинейный член U 2 СИ ; позже мы покажем остроумную схему, фиксирующую эту составляющую.

Масштабный коэффициент k зависит от таких параметров, как геометрия ПТ, емкость слоя окисла и подвижность носителей. У этой постоянной отрицательный температурный коэффициент:

k ~ T-3/2.

Этот эффект сам по себе приводил бы к уменьшению I С с увеличением температуры. Однако это компенсируется тем, что U П также в слабой степени зависит от температуры с коэффициентом 2–5 мВ/°С; суммарный эффект дает зависимость тока стока от температуры, показанную на рис. 3.13.

Рис. 3.13. Зависимости I С ( U ЗИ ) n -канального МОП-транзистора 2Ν4351 (квадратичный масштаб вертикальной оси).

При больших токах стока убывание коэффициента к с ростом температуры влечет уменьшение тока стока — настоящее тепловое бегство! Как следствие этого, ПТ какого-нибудь одного типа могут быть соединены параллельно без токовыравнивающих резисторов, в отличие от биполярных транзисторов, где «резисторный балласт» в цепях эмиттеров необходим (см. разд. 6.07). Этот же отрицательный температурный коэффициент предотвращает также тепловую гонку на локальном участке перехода (эффект, известный под названием «прогиб тока»), которая серьезно ограничивает допустимую мощность рассеяния больших биполярных транзисторов, как мы увидим при обсуждении «вторичного пробоя» и «площади безопасной работы» в гл. 6.

При малых токах стока (когда доминирует температурная зависимость U П ) I С растет с ростом температуры и точка перехода от возрастания к убыванию находится при некотором промежуточном значении тока стока. Этот эффект используется в операционных усилителях на ПТ для минимизации температурного дрейфа, как мы увидим в следующей главе.

Субпороговая область. Приведенное выше выражение для тока насыщения стока непригодно для очень малых значений тока стока. Этот диапазон известен как «субпороговая» область, где канал находится ниже порога проводимости, однако некоторый ток все-таки проходит за счет небольшой вероятностной популяции электронов с большим тепловым возбуждением. Если вы изучали физику или химию, то, возможно, знаете из того, что проходили, что результирующий ток имеет экспоненциальную зависимость:

I С = k·exp(U ЗИ — U П )

Мы измерили ток стока некоторых МОП-транзисторов в диапазоне изменения его на 9 декад (от 1 нА до 1 А) и построили графики зависимости I С от U ЗИ (рис. 3.14).

Рис. 3.14. Измеренные графики зависимости тока стока от напряжения затвор-исток для двух типов МОП-транзисторов.

Диапазон от 1 нА до 1 мА очень точно соответствует экспоненте; выше этого субпорогового участка кривые входят в нормальную область насыщения. Для n-канальных МОП-транзисторов (типа VN01) мы проверили выборку из 20 транзисторов (четырех разных изготовителей, разброс выпуска — 2 года) и нанесли диапазон разноса значений, чтобы получить представление о их вариабельности (см. следующий разд.). Обратите внимание на несколько худшие характеристики (U П , I С вкл ) «комплементарного» транзистора VP01.

3.05. Производственный разброс характеристик ПТ

Перед тем как рассматривать какие-нибудь схемы, оценим сначала диапазон параметров ПТ (таким как I СИ нач и U П ), а также их «разброс» среди приборов одного типа с целью получения более полного представления о ПТ. К сожалению, многие характеристики ПТ имеют разброс намного больше, чем соответствующие характеристики биполярных транзисторов, — факт, который проектировщик должен помнить. Например, в паспорте на VN01 (типичный n-канальный МОП-транзистор) оговорено, что U П может составлять от 0,8 до 2,4 В (при I С = 1 мА), в сравнении с тем, что аналогичный параметр биполярного npn-транзистора, U БЭ имеет разброс от 0,63 до 0,83 В (также при I К = 1 мА). Итак, вот что мы можем ожидать:

В этой таблице R СИ вкл — сопротивление сток-исток (линейная область, т. е. малое напряжение U ЗИ ) для полностью открытого ПТ, т. е. при заземленном затворе в случае ПТ с p-n-переходом или при большом (обычно принимается 10 В) напряжении затвор-исток у МОП-транзистора. I СИ нач и I С вкл ~ значения тока стока в области насыщения (большое U СИ ) при тех же самых отпирающих условиях возбуждения затвора. U отс есть напряжение отсечки (ПТ с p-n-переходом), U П — пороговое напряжение затвора (МОП-транзисторы), а U СИ пр и U ЗИ пр — соответствующие напряжения пробоя. Как можно видеть, ПТ с заземленным истоком может быть хорошим источником тока, но нельзя точно предсказать, каким будет этот ток. Напряжение U ЗИ , при котором получается заданный ток стока, может заметно варьировать в отличие от предсказуемого (~= 0,6 В) UБЭ у биполярных транзисторов.

Согласование характеристик. Как вы можете видеть, ПТ уступают биполярным транзисторам в предсказуемости U ЗИ , т. е. значения U ЗИ , обеспечивающие заданный I С , имеют большой разброс. Приборы, обладающие большим разбросом, будут, вообще говоря, давать больший сдвиг (напряжение небаланса), если их применять в качестве дифференциальных пар. Например, типичный серийный биполярный транзистор дает разброс U БЭ в 50 мВ или около того при некотором заданном токе коллектора без всякого отбора транзисторов (берем подряд любой прибор, имеющийся под рукой). Соответствующая цифра для МОП-транзисторов — более 1 В! Но поскольку ПТ обладают весьма желательными характеристиками, имеет смысл затратить некоторые дополнительные усилия для уменьшения сдвига путем изготовления согласованных пар.

Проектировщики ИС пользуются такими приемами как перемежающаяся (гребенчатая) структура (два прибора разделяют между собой один и тот же участок подложки ИС) и выравнивание температурных градиентов в схеме между приборами (рис. 3.15).

Рис. 3.15. Гребенчатая структура ( а ) и температурно-градиентная компенсация ( б ).

Получаемые результаты впечатляют. Хотя ПТ не могут сравняться с биполярными транзисторами в согласованности U ЗИ , их параметры вполне пригодны для большинства применений. Например, наилучшим образом согласованная пара ПТ имеет сдвиг 0,5 мВ и температурный коэффициент 5 мкВ/°С (макс), в то время как у лучшей биполярной пары эти значения будут 25 мкВ и 0,6 мкВ/°С, грубо говоря, в 10 раз лучше. Операционные усилители (универсальные дифференциальные усилители с высоким коэффициентом усиления, о которых мы будем говорить в следующей главе) выпускаются как на полевых, так и на биполярных транзисторах; для высокоточных применений вы сможете, вообще говоря, выбрать ОУ с биполярной «начинкой», (ввиду тесного согласования входных транзисторов по U БЭ ), в то время как ОУ с ПТ-входом, очевидно, является наилучшим выбором для высокоомных схем (их входы — затворы ПТ — не потребляют тока). Например, недорогой ОУ типа LF 411 со входом на ПТ с р-n-переходом, который мы используем повсеместно в схемах, приводимых в следующей главе, имеет типичное значение входного тока 50 пА и стоит 60 цент; популярный TLC212 со входом на МОП-транзисторах стоит примерно столько же и имеет типичное значение входного тока всего 1 пА! Для сравнения укажем, что обычный биполярный ОУ μΑ741 имеет типичное значение входного тока 80 000 пА (80 нА).

В табл. 3.1–3.3 дан перечень типичных ПТ с p-n-переходом (как одиночных, так и сдвоенных) и малосигнальных МОП-транзисторов. Мощные МОП-транзисторы, которые мы рассмотрим в разд. 3.14, перечислены в табл. 3.5.

 

Основные схемы на ПТ

Теперь мы готовы к тому, чтобы рассмотреть схемы на ПТ. Обычно можно найти способ преобразовать схему на биполярных транзисторах в схему с использованием ПТ. Однако эта новая схема может не дать улучшения характеристик! В оставшейся части этой главы мы постараемся показать схемные решения, в которых проявляются преимущества уникальных свойств ПТ, т. е. схемы, которые работают лучше, будучи построены на ПТ, или которые совсем нельзя изготовить на биполярных транзисторах. С этой целью может оказаться полезным сгруппировать схемы на ПТ по категориям; здесь особенно важным является, как мы это видим.

Схемы с высоким полным сопротивлением (слаботочные). Сюда относятся буферные или обычные усилители для тех применений, где ток базы или конечное полное входное сопротивление биполярных транзисторов ограничивает их характеристики. Хотя мы можем построить такие схемы на отдельно взятых ПТ, однако сегодняшняя практика отдает предпочтение использованию интегральных схем, построенных на ПТ. В некоторых из них ПТ используется только в качестве высокоомного входного каскада, а вся остальная схема построена на биполярных транзисторах, в других вся схема построена на ПТ.

Аналоговые ключи. МОП-транзисторы являются превосходными аналоговыми ключами, управляемыми напряжением, как мы уже указывали в разд. 3.01. Мы еще обсудим вкратце данный предмет. И снова говоря «аналоговый ключ», мы должны в общем случае иметь в виду интегральные микросхемы, а не схемы, построенные на дискретных элементах.

Цифровая логика. МОП-транзисторы доминируют при построении микропроцессоров, схем памяти и большинства высококачественных цифровых логических схем. Микромощные логические схемы изготавливаются исключительно на МОП-транзисторах. Здесь, как и прежде, МОП-транзисторы используются в составе интегральных схем. Далее мы увидим, почему ПТ отдается предпочтение перед биполярными транзисторами.

Мощные переключатели. Мощные МОП-транзисторы часто бывают предпочтительнее биполярных транзисторов для переключения нагрузок, как мы уже показали в нашей первой схеме, приведенной в данной главе. Для таких применений используются мощные дискретные ПТ.

Переменные резисторы; источники тока. В «линейной» области стоковых характеристик ПТ ведут себя подобно резисторам, управляемым напряжением; в области «насыщения» они являются управляемыми напряжением источниками тока. Вы можете использовать эти присущие ПТ свойства в своих схемах.

Общая замена биполярных транзисторов. Вы можете использовать ПТ в генераторах, усилителях, стабилизаторах напряжения, радиоприемных схемах (по крайней мере в некоторых из них), — там, где обычно используются биполярные транзисторы. Применение ПТ не гарантирует улучшения схемы - иногда такая замена желательна, иногда нет. Их следует просто иметь в виду как возможную альтернативу.

Давайте теперь посмотрим на указанные области применения. Для лучшего понимания мы слегка изменим порядок изложения.

3.06. Источники тока на ПТ с р-n -переходом

ПТ используется в качестве источников тока в составе интегральных схем (в частности, в ОУ), а также иногда и в схемах на дискретных элементах. Простейший источник тока на ПТ показан на рис. 3.16; мы выбрали ПТ с p-n-переходом, а не МОП-транзистор, поскольку ему не требуется смещения затвора (режим с обеднением).

Рис. 3.16.

Из стоковых характеристик ПТ (рис. 3.17) видно, что ток будет приблизительно постоянным при U СИ больше 2 В. Однако в силу разброса I С нач величина этого тока непредсказуема.

Рис. 3.17. Семейство выходных характеристик n -канального ПТ с p-n -переходом типа 2Ν5484: зависимость I С  ( U СИ ) при различных значениях U ЗИ при полном масштабе изменений параметров ( а ) и на начальном участке ( б ).

Например, устройство 2N5484 (типичный n-канальный транзистор с p-n-переходом) имеет паспортную величину I С нач от 1 до 5 мА. И все же эта схема привлекает своей простотой двухвыводного устройства, дающего постоянный ток. Существуют дешевые серийные «диодные стабилизаторы тока», представляющие собой всего лишь отобранные по току ПТ c p-n-neреходом, у которых затвор соединен со стоком. Это токовые аналоги стабилитронов (стабилизаторов напряжения).

Приведем характеристики таких приборов из серии 1Ν5283-1Ν5314:

Мы построили график вольт-амперной характеристики устройства 1Ν5294, имеющего номинальный ток стабилизации 0,75 мА; рис. 3.18, а демонстрирует хорошее постоянство тока вплоть до напряжения пробоя (140 В для данного конкретного образца), тогда как из рис. 3.18, б видно, что полный ток данного устройства достигается при падении напряжения на нем несколько меньше 1,5 В.

В разд. 5.13 мы покажем, как можно использовать такого рода устройство для создания генератора пилообразного напряжения с острыми вершинами сигнала.

В табл. 3.4 дан неполный перечень устройств серии 1Ν5283.

Источник тока с автоматическим смещением. Вариация предыдущей схемы дает регулируемый источник тока у(рис. 3.19).

Рис. 3.19.

Резистор автоматического смещения R задает обратное смещение затвора I C R , уменьшая I C и приводя ПТ с p-n-переходом в состояние, близкое к отсечке. Можно рассчитать значение R по выходным характеристикам для конкретного ПТ. Эта схема не только дает возможность устанавливать ток (который должен быть меньше I С нач ), но и сделать это более предсказуемым образом. Кроме того, эта схема является лучшим источником тока (с более высоким динамическим сопротивлением) в силу того, что истоковый резистор обеспечивает обратную связь по току (которую мы рассмотрим в разд. 4.07), а также потому, что характеристики ПТ с p-n-переходом как источника тока при обратном смещении затвора всегда улучшаются, как это видно из приведенных на рис. 3.2 и 3.17 характеристик, где чем ниже кривая зависимости I C от U ЗИ , тем она ближе к горизонтали. Однако, конечно, надо помнить, что значение I C , полученное при каком-то значении U ЗИ  для данного конкретного ПТ, может отличаться от взятого из характеристики на значительную величину ввиду, технологического разброса. Если надо получить строго заданный ток, то можно использовать в цепи истока подстроечный резистор.

Упражнение 3.1. Подберите значение R для получения тока 1 мА в схеме источника тока на ПТ с p-n -переходом 2N5484, используя полученные измерениями кривые, представленные на рис. 3.17. Теперь оцените, к чему приводит тот факт, что паспортные данные  Ic нач для 2N5484 имеют разброс от 1 до 5 мА.

Источник тока на ПТ с p-n-переходом, даже с резистором в цепи истока, дает несколько изменяющийся ток при изменении напряжения, т. е. он имеет конечное выходное сопротивление, а не желаемое бесконечное значение Z вых . Кривые рис. 3.17 показывают, например, что у транзистора 2N5484 при изменении напряжения стока в рабочем диапазоне от 5 до 20 В ток стока при замкнутых накоротко истоке и затворе (т. е. I С нач ) изменяется на 5 %. Эту вариацию можно уменьшить до 2 % или около того, включив в цепь истока резистор. Тот же прием, который был использован в схеме рис. 2.24, можно использовать и для источников тока на ПТ с p-n-переходом, как это и сделано на рис. 3.20.

Рис. 3.20. Каскодная схема «потребителя» тока на ПТ с p-n -переходом.

I СИ нас (T 2 ) > I СИ нас (T 1 )

Идея (как и в случае с биполярными транзисторами) состоит в том, чтобы использовать второй ПТ с p-n-переходом для поддержания постоянным напряжения сток-исток в источнике тока. T 1 в этом случае является обычным источником тока на ПТ с p-n-переходом с истоковым резистором.

T 2 — ПТ с p-n-переходом с большим значением I С нач , включенный «последовательно» с источником тока. Он пропускает постоянный ток стока T 1 в нагрузку, удерживая в то же время напряжение на стоке T 1 неизменным, а тем самым и напряжение затвор-исток, что вынуждает T 2 работать с тем же током, что и T 1 .

Таким образом, T 2 «экранирует» T 1 от колебаний напряжения на выходе; поскольку T 1 не подвержен вариациям напряжения стока, он «сидит на месте» и обеспечивает постоянный ток. Если вернуться к схеме зеркала Вилсона (рис. 2.48), то мы увидим, что здесь используется та же идея фиксации напряжения.

Вы можете распознать в этой схеме на ПТ с p-n-переходом «каскодную» схему, которая обычно используется для преодоления эффекта Миллера (разд. 2.19).

Каскодная схема на ПТ с p-n-переходом проще, чем на биполярных транзисторах, поскольку здесь не требуется напряжения смещения на затворе верхнего ПТ: ввиду того, что он работает в режиме с обеднением, можно просто заземлить его затвор (сравните с рис. 2.74).

Упражнение 3.2. Объясните, почему верхний ПТ с p-n -переходом в каскодной схеме должен иметь более высокое значение I c нач , чем нижний ПТ. Помочь в этом может рассмотрение каскодной схемы на ПТ с p-n -переходом без истокового резистора.

Важно осознавать, что источник тока на хороших биполярных транзисторах обеспечит намного лучшие предсказуемость и стабильность, чем источник тока на ПТ с p-n-переходом. Более того, построенные на ОУ источники тока, которые мы увидим в следующей главе, еще лучше. Например, источник тока на ПТ в типичном диапазоне температур и вариаций напряжения нагрузки может давать ток с отклонениями на 5 %, даже если подгонкой истокового резистора установить желаемый ток; в то же время источник тока на ОУ из биполярных или полевых транзисторов даст без особых усилий со стороны разработчика предсказуемость и стабильность лучше 0,5 %.

3.07. Усилители на ПТ

Истоковые повторители и усилители на ПТ с общим истоком — это аналоги эмиттерных повторителей и усилителей с общим эмиттером на биполярных транзисторах, о которых мы говорили в предыдущей главе. Однако отсутствие постоянного тока затвора дает возможность получить очень высокое входное сопротивление. Такие усилители необходимы, когда мы имеем дело с высокоомными источниками сигналов, встречающимися в измерительных схемах. Для некоторых специализированных применений вы, может быть, захотите построить повторители или усилители на дискретных ПТ, однако в большинстве случаев можно использовать достоинства, которыми обладают ОУ с ПТ-входом. В любом случае стоит понять, как они работают.

Когда мы имеем дело с ПТ, то обычно применяется та же схема автоматического смещения, что и в источниках тока на ПТ с p-n-переходом (разд. 3.06) с одним резистором смещения затвора, подключенным вторым выводом к земле (рис. 3.21); для МОП-транзисторов требуется делитель, питаемый от источника напряжения стока, или расщепленный источник, как это было и в случае с биполярными транзисторами.

Рис. 3.21.

Резистор смещения затвора может иметь очень большое сопротивление (свыше МОм), поскольку ток утечки затвора измеряется наноамперами.

Крутизна. Отсутствие тока затвора делает естественным параметром, характеризующим усиление ПТ, крутизну — отношение выходного тока к входному напряжению:

g m = i вых /u вх ·

Это отличается от того, как мы рассматривали биполярные транзисторы в предыдущей главе, где мы вначале носились с идеей усиления по току (i вых /u вх ), а затем ввели ориентированную на параметр крутизны модель Эберса-Молла: полезно было посмотреть на биполярные транзисторы с разных сторон, в зависимости от их применения.

Крутизна ПТ может быть оценена по характеристике либо по тому, насколько увеличивается I С при переходе от одной кривой с фиксированным значением напряжения затвора к другой из семейства кривых (рис. 3.2 или 3.17), либо, что проще, по наклону кривых «передаточных характеристик» I С -UЗИ (рис. 3.14).

Крутизна зависит от тока стока (вскоре мы увидим как) и определяется просто как (Напомним, что строчными латинскими буквами обозначаются малосигнальные приращения.) Из этого выражения мы получаем коэффициент усиления по напряжению:

К U = u С /uЗИ = — R С i С /u ЗИ = — g m R C ,

тот же результат, что и для биполярного транзистора в разд. 2.09, если заменить резистор нагрузки R K на R C . Как правило, крутизна ПТ равняется нескольким тысячам микросименс (мкСм) при токе стока в несколько миллиампер. Поскольку g m зависит от тока стока, существует некоторая нелинейность, связанная с зависимостью коэффициента усиления от изменения тока стока на протяжении периода сигнала, подобно тому, как это бывает в усилителе с заземленным эмиттером, где g m = 1/r Э пропорциональна I С . Кроме того, ПТ в общем имеют значительно меньшую крутизну, чем биполярные транзисторы, что делает их менее подходящими для построения усилителей и повторителей. Рассмотрим это немного подробнее.

Сравнение крутизны ПТ и биполярных транзисторов. Чтобы перевести наше последнее замечание в числа, рассмотрим ПТ с p-n-переходом и биполярный транзистор, каждый с рабочим током 1 мА. Представим, что они включены как усилители с общим истоком (эмиттером), а сток (коллектор) через резистор 5 кОм подключен к источнику питания 4-10 В (рис. 3.22).

Рис. 3.22.

Не будем обращать внимания на детали смещения и сосредоточимся на рассмотрении коэффициента усиления.

Биполярный транзистор имеет r Э , равное 25 Ом, а следовательно, g m = 40 мСм и коэффициент усиления по напряжению — 200 (что можно получить прямым расчетом как — R К /r Э ). Типичный ПТ с p-n-переходом (например, 2N4220) имеет g m порядка 2 мСм при токе стока 1 мА, давая коэффициент усиления по напряжению порядка —10. Это сравнение выглядит обескураживающим. Малая g m дает также относительно высокое Z вых в схеме повторителя (рис. 3.23): ПТ с p-n-переходом имеет Zвых = 1/g m , что в данном случае эквивалентно 500 Ом (независимо от сопротивления источника сигнала); в сравнении с этим биполярный транзистор имеет Zвых = R с /h 21Э + r Э = R с /h 21Э + 1/g m , равное R с /h 21Э + 25 Ом (при 1 мА). Для типичного бета-биполярного транзистора, скажем h 21Э = 100, и при разумных значениях сопротивления источника сигнала, скажем при R c < 5 кОм, биполярный повторитель на порядок лучше (Z вых равно 25–75 Ом). Отметим, однако, что при R c > 50 кОм повторитель на ПТ с p-n-переходом будет лучше.

Рис. 3.23. Выходное сопротивление повторителей напряжения на ПТ с p-n -переходом ( а ) и биполярном транзисторе ( б ).

Чтобы видеть, что происходит, вернемся к выражениям зависимости тока стока ПТ от напряжения затвор-исток и сравним с эквивалентным уравнением (Эберса-Молла) зависимости тока коллектора биполярного транзистора от напряжения база-эмиттер.

Биполярный транзистор (уравнение Эберса — Молла):

I К = I c [exp(U БЭ /U T ) — 1],

где U T = kT/q = 25 мВ, что дает g m = dI К /dU БЭ  = I К /U T для коллекторного тока, большого в сравнении с током «утечки» I с . Это уже знакомый нам результат — r Э (Ом) = 25/I К (мА), поскольку g m = 1/r Э .

Полевой транзистор: в «субпороговой» области он имеет очень малый ток стока

что, будучи экспоненциальным подобием уравнения Эберса-Молла, также дает пропорциональную зависимость крутизны от тока. Однако для наблюдающихся в реальности значений к (который зависит от геометрии ПТ, подвижности носителей и т. п.) крутизна ПТ несколько ниже, чем у биполярного транзистора, — около I/40 мВ для p-канального МОП-транзистора и около I/60 мВ для n-канального МОП-транзистора, тогда как у биполярных транзисторов она равна I/25 мВ. По мере увеличения тока ПТ входит в нормальную область «насыщения», где

I С = k(U ЗИ — U Т )2,

что дает g m = 2(k·I С )1/2. Это означает, что крутизна растет пропорционально лишь корню квадратному из I С и становится намного меньше крутизны биполярного транзистора при тех же значениях рабочего тока (см. рис. 3.24).

Рис. 3.24. Сравнение g m биполярных к полевых транзисторов, 1 — биполярный транзистор; 2 — р -канальный МОП-транзистор; 3 — n -канальный МОП-транзистор.

Увеличение постоянной к в предыдущих уравнениях (за счет увеличения отношения ширины канала к его длине) увеличивает крутизну (и ток стока при данном значении Um) в надпороговой области, но все равно крутизна остается меньше, чем у биполярного транзистора при том же токе.

Упражнение 3.3. Выведите предыдущие выражения для g m , взяв производную I вых относительно U вх .

Проблему низкого коэффициента усиления в усилителях на ПТ можно разрешить, обратившись к нагрузке в виде источника тока (активной), однако вновь биполярный транзистор будет лучше в той же схеме. По этой причине редко можно видеть ПТ в схемах простых усилителей, если только не нужно использовать их уникальные входные параметры (исключительно высокое входное сопротивление и малый входной ток).

Обратите, внимание на то, что крутизна ПТ в области насыщения пропорциональна U ЗИ — U T ; так, например, ПТ с p-n-переходом, на затвор которого подано напряжение, равное половине напряжения отсечки, имеет крутизну примерно вполовину меньше, чем приведенная в паспорте (где она всегда дается при I С = I Снач , т. е. при U ЗИ = 0).

Дифференциальные усилители. Можно использовать согласованные пары ПТ для построения входных каскадов с высоким полным входным сопротивлением биполярных дифференциальных усилителей, а также играющих важную роль ОУ и компараторов, которые мы встретим в следующей главе. Как отмечалось выше, значительный разброс U ЗИ у ПТ приведет, вообще говоря, к большим значениям входного напряжения сдвига и его дрейфа, чем у аналогичного усилителя, построенного исключительно на биполярных транзисторах; зато входное полное сопротивление колоссально возрастет.

Генераторы. Вообще говоря, ПТ по своим характеристикам могут быть хорошей заменой биполярных транзисторов почти в любой схеме, которая выигрывает благодаря их уникально высокому полному входному сопротивлению и малому входному току смещения. Примерами таких схем являются высокостабильные LC-генераторы и кварцевые генераторы, которые мы представим в разд. 5.18, 5.19 и 13.11.

Активная нагрузка. Так же как и для усилителей на биполярных транзисторах, в усилителе на ПТ можно заменить резистор нагрузки стока активной нагрузкой, т. е. источником тока. При этом можно получить очень большой коэффициент усиления по напряжению:

KU = — g m R C  (резистор нагрузки стока),

KU = — g m R 0  (источник тока),

где R 0 — полное сопротивление в цепи стока, обычно лежащее в диапазоне значений от 100 кОм до 1 МОм.

Одним из вариантов активной нагрузки является токовое зеркало, включенное в качестве нагрузки стока в дифференциальном каскаде на ПТ (см. разд. 2.18); эта схема, однако, не обеспечивает стабильного смещения, если не охватить ее общей цепью обратной связи. Токовое зеркало можно построить как на ПТ, так и на биполярных транзисторах. Часто это схемное решение применяется в ОУ на ПТ, которые мы увидим в следующей главе. Другой прекрасный пример применения метода активной нагрузки вы увидите в разд. 3.14, когда мы будем рассматривать линейный усилитель на КМОП-транзисторах.

3.08. Истоковые повторители

Ввиду относительно малой крутизны ПТ часто предпочитают использовать построенный на ПТ «истоковый повторитель» (являющийся аналогом эмиттерного повторителя) в качестве входного буферного каскада для усилителя на обычных биполярных транзисторах, вместо того, чтобы пытаться прямо изготовить усилитель на ПТ с общим истоком. При этом сохраняются высокое входное сопротивление и нулевой постоянный входной ток ПТ, а большая крутизна биполярного транзистора позволяет получить большой коэффициент усиления в одном каскаде. Кроме того, у дискретных ПТ (т. е. не являющихся частью интегральной схемы) межэлектродные емкости выше, чем у биполярных транзисторов, вследствие чего в усилителях с общим истоком более сильно проявляется эффект Миллера (разд. 2.19); в схеме истокового повторителя, как и в эмиттерном повторителе, эффект Миллера отсутствует.

Повторители на ПТ с их высоким полным входным сопротивлением обычно применяются как входные каскады в осциллографах и других измерительных приборах. Во многих случаях высокое полное сопротивление бывает неотъемлемой особенностью источника сигнала, как, например, у конденсаторных микрофонов, pH-метров, детекторов заряженных частиц или микроэлектродов для снятия сигналов с живых объектов в биологии и медицине; во всех этих случаях полезен входной каскад на ПТ (дискретных или в составе интегральной схемы).

В схемотехнике встречаются случаи, когда и последующий каскад должен иметь малый входной ток или вообще его не иметь. Примеры тому — схемы «слежения и хранения» и пиковые детекторы, в которых конденсатор, запоминающий уровень напряжения, «сбросится», если вход последующего усилителя проводит слишком большой ток. Во всех этих случаях пренебрежимо малый входной ток ПТ является более важной характеристикой, чем его малая крутизна, что делает истоковый повторитель (или даже усилитель с общим истоком) весьма выгодной заменой эмиттерного повторителя на биполярных транзисторах.

На рис. 3.25 показан простейший истоковый повторитель.

Рис. 3.25.

Мы можем выразить амплитуду выходного сигнала, как делали это для эмиттерного повторителя в разд. 2.11, через крутизну. Имеем:

u И = R н i С , так как i 3 пренебрежимо мал; при этом, поскольку i С = g m u ЗИ = g m (u 3 — u И ), то u И = [R н g m /(1 + R н g m )]u 3 . При R н  >> 1/g m мы имеем хороший повторитель (u И  ~= u 3 ) с коэффициентом усиления, близким к единице, хотя всегда меньше единицы.

Выходное сопротивление. Предыдущую формулу для u И можно было бы считать не приближенным, а точным выражением, если бы выходное сопротивление истокового повторителя было равно 1/g m , (попробуйте произвести соответствующие расчеты, рассматривая напряжение источника как источник, который будучи включен последовательно с 1/g m , работает на нагрузку R н ). Это точный аналог ситуации с эмиттерным повторителем, у которого выходное полное сопротивление равно r Э = 25/IК или 1/g m . Легко показать, что истоковый повторитель имеет полное выходное сопротивление 1/g m , определив ток истока при сигнале, приложенном к выходу при заземленном затворе (рис. 3.26).

Рис. 3.26.

Ток стока в этом случае равен i C = g m u ЗИ = g m u , а r вых = u/i C = 1/g m .

Обычно r вых составляет несколько сот ом при токах в несколько миллиампер. Как легко видеть, истоковые повторители не столь совершенны, как эмиттерные повторители.

У данной схемы два недостатка:

1. Относительно большое выходное полное сопротивление означает, что амплитуда выходного сигнала может быть значительно меньше, чем амплитуда входного, даже при высоком полном сопротивлении нагрузки, так как любое R н   образует в сочетании с выходным сопротивлением истока делитель. Кроме того, так как ток стока меняется на протяжении периода сигнала, поэтому g m и вместе с ней выходное полное сопротивление будут изменяться, внося в выходной сигнал некоторую нелинейность (искажения). Эту ситуацию можно улучшить, используя ПТ с большой крутизной, но лучшим решением является комбинированный (ПТ-биполярный транзистор) повторитель.

2. Так как величина U ЗИ , необходимая для задания определенного рабочего тока, — трудно контролируемый при изготовлении параметр, то истоковый повторитель имеет непредсказуемое смещение по постоянному току - серьезный минус при использовании в схемах со связями по постоянному току.

Активная нагрузка. Путем добавления нескольких элементов истоковый повторитель может быть очень сильно улучшен. Рассмотрим это поэтапно.

Во-первых, заменим R н   источником тока (отбирающим ток, рис. 3.27).

Рис. 3.27.

Постоянный ток истока стабилизирует напряжение U ЗИ , а это устраняет нелинейности. Для простоты можно считать, что значение R н   становится бесконечным — эффект, создаваемый источником тока в качестве нагрузки. Схема на рис. 3.27, б имеет еще одно преимущество в виде малого выходного сопротивления при сохранении приближенного постоянства тока истока U БЭ /R см . По-прежнему, правда, существует проблема непредсказуемого (а потому ненулевого) напряжения смещения от входа к выходу U ЗИ (для схемы 3.27,б — U ЗИ + U БЭ ). Можно было бы, конечно, просто отрегулировать I см к значению I С нач для конкретного ПТ в схеме 3.27, а или отрегулировать также R см на схеме 3.27, б. Но это решение плохо по двум причинам: а) требуется индивидуальная регулировка для каждого ПТ; б) даже и при этом I С может сильно меняться (почти двукратно) при изменении температуры в рабочем диапазоне при данном U ЗИ .

В более качественных схемах применяются согласованные пары ПТ с нулевым смещением (рис. 3.28).

Рис. 3.28.

T 1  и Т 2 — это согласованная пара на отдельном кремниевом кристалле. Т 2 отбирает ток точно отвечающий условию U ЗИ = 0, поэтому, так как для обоих ПТ U ЗИ = 0, T 1 есть повторитель с нулевым смещением. Так как оба ПТ находятся в одних и тех же температурных условиях, смещение остается почти нулевым при любой температуре. Обычно в предыдущей схеме добавляют небольшие истоковые резисторы (рис. 3.29).

Рис. 3.29.

Если чуть подумать, то будет ясно, что резистор R 1 необходим, а равенство R 1 = R 2 гарантирует, что U вых = U вх , если Т 1 и Т 2 согласованы. Эта модификация схемы улучшает предсказуемость I С , позволяет установить значение тока стока, отличное от I С нач и улучшает линейность, поскольку ПТ как источник тока работает лучше при значениях рабочего тока, меньших I С нач. Такой повторитель широко применяется в качестве входного каскада усилителя вертикального отклонения осциллографа.

Чтобы «выжать» из схемы все возможное, можно добавить в нее цепь следящей обратной связи со стока (чтобы скомпенсировать входную емкость) и выходной каскад на биполярном транзисторе для получения низкого полного выходного сопротивления. Тот же выходной сигнал можно затем использовать для запитки внутреннего «защитного» экрана, эффективно понижающего влияние емкости экранированного кабеля, которая в противном случае катастрофически ухудшила бы параметры схемы с высоким сопротивлением источника сигналов и свела бы на нет большое полное входное сопротивление, свойственное буферному усилителю.

3.09. Ток затвора ПТ

Мы уже говорили вначале, что ПТ вообще и МОП-транзисторы в особенности имеют практически нулевой ток затвора. Это, возможно, наиболее важное свойство ПТ и оно использовалось в описанных в предыдущем разделе высокоомных усилителях и повторителях. Существенным оно будет и в тех применениях, о которых речь впереди — самые существенные из них аналоговые ключи и цифровые логические схемы.

Разумеется, при пристальном рассмотрении мы увидим, что какой-то ток через затвор все же течет. Это важно знать, поскольку наивная модель с нулевым током гарантирует, что раньше или позже, но вы ошибетесь. Фактически к возникновению конечного (ненулевого) тока затвора приводит ряд механизмов. Даже у МОП-транзисторов изоляция затвора (двуокись кремния), несовершенна, что приводит к токам утечки, находящимся в пикоамперном диапазоне. У ПТ с p-n-переходом «изоляция» затвора на самом деле является обратносмещенным диодным переходом и механизмы тока утечки через него те же, что и у обычного диода. Кроме того, ПТ с p-n-переходом (n-канальные в особенности) подвержены дополнительному эффекту, известному как ток «ударной ионизации» затвора; он может достигать астрономических уровней. И наконец, как ПТ с p-n-переходом, так и МОП-транзисторы имеют динамический ток затвора, возникающий при воздействии сигналов переменного тока на емкость затвора; это может вызвать эффект Миллера, совсем как у биполярных транзисторов.

В большинстве случаев входной ток затвора пренебрежимо мал в сравнении с током базы биполярного транзистора, Есть, однако, ситуации, когда ПТ может фактически иметь более высокий входной ток! Рассмотрим ряд из них.

Утечка затвора. Полное входное напряжение усилителя (или повторителя) на ПТ на низких частотах ограничено утечкой затвора. В паспорте ПТ обычно указывается напряжение пробоя U 3 макс , определяемое как напряжение между затвором и каналом (исток и сток закорочены), при котором ток затвора достигает 1 мкА. При меньших напряжениях затвор-канал ток утечки затвора I З ут , опять-таки при соединенных накоротко истоке и стоке, значительно меньше, и этот ток быстро падает до пикоамперного диапазона, когда напряжение затвор-сток существенно меньше напряжения пробоя. У МОП-транзисторов никогда нельзя допускать пробоя изоляции затвора; в данном случае утечка затвора определяется как некоторый максимальный ток утечки при определенном заданном в спецификации напряжении затвор-канал. В интегральных усилительных схемах на ПТ (например, в ОУ на ПТ) для спецификации входного тока утечки применяется не дающий правильного представления о сути дела «входной ток смещения» I см ; обычно его величина лежит в пикоамперном диапазоне.

Хорошо здесь то, что ток утечки находится в пикоамперном диапазоне при комнатной температуре. Плохо, что он быстро нарастает (фактически экспоненциально) с ростом температуры, грубо говоря удваивается на каждые 10 °C. В противоположность этому ток утечки базы у биполярного транзистора практически отсутствует, в действительности имеется даже слабая тенденция к его уменьшению с ростом температуры. На рис. 3.30 даны в сравнении графики зависимости входного тока от температуры для нескольких операционных усилителей в интегральном исполнении.

Рис. 3.30. Входной ток усилителя на ПТ — это ток утечки затвора, который удваивается при повышении температуры на каждые 10 °C.

ОУ с ПТ-входом имеют наименьшие значения входного тока при комнатной температуре (и ниже), однако их входной ток быстро растет с температурой, и их графики пересекают кривые усилителей с хорошо спроектированными входными каскадами на биполярных транзисторах, таких как LM11 и LT1012. Эти биполярные ОУ наряду с «призерами» среди ОУ на ПТ с p-n-переходом по минимуму входного тока, такими как ОРА111 и AD549, весьма дороги. При этом, чтобы дать представление о том, чего можно ожидать от недорогих (ценой меньше доллара) ОУ, мы включили сюда также и ОУ, являющиеся повседневной «похлебкой», такие как биполярный ОУ типа 358 и ОУ на ПТ с p-n-переходом LF411.

Ток ударной ионизации ПТ с р-n -переходом. В дополнение к обычным эффектам утечки затвора в n-канальных ПТ с p-n-переходом в гораздо большей степени проявляются токи утечки при работе с существенными уровнями U СИ и I С (ток утечки, оговариваемый в паспорте, измеряется при совершенно нереальных условиях U СИ = I С = 0!). Рис. 3.31 показывает, что происходит.

Рис. 3.31. Утечка затвора ПТ с p-n -переходом быстро растет с ростом напряжения сток-затвор и пропорциональна току стока.

Ток утечки затвора остается близким к I З ут  до тех пор, пока мы не достигнем критического напряжения сток-затвор, при котором кривая круто взмывает вверх. Этот дополнительный ток «ударной ионизации» пропорционален току стока и он растет экспоненциально с ростом напряжения и температуры. Появление этого тока наблюдается при напряжении сток-затвор, составляющем Приблизительно 25 % от U 3 макс , и он может добавлять в ток затвора микроампер и более. Очевидно, что «высокоомный буфер» с микроамперным входным током лишен смысла. Это то, что получится, если попытаться использовать 2N4868A в качестве повторителя с током стока 1 мА при напряжении питания 40 В.

Этот дополнительный ток утечки затвора есть недостаток, свойственный в первую очередь n-канальным ПТ и проявляется он при повышении напряжения сток-затвор. Проблема допускает несколько решений: а) работайте при малых напряжениях сток-затвор, либо при малом напряжении питания стока, либо используйте каскодные связи; б) используйте p-канальные ПТ с p-n-переходом, у которых этот эффект намного слабее или в) применяйте МОП-транзисторы. Самое главное, что позволит вам избежать неприятностей, — это не дать возможности захватить вас врасплох.

Динамический ток затвора. Утечка затвора — это эффект, проявляющийся на постоянном токе. Любой сигнал, поданный на затвор, неминуемо вызовет также переменный ток благодаря наличию емкости затвора. Рассмотрим усилитель с общим истоком. Как и в схеме на биполярных транзисторах, можно наблюдать эффект, вызванный просто емкостью входа относительно земли (С вх ), но есть еще мультипликативный емкостной эффект Миллера, который влияет на емкость обратной связи (С ОС ). Есть две причины, почему емкостной эффект проявляется у ПТ более серьезно, чем у биполярных транзисторов. Во-первых, полевым транзисторам отдают предпочтение перед биполярными, когда хотят получить очень малый входной ток; при этом емкостные токи при тех же величинах емкостей принимают более угрожающие размеры. Во-вторых, полевые транзисторы часто имеют значительно более высокие значения емкостей, чем эквивалентные биполярные.

Чтобы оценить емкостный эффект, рассмотрим усилитель на ПТ, предназначенный для работы с источником сигнала, имеющим сопротивление 100 кОм. Что касается постоянного тока, то здесь нет проблем, так как ток, равный пикоамперу, создает на внутреннем сопротивлении указанного источника падение напряжения всего в микровольт. Однако на частоте, скажем, 1 МГц входная емкость в 5 пФ создает шунтирующее полное сопротивление приблизительно 30 кОм, что серьезно ослабляет сигнал. Фактически любой усилитель попадает в неприятности, имея дело с высокоомным источником сигналов на высоких частотах, и обычное решение состоит в том, чтобы работать с низким полным сопротивлением (типичное значение 50 Ом) или использовать подстраиваемый LC-контур для резонансной компенсации паразитной емкости. Ключ к пониманию проблемы состоит в том, чтобы не смотреть на ПТ-усилитель как на нагрузку сопротивлением 1012 Ом на частоте сигнала.

В качестве еще одного примера представим себе переключение 10-амперной нагрузки с помощью мощного МОП-транзистора (сколько-нибудь мощные ПТ с p-n-переходом отсутствуют), в духе рис. 3.32.

Рис. 3.32.

Кто-то может наивно предположить, что затвор можно возбудить от слаботочного выходного сигнала цифровой логической схемы, например от так называемой КМОП-логики, которая способна выдать ток порядка 1 мА при размахе сигнала от нуля до +10 В. На самом деле такая схема тут же вышла бы из строя, так как при токе возбуждения затвора 1 мА емкость 350 пФ обр. связи транзистора 2Ν6763 растянула бы процесс переключения на неспешные 20 мкс.

Но что еще хуже, динамические токи затвора (i 3 = C·dUC/dt) могут проходить на выход логического устройства и вывести его из строя благодаря непредсказуемым образом возникающему эффекту, известному как «защелкивание кремниевой полупроводниковой структуры» (более подробно о нем в гл. 8 и 9). При этом оказывается, что мощные биполярные транзисторы имеют сравнимые с ПТ величины емкостей и, следовательно, сравнимые динамические входные токи; однако когда вы проектируете схему возбуждения мощного биполярного 10-амперного транзистора, вы заранее знаете, что в цепи возбуждения базы нужно обеспечить ток 500 мА или около того (через пару Дарлингтона или еще каким-либо образом), в то время как у ПТ вы скорее всего будете ожидать гарантированно низкий входной ток. И вновь в этом примере несколько потускнел блеск ПТ как прибора со сверхвысоким полным сопротивлением.

Упражнение 3.4. Покажите, что схема на рис. 3.32 переключается за время около 20 мкс, в предположении, что допустимый ток возбуждения затвора составляет 1 мА.

3.10. ПТ в качестве переменных резисторов

На рис. 3.17 показаны характеристики ПТ с p-n-переходом (зависимость тока стока от U СИ при различных (U ЗИ ) как в нормальном («насыщенном») режиме, так и в «линейной» области малых значений напряжения сток-исток. В начале этой главы мы привели также эквивалентную пару графиков для МОП-транзисторов (рис. 3.2). Зависимость IС - UСИ   приблизительно линейна в области U СИ , меньших U ЗИ — U П , и кривые могут быть продолжены в обе стороны, так что устройство можно использовать в качестве управляемого напряжением резистора для малых сигналов любой полярности. Из формулы, выражающей IС   через U ЗИ в линейной области (разд. 3.04) легко найти, что отношение I С /U ЗИ равно 1/RСИ = 2k[(U ЗИ   — U П ) — U СИ /2]. Последний член в этом выражении представляет собой нелинейность, т. е. отклонение от резистивности характеристики (сопротивление резистора не должно зависеть от напряжения). Однако при напряжениях стока существенно меньших напряжения отсечки (при U СИ -> 0) этот последний член становится совершенно незначимым, и ПТ ведет себя приблизительно как линейное сопротивление R СИ  ~= 1/[2k(U ЗИ   — U П ]. Поскольку зависящий от конкретного устройства параметр k — не та количественная характеристика, которую нам хотелось бы знать, полезнее записать R СИ  ~= R 0 (U З0 — U П )/(U З — U П ), где сопротивление R СИ при любом напряжении затвора можно определить через известное сопротивление R 0 , измеренное при некотором напряжении затвора U З0 .

Упражнение 3.5 . Выведите предыдущую «масштабную» формулу.

Обе приведенные выше формулы показывают, что проводимость (равная 1/R СИ ) пропорциональна величине, на которую напряжение затвора превышает напряжение отсечки. Другой полезный факт состоит в том, что R СИ = 1/g m , т. е. сопротивление канала в линейной области есть величина, обратная крутизне в области насыщения. Это удобная в пользовании зависимость, поскольку g m - параметр, который почти всегда приводится в паспорте ПТ.

Упражнение 3.6. Покажите, что  R си = 1/g m, выведя крутизну из приведенной в разд. 3.04 формулы для тока стока в области насыщения.

Как правило, сопротивление, которое можно получить с помощью ПТ, изменяется от нескольких десятков ом (даже от 0,1 Ом для мощных МОП-транзисторов) до бесконечности. Типичным применением ПТ в качестве сопротивления является использование его в схеме автоматической регулировки усиления (АРУ); в ней коэффициент усиления меняется с помощью обратной связи таким образом, чтобы выходной сигнал удерживался в границах линейного диапазона. Применяя ПТ в схеме АРУ, следует внимательно следить, чтобы амплитуда сигнала была невелика - не более 200 мВ.

Диапазон значений U СИ , в котором ПТ ведет себя как хороший резистор, зависит от конкретного ПТ, у которого сопротивление в первом приближении пропорционально напряжению, на которое потенциал затвора превосходит UП (или U отс ). Как правило, при U СИ < 0,1(U ЗИ   — U П ) нелинейности составляют 2 %, а при U СИ ~= 0,25(U ЗИ   — U П ) возможны нелинейности порядка 10 %. Согласованные пары ПТ дают возможность строить наборы сопротивлений для управления сразу несколькими сигналами. ПТ с p-n-переходом для работы в качестве переменных резисторов (серия VCR Siliconix) имеют допуск по сопротивлению порядка 30 %, заданный при некотором значении U ЗИ .

Можно улучшить линейность и одновременно расширить диапазон U СИ , в котором ПТ ведет себя как резистор, с помощью простой компенсационной схемы. Проиллюстрируем это на практическом примере.

Метод линеаризации: электронное управление усилением. Из последней формулы для 1/R СИ видно, что линейность была бы почти идеальной, если бы к напряжению затвора мы добавили половину напряжения сток-исток. На рис. 3.33 показаны две схемы, которые именно это и делают.

Рис. 3.33.

В первой из них ПТ с p-n-переходом образует нижнее плечо резистивного делителя напряжения, формируя тем самым управляемый напряжением аттенюатор (или «регулятор громкости»). Резисторы R 1 и R 2 улучшают линейность добавлением напряжения 0,5U СИ к U ЗИ , как только что говорилось. Показанный на схеме ПТ с p-n-переходом имеет в проводящем состоянии (при заземленном затворе) сопротивление 60 Ом (максимум), что дает диапазон ослабления сигнала от 0 до 40 дБ.

Во второй схеме используется МОП-транзистор в качестве перестраиваемого эмиттерного сопротивления в усилителе переменного тока с эмиттерной обратной связью. Обратите внимание на то, что по постоянному току эмиттерная обратная связь обеспечивается источником стабильного тока (зеркало Вилсона или диодный стабилизатор тока на ПТ); эта часть схемы несет две нагрузки: а) она ведет себя на частоте сигнала как цепь с очень высоким полным сопротивлением, что позволяет ПТ с перестраиваемым сопротивлением задавать коэффициент усиления, изменяющийся в широком диапазоне (включая Κ U   << 1), и б) обеспечивает простое смещение. За счет применения разделительного конденсатора мы организовали схему таким образом, что ПТ воздействует только на коэффициент усиления по переменному току (на усиление сигнала). Без этого конденсатора смещение биполярного транзистора изменялось бы с изменением сопротивления ПТ.

Упражнение 3.7. МОП-транзистор VN13 имеет в проводящем состоянии ( Uзи = +5 В) сопротивление 15 Ом (макс). Чему равен диапазон изменения коэффициента усиления усилителя во второй схеме (в предположении, что источник тока ведет себя как сопротивление 1 МОм)? Какова нижняя частота среза (на уровне 3 дБ) при таком смещении ПТ, что коэффициент усиления усилителя равен а) 40 дБ и б) 20 дБ?

Линеаризация RСИ при помощи резистивного делителя напряжения затвора, представленная выше, исключительно эффективна. На рис. 3.34 приведены для сравнения полученные путем измерений графики зависимости I С от U СИ в линейной (с низким U СИ ) области характеристик ПТ при наличии и в отсутствие схемы линеаризации. Такая линеаризующая схема особенно важна для тех применений, где требуются малые искажения при размахе сигнала свыше нескольких милливольт.

Рис. 3.34. Измеренные зависимости I С ( U СИ ) для отдельно взятых ПТ (слева) и ПТ со схемами линеаризации (справа). а — ТП с p-n -переходом 2N5484; б — МОП-транзистор VN0106.

Применяя ПТ для регулировки усиления, а именно в схемах АРУ или модуляторов, т. е. устройств, в которых амплитуда высокочастотного сигнала меняется пропорционально сигналу звуковой частоты, есть смысл обратиться также к ИМС «аналогового умножителя». Это — высокоточные устройства с хорошим динамическим диапазоном, обычно применяются для получения произведения двух напряжений. Один из этих сомножителей может быть управляющим сигналом постоянного тока, устанавливающим масштабный множитель для второго входного сигнала, т. е. коэффициент усиления.

В аналоговом умножителе используется зависимость g m от I К , свойственная биполярному транзистору (g m = [I К (мА)/25] См), и применяются группы согласованных транзисторов, чтобы избежать проблем разброса параметров и сдвига. На очень высоких частотах (100 МГц и выше) часто для этой же цели лучше использовать простые пассивные «балансные смесители» (разд. 13.12).

Важно помнить, что ПТ в смысле проводимости ведет себя при малых напряжениях U СИ как линейное сопротивление, а не как источник тока, что характерно для коллектора биполярного транзистора, и он работает как сопротивление во всем диапазоне до 0 В между истоком и стоком (здесь нет ни диодных перепадов, ни чего-нибудь в этом роде, о чем стоило бы беспокоиться). Существуют ОУ и семейства логических элементов (КМОП), в которых используется это полезное свойство, так что насыщение на выходе у этих схем наступает именно на уровне напряжения питания.

 

Ключи на ПТ

Две первые схемы на ПТ, которые в качестве примера мы привели в начале этой главы, были ключами: схема логического ключа и схема переключателя линейного сигнала. Они попадают в перечень наиболее важных применений ПТ, и в них используются те преимущества, которые дают уникальные характеристики ПТ: высокое полное сопротивление затвора и резистивный характер проводимости в обоих направлениях, четко просматривающийся вплоть до напряжения 0 В. На практике обычно используют МОП-транзисторные интегральные микросхемы (а не схемы на дискретных транзисторах) во всех цифровых и линейных ключах, и только для мощных ключей дискретные ПТ предпочтительнее. Однако и в этих случаях важно (и интересно!) понимать, как работают эти чипы; в противном случае вы почти гарантированы пасть жертвой какого-нибудь загадочного ненормального поведения схемы.

3.11. Аналоговые ключи на ПТ

Очень часто ПТ, в основном МОП-транзисторы, применяются в качестве аналоговых ключей. В силу таких свойств, как малое сопротивление в проводящем состоянии («ВКЛ») при любом напряжении сигнала вплоть до 0 В, крайне высокое сопротивление в состоянии отсечки («ВЫКЛ»), малые токи утечки и малая емкость, они являются идеальными ключами, управляемыми напряжением, для аналоговых сигналов. Идеальный аналоговый (или линейный) ключ ведет себя как совершенный механический выключатель: во включенном состоянии пропускает сигнал к нагрузке без ослаблений или нелинейных искажений, в выключенном — ведет себя как разомкнутая цепь. Он имеет пренебрежимо малую емкость относительно земли и вносит ничтожно малые наводки в сигнал от переключающего его уровня, приложенного к управляющему входу.

Рассмотрим пример (рис. 3.35).

Рис. 3.35.

Т 1 — n -канальный МОП-транзистор обогащенного типа, не проводящий ток при заземленном затворе или при отрицательном напряжении затвора. В этом состоянии сопротивление сток-исток (R выкл ), как правило, больше 10000 МОм, и сигнал не проходит через ключ (хотя на высоких частотах будут некоторые наводки через емкость сток-исток; подробнее об этом см. дальше). Подача на затвор напряжения +15 В приводит канал сток-исток в проводящее состояние с типичным сопротивлением от 25 до 100 Ом (R вкл ) для ПТ, используемых в качестве аналоговых ключей. Схема не критична к значению уровня сигнала на затворе, поскольку он существенно более положителен, чем это необходимо для поддержания малого R вкл , и поэтому его можно задавать от логических схем (можно использовать внешний полевой или биполярный транзистор для получения уровней, соответствующих полному диапазону питания) или даже ОУ: вполне годится ± 13 В с выхода схемы 741, так как напряжение пробоя затвора МОП-транзистора обычно равно 20 В или более. Обратное смещение затвора при отрицательных значениях выхода ОУ будет давать дополнительное преимущество-можно переключать сигналы любой полярности, как опишем позже. Заметим, что ключ на ПТ-двунаправленное устройство, т. е. он может пропускать сигнал в обе стороны. Это легко понять, так как механический выключатель тоже обладает этим свойством.

Приведенная схема будет работать при положительных сигналах, не выше 10 В; при более высоком уровне сигнала напряжение на затворе будет недостаточным, чтобы удержать ПТ в состоянии проводимости (R вкл начинает расти); отрицательные сигналы вызовут включение ПТ при заземленном затворе (при этом появится прямое смещение перехода канал-подложка; см. разд. 3.02). Если надо переключать сигналы обеих полярностей (т. е. в диапазоне от —10 до +10 В), то можно применить такую же схему, но с затвором, управляемым напряжением -15 В (ВЫКЛ) и +15 В (ВКЛ); подложка должна быть подсоединена к напряжению -15 В.

Для любого ПТ-ключа сопротивление нагрузки должно быть в диапазоне от 1 до 100 кОм, чтобы предотвратить емкостное прохождение входного сигнала в состоянии «ВЫКЛ», которое имело бы место при большем сопротивлении. Сопротивление нагрузки выбирается компромиссным. Малое сопротивление уменьшит емкостную утечку, но вызовет ослабление входного сигнала из-за делителя напряжения, образованного сопротивлением проводящего ПТ R вкл и сопротивлением нагрузки. Так как R вкл меняется с изменением входного сигнала (при изменении U ЗИ ), это ослабление приведет к некоторой нежелательной нелинейности. Слишком низкое сопротивление нагрузки проявляется также и на входе ключа, нагружая источник входного сигнала. В разд. 3.12 и 4.30 предложены некоторые решения этой проблемы (многоступенчатые ключи, компенсация сопротивления R вкл ). Привлекательная альтернатива — применение еще одного ПТ-ключа, закорачивающего выход на землю, если последовательно включенный ПТ находится в состоянии «ВЫКЛ»; таким образом формируется однополюсный ключ на два направления (подробнее об этом см. в следующем разделе).

Аналоговые ключи на КМОП. Часто необходимо переключать сигналы, сравнимые по величине с напряжением питания. В этом случае описанная выше простая n-канальная схема работать не будет, поскольку при пиковом значении сигнала затвор не будет иметь смещения в прямом направлении. Переключение таких сигналов обеспечивают переключатели на комплементарных МОП-транзисторах (КМОП, рис. 3.36).

Рис. 3.36. Аналоговый ключ на КМОП-транзисторах.

Треугольник на схеме — это цифровой инвертор, который мы вкратце опишем: он преобразует высокий уровень входного сигнала в низкий уровень выходного и наоборот. При высоком уровне управляющего сигнала Т 1 пропускает сигналы с уровнями от земли до U СС без нескольких вольт (при более высоких уровнях сигнала R вкл начинает драматическим образом расти). Аналогично Т 2 при заземленном затворе пропускает сигнал с уровнями от U СС до значения на несколько вольт выше уровня земли. Таким образом, все сигналы в диапазоне от земли до U СС проходят через схему с малым сопротивлением (рис. 3.37).

Рис. 3.37. 1 — n -канальный; 2 — р -канальный.

Переключение управляющего сигнала на уровень земли запирает оба ПТ, размыкая таким образом цепь. В результате получается аналоговый переключатель для сигналов в диапазоне от земли до U СС . Это основа схемы КМОП «передающего вентиля» 4066. Как и описанные ранее ключи, схема работает в двух направлениях — любой ее зажим может служить входным.

Выпускается большое количество интегральных КМОП-ключей в разных конфигурациях (например, несколько секций с несколькими полюсами каждая). Схема 4066 — классическая КМОП-схема «аналогового запорного вентиля» серии 4000 — это просто другое название для аналогового ключа, переключающего сигналы в диапазоне от земли до положительного напряжения питания. Серии IH5040 и IH5140 фирмы Intersil и серии DG305 и DG400 фирмы Siliconix очень удобны в употреблении; они используют управляющий сигнал от ТТЛ, оперируют аналоговыми сигналами до ± 15 В (тогда как у серии 4000 этот диапазон составляет всего лишь ±7,5 В), легко включаются в разнообразные конфигурации и имеют сравнительно малое сопротивление в состоянии «ВКЛ» (у некоторых из них 25 Ом). Фирмы Analog Devices, Maxim и PMI также выпускают хорошие аналоговые ключи.

Мультиплексоры. Хорошим приложением ПТ-ключей являются мультиплексоры — схемы, которые позволяют выбрать один из нескольких входов по указанию управляющего цифрового сигнала. Аналоговый сигнал с этого выбранного входа будет прямо проходить на (единственный) выход. На рис. 3.38 показана функциональная схема такого устройства.

Рис. 3.38. Аналоговый мультиплексор.

Каждый из ключей от Кл 0 до Кл 3 есть аналоговый КМОП-ключ. «Выбирающая логика» декодирует адрес и «задействует» (жаргонный аналог слова «включает») только адресованный ключ, блокируя остальные. Такой мультиплексор обычно используется в сочетании с цифровыми схемами, вырабатывающими адрес. Типичная конфигурация может включать в себя блок накопления данных, в котором несколько входных сигналов поочередно опрашиваются, преобразуются в цифровую форму и используются как входные данные для каких-то вычислений.

Так как аналоговые ключи являются двунаправленными устройствами, аналоговый мультиплексор является одновременно и «демультиплексором», т. е. сигнал может быть подан на выход и снят с избранного входа. В гл. 8 и 9 будет показано, что аналоговый мультиплексор может применяться в качестве «цифрового мультиплексора-демультиплексора», поскольку цифровые логические уровни — это не что иное, как значения напряжения, трактуемые как двоичные единицы и нули.

Типичные аналоговые мультиплексоры — схемы серий DG506-509, а также схемы IH6108 и IH6116 (8- и 16-входовые мультиплексоры), воспринимающие в качестве кода адреса логические уровни ТТЛ и КМОП и работающие с аналоговыми сигналами до ±15 В. Приборы 4051–4053, которые входят в семейство цифровых схем КМОП, являются аналоговыми мультиплексорами-демультиплексорами, имеющими до 8 входов, но уровень аналогового сигнала, ограничен 15 В; у них есть вывод U ЭЭ (внутренний уровень смещения), так что их можно использовать для работы с биполярными аналоговыми сигналами и однополярными управляющими сигналами с уровнями цифровых логических схем.

Другие применения аналоговых ключей. Управляемые напряжением аналоговые ключи образуют блоки, существенно важные для построения схем на ОУ, которые мы увидим в следующей главе-интеграторы, схемы слежения-хранения и пиковые детекторы. К примеру, с помощью ОУ мы сможем построить «подлинный» интегратор (в отличие от приближения к интегратору, которое мы видели в разд. 1.15): постоянный входной сигнал генерирует линейно (не экспоненциально) нарастающий сигнал на выходе и т. д. При таком интеграторе мы должны иметь способ «сброса» (восстановления) выхода; с этой задачей справляется ПТ-ключ, шунтирующий интегрирующий конденсатор. Мы не хотели бы здесь полностью описывать данные схемы; поскольку основную часть этих схем составляют ОУ, они естественным образом попадают в следующую главу. Не будем предвосхищать событий.

3.12. Недостатки ПТ-ключей

Быстродействие. ПТ-ключи имеют сопротивление во включенном состоянии R вкл от 25 до 250 Ом. В комбинации с емкостью подложки и паразитными емкостями это сопротивление образует фильтр нижних частот, ограничивающий рабочие частоты значениями порядка 10 МГц и даже ниже (рис. 3.39).

Рис. 3.39. Параметры аналогового мультиплексора HI-508 (значения даны для замкнутого канала)

f 3дБ = 1/(2π R вкл С вых ) = 24 МГц.

Полевые транзисторы с меньшим R вкл имеют обычно бóльшую емкость (у некоторых мультиплексоров до 50 пФ), так что выигрыша в скорости нарастания сигнала они не дают. Значительная доля ограничения частотной характеристики вызвана элементами защиты — последовательными токоограничивающими резисторами и шунтирующими диодами. Существует несколько аналоговых «телерадиочастотных» ключей, обеспечивающих пропускание сигналов более высокой частоты, возможно за счет отказа от некоторых видов защиты. Например, ключи IH5341 и IH5352 оперируют аналоговыми сигналами в обычном диапазоне +15 В и имеют полосу пропускания 100 МГц; серии «высокоскоростных» мультиплексоров 74НС4051-53 также обеспечивают полосу пропускания аналоговых сигналов на уровне 3 дБ, равную 100 МГц, но обрабатывают при этом сигналы только до ±5 В. МАХ453-5 фирмы Maxim сочетают в себе видеомультиплексор с выходным видеоусилителем, так что их можно непосредственно подключать к низкоомным (обычно 75 Ом) кабельным или иным нагрузкам; они имеют типичную полосу пропускания 50 МГц и предназначены для сигналов видеочастоты ± 1 В от низкоомных источников.

Сопротивление в открытом (включенном) состоянии. Ключи КМОП, работающие от относительно высокого напряжения питания (скажем, 15 В), будут иметь малые значения R вкл во всем диапазоне значений сигнала, так как всегда тот или другой проводящий транзистор будет иметь прямое смещение затвора, равное по крайней мере половине напряжения питания. Но при меньшем напряжении питания сопротивление ключа R вкл будет расти, и максимум его имеет место при уровне сигнала, среднем между напряжением питания и землей (или между двумя напряжениями питания при двуполярном питании) (рис. 3.40).

Рис. 3.40.

При уменьшении U СС сопротивление ПТ во включенном состоянии становится значительно выше (особенно вблизи точки U ЗИ = U СС /2), так как для ПТ обогащенного типа U П составляет по крайней мере несколько вольт и для достижения малых значений R вкл требуется напряжение затвор-исток не меньше чем 5-10 В. Кроме того, что параллельное сопротивление двух ПТ растет при уровне сигнала, среднем между напряжением питания и землей, этот пик (при 0,5U СС ) будет увеличиваться по мере уменьшения U СС , и при достаточно низком U СС ключ для сигналов с уровнем около 0,5U СС будет представлять разомкнутую цепь.

Имеются различные приемы, которые разработчики ИМС аналоговых ключей применяют, чтобы сохранить значение R вкл малым и примерно постоянным (для малых искажений) во всем диапазоне измерения сигналов. Например, в первоначально выпускавшемся аналоговом ключе 4016 использовалась простая схема рис. 3.36, дающая графики R вкл подобные тем, что показаны на рис. 3.41.

Рис. 3.41. Сопротивление включенного (замкнутого) канала аналогового КМОП-ключа типа 4016.

В улучшенном ключе 4066 разработчики добавили несколько ПТ таким образом, что напряжение n-канальной подложки следует за напряжением сигнала, давая в результате кривые R вкл , показанные на рис. 3.42.

Рис. 3.42. Сопротивление замкнутого улучшенного аналогового КМОП-ключа типа 4066; обратите внимание на изменение масштаба по сравнению с рис. 3.41.

«Вулканообразная» форма этих кривых с понижением R вкл в центре заменила «Эверест» на графиках для 4016.

Усложненные ключи, такие как IH5140 (или AD7510), предназначенные для серьезных применений, дают еще лучший результат, представленный в виде кривых R вкл на рис. 3.43.

Рис. 3.43. Сопротивление замкнутого аналогового ключа из семейства IH5140, позволяющего переключать сигнал обеих полярностей; обратите внимание на масштаб вертикальной оси.

Недавно выпущенные фирмой Siliconix ключи DG400 дают превосходные R вкл в 20 Ом ценой увеличения «передачи заряда» (см. ниже подраздел «динамические помехи»); это семейство ключей, как и серия IH5140, имеет еще одно достоинство — нулевой ток покоя.

Емкость. ПТ-ключи обладают следующими емкостями: между входом и выходом (С СИ ), между каналом и землей (С С , С И ), между затвором и каналом и между двумя ПТ в пределах одного кристалла (С СС , С ИИ ); см. рис. 3.44.

Рис. 3.44. Емкости аналоговых ключей (на примере 4-канального переключателя AD7510). R вкл = 75 Ом.

Рассмотрим, какие эффекты они вызывают.

С СИ  (емкость вход-выход). Наличие этой емкости приводит к прохождению сигнала через разомкнутый ключ, которое на высоких частотах возрастает. На рис. 3.45 показан этот эффект для ключей серии IH5140.

Рис. 3.45. Изолирующие характеристики ключа из семейства IH5140 (ключ разомкнут).

Обратите внимание на использование 50-омной нагрузки-сопротивления, обычного для радиосхем, но много меньше нормального для низкочастотных сигналов, где типичное значение полного сопротивления нагрузки составляет 10 кОм и более. Даже при нагрузке 50 Ом сквозное прохождение сигнала на высоких частотах становится значительным (на частоте 30 МГц емкость 1 пФ имеет полное сопротивление 5 кОм, что вызывает сквозное прохождение — 40 дБ). И разумеется, имеется значительное ослабление (и нелинейность в передаче) сигнала при работе на 50-омную нагрузку, поскольку типичное значение R вкл составляет 30 Ом (75 Ом в худшем случае). При нагрузке 10 кОм ситуация со сквозной передачей сигнала, конечно же, намного хуже.

Упражнение 3.8. Рассчитайте сквозное прохождение сигнала в нагрузку 10 кОм на частоте 1 МГц, приняв С си = 1 пФ.

В большинстве низкочастотных применений емкостное сквозное прохождение не создает проблем. Если они возникают, наилучшим решением является использование пары каскадно-включенных ключей (рис. 3.46) или, что еще лучше, комбинации из последовательного и шунтирующего ключей, включаемых попеременно (рис. 3.47).

Рис. 3.46.

Рис. 3.47.

Последовательный каскад удваивает ослабление (в децибелах) ценой дополнительного R вкл , в то время как последовательно-параллельная схема (фактически это однополосный ключ на два направления — 1П2Н) уменьшает прямое прохождение, снижая эффективное сопротивление нагрузки до R вкл , когда последовательный ключ разомкнут.

Упражнение 3.9. Пересчитайте сквозное прохождение в нагрузку 10 кОм на частоте 1 МГц, приняв С си = 1 пФ и  R вкл = 50 Ом для схемы рис. 3.47.

Однополярные двусторонние КМОП-ключи с управлением, гарантирующим размыкание перед замыканием, выпускаются отдельными блоками. На практике можно встретить и пару ключей 1Н2П в одном корпусе. Примерами являются ИМС DG188 и IH5142, а также DG191, IH5143 и AD7512 (сдвоенные приборы 1Н2П в одном корпусе). Благодаря доступности таких КМОП-ключей легко с помощью подобных однополюсных на два направления конфигураций получать превосходные параметры. Радиовидеочастотные ключи, о которых говорилось выше, имели встроенную последовательно-параллельную схему.

С С , С И (емкость относительно земли). Шунтирующая на землю емкость приводит к упомянутому ранее спаду частотной характеристики. Ситуация усугубляется при высокоомном источнике сигналов, однако даже при фиксированном сопротивлении источника сопротивление ключа R вкл в сочетании с шунтирующей емкостью на выходе образует фильтр нижних частот. Следующее упражнение показывает, как это происходит.

Упражнение 3.10. AD7510 (все паспортные значения его емкостей можно определить из рис. 3.44) подключен к входному источнику сигналов, имеющему сопротивление 10 кОм, а сопротивление нагрузки на выходе ключа составляет 100 кОм. Чему равна верхняя частота среза на уровне —3 дБ? Повторите вычисления, приняв жестко фиксированное сопротивление источника сигнала и сопротивление ключа R вкл = 75 Ом?

Емкость затвор-канал. Емкость между управляющим затвором и каналом вызывает еще один эффект, а именно наводку неприятных (даже когда они малы) переходных помех на цепь сигнала при замыкании или размыкании ключа. Сей предмет заслуживает серьезного обсуждения, так что мы отложим его до следующего раздела.

С СС  и С ИИ (емкость между ключами ). Если разместить несколько ключей на одном кристалле кремния размером с кукурузное зерно, то не следует удивляться, заметив наводки между каналами («перекрестные помехи»). Виновницей, разумеется, является емкость между каналами ключей. Эффект усиливается по мере роста частоты и увеличения полного сопротивления источника сигнала, к которому подключен канал. Предоставим вам возможность самим удостовериться в сказанном.

Упражнение 3.11. Рассчитайте величину наводки, в децибелах, между парой каналов с С сс = С ии = 0,5 пФ (рис. 3.44) для полных сопротивлений источника и нагрузки, приведенных в последнем упражнении. Примите частоту сигнала помехи равной 1 МГц. Рассчитайте величину наводки для каждого следующего случая: а) оба ключа разомкнуты, б) от разомкнутого ключа к замкнутому, в) от замкнутого ключа к разомкнутому и г) оба ключа замкнуты.

Из этого примера должно быть ясно, почему для большинства широкополосных радиочастотных схем применяются низкоомные источники сигналов, обычно сопротивлением 50 Ом. Если перекрестные помехи создают серьезные трудности, не подавайте на один кристалл более одного сигнала.

Динамические помехи. Во время переходных процессов от включенного состояния к выключенному и обратно в аналоговых ПТ-ключах могут возникать неприятные эффекты. Скачок управляющего сигнала, поданный на затвор(ы), может создавать емкостную наводку в канале (каналах) и исказить коммутируемый сигнал до неузнаваемости. Это наиболее серьезно при уровнях сигнала, соответствующих высокому сопротивлению ключа. Подобные эффекты возникают и в мультиплексорах (типа 4066) во время изменения адреса канала; кроме того, в мультиплексоре возможно кратковременное соединение входов через открытые ключи, если задержка выключения канала превосходит задержку включения.

Рассмотрим этот вопрос более подробно. На рис. 3.48 изображена форма выходного сигнала, которую можно увидеть на выходе n-канальной схемы аналогового МОП-ключа, схема которого показана на рис. 3.35, при нулевом уровне входного сигнала и нагрузке, состоящей из сопротивления 10 кОм и параллельной ему емкости 20 пФ, — вполне реальные значения для схемы аналогового ключа.

Рис. 3.48.

Эти красивые переходные процессы вызваны переносом заряда в канал через емкость затвор-канал при изменении напряжения затвора. Последнее делает резкий скачок от одного уровня питания к другому, в нашем случае от +15 к -15 В (или в обратном направлении), перенося заряд Q = ± С ЗК (U Звыс — U3н из ), где С ЗК - емкость затвор-канал, обычно около 5 пФ. Заметим, что величина переносимого заряда зависит только от полного изменения напряжения затвора и не зависит от времени, за которое это изменение происходит. Замедление изменения сигнала на затворе вызывает меньшую по амплитуде, но более долгую динамическую помеху с той же площадью под графиком. Фильтрация выходного сигнала ключа фильтром нижних частот дает тот же эффект. Такие меры могут помочь в тех случаях, когда важно добиться малого пика амплитуды динамической помехи, однако в смысле исключения пропускания управляющего напряжения с затвора на выход они неэффективны. В некоторых случаях можно предсказать емкость затвор-канал с достаточной точностью, для того чтобы погасить выбросы путем добавки инвертированного сигнала затвора через небольшой переменный конденсатор.

Емкость затвор-канал распределена по всей длине канала, а это значит, что часть заряда (помехи) попадает обратно на вход ключа. В результате величина динамической помехи выходного сигнала зависит от полного сопротивления источника сигнала и будет наименьшей в том случае, когда ключ будет управляться источником напряжения. Конечно, уменьшение полного сопротивления нагрузки уменьшает величину динамической помехи, но при этом нагружается источник и вносятся дополнительные статическая погрешность и нелинейность за счет конечного значения параметра R вкл . И наконец, при прочих равных, ключ с меньшей величиной емкости затвор-канал будет вносить меньшие переходные помехи в процессе переключения, хотя за это мы платим увеличением R вкл .

На рис. 3.49 приведены для сравнения кривые переноса заряда для трех типов аналоговых ключей, в том числе и ключа на ПТ с p-n-переходом.

Рис. 3.49. Зависимость заряда помехи у различных линейных ПТ-ключей от напряжения управляющего сигнала. 1 — ПТ с p-n-переходом; 2 — ΚΜΟΠ-ключ из семейства DG400; 3 — КМОП-ключ из семейства DG200.

Во всех трех случаях сигнал на затворе меняется в полном диапазоне, т. е. на 30 В или в пределах обозначенных на графике уровней напряжения питания для МОП-транзисторов и от — 15 В до уровня сигнала для ключей на n-канальных ПТ с p-n-переходом. Для последних существует сильная зависимость величины динамической помехи от сигнала, поскольку диапазон изменения напряжения затвора пропорционален разности между уровнем сигнала и уровнем —15 В. Хорошо сбалансированные КМОП-ключи имеют относительно малую динамическую помеху, поскольку попадающие в канал заряды у комплементарных МОП-транзисторов стремятся скомпенсировать друг друга (когда на одном затворе напряжение растет, на другом - падает). Чтобы дать представление о масштабе этих эффектов, скажем, что заряд 30 пКл соответствует разности потенциалов (сказку) в 3 мВ на конденсаторе емкостью 0,01 мкФ. Это значительная емкость для конденсатора фильтра, и видно, что это действительно проблема, так как динамическая помеха в 3 мВ является существенной погрешностью при работе с аналоговыми сигналами низкого уровня.

Защелкивание и входной ток. Все интегральные КМОП-схемы имеют ту или иную схему защиты входа, так как в противном случае изоляция затвора легко разрушается (см. разд. 3.15). Обычная схема такой защиты показана на рис. 3.50.

Рис. 3.50. Цепи защиты входа (выхода) КМОП-схем. Последовательно включенный резистор на выходе часто не ставится.

Хотя в ней можно использовать распределенную диодную матрицу, однако данная цепь эквивалентна фиксирующим диодам, подключенным к U СС и U ИИ , в сочетании с резистивной токоограничивающей цепью. Если напряжение на входе (или на выходе) превысит напряжение питания более чем на падение напряжения на диодном переходе, соответствующий диод перейдет в состояние проводимости, и для входа (или выхода) образуется цепь с низким полным сопротивлением относительно соответствующего источника питания. Но что еще хуже, чип при возбуждении входа может войти в так называемое «КУВ-защелкивание» — ужасное (и разрушительное) состояние, которое мы более подробно опишем в разд. 14.16. Все что необходимо нам знать о нем сейчас — это то, что данное состояние нежелательно! КУВ-защелкивание происходит спусковым (триггерным) переключением за счет входного тока (через цепь защиты) величиной где-то около 20 мА или более. Таким образом, необходимо быть осторожными и не подавать на аналоговые входы напряжение, превышающее напряжение питания. Это, в частности, означает, что мы всегда должны обеспечить подачу напряжения питания прежде, чем поступит какой бы то ни было сигнал, способный вызвать ток значительной величины. Между прочим, этот запрет столь же справедлив и для цифровых КМОП ИС, как и для только что рассмотренных нами аналоговых ключей.

Неприятности, связанные с диодно-резисторными цепями защиты, состоят в том, что они ухудшают параметры ключа, увеличивая R вкл , шунтирующую емкость и утечку. При искусном проектировании чипа (с использованием «изоляции диэлектриком») можно исключить КУВ-защелкивание, не ухудшая серьезно параметров схемы, что обычно происходит за счет схемы защиты. Многие более «свежие» разработки аналоговых ключей имеют «защиту от дурака»; например, аналоговые мультиплексоры IH5108 и IH5116 фирмы Intersil имеют схемы фиксации, которые позволяют подавать на аналоговые входы до ±25 В даже при нулевом напряжении питания (за эту устойчивость мы платим R вкл , вчетверо превышающим этот параметр для обычного IH6108/16). Будьте, однако, осторожны, поскольку существует множество ИМС аналоговых ключей, которые этого не прощают!

Существуют аналоговые ключи, построенные не на комплементарных МОП-транзисторах, а на ПТ с p-n-переходом. Они работают очень хорошо, по некоторым параметрам опережая КМОП-ключи. В частности, ключи на ПТ с p-n-переходом фирмы PMI имеют совершенно неизменное R вкл , не зависящее от аналогового напряжения, полное отсутствие эффекта защелкивания и мало подвержены электростатическому пробою.

Другие недостатки ключей. Вот некоторые дополнительные параметры аналоговых ключей, которые могут быть важными или не являться таковыми в том или ином конкретном применении: время переключения, время установления, задержка размыкания перед замыканием, ток утечки канала (как в замкнутом, так и в разомкнутом состоянии; см. разд. 4.15), согласованность R вкл и темп. коэф. R вкл , диапазоны изменения сигнала и напряжения питания. Мы проявим недюжинное самообладание, поставив на этом точку и предоставив читателю самому входить во все подробности, если конкретное применение потребует этого.

3.13. Несколько схем на ПТ-ключах

Как мы отмечали ранее, многие естественным образом возникающие применения аналоговых ПТ-ключей — это схемы на ОУ, которые мы будем рассматривать в следующей главе. В этом разделе мы покажем несколько применений, не требующих ОУ, с тем чтобы дать почувствовать, в какого вида схемах можно использовать эти ключи.

Переключаемый RC- фильтр нижних частот. На рис. 3.51 показано, как можно построить простой RС-фильтр нижних частот с возможностью выбора частоты среза.

Рис. 3.51.

В схеме использован мультиплексор для выбора одного из четырех предварительно подобранных резисторов путем набора 2-разрядного двоичного (цифрового) адреса. Мы решили поставить переключатель на входе, а не после резисторов, так как при этом уменьшается «впрыск» заряда в точку с более низким сопротивлением источника сигнала. Еще одна возможность, конечно же, состоит в том, чтобы использовать ПТ-ключи для выбора конденсатора фильтра. Чтобы получить очень широкий диапазон постоянных времени, можно было бы попробовать это сделать, но при этом конечное значение R вкл ключа ограничит коэффициент передачи фильтра на высоких частотах максимум R вкл /R посл . На схеме обозначен также буфер с единичным усилением, стоящий вслед за фильтром, поскольку выходное сопротивление схемы велико. В следующей главе вы увидите, как построить «совершенный» повторитель (с точно заданным коэффициентом усиления, высоким Z вх , низким Z вых , отсутствием сдвига U БЭ и т. п.). Разумеется, в том случае когда стоящий вслед за фильтром усилитель имеет высокое входное сопротивление, повторитель не нужен.

На рис. 3.52 показан простой вариант предыдущей схемы; здесь мы использовали вместо 4-входового мультиплексора четыре независимых ключа.

Рис. 3.52. RС-фильтр нижних частот с возможностью выбора 15 значений постоянной времени, равноотстоящих друг от друга.

При таком масштабном соотношении сопротивлений резисторов, которое приведено здесь, можно задавать 16 равноотстоящих значений частоты среза путем замыкания этих ключей в различных комбинациях.

Упражнение 3.12. Чему равны частоты среза (на уровне —3 дБ) в схеме рис. 3.52?

Усилители с переключаемым коэффициентом усиления. На рис. 3.53 показано, как можно применить ту же самую идею переключаемых резисторов для создания усилителя с возможностью выбора коэффициента усиления. Хотя эта идея естественным образом требует ОУ, можно применить ее и к усилителю с эмиттерной обратной связью.

Рис. 3.53. Аналоговый мультиплексор выбирает соответствующий резистор автоматического смещения в цепи эмиттера для получения декадно-переключаемого коэффициента усиления.

* Подбирается для получения К = 100; ( R вкл + r Э + R ) = 100 Ом.

В качестве эмиттерной нагрузки мы использовали источник (точнее, приемник) неизменного тока, как это было сделано в более раннем примере, чтобы можно было получить коэффициент усиления много меньше единицы. Далее, мы применили мультиплексор для выбора одного из четырех резисторов. Обратите внимание на разделительный конденсатор, который нужен, чтобы сделать ток покоя не зависящим от коэффициента усиления.

Схема слежения-хранения. Рис. 3.54 демонстрирует, как можно сделать схему «слежения-хранения», которая будет кстати, когда мы захотим преобразовать аналоговый сигнал в поток цифровых комбинаций («аналого-цифровое преобразование»). При этом схема будет сохранять неизменным каждый уровень аналогового сигнала, пока вычисляется его величина. Данная схема проста. Входной буферный усилитель с единичным усилением выдает на низкоомный выход копию входного сигнала, направляя ее на конденсатор малой емкости. Чтобы сохранить (запомнить) уровень аналогового сигнала в любой заданный момент, вы просто размыкаете ключ. Высокое полное входное сопротивление второго буфера (у которого на входе должны быть полевые транзисторы, чтобы входной ток не слишком отличался от нуля) предотвращает нагрузку конденсатора, так что напряжение на нем «хранится» до тех пор, пока ПТ-ключ не замкнется снова.

Рис. 3.54. Схема слежения-хранения.

Упражнение 3.13 . Входной буфер должен выдавать ток такой величины, чтобы напряжение на конденсаторе следовало за изменяющимся сигналом. Рассчитайте пиковый выходной ток буфера при подаче на вход схемы синусоидального сигнала амплитудой 1 В и частотой 10 кГц.

Конвертер напряжения с «плавающим» конденсатором. Существует прекрасный способ (рис. 3.55) создавать нужное нам напряжение питания отрицательной полярности в схеме, запитанной от однополярного положительного источника питания. Пара левых по схеме ПТ-ключей подключает С 1 к положительному источнику питания, заряжая его до U вх , в то время как правые ключи разомкнуты. Вслед за тем входные ключи размыкаются, а правая пара ключей замыкается, подключая заряженный С 1 к выходу, при этом часть его заряда передается на С 2 . Схема организована столь хитроумным способом, что С 1  переворачивается вверх тормашками, выдавая на выход напряжение отрицательной полярности!

Рис. 3.55. Инвертор напряжения с «плавающим» конденсатором.

Данная конкретная схема выпускается в виде чипа конвертера напряжения 7662, о котором мы поговорим в разд. 6.22 и 14.07. Это устройство, названное «инвертором», превращает напряжение «высокого» уровня в напряжение «низкого» уровня, и наоборот. В следующем разделе мы покажем, как делается один из таких инверторов (и мы фактически подготовим вас к тому, что вы быстрее поймете, как ускорить их работу, о чем идет речь в гл. 8-11!).

3.14. Логические и мощные ключи на МОП-транзисторах

Другие виды применений ПТ-ключей — это логические и мощные переключающие схемы. Отличить их просто. При переключении аналогового сигнала мы используем ПТ как последовательный ключ, разрешающий или блокирующий прохождение аналогового сигнала, который представляет собой изменяющееся в некотором диапазоне (непрерывным, т. е. аналоговым образом) напряжение.

Аналоговый сигнал — это обычно сигнал, имеющий низкий уровень напряжения и незначительную мощность. С другой стороны, при логическом переключении ключи на МОП-транзисторах замыкаются и размыкаются, перебрасывая выход схемы от одного источника питания к другому. Фактически эти «сигналы» являются цифровыми, а не аналоговыми — они скачком переходят от уровня питания одного источника к другому, представляя тем самым два состояния: «высокое» и «низкое». Промежуточные уровни напряжения не являются полезными или желательными; фактически, они даже незаконны!

И наконец, понятие «мощные переключатели» относится к включению и выключению питания нагрузки, такой как лампа, обмотка реле или двигатель вентилятора. В таких применениях обычно и напряжения, и токи велики. Рассмотрим вначале логические переключатели.

Логические ключи. На рис. 3.56 показан простейший тип логического переключателя на МОП-транзисторе.

Рис. 3.56. Логические инверторы на n -канальном ( а ) и p -канальном ( б ) МОП-транзисторах .

В обеих схемах в качестве нагрузки используется резистор и обе они осуществляют логическую функцию инвертирования - высокий логический уровень на входе создает низкий уровень на выходе, и наоборот. Вариант схемы на n-канальном транзисторе включает выход на землю при подаче на затвор высокого уровня, тогда как в p-канальном варианте на резисторе образуется высокий логический уровень при заземленном (низкий уровень) входе.

Обратите внимание на то, что МОП-транзисторы в этих схемах используются как инверторы с общим истоком, а не как истоковые повторители. В цифровых логических схемах подобных представленным нас обычно интересует выходное напряжение («логический уровень»), продуцируемое некоторым входным напряжением; резистор служит просто пассивной нагрузкой в цепи стока, обеспечивая при запертом ПТ выходное напряжение, равное напряжению питания стока. С другой стороны, если мы заменим резистор осветительной лампочкой, реле, приводом печатающей головки или какой-то другой мощной нагрузкой, получим схему мощного переключателя (рис. 3.3). Хотя мы используем ту же самую схему «инвертора», однако при переключении мощной нагрузки нас интересует ее включение и выключение, а не напряжение выхода.

Инвертор на КМОП. Представленные выше инверторы на n-канальном или p-канальном МОП-транзисторе имеют недостатки: они потребляют ток в состоянии «ВКЛ» и имеют относительно высокое выходное сопротивление в состоянии «ВЫКЛ». Молено уменьшить выходное сопротивление (уменьшив R), но только ценой увеличения рассеиваемой мощности, и наоборот. За исключением источников тока иметь высокое выходное сопротивление, конечно же, всегда плохо. Даже если подключенная к выходу нагрузка имеет высокое сопротивление (например, это затвор другого МОП-транзистора), все равно возникают проблемы шумов из-за емкостных наводок и уменьшается скорость переключения из состояния «ВКЛ» в состояние «ВЫКЛ» («хвост переключения») за счет паразитной емкости нагрузки. В этом случае, например, инвертор на n-канальном МОП-транзисторе со стоковым резистором, имеющим компромиссное сопротивление, скажем 10 кОм, даст на выходе форму сигнала, показанную на рис. 3.57.

Рис. 3.57.

Ситуация напоминает однокаскадный эмиттерный повторитель из разд. 2.15, в котором потребляемая мощность в состоянии покоя и мощность, направляемая в нагрузку выбираются из тех же компромиссных соображений. Решение здесь одно — использование пушпульной схемы, особенно хорошо подходящей для переключателей на МОП-транзисторах.

Взгляните на рис. 3.58; здесь показано, как можно было бы организовать пушпульный (двухтактный) ключ.

Рис. 3.58. Логический КМОП-инвертор.

Потенциал земли на входе вводит нижний транзистор в состояние отсечки, а верхний — во включенное (замкнутое) состояние, в результате чего на выходе будет высокий логический уровень. Высокий (+U СС ) уровень входа действует противоположным образом, давая на выходе потенциал земли. Это инвертор с низким выходным сопротивлением в обоих состояниях и в нем совершенно отсутствует ток покоя. Называют его КМОП-инвертор (инвертор на комплементарных МОП-транзисторах), и он является базовой структурой для всех цифровых логических КМОП-схем — семейства, которое уже стало преобладающим в больших интегральных схемах (БИС) и которому, похоже, предопределено заменить более ранние семейства логических схем (так называемые ТТЛ-схемы), построенные на биполярных транзисторах. Обратите внимание на то, что КМОП-инвертор представляет собой два комплементарных МОП-ключа, соединенных последовательно и включаемых попеременно, в то время как аналоговый КМОП-ключ (рассмотренный ранее в этой главе) — это параллельно соединенные комплементарные МОП-ключи, включаемые и выключаемые одновременно.

Упражнение 3.14. Комплементарные МОП-транзисторы в КМОП-инверторе оба работают как инверторы с общим истоком, тогда как комплементарные биполярные транзисторы в пушпульных схемах разд. 2.15 являются (неинвертирующими) эмиттерными повторителями. Попробуйте нарисовать «комплементарный биполярный инвертор», аналогичный КМОП-инвертору. Почему он не сможет работать?

О цифровых КМОП-схемах гораздо больше будет сказано там, где будут рассматриваться цифровые логические схемы и микропроцессоры (гл. 8-11). На сей момент остановимся на очевидном: КМОП-схемы — это семейство маломощных логических схем (с нулевым потреблением мощности в состоянии покоя), имеющих высокое полное входное сопротивление и жестко заданные уровни выходного напряжения, соответствующие полному диапазону напряжений питания. Однако прежде чем оставить сей предмет, мы не можем устоять против соблазна показать еще одну КМОП-схему (рис. 3.59). Это логический вентиль И-НЕ, на выходе которого будет низкий логический уровень только в том случае, если на обоих входах — на входе А и на входе В — будет высокий уровень. Понять, как он работает, исключительно просто.

Рис. 3.59. ΚΜΟΠ-вентили И-НЕ и И .

Если уровни А и В — оба высокие, то оба последовательно включенные n-канальные МОП-ключи Т 1 и Т 2 находятся в проводящем состоянии, жестко фиксируя на выходе потенциал земли; p-канальные ключи Т 3 и Т 4 оба разомкнуты, так что ток через них не течет. Однако если уровень на любом из входов А или В (или на обоих) низкий, то соответствующий p-канальный МОП-транзистор открыт, подавая на выход высокий уровень, так как один (или оба) транзистор последовательной цепи Т 1 Т 2 закрыт и ток через них не проходит.

Схема называется вентилем И-НЕ, поскольку она осуществляет логическую функцию И, но с инверсным (НЕ) выходом. Хотя вентили и их варианты — предмет рассмотрения гл. 8, вы можете доставить себе удовольствие, попытавшись набить руку на решении следующих проблем.

Упражнение 3.15. Нарисуйте КМОП-вентиль И. Подсказка: И = НЕ-И-НЕ.

Упражнение 3.16. Теперь нарисуйте схему вентиля ИЛИ-НЕ. На выходе этой схемы низкий уровень, если на любом из входов А или В (или на обоих) уровень высокий.

Упражнение 3.17. Небольшая загадка — как будет выглядеть КМОП-вентиль ИЛИ?

Упражнение 3.18. Нарисуйте 3-входовый КМОП-вентиль И-НЕ.

Цифровые логические КМОП-схемы, которые мы будем рассматривать позже, строятся путем комбинирования этих базовых вентилей. Сочетание очень малой потребляемой мощности и жестко заданного выходного напряжения, привязанного к шинам питания, делает выбор семейства логических схем на КМОП-транзисторах предпочтительным для большинства цифровых схем, что и объясняет их популярность. Кроме того, для микромощных схем (таких как наручные часы и малые измерительные приборы с батарейным питанием) это вообще единственное решение. Однако, если мы не хотим впасть в заблуждение, стоит отметить, что мощность, потребляемая КМОП-логикой, хотя и очень мала, но не равна нулю.

Существуют два механизма, вызывающие появление тока стока. Во время переходных процессов через выход КМОП-схемы должен проходить кратковременный ток I = CdU/dt, чтобы зарядить имеющуюся на выходе емкость той или иной величины (рис. 3.60).

Рис. 3.60. Емкостной зарядный ток.

Емкость нагрузки образуется как за счет емкости проводников («паразитная» емкость), так и за счет входной емкости дополнительной логической схемы, подключенной к выходу. Фактически, поскольку сложный чип на комплементарных МОП-транзисторах содержит много вентилей, каждый из которых нагружен на некоторую внутреннюю емкость, в любой КМОП-схеме имеется некоторый ток стока, который участвует в переходных процессах, даже если сам чип не подключен ни к какой нагрузке. Неудивительно, что этот «динамический» ток стока пропорционален скорости, с которой происходит этот переходный процесс. Второй механизм появления тока стока в КМОП-схеме показан на рис. 3.61.

Рис. 3.61. Проводимость в КМОП-схеме в режиме класса А .

При переходе напряжения на входе скачком от потенциала земли к уровню напряжения питания и обратно существует область, в которой оба МОП-транзистора находятся в состоянии проводимости, в результате чего возникает всплеск тока от U СС на землю. Его иногда называют «ток класса А» или «ломовой ток питания». Некоторые следствия, которые он вызывает, вы увидите в гл. 8, 9 и 14. Коль скоро мы сделали ставку на КМОП-схемы, нужно отметить и другой их недостаток (фактически, он присущ всем МОП-транзисторам) — это незащищенность от повреждения статическим электричеством. Дополнительно мы поговорим об этом в разд. 3.15.

Линейный усилитель на КМОП-транзисторах. КМОП-инверторы, как впрочем и все цифровые логические схемы, предназначены для работы с цифровыми логическими уровнями сигналов. Поэтому, за исключением времени переходных процессов, входы и выходы подключены к земле или к шине U СС (обычно +5 В). И опять-таки за исключением времени, которое длятся эти переходные процессы (типичная величина - несколько наносекунд), здесь нет тока стока в состоянии покоя. Оказывается, КМОП-инвертор обладает некоторыми интересными свойствами, когда он работает с аналоговыми сигналами. Взгляните снова на рис. 3.61.

Можно рассматривать Т 1 как активную (источник тока) нагрузку для инвертирующего усилителя Т 2 , и наоборот. Когда на входе потенциал, близкий к U СС или к потенциалу земли, токи указанных транзисторов сильнейшим образом отличаются друг от друга и усилитель находится в насыщении (или в «прижатом» соответственно к земле или U СС состоянии). Это, разумеется, нормальная ситуация для цифровых сигналов. Однако когда напряжение на входе равно приблизительно половине напряжения питания, есть небольшая область, где токи стоков Т 1 и Т 2 примерно одинаковы; в этой области схема является инвертирующим линейным усилителем с большим коэффициентом усиления. Его передаточная характеристика представлена на рис. 3.62.

Рис. 3.62.

Вариации R н и g m с изменением тока стока таковы, что наибольший коэффициент усиления наблюдается при относительно малых значениях тока стока, т. е. при низком напряжении питания (порядка 5 В). Эта схема не является хорошим усилителем; у нее есть недостатки — это очень высокое выходное сопротивление (особенно при работе с низким напряжением питания), плохая линейность и непредсказуемая величина коэффициента усиления. Однако она проста и недорога (КМОП-инверторы по 6 в одном корпусе продаются по цене менее полдоллара за корпус), и ее иногда используют для усиления малых сигналов, форма которых несущественна. Примеры применения таких схем - сигнализатор близости электросети (который усиливает емкостные наводки переменного тока сетевой частоты), генераторы с кварцевыми резонаторами и устройства с частотной модуляцией и частотной манипуляцией (см. гл. 15).

Чтобы КМОП-инвертор работал как линейный усилитель, необходимо подать на вход смещение такое, чтобы усилитель находился в активном режиме. Обычный метод состоит в том, что со входа на выход включается резистор с большим сопротивлением (который мы определим в следующей главе как «обратная связь по постоянному току»), как показано на рис. 3.63.

Рис. 3.63. Схемы линейных усилителей на КМОП-транзисторах.

Это приведет нас в точку U вых = U вх на графике рис. 3.62, а. Как мы позже увидим, такое включение, как на рис. 3.63, а, снижает входное полное сопротивление за счет «шунтирующей обратной связи». Поэтому если важно иметь высокое входное полное сопротивление на высоких частотах, то предпочтение следует отдать схеме рис. 3.63, б. Третья схема (рис. 3.63, в) — это использующий КМОП-усилитель классический генератор с кварцевой стабилизацией, описанный в разд. 5.13. На рис. 3.64 дан вариант схемы рис. 3.63, а, который используется для генерации сигналов строго прямоугольной формы частотой 10 МГц (тактовый генератор для цифровых логических схем) из синусоидального входного сигнала. Эта схема работает хорошо при амплитуде сигнала на входе от 50 мВ до 5 В (эффективные значения).

Рис. 3.64.

Вот хороший пример применения, где действует принцип «Я не знаю, каково усиление, и меня это не волнует». Обратите внимание на цепь защиты входа, состоящую из последовательно включенного токоограничивающего резистора и фиксирующих диодов.

Мощные переключатели. МОП-транзисторы хорошо работают как насыщенные ключи в таких схемах, как та простейшая схема, что была предложена нами в разд. 3.01. В настоящее время мощные МОП-транзисторы выпускаются многими фирмами, что позволяет использовать положительные особенности МОП-транзисторов (высокое входное сопротивление, простота параллельного включения, отсутствие «вторичного пробоя») и в мощных схемах. Вообще говоря, мощные МОП-транзисторы проще в применении, чем обычные мощные биполярные транзисторы. Есть, однако, некоторые тонкие и трудные для анализа эффекты, так что «кавалерийский наскок» в замене на МОП-транзисторы в переключательных схемах может привести к внезапному выходу схемы из строя. Мы были свидетелями такого рода аварий и надеемся предотвратить их повторение. Прочтите составленный нами краткий обзор.

Мощные МОП-транзисторы . ПТ были хилыми слаботочными устройствами, способными пропускать ток не более чем несколько десятков миллиампер, до тех пор пока в конце 1970-х годов японские компании не выпустили так называемые УМОП-транзисторы (вертикальная МОП-структура с V-образной канавкой).

Сегодня мощные МОП-транзисторы выпускают все изготовители дискретных полупроводниковых приборов (например, в США такие фирмы, как GE, IR, Motorola, RCA, Siliconix, Supertex, ΤΙ; наряду с ними европейские компании, такие как Amperex, Ferranti, Siemens и SGS, а также многие из японских компаний) под такими названиями, как УМОП, ТМОП, вертикальные ДМОП и HEXFET (гексагональные ПТ). Они могут оперировать с удивительно высокими напряжениями (до 1000 В) и допускают пиковые токи до 280 А (постоянно через них может проходить ток до 70 A), a R вкл очень мало — 0,02 Ом.

Небольшие мощные МОП-транзисторы стоят существенно меньше доллара, и выпускаются они во всех обычных транзисторных корпусах, а также по несколько транзисторов в удобном корпусе DIP, в котором выпускаются и большинство ИМС. Ирония судьбы заключается в том, что теперь уже трудно найти дискретные маломощные МОП-транзисторы, зато нет проблем с мощными МОП-транзисторами. В табл. 3.5 перечислены наиболее представительные типы мощных МОП-транзисторов.

Высокое сопротивление, температурная стабильность . Два важных преимущества мощных МОП-транзисторов, отличающих их от мощных биполярных транзисторов, — это высокое входное сопротивление (однако остерегайтесь высокой входной емкости, особенно для сильноточных устройств; см. ниже) и полное отсутствие терморазогрева и вторичного пробоя. Этот последний эффект очень важен в мощных схемах и труден для понимания.

Большую площадь перехода мощного транзистора (будь то биполярный или полевой) можно рассматривать как большое количество малых переходов, включенных параллельно (рис. 3.65), причем к ним ко всем приложено одинаковое напряжение. В случае мощного биполярного транзистора положительный температурный коэффициент коллекторного тока при фиксированном U БЭ (приблизительно +9 %/°С, см. разд. 2.10) означает, что локальная точка разогрева перехода будет иметь более высокую плотность тока, что вызовет дополнительный нагрев. При достаточно больших U КЭ и I К эта «токовая деформация» может привести к локальному саморазогреву, известному под названием «вторичный пробой».

Рис. 3.65. Транзистор с большой площадью переходов можно рассматривать как много параллельно включенных транзисторов с малой площадью переходов.

В результате «площадь безопасной работы» биполярного транзистора (на графике зависимости коллекторного тока от напряжения на коллекторе) меньше, чем если учитывать только допустимую мощность рассеяния транзистора (подробнее об этом см. в гл. 6). Важный момент здесь состоит в том, что ток стока МОП-транзистора падает при увеличении температуры (рис. 3.13) и это полностью исключает появление «горячих точек» в переходе. МОП-транзисторы не подвержены вторичному пробою и их область безопасной работы ограничена только допустимой мощностью рассеяния (см. рис. 3.66, где сравниваются области безопасной работы биполярного n-р-n-транзистора и мощного n-канального МОП-транзистора при одних и тех же I макс , U макс и Р расс ).

Рис. 3.66. Мощные МОП-транзисторы не подвержены вторичному пробою.

По тем же причинам усилители мощности на МОП-транзисторах не имеют тех неприятных тенденций к температурному уходу параметров, за которые мы «так любим» биполярные транзисторы (см. разд. 2.15), и наконец, мощные МОП-транзисторы могут быть включены параллельно без токовыравнивающих резисторов, которые для биполярных транзисторов необходимы (см. разд. 6.07).

Примеры мощных переключательных схем и необходимые предосторожности. Часто бывает желательно управлять мощным МОП-транзистором с выхода цифровых логических схем. Хотя имеются семейства логических схем, выдающие напряжение 10 В и более («КМОП-серия 4000»), однако в большинстве семейств логических ИМС используются уровни +5 В («высокоскоростные КМОП») или +2,4 В («ТТЛ»). На рис. 3.67 показано, как переключать нагрузку, подавая управляющие сигналы от логических схем этих трех семейств.

Рис. 3.67. МОП-транзисторы способны переключать мощные нагрузки, при управляющих сигналах с уровнями цифровых логических схем.

В первой схеме сигнал возбуждения затвора +10 В полностью откроет любой МОП-транзистор, так что мы выберем VN0106 — недорогой транзистор, у которого R вкл < 5 Ом при UЗИ = 5 В. Диод в схеме защищает от индуктивных всплесков (разд. 1.31); включенный последовательно с затвором резистор хотя не обязательно необходим, однако полезен, так как емкость сток-затвор МОП-транзистора может передать индуктивный переходный процесс в нагрузке обратно на чувствительную КМОП-логику (вскоре мы расскажем об этом более подробно). Во второй схеме на затвор подается 5 В, что все еще неплохо для серий VN01/VP01; для разнообразия мы применили здесь p-канальный МОП-транзистор, переключающий нагрузку, подключенную к земле.

Две оставшиеся схемы демонстрируют два способа обработки сигнала +2,4 В (в худшем случае; обычно это где-то около +3,5 В) — высокого логического уровня цифровой логики ТТЛ. Можно использовать «подтягивающий» к +5 В резистор, чтобы обеспечить полный перепад +5 В на выходе ТТЛ, который затем возбуждает обычный МОП-транзистор; можно выбрать и другой путь — использовать что-нибудь вроде ΤΝ0106-«низкопорогового» МОП-транзистора, рассчитанного на сигнал возбуждения с уровнем ТТЛ. Будьте, однако, внимательны к паспортным данным. Например, в спецификации на TN01 указано «U ЗИ пор = 1,5 В (макс.)», что звучит прекрасно до тех пор, пока вы не прочтете превосходную сноску («при I С = 1 мА»). Это означает, что для полного открытия МОП-транзистора на затвор нужно подать напряжение намного выше U ЗИ пор  (Рис. 3.68). Однако эта схема, возможно, будет работать хорошо, поскольку а) высокий уровень выхода ТТЛ редко бывает ниже +3 В и типичное его значение составляет +3,5 В и б) в паспорте на ΤΝ01 далее указано: «U вкл (тип.) = 5 Ом при U ЗИ = 3 В».

Рис. 3.68. Стоковые характеристики n -канального МОП-транзистора типа TN0104 с низким пороговым напряжением, a — выходные характеристики; б — передаточные характеристики.

Этот пример иллюстрирует часто возникающие у разработчика затруднения, а именно — что выбрать: сложную схему, полностью удовлетворяющую критериям разработки в наихудшем случае и тем самым гарантирующую работоспособность, или простую схему, не отвечающую спецификациям в наихудшем случае, которая, однако, в подавляющем большинстве случаев будет работать без проблем. Не раз еще возникнут моменты, когда вы поймаете себя на том, что выбираете последнее, не обращая внимания на слабый внутренний голос, подсказывающий обратное.

Емкость. В предыдущем примере мы включали последовательно с затвором резистор (в схеме с индуктивной нагрузкой). Как отмечалось ранее (разд. 3.09), МОП-транзисторы имеют практически бесконечное резистивное сопротивление затвора, но конечное полное сопротивление из-за емкости затвор-канал. У сильноточных МОП-транзисторов эта емкость может быть очень разной: сравните входную емкость 45 пФ у 1-амперного VN01 с С вх = 450 пФ 10-амперного IRF520; 70-амперный SMM70N05 фирмы Siliconix имеет С вх = 4300 пФ! Быстро изменяющееся напряжение стока может вызвать в затворе переходный ток в миллиамперах, что достаточно для перегрузки (и даже для повреждения) нежных управляющих КМОП-чипов.

Последовательно включаемое сопротивление выбирается из соображений компромисса между быстродействием и необходимостью защиты, при этом типичными являются значения от 100 Ом до 10 кОм. Даже без индуктивной нагрузки динамический ток затвора будет, конечно, иметь место: емкость относительно земли C iss будет заряжаться током I = C iss dU ЗИ /dt, а (меньшая) емкость обратной связи Crss создает входной ток I = C rss dU CЗ /dt. Этот последний будет доминировать в ключе с общим истоком, поскольку ΔU CЗ обычно намного больше, чем сигнал возбуждения затвора ΔU ЗИ (эффект Миллера).

Упражнение 3.19. МОП-транзистор IRF520, переключающий 2-амперную нагрузку, выключается за 100 нс (при переключении потенциала затвора с +10 В до потенциала земли), в течение которых напряжение стока изменяется от 0 до 50 В. Чему равно среднее значение тока затвора в течение этих 100 нс в предположении, что С зи (называемое также C iss ) равно 450 пФ, а С сз (называемое также C rss ) равно 50 пФ?

В ключе с общим истоком вклад эффекта Миллера в ток затвора имеет место все время, пока не завершится переходный процесс в цепи стока, а емкость затвор-исток создает ток только при изменении напряжения затвора. Эти эффекты часто рисуются в виде графика «зависимости заряда затвора от напряжения затвор-исток», как это сделано на рис. 3.69.

Рис. 3.69. Зависимость заряда затвора МОП-транзистора типа IRF520 от U ЗИ .

Горизонтальная полка на графике наблюдается при напряжении включения, когда быстро падающее напряжение стока вынуждает схему возбуждения затвора впрыскивать дополнительный заряд в C rss (эффект Миллера). Если бы емкость обратной связи не зависела от напряжения, то эта горизонтальная часть графика была бы пропорциональна напряжению стока, после чего кривая продолжалась бы с прежним наклоном. На самом деле емкость обратной связи м при малом напряжении быстро возрастает (рис. 3.70), а это означает, что эффект Миллера больше всего проявляет себя на той части сигнала, когда напряжение на стоке мало. Этим объясняется изменение наклона кривой заряда затвора, а также тот факт, что длина горизонтальной полки почти не зависит от напряжения стока.

Рис. 3.70. Емкости в мощном МОП-транзисторе типа IRF520. Измерения проводились при  U зи = 0. C iss =  С зи + С зс (сток и исток закорочены); C rss = С зс ; C оss = С си + ( С зи · С зс )/( С зи + С зс ) ~= С си + С зс .

Упражнение 3.20 . Как зависимость C rss от напряжения объясняет изменение наклона кривых заряда затвора?

Дополнительные моменты, требующие внимания. Есть еще некоторые вещи, которых не выносят МОП-транзисторы и о которых вам следует знать. Все изготовители мощных МОП-транзисторов соединяют подложку с истоком прямо в корпусе. Поскольку подложка образует с каналом диод, то это означает, что фактически в этих транзисторах между истоком и стоком имеется диод (рис. 3.71); некоторые изготовители даже явно рисуют этот диод на схемном изображении выпускаемого ими МОП-транзистора, чтобы вы об этом не могли забыть.

Рис. 3.71. В мощных МОП-транзисторах подложку соединяют с истоком, в результате чего образуется диодный переход сток-исток.

Это в свою очередь означает, что вы не можете использовать мощный МОП-транзистор как ненаправленный прибор или же по меньшей мере не можете подать на переход сток-исток напряжение обратной полярности, превышающее прямое падение напряжения на диоде. Например, вы не сможете использовать мощный МОП-транзистор для сброса в нуль интегратора, возбуждаемого биполярным сигналом; не получится также применить его и в качестве аналогового ключа для биполярных сигналов. Эта проблема не возникает в ИМС на МОП-транзисторах (аналоговых ключах, например) — в них подложка соединена с выводом источника питания отрицательной полярности.

Еще один капкан для неосторожных — это тот факт, что напряжение пробоя затвор-исток (обычная величина ±20 В) меньше, чем напряжение пробоя сток-исток (оно изменяется в диапазоне от 20 до 1000 В). Это не имеет значения, если на затвор подаются сигналы возбуждения от низковольтной цифровой логики, однако транзистор мгновенно выйдет из строя, если на затвор ему подать сигнал со стока предыдущего МОП-транзистора с полной амплитудой напряжения стока.

И наконец, о защите затвора. В последнем разделе этой главы мы говорим о том, что все МОП-транзисторы исключительно чувствительны к электростатическим разрядам, вызывающим пробой изолирующего затвор окисла. В отличие от ПТ или других устройств с p-n-переходами, в которых лавинный ток перехода может безопасным образом разрядить возникшее перенапряжение, МОП-транзисторы необратимо повреждаются при однократном мгновенном пробое затвора. Поэтому очень полезно включать в цепь затвора последовательные резисторы сопротивлением 1-10 кОм, особенно там, где сигнал на затвор поступает с другой печатной платы. Это сильно уменьшает возможность повреждения транзистора, а также предотвращает перегрузку выхода предыдущей схемы, так как самый общий симптом такого рода повреждения состоит в том, что через затвор начинает проходить значительной величины постоянный ток. Еще одно, за чем необходимо следить — не оставить затвор МОП-транзистора неподключенным, так как он намного более подвержен пробою, когда на нем накапливается плавающий потенциал (нет цепи разряда статического электричества, которая в некоторой мере снижает опасность пробоя). Это может случиться неожиданно, если сигнал на затвор поступает с другой печатной схемы. В этом случае, т. е. там, где источник сигнал находится вне данной платы, лучше всего поставить в схему между затвором и истоком любого такого МОП-транзистора резистор (скажем, 100 кОм-1 МОм).

Сравнение сильноточных ключей на МОП-транзисторах и биполярных транзисторах. Мощные МОП-транзисторы в большинстве случаев являются хорошей заменой мощным биполярным транзисторам. Сегодня они при тех же параметрах стоят несколько больше, однако они проще в управлении и не подвержены вторичному пробою, ограничивающему область безопасной работы (см. рис. 3.66).

Помните, что МОП-транзистор во включенном состоянии ведет себя как малое сопротивление (а не как насыщенный биполярный транзистор). Это может оказаться выгодным, так как «напряжение насыщения» явным образом стремится к нулю при малых токах стока. Существует общее представление о том, что МОП-транзисторы не насыщаются так же при больших токах, однако наши исследования показали, что это представление глубоко ошибочно. В табл. 3.6 мы выбрали несколько сравнимых пар (биполярный p-n-транзистор и n-канальный МОП-транзистор) и выписали для них паспортные данные по U КЭ нас или R СИ вкл .

Слаботочный МОП-транзистор выглядит слабо в сравнении со своим биполярным собратом, однако в диапазоне 10–50 А, 0-100 В МОП-транзистор работает лучше. Обратите особое внимание на исключительно высокий ток базы, необходимый для того, чтобы биполярный транзистор вошел в глубокое насыщение — 10 % и более от величины коллекторного тока (!) — в сравнении с 10 В смещения (ток нулевой), при которых обычно специфицируются данные на МОП-транзистор. Отметим также, что высоковольтные МОП-транзисторы (например, с U СИ проб > 200 В) имеют как правило большее R СИ вкл и более высокие значения температурных коэффициентов, чем низковольтные устройства. Наряду с параметрами насыщения в таблице приведены значения емкостей, так как их величина у мощных МОП-транзисторов часто больше, чем у биполярных транзисторов с такой же токовой нагрузочной способностью; для некоторых схемных применений (особенно там, где важна скорость переключения) можно рассматривать произведение емкости на напряжение насыщения как показатель качества применяемого транзистора.

Запомните: мощные МОП-транзисторы можно использовать в качестве замены биполярных транзисторов в мощных линейных схемах, например в усилителях звуковой частоты и стабилизаторах напряжения (о последних мы будем говорить в гл. 6). Мощные МОП-транзисторы выпускаются также в виде p-канальных приборов, хотя среди n-канальных приборов их разновидностей гораздо больше.

Некоторые примеры мощных переключательных схем на МОП-транзисторах. На рис. 3.72 показаны три разных способа использования МОП-транзистора для управления мощностью постоянного тока, которая направляется в некоторую подсхему и подачу которой нам хотелось бы включать и выключать. Если мы имеем измерительный прибор с батарейным питанием, и измерения с его помощью производятся от случая к случаю, тогда можно применить схему а, которая отключает потребляющий значительную мощность микропроцессор на все время, пока измерения не проводятся. Здесь мы применили p-канальный МОП-ключ, переключаемый 5-вольтовым логическим сигналом. Эта «5-вольтовая логика» представляет собой цифровые КМОП-схемы, которые находятся в рабочем состоянии даже тогда, когда микропроцессор отключен (напомним: КМОП-логика имеет статическую мощность рассеяния, равную нулю). В гл. 14 мы предлагаем гораздо подробнее рассказать о такого рода схеме «отключения питания».

Вторая схема (рис. 3.72, б) переключает подачу в нагрузку питания +12 В при значительном токе нагрузки; это может быть радиопередатчик или что-то подобное. Поскольку у нас есть лишь 5-вольтовый диапазон логического сигнала, то для создания «полномасштабного» сигнала амплитудой 12 В, который будет управлять p-канальным МОП-вентилем, мы использовали слаботочный n-канальный ключ. Обратите внимание на высокое сопротивление резистора в цепи стока n-канального МОП-транзистора, что здесь совершенно оправдано, так как ток в цепи затвора p-канального МОП-вентиля не течет (даже при полном токе через ключ 10 А) и нам не требуется высокая скорость переключения в такого рода применениях.

Третья схема в) является развитием схемы б) и содержит схему на p-n-p-транзисторе, ограничивающую ток короткого замыкания. Применять такую защиту в схемах с большой потребляемой мощностью всегда полезно, поскольку короткое замыкание такого рода весьма вероятно, особенно при макетных испытаниях. В этом случае схема ограничения тока предотвращает также возникающий на короткий момент при подаче +12 В в нагрузку резкий всплеск тока короткого замыкания через первоначально незаряженный конденсатор. Попытайтесь понять, как работает эта схема ограничения тока.

Рис. 3.72. Мощные схемы переключения цепей постоянного тока на МОП-транзисторах.

Упражнение 3.21. Как работает схема ограничения тока? Какова максимальная величина тока, пропускаемая ей в нагрузку? Для чего резистор в цепи стока n -канального МОП-транзистора разделен на два?

Ограниченная величина напряжения пробоя затвора МОП-транзисторов (обычно ±20 В) может создать здесь реальную проблему, если вы попытаетесь заставить эту схему работать от источника питания с более высоким напряжением. В этом случае можно заменить резистор 100 кОм на 10 кОм (что позволит работать при питании до 40 В) или выбрать другое приемлемое соотношение номиналов двух схемных резисторов, такое чтобы напряжение возбуждения затвора VP12 всегда было меньше 20 В.

На рис. 3.73, а показана в качестве примера простая переключательная схема на МОП-транзисторе, одна из тех, где используется высокое сопротивление затвора. Пусть вам нужно включить уличное освещение автоматически с наступлением темноты. Показанный на схеме фоторезистор имеет при солнечном освещении низкое сопротивление, а в темноте — высокое. Он образует часть резистивного делителя напряжения, непосредственно возбуждающего затвор транзистора (нагрузка делителя по постоянному току отсутствует!). Освещение включается, когда напряжение на затворе достигает величины, обеспечивающей ток стока, достаточный для включения реле. Внимательный читатель может заметить, что эта схема не особенно точна и стабильна; тут все в порядке, поскольку сопротивление фоторезистора при наступлении темноты изменяется колоссальным образом (скажем, с 10 кОм до 10 МОм). При этом малая точность и стабильность порога означает лишь то, что свет может включиться несколькими минутами раньше или позже. Заметим, что в течение времени, пока смещение затвора медленно нарастает, превысив пороговое значение, на МОП-транзисторе будет рассеиваться некоторая мощность, так как при этом он работает в линейном режиме. Эту проблему устраняет схема на рис. 3.73, б, где пара каскадно включенных МОП-транзисторов обеспечивает намного более высокий коэффициент усиления, чему способствует также некоторая положительная обратная связь через резистор 10 МОм; этот последний заставляет схему при достижении порога регенеративным образом опрокидываться.

Рис. 3.73. Мощные переключатели, работающие от окружающего освещения.

На рис. 3.74 дана реально работающая схема на мощном МОП-транзисторе — 200-ваттный усилитель для возбуждения погруженного в воду электрического преобразователя с частотой 200 кГц. Здесь мы использовали пару больших n-канальных МОП-транзисторов, включающихся и выключающихся попеременно, так что в первичной обмотке (высокочастотного) трансформатора создается сигнал возбуждения переменного тока. Биполярные двухтактные схемы возбуждения затворов с небольшими резисторами в цепях затворов необходимы для того, чтобы исключить емкостную нагрузку, так как МОП-транзисторы должны полностью включаться за время несколько меньше 1 мкс.

Рис. 3.74. Мощный возбудитель пьезокристалла на МОП-транзисторах.

И наконец, на рис. 3.75 мы представили пример линейной схемы на мощных МОП-транзисторах. Керамические пьезоэлектрические преобразователи часто используются в оптических системах для осуществления небольших управляемых перемещений; например, в адаптивной оптике можно применить пьезоэлектрически управляемое «эластичное зеркало» для компенсации локальных изменений коэффициента преломления атмосферы.

Рис. 3.75. Возбудитель пьезокристалла малой мощности на 1 кВ.

Пьезопреобразователи прекрасно ведут себя в эксплуатации благодаря своей высокой износостойкости. К несчастью, чтобы вызвать в них заметные перемещения, требуется напряжение не ниже киловольта. Кроме того, они имеют очень высокую емкость (типичное значение 0,01 мкФ и более) и механический резонанс в килогерцевом диапазоне, а потому как нагрузка они отвратительны. Нам требовалось множество таких силовых усилителей, которые по тем или иным причинам обошлись бы нам по несколько тысяч долларов каждый, если бы мы их покупали. Мы решили. свои проблемы представленной здесь схемой. BUZ-50 В — это недорогой (4 долл.) МОП-транзистор, хорошо подходящий для работы при 1 кВ и 2 А. Первый транзистор — инвертирующий усилитель с общим истоком, возбуждающий истоковый повторитель. На n-p-n-транзисторе собран токовый ограничитель; это может быть низковольтное устройство, поскольку он привязан к потенциалу выхода и плавает вместе с ним. У этой схемы есть одна не бросающаяся в глаза особенность — по сути это пушпульная схема, хотя она и выглядит как однополярная. Необходим достаточно большой ток (определите, какой величины?), чтобы обеспечить «накачку» 10000 пФ со скоростью где-то около 2 В/мкс; выходной транзистор может обеспечить подачу такого тока, однако резистор в нижнем плече не обеспечит его отвод (вернитесь к разд. 2.15, где мы мотивировали необходимость пушпульной схемы для решения подобной же проблемы). В данной схеме выходной транзистор обеспечивает второй такт (прием тока) через диод, включенный между истоком и затвором! Остальная часть схемы обеспечивает обратную связь (с помощью ОУ) — тема, которую мы запретили себе трогать до следующей главы; в данном случае магическая обратная связь делает всю схему в целом линейной (100 В выхода на 1 В входа), тогда как в ее отсутствие выходное напряжение зависело бы от (нелинейной) характеристики I С -U ЗИ входного транзистора.

3.15. Необходимые предосторожности в обращении с МОП-транзисторами

Затвор МОП-транзистора изолирован от канала слоем стекла (SiO2) толщиной в несколько тысяч ангстрем (1 Aº = 0,1 нм). В результате мы имеем очень высокое сопротивление, но не имеем резистивной или полупроводниковой цепи для стока заряда статического электричества по мере его накопления. В классической ситуации вы берете МОП-транзистор (или МОП-транзисторную ИМС) в руку, подходите к схеме, вставляете устройство в разъем, включаете питание, и все это только для того, чтобы обнаружить — МОП-транзистор мертв. А убили его вы сами! Вам следовало взяться другой рукой за печатную схему, прежде чем вставлять в нее устройство. Таким образом был бы снят ваш статический заряд, который зимой может достигать нескольких тысяч вольт. МОП-транзистор не любит, когда его «стукает током». Как проводник статического электричества вы представляете собой последовательное соединение конденсатора 100 пФ и резистора около 1,5 кОм; зимой этот конденсатор может зарядиться до 10 кВ и более от трения подошв о пушистый ковер (даже простое движение руки в рукаве рубашки или свитера может дать напряжение в несколько киловольт; см. табл. 3.7).

Хотя любое полупроводниковое устройство можно вывести из строя хорошей искрой, однако устройства на МОП-транзисторах особенно чувствительны к пробою, поскольку энергия, запасаемая в емкости затвор-канал, при достижении напряжения пробоя становится достаточной для того, чтобы пробить отверстие в тонком слое изоляции затвора. (Если эта искра проскакивает от вашего пальца, то ваши 100 пФ лишь вносят дополнительный вклад в этот процесс.) Рис. 3.76 (взятый из серии тестовых испытаний мощного МОП-транзистора на стойкость к электростатическому разряду) показывает, какого рода неприятности могут произойти. Назвать это «пробоем затворa» было бы ошибкой; ближе к получаемой картине будет выразительный термин «прободение».

Рис. 3.76. Сканирующая электронная микрофотография высокого разрешения (х1200) 6-амперного МОП-транзистора, разрушенного зарядом в 1 кВ, от «эквивалента человеческого тела» (1,5 кОм, включенного последовательно с емкостью 100 пФ), приложенного к его затвору.

(С разрешения фирмы Motorola, Inc.).

В электронной промышленности проблема электростатического разряда стоит очень серьезно. Возможно, она является лидирующей среди причин, по которым на выходе линии сборки появляются неработоспособные полупроводниковые устройства. На данную тему написаны целые книги, и вы может с ними ознакомиться. МОП-приборы, так же как и другие чувствительные к электростатике полупроводниковые устройства (а сюда относятся почти все они; например, всего в 10 раз большее, чем МОП-транзисторы, напряжение выдерживает биполярный транзистор), можно перевозить в проводящей фольге или упаковке. Следует также быть осторожными при работе с паяльником и т. д. Лучше всего заземлять корпуса паяльников, крышки столов и т. п., а также пользоваться проводящим браслетом. Кроме того, можно использовать «антистатические» покрытие пола, обивку мебели и даже одежду (например, антистатический халат из ткани, содержащей 2 % стального волокна). Хорошая организация рабочего помещения и процесса производства включает регулировку влажности, применение ионизаторов воздуха (которые делают воздух в слабой степени электропроводным, что препятствует накоплению зарядов на предметах), а также обученный персонал. Если этого нет, то зимой степень выхода годных изделий катастрофически падает.

Как только устройство впаяно на свое место в схеме, шансы на его повреждение резко падают, тем более что многие МОП-транзисторные устройства (такие, например, как логические КМОП-устройства, но не мощные МОП-транзисторы) имеют предохранительные диоды во входных цепях затворов. Хотя цепи внутренней защиты, состоящие из резисторов и обратно включенных (иногда зенеровских) диодов, несколько ухудшают параметры, часто их все же надо применять для уменьшения риска повреждения статическим электричеством. В случае незащищенных устройств, например мощных МОП-транзисторов, устройства с малой площадью затвора (слаботочные) подвергаются наибольшей опасности повреждения, поскольку их малая входная емкость легко заряжается до высокого напряжения, когда она входит в контакт с заряженной емкостью человека 100 пФ. Наш собственный опыт работы с МОП-транзистором VN13, имеющим малую площадь затвора, был настолько удручающим, что мы больше не используем его в промышленных разработках.

Трудно переоценить проблему повреждения затвора МОП-транзистора вследствие его пробоя статическим электричеством. К счастью, разработчики МОП-транзисторов осознают серьезность этой проблемы и отвечают на нее новыми разработками с более высоким напряжением пробоя затвор-исток. Например, фирма Motorola выпустила новую серию «ТМОП IV» с напряжением пробоя затвор-исток ±50 В.

 

Схемы, не требующие пояснений

3.16. Удачные схемы

На рис. 3.77 представлена подборка хороших схем на ПТ.

Рис. 3.77. а — повторитель с большим входным сопротивлением;

Рис. 3.77. б — видеомультиплексор на МОП-транзисторах с усилителем, компенсирующим потери на R вкл ;

Рис. 3.77. в — переключение сигнала с использованием диодного моста — альтернатива полевым транзисторам;

Рис. 3.77.  г — логический переключатель для p -канального высоковольтного ключа (ΗΤ01-преобразователь уровня ТТЛ в высокое напряжение фирмы Supertex; 8 в одном корпусе).

3.17. Негодные схемы

На рис. 3.78 дана подборка некорректных схемных идей; в некоторых из этих схем имеются кое-какие тонкости. Можно многому научиться, разбираясь, почему эти схемы не будут работать.

Рис. 3.78. а — аналоговые ключи; б — усилитель с коэффициентом усиления 1000; в — логический ключ; г — комплементарный инвертор на ПТ с p-n -переходом; д — повторитель с нулевым сдвигом.