Гравитация. Последнее искушение Эйнштейна

Чаун Маркус

Часть III

После Эйнштейна

 

 

8. Квантовое пространство-время

Как квантовая теория демонстрирует, что пространство и время обречены, и ищет для них более фундаментальные основания.

 

Квантовая теория имела фантастический успех. Благодаря ей у нас есть лазеры, компьютеры и ядерные реакторы. Она объясняет, почему светит Солнце и почему почва под нашими ногами твёрдая. Но квантовая теория — это не только ключ к пониманию всего и рецепт для создания новых изобретений. Она приоткрывает для нас окно в безумный мир, Зазеркалье, скрытое прямо под покровом реальности. В этом мире атом может одновременно находиться в двух местах (представьте, что вы в одну и ту же секунду гуляете по Нью-Йорку и Лондону), событиям не нужны причины, а один атом может моментально воздействовать на другой, даже если тот находится в противоположном конце Вселенной.

Необходимость в создании квантовой теории вытекала ещё из теории электромагнетизма Максвелла, которая описывает все электрические и магнитные явления в виде единой стройной системы. При этом теория Максвелла содержит два парадокса, и оба они связаны со светом. Разрешение первого из них — как скорость света в вакууме может быть одинаковой вне зависимости от скорости движения наблюдателя — привело к созданию специальной теории относительности Эйнштейна, одному из важнейших событий в истории физики XX века. Разрешение второго тоже произвело революцию: благодаря ему возникла квантовая теория.

Второй парадокс возникает потому, что теория Максвелла допускает существование электромагнитных волн любого размера. Соответственно, помимо видимого света, длина волны которого составляет чуть менее тысячной доли миллиметра, во Вселенной имеются и волны большей (радиоволны, открытые Генрихом Герцем в 1888 году) и меньшей длины (рентгеновские волны, обнаруженные в 1895 году Вильгельмом Рентгеном). Размер волны связан с энергией, которую она переносит: медленные радиоволны имеют гораздо меньшую энергию, чем волны видимого света, а те, в свою очередь, менее энергичны, чем стремительные рентгеновские волны.

В горячем атомном газе световые волны постоянно испускаются и поглощаются. По прохождении достаточного количества времени в таком случае возникают все возможные виды световых волн. В подобном состоянии «теплового равновесия» энергия равномерно распределена между волнами любой длины. Здесь-то и возникает проблема. У длины волны существует верхний предел, который задаётся параметрами контейнера, содержащего газ. А вот нижнего предела у неё нет. Это значит, что, какую бы волну мы ни выбрали, количество волн длиннее неё будет конечным, а волн короче её — бесконечным.

Как уже говорилось выше, при тепловом равновесии энергия должна быть равномерно распределена между всеми волнами. Поскольку коротких волн оказывается существенно больше, чем длинных, бо́льшая часть энергии всегда будет приходиться на них. Соответственно, в конце концов вся энергия горячего газа перейдёт к самому энергичному излучению — рентгеновскому.

До открытия рентгеновских лучей в 1895 году излучением, обладавшим максимальной энергией, считалось ультрафиолетовое. Поэтому данный парадокс начали называть ультрафиолетовой катастрофой.

Нестыковка становится особенно очевидной, если проанализировать наше Солнце. Согласно максвелловской теории наша звезда должна постоянно выбрасывать в космос горячие и слепящие пучки рентгеновских лучей. Почему же она всё ещё светит?

«Каждый парадокс приносит пользу», — писал немецкий математик Готфрид Лейбниц. В 1900 году его земляк, физик Макс Планк, доказал его правоту.

 

Кванты

В конце XIX века последним достижением в области электричества считалась лампочка, а главный технический и экономический вопрос звучал так: как максимизировать количество видимого света, выделяемого нитью накаливания внутри неё? Ответить на него было невозможно, ведь лучшая существовавшая на тот момент теория света предполагала, что такая нить, как и горячий газ в нашем Солнце, должна испускать весь свой свет в виде вспышек рентгеновских лучей.

Науке требовался новый способ, чтобы обуздать свет и избежать при этом безумного сценария ультрафиолетовой катастрофы. И после долгих и мучительных размышлений Планк его нашёл.

В соответствии с теорией Максвелла осциллирующий электрический заряд, например электрон, испускает свет с частотой своей осцилляции. На самом деле в теории говорится, что ускоренный заряд выделяет электромагнитное излучение, но осциллирующий заряд — это то же самое, что постоянно ускоряющийся. Планк представил себе контейнер, стенки которого состоят из электронов, подвешенных, как грузы на пружинах. Сегодня мы знаем, что осциллирующие электроны Планка существуют внутри атомов, но в конце XIX века не все физики были уверены даже в том, существуют ли сами атомы. Тем не менее образ, созданный Планком, вышел достаточно достоверным.

Если нагреть такой контейнер, то тепловая энергия заставит пружины осциллировать и испускать осциллирующие световые волны с одинаковой частотой. Эти волны пересекут контейнер и будут поглощены другими осциллирующими волнами, которые, в свою очередь, испустят осциллирующие световые волны с собственной частотой. В результате этого бесконечного взаимодействия тепловая энергия будет равномерно распределена между всеми пружинами и световыми волнами. В этой ситуации на световые волны с самой высокой частотой придётся бо́льшая часть энергии, потому что они будут возникать существенно чаще других.

Планк понял, что катастрофы можно избежать, если осциллирующие пружины смогут выделять и поглощать не любое количество энергии, а лишь производную от некоего базового значения. Он предположил, что это значение равнялось частоте (f), умноженной на ℎ — очень маленькое число (частота определяется как количество осцилляций в секунду).

Задумайтесь, как глупо это звучит: как если бы спортсмен мог прыгнуть только на высоту, кратную 0,5 метра. Он смог бы преодолеть барьер в 0,5, или 1,0, или 1,5 метра, но расстояния 0,75, 1,2 или 1,81 метра ему бы не покорились.

Не существовало никаких причин, по которым атомные пружины Планка должны были бы испускать только энергию, кратную ℎf. Эта схема выглядела полным сумасшествием. Самому Планку она пришла в голову лишь по одной причине — она работала, верно предсказывая изменение количества или интенсивности света, излучаемого горячим атомным газом, в зависимости от частоты или энергии.

Согласно Планку, осциллирующее тело не может просто поглощать свет, а затем излучать его с чуть большей энергией. Излучение происходит на следующем допустимом уровне энергии — или не происходит вообще. Если осциллирующему телу не хватает энергии для излучения света, свет не возникает. Соответственно, когда энергия распределяется между световыми волнами, волны с наибольшей частотой не получают львиной доли энергии (если получают её вообще). Это попросту слишком затратно. Такое объяснение позволяет избежать ультрафиолетовой катастрофы.

Парадокс, связанный с движением вдоль луча света, возник потому, что теория Ньютона не предполагала ограничений скорости тела. Парадокс ультрафиолетовой катастрофы появился из-за того, что теория Максвелла не устанавливала нижнего предела для длины волны. Как скорость света в теории Эйнштейна обуздала бесконечно большую скорость, так и кванты Планка сумели обуздать бесконечно малые длины.

Для Планка эта схема была всего лишь математической задачкой. Хотя он и постулировал, что энергия поглощается атомами в форме дискретных элементов (квантов), в которых она всегда представляет собой производное от ℎf, он ни на секунду не верил, будто свет может действительно двигаться в пространстве подобным образом. Однако эта мысль пришла в голову Эйнштейну, отцу двух революций — релятивистской и квантовой. В 1905 году он задумался о поразительном сходстве между формулой Планка, описывающей распределение энергии между волнами различной длины, и максвелловской формулой распределения энергии между частицами в газе.

Максвелл был гением и за короткие 48 лет своей жизни сумел внести огромный вклад в физику в области не только электромагнетизма, но и астрономии и микроскопической теории газов. Для создания своей формулы он представил атомы в виде крошечных пуль и рассчитал, как бесчисленные столкновения, в ходе которых энергия передаётся от быстрых частиц более медленным, позволяют им распределять энергию между собой. Эйнштейн заявил, что поразительное сходство между формулами Максвелла и Планка может иметь лишь одно объяснение: свет тоже состоит из дискретных частиц. То, что Планк считал всего лишь математической хитростью, оказалось реальным. Свет действительно испускается и поглощается в форме частиц, которые позже окрестили фотонами.

Сегодня мы знаем, что из невидимых частиц, или квантов, состоит всё: энергия, материя, электрический заряд и так далее. Природа на самом мельчайшем уровне не имеет цельной структуры, как это представляла себе классическая физика, а оказывается зернистой, как старый фотоснимок при увеличении.

«Физическая константа» ℎ впоследствии стала известна как постоянная Планка. Так как фотон очень невелик, энергия, которую он переносит, имеет ничтожно малое значение. Поэтому мы не замечаем, что свет, исходящий от лампочки, — это на самом деле поток крошечных частиц. Их просто слишком много.

Чтобы лучше понимать, какую роль постоянная Планка играет в микромире, давайте представим себе, что её можно увеличить до такого размера, что её действие станет заметно в реальном мире. В какой-то момент каждый протон сможет переносить столько энергии, что нить накаливания в лампочке сможет испускать лишь небольшое количество частиц. Она начнёт мерцать. Сначала лампочка испустит десять фотонов, через секунду — семь, ещё через одну — 15 и так далее. Если значение ℎ продолжит увеличиваться, то уровень энергии, переносимой каждым фотоном, станет слишком высоким. Нить накаливания не сможет испустить ни одного фотона, и лампочка перестанет светить.

Эйнштейн использовал идею того, что свет состоит из фотонов, для объяснения непонятного явления — отрыва электронов от поверхности некоторых металлов. Открытие фотоэффекта не просто принесло ему Нобелевскую премию по физике в 1921 году. Это была единственная работа, которую сам Эйнштейн считал революционной. Чтобы понять почему, нужно обратить внимание на одно повседневное явление.

 

Случайная реальность

Посмотрите в окно. Вы увидите то, что происходит снаружи, а если приглядитесь — то и отражение собственного лица. Это происходит потому, что стекло не является полностью прозрачным. Бо́льшая часть попадающего на него света проходит сквозь стекло, но небольшая доля отражается.

Это явление можно легко объяснить волновой природой света. Представьте себе волну, которая идёт по поверхности озера и натыкается на преграду, например корягу. Волна продолжит своё движение, за исключением небольшой её части, которая откатится назад. Но если считать свет потоком одинаковых фотонов, то найти объяснение становится труднее. Если они ничем не отличаются друг от друга, значит, и взаимодействовать со стеклом должны одинаково (учитывая, что речь идёт об идеальном стекле без всяких изъянов). Либо все фотоны должны проходить сквозь него, либо все они должны отражаться. Третьего не дано.

Чтобы объяснить, почему мы видим своё отражение в окне, физикам пришлось пересмотреть своё определение «одинаковости». Для фотонов она означает равные шансы пройти сквозь стекло (например, 95%) или отразиться от него (5%). Но Эйнштейн понимал, что введение понятия «шанс» в физику приведёт к катастрофическим последствиям.

Физика — это способ предсказывать будущие события со 100%-ной вероятностью. Если сегодня Луна находится в определённой точке, то с помощью закона Ньютона мы можем абсолютно точно рассчитать её завтрашнее местоположение. Но раз вы можете увидеть в оконном стекле своё отражение, значит, предвидеть последствия столкновения со стеклом для каждого конкретного фотона невозможно. Мы можем лишь оценить вероятность того, что он пройдёт сквозь стекло или отразится от него.

Задумайтесь на мгновение, что это означает. Если вы бросите игральную кость, то результат может показаться вам непредсказуемым. Но на самом деле, если бы вы знали точную скорость полёта кости, могли проанализировать движение воздуха вокруг неё и имели достаточно мощный компьютер, вы смогли бы определить, какое число выпадет. Те события повседневной жизни, которые мы считаем случайными, на самом деле неслучайны — просто процесс их предсказания достаточно трудоёмкий. А вот поведение фотона при соприкосновении со стеклом непредсказуемо в принципе. Какой бы информацией мы ни обладали, насколько мощный компьютер бы ни использовали, мы не сможем со 100%-ной вероятностью определить действия фотона. Для квантовой кости каждый бросок выглядит как первый.

Это правило применимо не только к фотонам, но и ко всем прочим микроскопическим составляющим нашего мира, от электронов до кварков. Поведение каждой частицы фундаментально непредсказуемо.

Почему же тогда предсказуема наша повседневная реальность? Почему Солнце восходит каждое утро, а траекторию брошенного мяча можно проследить и поймать его? Одной рукой Природа даёт нам что-то, а другой — забирает. Пускай окружающий мир фундаментально непредсказуем, он предсказуемо непредсказуем. Инструментом для предсказания непредсказуемого выступает квантовая теория.

Осознание того, что вся Вселенная, по сути, основана на случайности, стало самым шокирующим за всю историю науки. И каждый раз, когда вы видите своё отражение в стекле, Вселенная напоминает вам об этом. Эта идея так не нравилась Эйнштейну, что он заявлял: «Бог не играет в кости». Пионер квантовой теории Нильс Бор отвечал ему на это: «Перестаньте указывать Богу, что делать с костями».

Эйнштейн сильно ошибался. Бог не просто играет в кости — если бы он этого не делал, не существовало бы Вселенной, или по крайней мере она не была бы достаточно сложной для того, чтобы в ней появились люди.

 

Корпускулярно-волновой дуализм

То, что мы видим своё отражение в стекле, объяснимо и если свет представляет собой волну, и если он является потоком частиц. На самом деле корпускулярно-волновой дуализм — это ключевая характеристика микроскопического мира атомов и субатомных частиц.

Кажется, что частицы, локализованные в пространстве, и волны, распространяющиеся по нему, фундаментально несовместимы. По крайней мере именно так считали физики 1920-х годов, которые поддерживали идеи Эйнштейна и Планка. «Я помню многочасовые споры, тянувшиеся до ночи и приводившие нас в отчаяние, — писал немецкий физик Вернер Гейзенберг. — После этого я отправлялся на прогулку в парк по соседству и постоянно прокручивал у себя в голове вопросы. Может ли природа действительно быть настолько абсурдной, какой она казалась нам в этих атомных экспериментах?»

Правильный ответ: может. Микромир атомов и субатомных частиц совершенно не похож на нашу повседневную реальность (хотя этого следовало ожидать, учитывая, что он в миллиарды раз меньше нашего). Фотоны и их соседи по микромиру — это и не частицы, и не волны, а нечто незнакомое нам, для чего в нашем словаре ещё нет слов. Они словно объекты, которые мы не можем увидеть, а лишь следим за игрой их теней. «Мы сумели создать математическую схему [квантовую теорию]… способную адекватно описывать процессы на атомном уровне, — писал Гейзенберг, — но для их визуализации нам приходится полагаться на две неполные их аналогии, волновую и корпускулярную».

Итак, базовые строительные блоки Вселенной ведут себя одновременно как частицы и как волны. Но эти волны довольно необычны. Это так называемые математические «волны вероятности», которые выражают вероятность обнаружения частицы в какой-либо точке или определённого её поведения. Волна вероятности распространяется по пространству, отражается от препятствий и интерферирует сама с собой. Её распространение описывается уравнением, созданным австрийским физиком Эрвином Шрёдингером в 1925 году. В тех местах, где значение амплитуды волны велико, высок и шанс на обнаружение частицы, а при низкой амплитуде эта вероятность незначительна.

Шрёдингер создал своё уравнение, отправившись в выходные со своей девушкой в горы покататься на лыжах. Гениальность этого уравнения состоит в том, что оно объединяет волновую и корпускулярную половины реальности. Данное математическое решение фиксирует существование в природе корпускулярно-волнового дуализма и позволяет физикам проводить расчёты в реальном мире. В том же году, в котором появилось уравнение Шрёдингера, Гейзенберг вместе с Максом Борном и Паскуалем Йорданом разработали матричную механику — версию квантовой теории, которая внешне кажется отличной от неё, но на самом деле говорит о том же самом.

 

Множественные реальности

Корпускулярно-волновой дуализм — это палка о двух концах. В 1923 году французский физик Луи де Бройль предположил, что не только световые волны могут вести себя как локализованные частицы, но и частицы, например электроны, могут демонстрировать волновое поведение. Это звучало как полная бессмыслица. Но в 1927 году Клинтон Дэвиссон и Лестер Джермер в США и Джордж Томсон в Шотландии выяснили, что электроны могут интерферировать друг с другом и что при этом их квантовые волны усиливаются или гасятся, как рябь, бегущая по поверхности озера. Интересно, что отцом Джорджа Томсона был Дж. Дж. Томсон, открывший электрон. Отец получил Нобелевскую премию за то, что доказал корпускулярную природу электрона, а его сын — за то, что опроверг её.

Открытие волн, ведущих себя как частицы, имело шокирующие последствия для физики, равно как и открытие частиц, ведущих себя как волны. Оказалось, что фундаментальные строительные блоки материи способны делать множество вещей, доступных волнам, и хотя в нашей реальности их последствия незаметны, их воздействие на микромир огромно.

Представьте себе море: оно волнуется во время шторма, но постепенно ветер спадает и остаётся лишь мелкая рябь. Если вы наблюдали оба этих вида волн, то знаете, что иногда они могут сочетаться друг с другом: на поверхности большой волны появляются мелкие. Подобный эффект возникает не только в океане, но и во всех типах волн. Если существует две волны, может существовать и их комбинация, или суперпозиция. Казалось бы, это банальное наблюдение, но в микромире оно имеет огромное значение.

Вообразите себе квантовую волну, которая представляет собой атом кислорода (по-научному такая волна вероятности будет именоваться волновой функцией). Допустим, что в правом углу комнаты она имеет высокую амплитуду. Иными словами, у нас есть почти 100%-ный шанс найти там атом кислорода. В этом нет ничего необычного. Но давайте вспомним: если могут существовать две волны, то возможна и их суперпозиция. Однако суперпозиция двух квантовых волн, соответствующих атому кислорода, означает, что этот атом будет одновременно находиться и в правом, и в левом углу комнаты.

При этом никто никогда не наблюдал атом кислорода в двух местах одновременно. Если он оказывается в левом углу комнаты, то волна, соответствующая тому же атому в правом углу, моментально коллапсирует. Это утверждается в уравнении Шрёдингера. До тех пор пока местоположение атома не будет точно определено, существует множество вероятностей, но как только наблюдатель увидит атом, актуализируется лишь одна из них. Атом оказывается в строго определённой точке со 100%-ной вероятностью. Величие уравнения Шрёдингера состоит в том, что оно примиряет две непримиримые стороны, объединяя частицы и волны в единое математическое целое.

Однако если никто никогда не наблюдал атом кислорода (или, если уж на то пошло, любое другое тело) в двух местах одновременно, то какая разница, имеет ли место квантовая суперпозиция? Но дело в том, что у неё есть последствия, которые приводят к необычным событиям в микромире.

Приведу простой пример. Два совершенно одинаковых шара для боулинга сталкиваются и рикошетят друг от друга, отлетая в противоположные стороны от точки соприкосновения. Теперь допустим, что эти столкновения повторяются, а мы фиксируем направление полёта: на два часа и восемь часов, затем на четыре часа и десять часов и так далее. После того как этот процесс воспроизведётся сотни раз, не останется ни одного направления, в котором не двигался бы каждый шар.

Теперь давайте заменим шары в этом эксперименте на два одинаковых квантовых объекта, например электрона или атома кислорода. Если мы столкнём их несколько сотен раз, то заметим, что в некоторых направлениях частицы никогда не перемещаются: например, на три часа и девять часов или на пять часов и одиннадцать часов. Почему это происходит? По этим направлениям пики вероятностной волны одной из частиц совпадают с самыми низкими значениями вероятностной волны второй частицы. Они гасят друг друга, сводя вероятность обнаружения частиц на данных направлениях к нулю.

Суть в том, что благодаря интерференции две квантовые волны в суперпозиции могут взаимодействовать друг с другом ещё до того, как наблюдатель обнаружит частицу. Из-за этого могут возникать неожиданные последствия, например неспособность сталкивающихся частиц разлететься в определённых направлениях.

Это также объясняет, почему электрон, движущийся по орбитали вокруг атомного ядра, не падает на него, как предсказывает теория Максвелла. Существуют миллионы траекторий, по которым электрон может двигаться в направлении ядра: прямая, спираль и так далее. С каждой из них связана своя квантовая волна. Поблизости от ядра эти волны гасят друг друга, а значит, вероятности обнаружить там электрон нет.

Данный пример показывает ещё одно фундаментальное отличие квантовой физики от доквантовой. В классической физике тело (например, Луна) движется по чётко заданной уникальной траектории. Квантовая теория говорит, что такой траектории не существует. Между двумя моментами наблюдения электрон может двигаться по миллиону разных траекторий, для каждой из которых существует своя вероятность.

Если суперпозиция кажется вам недостаточно странным феноменом, подумайте о том, что квантовые явления могут комбинироваться, создавая невероятные сочетания — например, нелокальность или жуткое дальнодействие, которые Эйнштейн считал слишком безумными для реальной теории. Чтобы понять их, давайте для начала разберёмся, что такое спин.

 

Сверхзвуковое воздействие

Наряду с корпускулярно-волновым дуализмом и непредсказуемостью спин — это ещё одно квантовое свойство, не имеющее аналогов в нашем мире. Представьте себе фигуриста, который вращается на льду. Он обладает так называемым угловым моментом, рассчитываемым как импульс его тела, умноженный на среднее расстояние от оси, вокруг которой происходит вращение. Значение углового момента (как и импульса, и энергии) является фиксированным и не может быть создано или уничтожено. Поэтому, когда фигурист прижимает руки к бокам, тем самым сокращая расстояние между своим телом и осью вращения, он начинает вращаться быстрее для компенсации изменений.

В квантовом мире частицы (например, электроны) ведут себя так, как будто они вращаются, хотя никакого вращения на самом деле не происходит. Они обладают внутренним спином. Как и всё в микромире, он измеряется в невидимых квантах. Исторически сложилось так, что фундаментальной единицей спина является 1/2 от определённого значения (ℎ/2π). Такой спин переносится электроном. При этом электрон может вращаться либо по часовой стрелке, либо против неё, хотя на самом деле он не вращается. Физики предпочитают говорить, что в таком случае спин электрона направлен вверх или вниз.

Теперь давайте посмотрим, как спин в комбинации с некоторыми другими квантовыми свойствами, а именно суперпозицией и непредсказуемостью, приводит к возникновению феномена жуткого дальнодействия.

Возьмём два электрона. Первый из них имеет спин, направленный вверх, а второй — вниз. Или наоборот. Главное, что в такой ситуации возможна суперпозиция, при которой два электрона имеют спины, направленные одновременно вверх и вниз и вниз и вверх.

Поскольку спины электронов направлены в разные стороны, они гасят друг друга, то есть их угловой момент равен нулю. Мы помним, что угловой момент не меняется, он должен постоянно оставаться нулевым. То есть спины двух электронов должны всегда быть разнонаправленными.

Теперь, не глядя на наши электроны, давайте поместим один из них в коробку и отправим на противоположный конец земли. Откроем коробку. Из-за квантовой непредсказуемости существует 50%-ный шанс того, что электрон, который мы наблюдаем, будет иметь спин, направленный вверх, и 50%-ный — что вниз. Суть в том, что, как только мы определим направление спина, тот электрон, который мы оставили дома, должен будет приобрести противоположный спин. Обратите внимание на слова «как только». Они полностью нарушают установленный Эйнштейном космический предел скорости, равный скорости света. Именно поэтому Эйнштейн полагал, что жуткое дальнодействие — доказательство неправильности квантовой теории.

К сожалению для него, лабораторные эксперименты показали, что родившиеся вместе субатомные частицы, например два электрона из нашего примера, действительно могут влиять друг на друга со скоростью, превышающей скорость света, даже если они находятся на разных концах Вселенной. Учёные называют такое состояние квантовой запутанностью. Нильс Бор говорил: «Тот, кто не шокирован квантовой физикой, просто ещё не понял принцип её работы».

Нелокальность, также известная как запутанность, вписывается в специальную теорию относительности, так как та считает невозможной передачу информации на сверхзвуковых скоростях. Но в случае с двумя электронами мы не знаем, какой электрон имеет спин, направленный вверх, а какой — вниз, пока не взглянем на него. Соответственно, мы не сможем закодировать с их помощью сообщение, например присвоив одному спину значение 1, а другому — 0. Передача информации в такой ситуации действительно невозможна.

Но, помимо непредсказуемости, суперпозиций и запутанности, существует и ещё одно базовое свойство волн, влияющее на нашу реальность…

 

Принцип неопределённости

Представьте себе волну, которая имеет постоянную длину и колеблется вверх-вниз. Такая синусоидальная волна движется без остановки, а значит, её точное местоположение на 100% неопределённо. Теперь подумайте об импульсе, который она переносит. Можно интуитивно предположить, что он связан с длиной волны. Очень активная волна с небольшой длиной будет переносить больший импульс, а более спокойная — меньший. Поскольку синусоидальная волна имеет лишь одну длину, то мы знаем точное значение переносимого ею импульса. Оно известно нам на 100%.

Мы можем создать более локализованную волну, чем синусоидальная. Чтобы сформировать такой «волновой пакет», нужно просто добавить к первой синусоидальной волне вторую с другой длиной. А затем ещё одну, и ещё одну, и так до тех пор, пока синусоидальные волны не погасят друг друга везде, кроме одной локализованной области. Чем больше волн находятся в суперпозиции, тем более локализованную волну можно получить в итоге. Но за точное определение местоположения волны придётся заплатить определённую цену. Так как теперь наша волна состоит из множества синусоидальных волн, каждая из которых имеет свою длину и, что самое главное, свой собственный импульс, общий импульс локализованной волны оказывается неопределённым.

Итак, чем точнее мы знаем местоположение волны, тем менее точно можем определить значение импульса и наоборот. Напомню, что для единичной синусоидальной волны значение импульса было известно нам на 100%, но лишь за счёт полностью неопределённого местоположения самой волны. Между нашими знаниями о местоположении волны и её импульсе должен существовать некоторый компромисс. Это фундаментальное свойство распространяется на все типы волн, и обойти его невозможно. А так как микроскопические строительные блоки материи ведут себя как волны, такой же компромисс действует и для них. Мы уже встречались с этим явлением ранее. Оно называется принципом неопределённости Гейзенберга.

Если говорить точнее, то произведение значений неопределённости местоположения частицы и её импульса не может быть меньше ℎ/2π. Такое же ограничение существует и для энергии и времени. В частности, произведение значений неопределённости энергии частицы и времени её существования тоже не может быть ниже ℎ/2π.

Ваше тело не выглядит как распространяющаяся волна с неопределённым местоположением, потому что значение ℎ слишком мало, а ваш импульс слишком велик. Но для крошечных субатомных частиц с небольшим импульсом неопределённость местоположения очень высока. Мельчайшая частица материи, имеющая самую маленькую массу и, соответственно, импульс, — это электрон. Именно он и проявляет наиболее ярко выраженные волновые свойства при минимальной локализации. Как уже говорилось в седьмой главе, именно этим и объясняется, почему атомы существуют, а их электроны не падают на ядро. Электрон не может вместиться в небольшой объём пространства возле ядра, потому что имеет максимальную квантовую волну, а значит, ему нужно много места.

Принцип неопределённости Гейзенберга защищает квантовый мир от разрушения. Если квантовое тело будет локализовано слишком точно, оно утратит свои волновые свойства, которые необходимы ему для интерференции и участия в иных волновых явлениях, определяющих квантовое поведение.

 

Распад пространства-времени

Принцип неопределённости Гейзенберга имеет огромные последствия для пустого пространства. Он означает, что небольшие области вакуума имеют огромную неопределённость относительно уровня энергии, содержащейся в них. Энергия то возникает, то исчезает, как деньги, которые вор крадёт из бумажника, а потом возвращает обратно, пока владелец не заметил. Такие квантовые флуктуации проявляются в виде пар частиц и античастиц (например, электронов и позитронов), которые возникают из ниоткуда, как кролик из шляпы фокусника. Их существование настолько мимолётно и они пропадают настолько быстро, что назвать их настоящими частицами можно было бы лишь с некоторой натяжкой. Тем не менее эти «виртуальные» частицы воздействуют на атомы, сталкиваясь с их внешними электронами и вызывая небольшие изменения в энергии света, который эти электроны излучают, переходя между орбитами. За измерение данного сдвига в атоме водорода американский физик Уиллис Лэмб в 1955 году получил Нобелевскую премию.

Из-за квантовых флуктуаций вакуум буквально кипит энергией. И если флуктуации вполне велики, то в микромире этой энергии будет достаточно для искривления пространства-времени.

Вообразите себе, что вакуум — это океан в ветреный день. Чайке, пролетающей в небе над водой, её поверхность кажется абсолютно гладкой. Так пространство и время выглядят для макромира. Но если чайка опустится ниже, она заметит волны. Точно такие же колебания будут испытывать пространство и время в меньшем масштабе. Если же чайка приземлится на палубу судна, она увидит огромные валы воды, перехлёстывающиеся через борта. Так будут восприниматься флуктуации в микромире.

Джон Уилер предложил для этого хаотичного пространства-времени термин «квантовая пена». Здесь стоит отметить, что мы до сих пор не получили эмпирических доказательств её существования. Несмотря на то что квантовая пена должна влиять на свет удалённых объектов во Вселенной, таких как квазары или гамма-барстеры, в течение многих миллиардов лет его движения к Земле, обнаружить этот эффект ещё никому не удалось.

Большинство физиков согласны с Уилером в том, что в микромире пространство-время не существует. «Пространство-время почти наверняка обречено, — говорит Нима Аркани-Хамед из Института перспективных исследований в Принстоне, Нью-Джерси. — Его нужно заменить другими, более фундаментальными строительными блоками Вселенной. Вопрос только в том, что это за блоки».

Аркани-Хамеда считают одним из самых талантливых и оригинальных физиков-теоретиков в мире. Одетый в свою фирменную чёрную футболку, шорты и сандалии, с развевающимися длинными тёмными волосами, бурно жестикулирующий и исписывающий доску в аудитории уравнениями, он щедро делится своими знаниями и готов говорить о физике с каждым. Более того, он утверждает, что ни разу в жизни не отказывал студентам, хотевшим писать у него научные работы.

Тот факт, что Аркани-Хамед оказался в эпицентре физической науки XXI века, — настоящее чудо. В десятилетнем возрасте он едва не умер от лихорадки в горах между Ираном и Турцией, когда его семья в 1982 году бежала от режима Хомейни. Он ехал на одной лошади с матерью, и чтобы мальчик оставался в сознании, она показывала ему на сияющую ленту Млечного Пути на небе и обещала купить телескоп, когда они поселятся в безопасном месте. Этим местом оказалось Торонто, и там Нима получил обещанное, а затем, после Калифорнийского университета в Беркли и Гарварда, оказался в Институте перспективных исследований, где в последние годы своей жизни работали Эйнштейн и логик Курт Гёдель.

Кажется, будто энергия у Аркани-Хамеда не заканчивается никогда, и сейчас он использует её, чтобы убедить китайское правительство построить ускоритель частиц, превышающий по размерам БАК, для изучения природных явлений в десятикратно меньшем масштабе, но с десятикратно большей энергией. Если этот план осуществится, то «Великий коллайдер» можно будет запустить в работу уже в 2042 году. Вся теоретическая работа Аркани-Хамеда сконцентрирована на поиске более глубокой теории, чем теория гравитации Эйнштейна. А так как Эйнштейн утверждает, что гравитация — это всего лишь искривление пространства-времени, вместо попыток объяснить её природу Аркани-Хамед ищет истоки времени и пространства.

Как считают учёные, важную роль в этих поисках может сыграть одна крошечная константа. На расстоянии в 1,6×10−35 (то есть в десять миллионов миллиардов миллиардов раз меньше диаметра атома) метра сила притяжения оказывается сравнимой с тремя другими фундаментальными силами природы: электромагнитной силой, а также сильным и слабым ядерным взаимодействием. Существование планковской длины даже признавал сам Планк в 1900 году, пускай и по иным основаниям. Он полагал, что эта величина настолько универсальна, что «сохраняет своё значение во все времена и во всех культурах, даже внеземных и нечеловеческих».

Квантовая теория успешно описывает все негравитационные силы, а значит, для понимания того, что происходит на планковской длине или около неё, может потребоваться квантовое описание гравитации. В квантовой картине мира фундаментальные силы возникают в результате действия переносящих силу частиц, которые постоянно движутся туда-сюда, как теннисный мяч, отбиваемый игроками. Для электромагнитной силы носителем является фотон, для слабого ядерного взаимодействия — три векторных бозона, а для сильного ядерного взаимодействия — восемь глюонов. Поскольку частицы-переносчики являются виртуальными, то есть то появляются из вакуума, то исчезают в нём, то чем больше массы-энергии они содержат, тем короче оказывается их существование и тем меньшее расстояние они успевают пройти за это время. Соответственно, чем более массивной является частица-переносчик, тем меньше радиус воздействия силы, которую она переносит. К примеру, из-за массивности векторных бозонов слабое ядерное взаимодействие распространяется на куда меньшее расстояние, чем диаметр атомного ядра, в то время как фотоны, обладающие нулевой массой, позволяют электромагнитной силе преодолевать огромные расстояния.

Следовательно, для того чтобы квантовое описание гравитации было возможным, должна существовать частица — переносчик гравитационного взаимодействия. Теоретики окрестили эту гипотетическую частицу гравитоном, хотя даже само её существование остаётся под сомнением из-за множества связанных с ней затруднений. К примеру, сила взаимодействия зависит от того, как часто переносчики вступают в контакт с частицами, способными «почувствовать» силу. Но гравитационное взаимодействие очень слабо по сравнению с другими силами (например, сила притяжения между протоном и электроном в атоме водорода в 10 000 миллиардов миллиардов миллиардов миллиардов раз слабее, чем электромагнитная сила). А это значит, что гравитоны почти никогда не контактируют с материей. Для того чтобы столкнуться с гравитоном, детектору массой с планету Юпитер потребовалось бы больше времени, чем существует Вселенная.

Но даже если не учитывать проблему с гравитонами, объединить теорию гравитации Эйнштейна с квантовой теорией всё равно очень сложно. Кажется, будто они совершенно несовместимы. Общая теория относительности говорит об определённости и предсказывает будущее со 100%-ной точностью, в то время как квантовая теория описывает вероятность существования множества альтернативных вариантов будущего. Однако, как верно замечает Дэвид Тонг из Кембриджского университета, несмотря на это, физики сумели предложить квантовое описание для всех прочих фундаментальных сил природы.

Квантовая теория отрицает само существование точных местоположений в пространстве и траекторий тел, которые по нему движутся, а ведь именно эти величины являются краеугольным камнем теории гравитации Эйнштейна. Более того, квантовая теория рассматривает Вселенную на микроуровне как дискретную, в то время как для теории гравитации она непрерывна. Если и этих аргументов вам недостаточно, подумайте вот о чём: негравитационные силы Вселенной действуют в пространстве-времени, в то время как гравитация сама является пространством-временем. «Это различие может показаться несущественным, — пишет Тонг, — но чувствуется, что с гравитацией всё же что-то не так».

Планковская длина важна не только потому, что на ней сила гравитационного взаимодействия становится сравнимой с другими силами и, соответственно, требует квантового объяснения. Согласно квантовой теории, на длине Планка квантовые флуктуации так велики и локализованы, что, когда энергия возникает из ниоткуда, это происходит в пределах её собственного горизонта событий. Иными словами, она тут же схлопывается, формируя чёрную дыру. Очевидно, что это звучит нелепо. Если бы подобное действительно происходило, то пространство-время на планковской длине было бы постоянно скрыто от нашего взора внутри чёрной дыры, а крошечные чёрные дыры то и дело возникали бы вокруг нас в воздухе.

Судя по всему, не только общая теория относительности предсказывает существование сингулярности. Квантовая теория тоже содержит бессмысленное предположение о спонтанном самозарождении чёрных дыр. Единственное различие состоит в том, что планковская длина, несмотря на её крошечные размеры, намного больше нулевой длины сингулярности. Судя по всему, новая теория, которая объединит общую теорию относительности и квантовую теорию, может потребовать внесения фундаментальных изменений и в ту и в другую.

 

Выход есть — и даже без экспериментов

Самый очевидный способ создать новую квантовую теорию гравитации — это исследовать микромир в тех невероятно малых масштабах, в которых теория Эйнштейна перестаёт работать, а время и пространство утрачивают смысл. «В конце концов, всё решают эксперименты, а для того, чтобы их провести, нам нужно изучить мир в пределах планковской длины», — говорит Аркани-Хамед.

Но невероятно малые масштабы означают огромную энергию. Чтобы вы лучше понимали контекст, давайте вспомним, что в Большом адронном коллайдере, построенном неподалёку от Женевы, разогнанные частицы могут сталкиваться с энергией 10 000 гигаэлектрон-вольт. В пределах планковской длины энергия будет составлять десять миллиардов миллиардов гигаэлектрон-вольт, то есть окажется в миллион миллиардов раз выше, чем та, которую человечество может получить в БАК. Для того чтобы сгенерировать такую энергию с помощью доступных на сегодняшний день технологий, потребуется кольцо-ускоритель с диаметром, примерно равным 1/10 диаметра Млечного Пути. Возможно, где-то во Вселенной и существует цивилизация, которой удалось превратить 10% соседней галактики в очень большой адронный коллайдер, но это кажется маловероятным.

Итак, шансов на проведение экспериментов в микромире практически нет. Но, так как вся Вселенная когда-то существовала в пределах планковской длины, есть вероятность, что в макромире ещё остались следы того времени. К ним можно отнести, к примеру, распределение галактик. Аркани-Хамед говорит: «Чтобы добраться до планковской длины, мы должны оперировать космическими величинами».

Сотрясения пространства-времени в тот период, когда Вселенная была ещё совсем мала, могли вызвать мощные гравитационные волны. Если астрономы как следует постараются, они смогут заметить следы этих волн в фоновом излучении космоса, остаточном свечении Большого взрыва, которое всё ещё существует вокруг нас. В марте 2014 года учёные заявили, что установка под названием BICEP2, расположенная в Антарктиде, зарегистрировала такой «космический отпечаток пальца». К сожалению, оказалось, что она всего лишь заметила пылевое облако, окутывающее Млечный Путь.

Очевидно, что во Вселенной существуют подсказки, ведущие человечество к новой теории, но они спрятаны так глубоко, что нам придётся приложить все свои силы, чтобы заметить хотя бы тень одной из них. Но надежду терять ещё рано. К подсказкам нас могут отвести умелые проводники: принципы теории относительности и квантовой теории.

 

9. Неизведанная страна

История поисков новой теории, объясняющей, почему существует Вселенная и откуда она появилась.

 

Вы только что поднялись на крутую гору. Путь к вершине отнял у вас все силы и энергию. Вы истощены, но счастливы. Остановившись, чтобы передохнуть, вы смотрите на другую гору в той же горной цепи, и у вас перехватывает дыхание. Она выше той, на которую вы забрались, — не в два раза, не в пять и не в десять, а в невозможные миллион миллиардов раз.

Именно так чувствовали себя физики в начале XXI века. Они использовали все свои знания, все разработки науки и техники, чтобы построить возле Женевы Большой адронный коллайдер. С его помощью они обнаружили неуловимый бозон Хиггса, квант хиггсовского поля, который наделяет все прочие частицы массой, и были полны эйфории после этой несомненной удачи. Но теперь перед ними возникла новая вершина — планковская величина, на которой пространство, время и гравитация возникают из чего-то ещё более фундаментального, а природа открывает секрет происхождения Вселенной. Для проведения экспериментов с такими величинами требуется в миллион миллиардов раз больше энергии, чем можно получить в БАК. Одного этого факта достаточно, чтобы заставить серьёзного учёного зарыдать.

Из-за недостижимости планковской длины многие комментаторы мрачно предрекают конец физики или её превращение в научную фантастику. Теперь теоретики могут публиковать любые измышления, ведь никто не сможет провести эксперимент, чтобы опровергнуть их слова.

На самом деле эти заявления далеки от правды. «Мысль о том, что проверить теорию можно лишь экспериментально, совершенно неверна», — говорит Нима Аркани-Хамед.

Существуют два физических принципа, в истинности которых мы уверены, так как они с поразительной точностью предсказывают именно то, что мы наблюдаем в окружающем мире с помощью наблюдений и экспериментов. Это специальная теория относительности и квантовая теория. Ни один физик не может просто взять и придумать теорию на свой вкус, ведь она должна будет отвечать принципам общей теории относительности и квантовой теории. Ограничения, накладываемые на реальность, такие строгие, что подавляющее большинство новых физических теорий постоянно признаются неверными. «Вот почему создать более глубокую и фундаментальную теорию так трудно», — замечает Аркани-Хамед.

«Теории расцветают, как тысячи цветов, но не имеют под собой твёрдой почвы физических принципов, — пишет историк науки Геннадий Горелик из Бостонского университета. — Никогда прежде в истории физики такое множество работ не приносило такого ничтожного результата».

«Создание такой геометрии пространства-времени, которая объяснила бы не только законы гравитации и электромагнетизма, но и квантовые законы, — это величайшая задача, когда-либо стоявшая перед физикой», — говорил Матвей Бронштейн, учёный, первым занявшийся вопросом квантовой гравитации ещё в 1930-х годах.

Чтобы лучше понять, как смирительная рубашка, сшитая из специальной теории относительности и квантовой теории, ограничивает действия учёных, представьте себе великого физика, который ничего не знает о мире (не задумывайтесь, как при этом он стал учёным — это вымышленная история). Он заперт в комнате без окон, но с двумя досками. На одной из них написаны принципы специальной теории относительности и квантовой теории. На второй нет ничего, кроме указания: «Вычислить следствие для этой доски».

Некоторое время наш физик с ужасом смотрит на пустую доску, затем берёт мел и начинает лихорадочно писать. Что он записывает? Что он понял о мире?

 

Сила дедукции

Для начала наш физик понимает, что специальная теория относительности и квантовая теория имеют последствия для квантового спина. Как уже говорилось ранее, спин, как и всё в микромире, состоит из дискретных частиц, а его фундаментальная единица составляет 1/2 от определённого значения (ℎ/2π).

Может показаться, что субатомная частица может иметь спин, равный любому производному значению от базового, например 19/2, 27 или 801. Но наш физик быстро понимает, что диапазон спинов в природе ограничен. Из бесконечного количества значений только пять совместимы с положениями специальной теории относительности и квантовой теории: 0, 1/2, 1, 3/2 и 2.

Спин частицы определяет, как она взаимодействует с другими частицами, а значит, определяет и явления, в которых она участвует. Наш физик решает поочерёдно рассмотреть частицы с каждым типом спина и записать на пустой доске все выводы, которые он сможет о них сделать.

Для начала он вычисляет, что в соответствии с квантовой теорией частицы с полуцелым спином подчиняются принципу Паули, из-за чего стараются избегать друг друга. Раз каждой из таких частиц требуется много места, значит, когда они собираются вместе в больших количествах, формируются вытянутые, протяжённые объекты.

На самом деле частицы со спином 1/2, известные также как кварки или лептоны, представляют собой фундаментальные строительные блоки материи. Типичным лептоном, разделяющим антисоциальную природу своих полуцелых собратьев, является электрон. Как писал Ричард Фейнман, «электроны нельзя поставить друг на друга, вот почему столы и другие предметы состоят из твёрдой материи».

Затем наш физик переходит к частицам со спином 1. Он понимает, что строительные блоки материи могут обмениваться ими и что именно за счёт этого обмена возникает взаимодействие. Существует три способа такого обмена, которые ведут к возникновению трёх фундаментальных сил природы.

Эти способы носят названия электромагнитной силы, а также сильного и слабого ядерного взаимодействия. Сильное ядерное взаимодействие связывает кварки по три в протоны и нейтроны и удерживает их в атомном ядре. Но на электроны его влияние не распространяется. Они удерживаются рядом с ядром за счёт электромагнитной силы, и таким образом возникает атом.

Наш запертый учёный не только вычисляет существование в природе 92 типов атомов (от самого лёгкого, водорода, до самого тяжёлого, урана), но и предполагает наличие широкого спектра химических соединений, возникающих благодаря миллионам различных способов соединения базовых атомных строительных блоков.

Итак, с частицами с полуцелым и целым спином мы разобрались. Теперь наш физик переходит к частице со спином 0. Он сразу же понимает, что такая частица представляет собой квант поля, пронизывающего всё пространство и сопротивляющегося движению других частиц. Таким образом, частицы приобретают инерцию, то есть массу.

Подобные частицы известны нам под названием бозон Хиггса. О его открытии было триумфально объявлено командой Большого адронного коллайдера в июле 2012 года.

Затем наш физик переходит к частицам со спином 2. Он понимает, что свойством таких частиц является взаимодействие со всеми прочими частицами, что приводит к возникновению «универсальной силы». После некоторого количества расчётов наш физик делает вывод, что из существования частиц со спином 2 неизбежно следует общая теория относительности. Это доказывает, что специальная теория относительности в некотором смысле имеет более фундаментальный характер, чем общая, иначе как вторая могла бы вытекать из первой (разумеется, в сочетании с квантовой теорией)?

Изучив общую теорию относительности, наш физик признаёт существование притяжения, действующего на длинных дистанциях в соответствии с законом обратных квадратов и заставляющего крупные тела двигаться по орбитам вокруг ещё более крупных тел. Нам известно, что планеты вращаются вокруг своих звёзд, а галактики могут двигаться вокруг других галактик. Но наш физик ничего об этом не знает, ведь он заперт в комнате без окон. Тем не менее ему удаётся логически вычислить существование Вселенной.

Частицу со спином 2 ещё никому не удалось обнаружить, и даже если она существует, есть основания полагать, что в ближайшем будущем мы её всё равно не увидим. Однако она соответствует описанию гравитона, гипотетической частицы — переносчика силы притяжения. Поскольку у физиков имеется теория гравитации, в соответствии с которой сила притяжения переносится гравитоном и которая выступает основой для общей теории относительности, в каком-то смысле они уже создали квантовую теорию гравитации.

К сожалению, эта теория — всего лишь проекция квантовой теории на мир больших величин и низких энергий, а не более глубокая её версия, применимая к миру на уровне планковской длины.

Наконец, наш физик рассматривает последний спин — 3/2. Частицы с таким спином обеспечивают существование суперсимметрии, при которой все частицы с полуцелым спином (фермионы) считаются лицевой стороной частиц с целым спином (бозонов).

На данный момент у нас нет экспериментального подтверждения того, что природа действительно использует частицы со спином 3/2. Но, учитывая то, что все остальные виды спинов действительно существуют, есть подозрение, что имеется и этот. Согласно данной гипотезе, к примеру, у электрона есть суперсимметричный брат-близнец, называемый селектроном. Суперпартнёры известных частиц считаются хорошими кандидатами на звание составляющих частиц тёмной материи Вселенной, масса которой, как известно, в шесть раз превышает массу видимых звёзд и галактик. Учёные предполагают, что мы ещё не обнаружили суперсимметричные частицы, потому что они очень массивны и для их создания необходимо больше энергии, чем сейчас может дать столкновение частиц в Большом адронном коллайдере.

Итак, наш физик рассмотрел частицы со всеми возможными видами спина и вычислил их поведение. Но есть и ещё один вывод, который он может сделать из специальной теории относительности и квантовой теории. Они предполагают, что каждая субатомная частица должна иметь партнёра с противоположным электрическим зарядом или спином. Каждый раз, когда в результате квантовой флуктуации вакуума появляется частица, вместе с ней возникает и античастица. Например, отрицательно заряженный электрон всегда формируется вместе с положительно заряженным позитроном.

 

Стандартная модель

Вот полный список элементов, из которых состоит Вселенная: 12 базовых строительных блоков (шесть кварков и шесть лептонов), 12 частиц-переносчиц (фотон для электромагнитной силы, три векторных бозона для слабого ядерного взаимодействия и восемь глюонов для сильного), бозон Хиггса и античастицы. Все вместе они составляют Стандартную модель физики частиц, результат 350-летнего труда учёных. Не будет преувеличением сказать, что Стандартная модель и общая теория относительности описывают весь мир.

Самое удивительное в Стандартной модели то, что такое небольшое количество ингредиентов, соединяющихся таким небольшим количеством способов, создаёт столь многое вокруг нас. Готтфрид Лейбниц, немецкий математик XVII века, замечал: «Бог выбрал лучший из миров, который наиболее прост для понимания и наиболее богат на явления».

Удивительно, но наш физик, запертый в комнате без окон всего с двумя досками и куском мела, смог вычислить основные свойства этого мира. «Физика ужасно ограничена квантовой теорией и теорией относительности, — говорит Аркани-Хамед. — Они делают Вселенную практически неизбежной».

Практически — потому что эти ограничения не определяют массы фундаментальных частиц, а также общее количество кварков и лептонов. Обычная материя состоит всего из четырёх частиц: верхнего кварка, нижнего кварка, электрона и электронного нейтрино. Например, протон в ядре атома формируется из двух верхних и одного нижнего кварка, а нейтрон — из двух нижних и одного верхнего. Но на этом природа не остановилась. Она создала более тяжёлые версии четырёх базовых частиц: странный кварк, очарованный кварк, мюон и мюонное нейтрино. Затем последовали и их утяжелённые версии: прелестный кварк, истинный кварк, тау и тау-нейтрино. Эти частицы не играют практически никакой роли в современной Вселенной, так как энергия, необходимая для их формирования, существовала лишь в первые доли секунды после Большого взрыва. Как шутил американский физик И. А. Раби, непонятно, кто их заказывал.

Стандартная модель не объясняет, зачем природа наделила каждый свой строительный блок двумя партнёрами, а также почему распределила между ними массу таким образом, как мы это наблюдаем. Можно предположить, что это не последнее слово природы, а лишь приблизительное видение более глубоких процессов, которые нам ещё предстоит открыть. Но эти отклонения не должны отвлекать нас от важного факта: принципы специальной теории относительности и квантовой теории налагают на вероятности такие строгие ограничения, что в результате определяют почти всё в физическом мире. «Интересно, был ли у Бога хоть какой-то выбор при создании мира?» — писал Эйнштейн. Квантовая теория и специальная теория относительности подсказывают нам, что ответ на этот вопрос отрицательный.

Как уже упоминалось в начале этой главы, некоторые люди считают физиков-теоретиков фантазёрами, которые заняты лишь тем, что воображают удивительные и странные вещи. Проверить их правоту экспериментальным путём невозможно, а значит, нельзя и доказать, что они врут. Но тот факт, что специальная теория относительности и квантовая теория почти полностью описывают процессы в окружающей нас Вселенной, может означать лишь одно: в целом они верны. Это, в свою очередь, делает их тугой смирительной рубашкой, сковывающей действия физиков, которые пытаются докопаться до более глубокой теории. Квантовая теория и специальная теория относительности оставляют так мало места для манёвра, что двигаться в нём почти невозможно. «Почти все твои попытки обречены на провал. Большинство теорий, рождаемых физиками, умирает во младенчестве», — говорит Аркани-Хамед.

В 2017 году существовал лишь один кандидат на звание более глубокой теории, соответствующей всем ограничениям, — теория струн.

 

Струны в космосе

Теория струн, также известная как теория суперструн, возникла в результате попытки понять, что собой представляет сильное ядерное взаимодействие. Сильным его называют не просто так. Для того чтобы оторвать два кварка друг от друга, требуется столько энергии, что в пространстве между ними при этом спонтанно возникает пара «кварк–антикварк». Представьте себе, что вы пытаетесь подойти к другу в толпе, но между вами постоянно втискиваются другие люди. Вот так чувствуют себя кварки. Сильное ядерное взаимодействие удерживает их в границах протонов и нейтронов в атомных ядрах и делает выделение единичного кварка невозможным.

Что странно в сильном ядерном взаимодействии, так это то, что оно растёт по мере увеличения расстояния между кварками. Сравните его с силой притяжения (чем дальше два массивных тела друг от друга, тем гравитация слабее) или магнетизмом (если увеличить расстояние между магнитами, он тоже ослабнет). Причина размывания этих сил в том, что они распространяются во всех направлениях. Но в том случае, если сила ограничена узким каналом между двумя телами, она действительно может расти по мере их расхождения, как при растяжении пружины или резиновой ленты. Точно так же это работает и в случае сильного ядерного взаимодействия между кварками. И это их поведение стало первым признаком того, что фундаментальные строительные блоки Вселенной могут быть похожи не на крошечные точки, а на одномерные энергетические струны.

В данной теории, пионером которой в 1968 году стал итальянский физик Габриэле Венециано, эти струны вибрируют, как на музыкальном инструменте, и каждая вибрация соответствует определённой фундаментальной частице. «По сути, теория струн описывает пространство и время, массу и энергию, гравитацию и свет, всё Божье творение как музыку», — говорит писатель Рой Х. Уильямс.

Быстро вибрирующая скрипичная струна имеет больше энергии, чем вибрирующая медленно. Соответственно, суперструна с быстрой вибрацией соответствует субатомной частице с высоким значением массы-энергии, например топ-кварку, а с медленной вибрацией — с низким, например электрону. Однако из-за сложности математических вычислений физики не могут быть до конца уверены, что все возможные типы вибраций соответствуют всем известным фундаментальным частицам.

Струны могут быть либо разомкнутыми, либо кольцеобразными, и эта конфигурация определяет их взаимодействие с другими струнами.

Теория струн автоматически соотносит каждую частицу с полуцелым спином (частицу-переносчицу) с частицей с целым спином (материей) и наоборот. Именно потому, что она включает в себя суперсимметрию, эта теория называется теорией суперструн. Как уже говорилось, учёным ещё не удалось обнаружить ни одного суперпартнёра существующих частиц, хотя приверженцы теории струн полагают, что они просто слишком массивны, чтобы их можно было получить в БАК.

Теория струн устраняет потенциальный конфликт между двумя важнейшими идеями физики: редукционизмом и унификацией. Первая концепция предполагает, что все явления в мире происходят в результате взаимодействия небольшого количества фундаментальных строительных блоков (в Стандартной модели — кварков и лептонов). Вторая утверждает, что несхожие природные явления представляют собой лишь разные грани одного фундаментального процесса, например электрическое и магнитное поля являются всего лишь аспектами единого электромагнитного поля.

Редукционизм, доведённый до логического завершения, должен продемонстрировать, что всё во Вселенной состоит из элементов одного типа. Но если такой строительный блок действительно фундаментален, то есть не имеет составляющих, которые можно поменять местами, как он может иметь разные аспекты? Это невозможно, если речь идёт о частице, похожей на точку, но допустимо, если такой блок представляет собой одномерную струну, способную на множество типов колебаний. Соответственно, конфликт между редукционизмом и унификацией исчезает.

Фундаментальные частицы не просто имеют определённые массы, которые можно соотнести с частотой вибрации струны. Они также взаимодействуют друг с другом с помощью фундаментальных сил. В 1915 году Эйнштейн продемонстрировал, что сила притяжения — это лишь проявление искривления четырёхмерного пространства-времени, а в 1920-х годах два физика решили развить эту идею. Независимо друг от друга Теодор Калуца и Оскар Клейн доказали, что если бы пространство-время имело ещё одно, пятое пространственное измерение, то последствиями его искривления могли бы быть и гравитация, и электромагнетизм. Наличие такого измерения совсем не очевидно, но, по словам учёных, мы могли его не заметить, если оно не похоже на направления вперёд-назад, вверх-вниз и влево-вправо, а свёрнуто до субатомных размеров.

Согласно схеме Калуцы и Клейна, даже когда субатомная частица находится в покое в обычном пространстве, в пятом измерении она вращается по кругу, как сумасшедшая белка в колесе. Момент этого вращения и является электрическим зарядом. А причина того, что электрический заряд проквантован, то есть состоит из множества базовых частиц, заключается в том, что частицы ведут себя как волны. При этом единственно допустимыми являются те волны, длина которых позволяет им обернуться вокруг пятого измерения один, два, три раза и так далее. Такие волны в обязательном порядке имеют момент (заряд), кратный моменту (заряду) самой длинной из допустимых волн.

В 1920-х годах, когда Калуца и Клейн высказали своё предположение, сильное и слабое ядерное взаимодействие, действующие лишь в микроскопических масштабах атомного ядра, ещё не были открыты. Но их поведение можно сымитировать, добавив ещё несколько пространственных измерений, свёрнутых до сверхмалых размеров. В конечном итоге таких измерений нам потребуется шесть. Соответственно, гипотетические струны могут вибрировать в десятимерном пространстве-времени (девяти пространственных и одном временно́м измерении).

Физик и автор научно-популярных книг Брайан Грин из Колумбийского университета в Нью-Йорке пишет: «Сначала приходит Эйнштейн и говорит: “Пространство и время могут изгибаться и искривляться — это и есть гравитация”. А потом приходит теория струн и добавляет: “Не только гравитация, а ещё и квантовая механика и электромагнетизм, но только если во Вселенной больше измерений, чем мы можем увидеть».

«Сначала людям не нравились дополнительные измерения, — рассказывает специалист по теории струн Эдвард Виттен из Института перспективных исследований в Принстоне, — но они приносят большую пользу. Благодаря им теория струн может описать все элементарные частицы и их взаимодействия, включая гравитационное».

 

Плюсы и минусы теории струн

Теория, которая заявляет, что пространство-время имеет десять измерений, кажется полностью противоречащей нашей трёхмерной реальности (четырёхмерной, если учитывать время). Но это не единственная её проблема. Для начала струны должны быть невероятно маленькими. Согласно теории они имеют планковскую длину 10−35 метра, то есть в миллион миллиардов раз меньше атома водорода. Соответственно, даже самые жёсткие столкновения частиц в БАК не смогут обеспечить достаточно энергии для прямого изучения мира струн. А так как величины и энергии, существующие в этом мире, слишком отличаются от нашей реальности, они не оставляют на ней заметного отпечатка. Итак, струны не только неподвластны нашим экспериментам, но и не позволяют нам сделать хоть какие-либо предположения, которые можно было бы эмпирически проверить. Дэвид Тонг говорит: «Поразительно, как и Стандартная модель, и общая теория относительности вытекают из теории струн. Но на самом деле физикам бы хотелось, чтобы из неё вытекло что-нибудь неожиданное».

Кроме того, теория струн требует от природы существования суперсимметрии. Чем более высокие энергетические уровни затрагивают исследования на БАК, тем меньше в микромире остаётся мест, где могли бы прятаться суперсимметричные частицы. Если они не объявятся в ближайшее время, теория окажется нежизнеспособной. Даже критики признают, что теория струн — это элегантная математическая конструкция, но существует ещё множество таких же прекрасных идей, которые природа в своей мудрости решила не применять на практике.

Ещё одна проблема теории струн состоит в том, что дополнительные измерения могут пересекаться множеством различных способов. Согласно некоторым оценкам, это ведёт к возникновению как минимум 10500 отдельных «струнных вакуумов», в каждом из которых количество и массы фундаментальных частиц различаются, равно как и число фундаментальных взаимодействий и силы их воздействия. Физики предполагали, что, раз специальную теорию относительности и квантовую теорию так сложно объединить, любая гипотеза, которая сможет это сделать, должна быть уникальной и верно предсказывать наблюдаемые свойства фундаментальных частиц и сил. Но, как говорит Аркани-Хамед, они ошибались.

Вместо этого учёные обнаружили огромное количество «решений» теории струн, соответствующих и специальной теории относительности, и квантовой теории. Некоторые называют теорию струн «пучком решений в ожидании задачи». В истории физики такое уже случалось. Например, существует бесконечное число возможных электромагнитных волн, каждая из которых имеет свою длину. Все они являются решениями для максвелловского уравнения электромагнетизма. Или в мире существует множество атомов водорода, десятки столов и один человек, который читает эти слова. Все вы представляете собой решения для уравнения Шрёдингера.

Вопрос в том, решениями для какой теории являются 10500 струнных вакуумов.

В какой-то момент специалисты по теории струн изучали пять различных её вариаций, известных под названиями Тип I, Тип IIa, Тип IIb, Гетеротический тип O(32) и Гетеротический тип E8×E8. Но в середине 1990-х годов Пол Таунсенд из Кембриджского университета и Крис Халл из Лондонского университета королевы Марии доказали, что это всего лишь пять способов реализации суперсимметрии, то есть разные версии единой теории 11 измерений. Эдвард Виттен назвал её M-теорией, но при этом так и не сказал, что обозначает буква M. «M-теория с её 11 измерениями охватывает всё», — заявляет Дэвид Берман из Лондонского университета королевы Марии.

Итак, 10500 струнных вакуумов — это решения M-теории. Все вместе они выглядят как группа Вселенных, или Мультивселенная, в которой все элементы, вероятнее всего, связаны друг с другом. «Многочисленны и странны Вселенные, которые дрейфуют, как пена, по реке Времени», — писал фантаст Артур Кларк. Вполне возможно, он имел в виду струнные вакуумы.

Физики предпочли бы теорию, которая может точно предсказать свойства фундаментальных частиц и сил. Вместо этого им приходится искать ответ на вопрос, почему из всех 10500 Вселенных мы находимся именно в этой. Аркани-Хамед говорит, что это нам пока неизвестно.

Учёные могли бы попытаться подсчитать количество Вселенных, в каждой из которых масса электрона, сила электромагнитного взаимодействия и другие параметры имели бы одно из своих возможных значений. Чаще всего при таком подсчёте должны были бы встречаться Вселенные, в которых массы субатомных частиц и значения фундаментальных сил были бы близки к нашим. Если же оказалось бы, что мы живём в особой Вселенной, непохожей на другие, по теории струн был бы нанесён серьёзный удар. «Проблема лишь в том, что мы не можем придумать, как посчитать Вселенные», — замечает Аркани-Хамед.

Бермана это не очень беспокоит. «На нашем пути изучения математической структуры теории струн ещё рано отчаиваться, — говорит он. — Мы ещё и близко не подошли к реальной физике».

Но, несмотря на все затруднения с теорией струн, она имеет несколько убедительных характеристик, из-за которых множество физиков по всему миру не просто интересуются ею, но и настроены в её отношении крайне оптимистично. Начнём с того, что она предполагает существование вибрирующей замкнутой струны со спином 2. Как уже говорилось выше, частица со спином 2 должна быть гравитоном, частицей-переносчицей силы притяжения. Кроме того, неизбежным следствием из существования частиц со спином 2 является общая теория относительности. Как мы знаем, объединение квантовой теории и эйнштейновской теории гравитации — это Святой Грааль физики. Поэтому квантовая теория струн, одновременно включающая в себя общую теорию относительности, кажется такой привлекательной.

Но для Бермана главная её прелесть не в этом, а в её богатстве. Он сравнивает теорию струн с ньютоновской теорией гравитации: «Она объясняет не одно явление, а многие: движение планет, приливы и отливы, предварение равноденствий и так далее. Теория Ньютона дала физикам материал для работы на вечность вперёд. Точно так же и с теорией струн — наша работа с ней далека от завершения. Она может продолжаться ещё очень долго».

До 1985 года теория струн находилась на задворках большой физики, а работать над ней соглашались лишь фанатики, уверенные в её правоте. Всё изменилось, когда Джон Шварц из Калифорнийского технологического института в Пасадине и Майк Грин из Лондонского университета королевы Марии совершили прорыв.

Физика содержит множество симметрий — аспектов различных ситуаций, которые остаются неизменными при изменении прочих условий. Например, квадрат продолжает выглядеть квадратом, если его повернуть на 90, 180 или 360 градусов. В 1918 году немецкий учёный Эмми Нётер сделала потрясающее открытие. Оказывается, симметрии лежат в основе многих великих законов природы. Возьмём, к примеру, закон сохранения энергии, который гласит, что энергию нельзя создать или уничтожить — только изменить её форму. Он является следствием симметрии временного сдвига, благодаря которой эксперимент будет иметь один и тот же результат, если провести его сегодня, завтра, через месяц или через год.

Открытие того, что законы физики основываются на симметрии, стало одним из величайших в современной науке. Именно поэтому сотрудники БАК охотятся за симметричными явлениями, указывающими на новые фундаментальные законы. Многие теории в квантовом мире не сохраняют классических симметрий. Например, специальная теория относительности лишается своей ключевой симметрии Лоренца. Шварц и Грин выяснили, что теория струн остаётся симметричной, или, пользуясь научным языком, не содержит аномалий. Берман отмечает: «Все симметрии классической физики применяются автоматически. Удивительным образом теория струн оказывается совместимой со всем, что нам уже известно».

Открытие Шварца и Грина запустило «первую струнную революцию», в ходе которой теория струн из узкой области превратилась в основное поле для исследований. «Второй струнной революцией» было осознание того, что все теории струн представляют собой версии M-теории, а также того, что самое важное в ней, на удивление, не струны.

 

Сила браны

Наш повседневный трёхмерный мир содержит не только одномерные объекты, но и объекты двумерные, например столешницы, и трёхмерные, например деревья и людей. По аналогии во Вселенной M-теории с её десятью пространственными измерениями должны иметься не только одномерные струны, но и двумерные, трёхмерные, четырёхмерные тела и так далее. Эти многомерные тела учёные совокупно называют бранами, или, как окрестил их Таунсенд, p-бранами, где p обозначает количество пространственных измерений. Согласной этой терминологии струна — это 1-брана.

Выясняется, что в M-теории существование бран не только вероятно, но и обязательно. Это разнообразие тел, существующих в различном количестве измерений, означает, что в теории, которую ищут физики, струны вряд ли должны играть фундаментальную роль. Судя по всему, для объединения специальной теории относительности и квантовой теории требуется большая группа объектов. «В некоторых областях теории проявляется действие частиц, в некоторых — струн, в некоторых — 2-бран, 3-бран и так далее», — объясняет Аркани-Хамед.

В этой картине мира Макровселенная представляет собой трёхмерный остров (3-брану), качающийся на поверхности десятимерного пространства. В таком сценарии перед струнами открываются две возможности. Один конец струны может быть прикреплён к 3-бране так, что она будет выглядеть как водоросль на дне Саргассова моря, или же струна может быть замкнута в кольцо и не контактировать с 3-браной. Известные нам фундаментальные частицы, входящие в Стандартную модель, относятся к первому типу, а гравитон представляет собой кольцо, способное двигаться за пределами браны и исследовать все десять пространственных измерений.

Эта теория предлагает интуитивное объяснение одной из величайших загадок физики: почему гравитация настолько слабее других фундаментальных сил природы. Как я уже упоминал, сила притяжения между протоном и электроном в атоме водорода в 10 000 миллиардов миллиардов миллиардов миллиардов раз меньше, чем электромагнитная сила. В 1999 году Лиза Рэнделл из Гарвардского университета и Раман Сундрам из Мэрилендского университета в Колледж-Парке выяснили, что дополнительные измерения не обязательно должны быть свёрнуты до субатомных размеров. Если они искривлены определённым образом, то могут оставаться незамеченными, даже если будут величиной со всю Вселенную.

Согласно сценарию, предложенному Рэнделл и Сундрамом, причина того, что частицы-переносчицы негравитационного (например, электромагнитного) взаимодействия достаточно сильны, состоит в том, что они существуют в пределах 3-браны. Гравитоны же имеют доступ ко всем десяти измерениям, поэтому их воздействие размыто.

Хотя это интуитивное объяснение слабости гравитации выглядит достаточно привлекательно, у нас пока что нет никаких доказательств существования огромных пространственных измерений, скрытых от нашего взора. Теория струн предлагает огромное количество возможных объяснений природных явлений, но не содержит почти ни одного положения, которое позволило бы учёным делать точные и проверяемые предсказания.

Если наша Вселенная действительно представляет собой огромный трёхмерный остров, плавающий на поверхности десятимерного пространства-времени, будет логично задать себе вопрос: а единственный ли он? Если нет, то может ли одна 3-брана столкнуться с другой? Именно на таком варианте развития событий строится новая гипотеза Большого взрыва, предложенная группой учёных под руководством физика Нила Турока из института «Периметр» в Уотерлу, Канада.

Согласно этой схеме, однажды две пустые 3-браны приблизились друг к другу в пятом измерении (за четвёртое мы принимаем время). Представьте их себе как два куска хлеба, который кладут один на другой. Две 3-браны прошли сквозь друг друга, но в пятом измерении они обладали огромной энергией, и в момент их соприкосновения она должна была куда-то деться. Поэтому возникла масса-энергия субатомных частиц на бранах, а затем они раскалились до невероятных температур. Иными словами, произошёл Большой взрыв.

Схема Турока гласит, что огненный шар, возникший на каждой бране, расширился и остыл, а из обломков сформировались галактики, которые начали разлетаться, и в конце концов материя на каждой бране оказалась столь разреженной, что они, по сути, снова стали пустыми. Вакуум в пятом измерении действует как пружина, снова прижимающая браны друг к другу. В итоге они сталкиваются, и цикл повторяется снова и снова. Наш Большой взрыв — это всего лишь одно событие из длинной череды, которая началась в прошлом и продолжится в будущем.

Модель циклической Вселенной не похожа на стандартный космологический сценарий, в котором Вселенная в первые доли секунды своего существования претерпевает невероятно резкое и яростное расширение, известное под названием «инфляция». «Если бы Вселенная начала стремительно расширяться сразу же после своего возникновения, гравитационные волны двигались бы сквозь пространство-время и весь космос был бы наполнен эхом такого расширения», — говорит Турок. Циклическая Вселенная не требует, чтобы пространство-время сотрясали жёсткие изменения, а потому не предсказывает существования таких гравитационных волн.

Существование циклической Вселенной — это довольно смелая гипотеза. Сама по себе теория струн ещё не до конца доработана. Она может оказаться как частью более глубокой теории, объясняющей истоки пространства, времени и всей Вселенной, так и полной чушью. Но специалисты по теории струн верят, что находятся на правильном пути — в первую очередь потому, что это вообще единственный возможный путь, ведь, несмотря на многочисленные усилия, никому ещё не удалось создать другую «теорию всего», объединяющую фундаментальные силы. Но у сторонников теории струн есть и ещё одно основание для оптимизма: потенциально она может объяснить парадокс существования самых загадочных объектов во Вселенной — чёрных дыр.

 

Чёрные дыры

Согласно теории гравитации Эйнштейна, в сердце чёрных дыр материя сжимается до бесконечной плотности, и все известные нам законы физики перестают работать. Но сингулярность — не единственное место в чёрной дыре, которое ставит под сомнение наше понимание реальности.

Как уже упоминалось выше, горизонт событий — это воображаемая мембрана, окружающая сингулярность и обозначающая точку невозврата для попадающего на неё света и материи. Когда мы говорим о размерах чёрной дыры, мы имеем в виду диаметр горизонта событий.

В 1974 году Стивен Хокинг шокировал научный мир заявлением, что чёрные дыры на самом деле не чёрные. К этому выводу он пришёл, проанализировав квантовые процессы поблизости от чёрной дыры. Давайте вспомним, что в соответствии с принципом неопределённости Гейзенберга вакуум порождает пары частиц и античастиц. Эти виртуальные частицы живут крайне недолго, аннигилируя и исчезая всего за доли секунды. Но Хокинг понял, что вблизи горизонта событий чёрной дыры должно происходить и происходит нечто совершенно иное.

Одна половина пары «частица–античастица» может начать двигаться прочь от чёрной дыры, пытаясь избежать её притяжения, а вторая — упасть в неё через горизонт событий. После этого она уже не вырвется наружу, чтобы столкнуться со своей парой и аннигилировать. Частица, которой удалось сбежать, из виртуальной превратится в реальную с куда более долгим сроком жизни.

Хокинг понял, что подобные процессы постоянно происходят вокруг горизонта чёрной дыры. Из-за того что одиночные частицы постоянно рвутся прочь от неё, возникает излучение Хокинга.

Определяющей характеристикой чёрной дыры является тот факт, что ничто попавшее в неё не может вырваться наружу. Излучение Хокинга испускает не сама дыра, так как его частицы в неё не попадают. Оно рождается в вакууме на границе горизонта событий.

Но энергия, которая создаёт излучение Хокинга, должна откуда-то браться, и единственным её источником может быть гравитация самой чёрной дыры. Частицы постоянно утекают в открытый космос, и гравитационное поле чёрной дыры ослабевает, заставляя её постепенно уменьшаться, или «испаряться».

Чем меньше чёрная дыра, тем сильнее её излучение Хокинга. Для чёрных дыр, имеющих звёздную массу, и сверхмассивных чёрных дыр, находящихся в центре большинства галактик, эта утечка частиц настолько минимальна, что предполагаемый срок жизни дыр превышает текущий возраст Вселенной. Но по мере того, как чёрная дыра уменьшается, её излучение Хокинга становится всё сильнее и сильнее. У крошечной чёрной дыры (а этой стадии достигнет каждая дыра, прежде чем исчезнуть окончательно) оно будет ослепительно-ярким. Что и говорить, чёрные дыры умирают с блеском.

По определению всё то, что светится, имеет температуру. Это верно и для чёрных дыр, сверкающих излучением Хокинга. С первого взгляда это предположение кажется безумным, потому что чёрная дыра — это не что иное, как бездонный колодец в пространстве-времени, не содержащий никакого источника тепла. Но она разогревается не из-за каких-то своих внутренних свойств, а из-за внешних квантовых процессов, протекающих в окружающем её вакууме.

Тот факт, что излучение Хокинга заставляет чёрную дыру испаряться и в итоге приводит к её исчезновению, создаёт значительный научный парадокс. Фундаментальный закон физики гласит, что информацию нельзя создать или уничтожить. Возьмём, к примеру, Луну. Используя законы Ньютона, мы можем предсказать её завтрашнее положение на небе, исходя из сегодняшнего. Значит, информация о её будущем местоположении заключена в информации о настоящем. Пока Луна движется по небосводу, мы не приобретаем и не теряем информацию — она остаётся в сохранённом виде. С другой стороны, при «испарении» чёрной дыры информация утрачивается.

Чёрная дыра звёздной массы когда-то была звездой. Для того чтобы точно определить параметры такого небесного тела, требуется большой объём информации, например, о типе, местоположении и скорости каждого её атома. Но когда чёрная дыра полностью «испаряется» из-за излучения Хокинга, от неё ничего не остаётся. Куда же исчезает информация? Вот так вкратце формулируется информационный парадокс чёрных дыр.

Этот парадокс настолько удивителен, что сам Хокинг много лет верил, будто чёрные дыры действительно нарушают один из самых важных принципов физики: «Я полагал, что информация в чёрной дыре действительно исчезает, и это было моей самой большой ошибкой — или по крайней мере самой большой чушью в науке».

Очевидно, что виновник исчезновения информации — это излучение Хокинга. Возможно ли, что оно каким-то образом уносит в космос знания о звезде, которая породила чёрную дыру? Но единственной характеристикой излучения Хокинга (технически имеющего спектр чёрного тела) является температура. Только эту информацию оно может перенести от чёрной дыры.

Ключ к разгадке информационного парадокса чёрных дыр предложил израильский физик Яаков Бекенштейн. В 1972 году он открыл одну необычную характеристику горизонта событий. Оказывается, площадь его поверхности связана с энтропией чёрной дыры.

Понятие энтропии происходит из теории теплоты. Второй закон термодинамики звучит так: «Энтропия постоянно увеличивается». Это один из самых важных принципов науки, который объясняет, почему дворцы рассыпаются в прах, яйца бьются, а люди стареют. Открытие Бекенштейна, сделанное ещё до утверждения Хокинга о существовании у чёрных дыр теплового излучения, стало первым сигналом о существовании связи между чёрными дырами и теплом. Удивительным образом в чёрных дырах сходятся воедино три величайшие физические теории: теория гравитации Эйнштейна, квантовая теория и термодинамика, то есть теория теплоты. Вот почему понимание чёрных дыр так важно для объединения квантовой теории и общей теории относительности.

Энтропия тесно связана с информацией, так как является мерой её нехватки или нашего незнания о состоянии системы. Если говорить точнее, энтропия измеряет беспорядочность системы на микроуровне и определяется как «количество микросостояний, соответствующих определённому макросостоянию». Возьмём, к примеру, кирпич. Для него это будет количество комбинаций, которые могут составить его атомы таким образом, чтобы при этом он не переставал выглядеть кирпичом. Тот факт, что у горизонта событий чёрной дыры есть энтропия, означает, что он вовсе не такой гладкий и ровный, каким его представляет общая теория относительности, а имеет собственную микроскопическую структуру.

В 1993 году лауреат Нобелевской премии по физике голландец Герард т’Хоофт из университета Утрехта предположил, что горизонт событий должен быть неровным на микроскопическом уровне и что именно в углублениях и выступах его микроландшафта и скрывается информация, описывающая звезду, которая стала чёрной дырой. Горизонт событий можно сравнить со сверхплотным компакт-диском, каждый участок которого со стороной, равной планковской длине (то есть имеющий площадь около 10−70 квадратных метров), содержит эквивалент 0 или 1 в бинарной системе. «На самом деле чёрная дыра имеет очень богатую структуру, как Земля с её горами, долинами, океанами и так далее», — говорит Кип Торн из Калифорнийского технологического института в Пасадине.

Вскоре после того как т’Хоофт предположил, что недостающая информация из чёрной дыры может быть закодирована в горизонте событий, Леонард Сасскинд из Стэнфордского университета показал, как эта гипотеза может быть включена в теорию струн. Представьте себе горизонт событий чёрной дыры как массу перепутанных вибрирующих струн. Используя этот образ, Эндрю Стромингер из Калифорнийского университета в Санта-Барбаре и Камран Вафа из Гарвардского университета сумели предсказать точное значение энтропии чёрной дыры, рассчитанной Бекенштейном.

Поскольку излучение Хокинга зарождается в вакууме в непосредственной близости от горизонта событий чёрной дыры, можно предположить, что микроскопические неровности его ландшафта оказывают на него влияние. Эти неровности «модулируют» излучение, как музыка модулирует волну радиостанции. Таким образом, информация о звезде, предшествовавшей появлению чёрной дыры, переносится во Вселенную излучением Хокинга. Она не теряется, а значит, один из самых важных законов физики продолжает действовать.

Это решение информационного парадокса чёрных дыр кажется несколько надуманным. Нам всё ещё требуется более глубокая теория, которая объединила бы в себе эйнштейновскую теорию гравитации и квантовую теорию. Но если это предположение верно, то из него вытекают неожиданные выводы. Информация, полностью описывающая звезду (трёхмерный объект), сохраняется на горизонте чёрной дыры (двумерной поверхности). Это делает горизонт похожим на голограмму. Представьте себе, что было бы, если бы каждая лягушка носила с собой голографическое изображение головастика, которым она когда-то была. Чёрные дыры делают примерно так же с голограммами звёзд.

Если бы эта гипотеза применялась только к таким странным объектам, как чёрные дыры, она казалась бы всего лишь любопытным предположением. Но т’Хоофт и Сасскинд считают, что идея о голографическом изображении может дать нам ценную информацию обо всей Вселенной.

 

Голографическая Вселенная

Как и любая чёрная дыра, Вселенная ограничена горизонтом. Космический «световой горизонт» — это не край Вселенной, потому что она может продолжаться бесконечно, но граница наблюдаемого мира. Внутри этого горизонта находятся звёзды и галактики, свету которых хватило времени с момента рождения Вселенной (то есть 13,82 миллиарда лет), чтобы долететь до нас. Света звёзд и галактик за горизонтом этого времени оказалось мало. Он всё ещё движется к нам.

Сасскинд и т’Хоофт предположили, что, раз информация, описывающая трёхмерную звезду, может быть записана на двумерном горизонте чёрной дыры, информация о трёхмерной Вселенной тоже может быть представлена в виде голограммы на её горизонте. Эту идею можно толковать разными способами. Согласно одному из них, Вселенную по каким-то причинам можно полностью описать, используя на одно измерение меньше, чем обычно. Что уже само по себе странно. Ещё одно, более широкое толкование утверждает, что мы живём на поверхности горизонта, но верим, будто находимся внутри него. Есть и ещё одно объяснение, звучащее столь же странно: возможно, наша трёхмерная Вселенная — это в буквальном смысле проекция двумерной голограммы на окружающем её горизонте. В таком случае все мы, включая и вас и меня, — голограммы!

Подобные рассуждения по аналогии вряд ли можно назвать точным научным методом. Кроме того, переходить от свойств чёрных дыр к свойствам всей Вселенной — это слишком большое допущение. Но в 1998 году аргентинский физик Хуан Малдасена опубликовал работу, в которой не только упрочил идею, что мы живём в голографическом мире, но и перевернул всю физику с ног на голову.

Конформные теории поля — это класс теорий, которые соответствуют как квантовой теории, так и специальной теории относительности (одной из таких теорий является Стандартная модель). Малдасена представил себе пятимерную Вселенную, наполненную фундаментальными частицами, которые движутся в соответствии с эйнштейновской теорией гравитации (такую Вселенную также можно назвать гиперпространством). Затем он сделал вывод, что такая Вселенная должна быть окружена четырёхмерной границей, как двумерная поверхность воздушного шара окружает объём воздуха в нём. Граница должна содержать в себе фундаментальные частицы, движущиеся в соответствии с конформной теорией поля.

Чудесное открытие Малдасены состояло в том, что уравнения границы содержат ту же информацию и описывают те же физические явления, что и более сложные уравнения для всей пятимерной Вселенной. Иными словами, влияние гравитации на внутреннюю часть такого мира математически эквивалентно теории квантового поля на его границе. «Дуалистичность квантового и гравитационного описания открывает более глубокую связь между квантовой теорией и гравитационной теорией Эйнштейна, — говорит Берман. — Они кажутся совершенно непохожими друг на друга, но может оказаться, что это всего лишь две стороны одной монеты».

Аркани-Хамед утверждает: «Кажется, будто квантовая теория и теория относительности враждуют друг с другом, но на самом деле они даже могут друг друга поддерживать».

Научное сообщество посчитало работу Малдасены такой важной, что на неё сослались более 10 000 раз в других научных трудах. Сегодня её рассматривают как важную веху в истории современной физики. Некоторые физики полагают, что обнаружение связи между гравитацией и квантовой теорией так же важно, как открытие Максвелла о том, что электричество, магнетизм и свет можно объединить в единое целое.

Берман предупреждает, что результаты исследований Малдасены применимы только в упрощённой, игрушечной модели Вселенной, известной как пространство анти-де Ситтера. Помимо всего прочего, в нём пространство не расширяется, как в реальности. Тем не менее учёные полагают, что эти результаты применимы к реальной Вселенной, хотя никто ещё не сумел этого доказать.

 

Что такое пространство

Открытие Малдасены подняло важный вопрос: как квантовое поле на границе гиперпространства создаёт гравитацию внутри него? В попытке ответить Марк Ван Раамсдонк из Университета Британской Колумбии в Ванкувере в 2015 году создал ещё более простую модель. Это было пустое гиперпространство, соответствующее единственному квантовому полю на границе. Как и квантовые поля, его скрепляла в единое целое запутанность — мгновенное влияние, которое Эйнштейн называл жутким дальнодействием.

Используя математические инструменты, разработанные другими учёными, Ван Раамсдонк сумел постепенно устранить запутанность на границе. После этого он увидел, как пространство-время его Вселенной начало постепенно растягиваться, как будто жевательная конфета. Через некоторое время сама структура пространства-времени стала разрушаться, а когда запутанность была уменьшена до нуля, его просто разорвало на кусочки.

Ван Раамсдонк заключил, что действующие на больших расстояниях связи, которые в пространстве-времени создаёт запутанность, скрепляют его воедино. «Пространство-время — это лишь геометрическое представление того, как связываются между собой объекты в квантовой системе», — говорит он.

Если Ван Раамсдонк прав, пространство-время могло возникнуть из «квантовой информации». Но результаты его работы применяются только к упрощённой модели, и доказать их верность в реальном мире невозможно. Тем не менее существует и ещё одна гипотеза, утверждающая, что запутанность является необходимым условием для существования пространства-времени.

В 2013 году Малдасена и Сасскинд обратили внимание научного сообщества на две работы Эйнштейна, опубликованные в одном и том же 1935 году. С первого взгляда казалось, что они касаются совершенно разных вещей, но Малдасена и Сасскинд полагали, что на более глубоком уровне эти работы повествуют об одном и том же.

В первой работе Эйнштейн, Борис Подольский и Натан Розен писали о квантовом феномене запутанности и (ошибочно) отмечали, что подобное «жуткое дальнодействие» кажется настолько бессмысленным, что лишь подтверждает неполноту и неправильность квантовой теории. Во втором труде Эйнштейн и Розен рассказывали, что в пространстве-времени существуют особые короткие пути, позволяющие сократить дистанцию, и что их существование допускается общей теорией относительности. Сегодня они известны нам под именем «кротовые норы». Этот термин предложил американский физик Джон Уилер, также давший название чёрным дырам. Дыра в яблоке позволяет червяку быстро попасть с одной стороны фрукта на другую, а не ползти по поверхности. Точно так же и «кротовая нора» может помочь космическому путешественнику срезать путь по Вселенной. Войдя в неё с одной стороны и преодолев, возможно, лишь пару метров, он сможет выйти в совершенно другой галактике.

По словам Малдасены и Сасскинда, связи, которые учёные называют «кротовыми норами», представляют собой эквиваленты запутанности. Иными словами, если две частицы находятся в состоянии запутанности, между ними формируется микроскопическая «кротовая нора». Итак, «кротовые норы» в пространстве-времени и квантовая запутанность могут быть всего лишь различными способами описания одной и той же реальности.

Если запутанность возникает из-за существования микроскопических «кротовых нор» в пространстве-времени и такие норы важны для самого его существования, значит, уменьшение запутанности нарушит саму ткань пространства-времени, что и доказал Ван Раамсдонк. Итак, ответом на вопрос «Из чего сделано пространство?» могут быть «кротовые норы» или квантовая запутанность. Выбирайте, что вам нравится больше. В конце концов, если верить Малдасене и Сасскинду, это одно и то же.

 

Поразительная дуальность

Когда Малдасена продемонстрировал, что теория квантового поля на горизонте пятимерной Вселенной проявляется внутри неё как общая теория относительности, выяснилось, что одну и ту же физическую ситуацию можно описать по-разному. Существование таких дуальностей иногда помогает решить, казалось бы, безнадёжную задачу, просто подойдя к ней с другой стороны.

Типичной дуальностью теории струн является тот факт, что физика в сверхмалых и сверхбольших масштабах проявляет себя совершенно одинаково. Эта T-дуальность объясняется тем, что струны могут двигаться или обматываться вокруг дополнительного пространственного измерения, обмениваясь при этом импульсом. Благодаря этому в микро- и макромире физические законы проявляют себя одинаково.

Ключевым следствием из этой дуальности является то, что в сверхмалых масштабах физические параметры, например сила притяжения, не увеличиваются до бесконечности, как предсказывал Эйнштейн в своей теории гравитации. Вместо этого они держатся в тех же рамках, что и в макромире. Интуитивно это кажется логичным, ведь длина струн конечна, а так как их нельзя сжать до нулевого объёма, это позволяет избежать и предположения о сингулярности как начале Вселенной.

Разумеется, дуальности встречаются не только в теории струн. Их можно найти и в других областях физики, таких, например, как квантовая теория, известная своим корпускулярно-волновым дуализмом. На самом деле разделение корпускулярного и волнового подхода к мельчайшим строительным блокам Вселенной было актуальной темой для обсуждения только на начальных этапах существования квантовой теории (и ещё остаётся для научно-популярной литературы, например для этой книги). После создания последовательной квантовой теории в середине 1920-х годов о корпускулярно-волновом дуализме забыли. Квантовые механизмы Шрёдингера и Гейзенберга оперируют математическими объектами вроде волновых функций, которые не являются ни частицами, ни волнами и для которых в наших словарях нет слов, а в реальной жизни — аналогий.

Корпускулярно-волновой дуализм показывал, что учёные ещё не приблизились к адекватной квантовой теории. Точно так же и дуальности в теории струн демонстрируют её неполноту. «Мы ещё не дошли до конца, — говорит Берман. — В истинной теории дуальностей не будет». Но как же нам её найти?

 

В поисках Нигде

Аркани-Хамед полагает, что существует несколько стратегий поиска более глубокой, фундаментальной и истинной теории. Самая очевидная состоит в том, чтобы составить список всех предположений, которые имеются у учёных на данный момент, и постепенно вычёркивать их одно за другим, пока лучшее из них не трансформируется в то, что нужно. «Однако история показывает, что обычно такая тактика не работает», — отмечает Аркани-Хамед.

По какой-то причине теории в физике похожи на матрёшки. Внутри каждой красивой куклы находится ещё одна, такая же красивая, а внутри каждой изящной и непротиворечивой теории — более глубокая, но не менее изящная. Так что сделать из одной теории другую, более развитую, вряд ли получится. Природа не позволит этого. «Законы физики на любом из уровней совершенны. Но спуститесь на уровень ниже, и они окажутся ещё более совершенными», — замечает Аркани-Хамед. Единственный способ перейти от одного к другому — это сделать шаг в темноту. Как говорил Ньютон, за всеми великими открытиями стояли дерзкие догадки.

Ярким примером «матрёшечного» характера природы являются классическая физика и квантовая теория. В конце XIX века классическая физика считалась безупречной. Единственным её слабым местом была ультрафиолетовая катастрофа, которая казалась важной Планку и Эйнштейну. Но более глубокая теория, исправившая этот недочёт, не выросла из классической физики. Создание квантовой теории включало в себя появление из ниоткуда новых принципов и уравнений (например, уравнения Шрёдингера), которые были совершенно несовместимы с классической физикой и никак не могли вытекать из неё.

По словам Аркани-Хамеда, законы физики не переходят друг в друга плавно, а резко обрываются, сбрасывая науку на уровень глубже. Поэтому у учёных остаётся только один выход: держаться за известное как можно дольше, а затем прыгать.

В данном случае известное — это специальная теория относительности и квантовая теория, а единственная известная нам система, которая их объединяет, называется теорией струн. Аркани-Хамед считает, что эту физику нужно подтолкнуть к краю, чтобы она спрыгнула во тьму в надежде приземлиться на неизведанной территории. «Физика развивается рывками, — говорит Аркани-Хамед. — Главное — находиться поблизости от правильного ответа и прыгать с подходящего места».

Новая теория вытеснит теорию гравитации Эйнштейна, которая и так не действует в сингулярности, то есть в сердце чёрных дыр и в начале времени. «И кроме того, может потребоваться расширить квантовую теорию», — отмечает Аркани-Хамед.

«Большинство теорий содержат информацию о собственной гибели: электромагнетизм говорит об ультрафиолетовой катастрофе, общая теория относительности — о сингулярностях. Но у квантовой теории, кажется, нет ахиллесовой пяты, — говорит Берман. — Она представляет собой нечто очень глубокое».

Несмотря на то что на сегодняшний день квантовая теория соответствует целевому назначению, то есть точно предсказывает результаты всех экспериментов, она предполагает существование неких вселенских часов, отмеряющих время. «Однако если вблизи сингулярностей время начинает идти по-другому, непонятно, как мы можем применять квантовую теорию. В области космологии, то есть происхождения, эволюции и будущего конца Вселенной, квантовая теория может иметь проблемы», — говорит Аркани-Хамед.

«Новая теория будет представлять собой не общую теорию относительности и не квантовую теорию, а нечто третье», — утверждает Ли Смолин из института «Периметр» в Уотерлу, Канада.

Учёным сложно сделать следующий шаг, потому что для этого нужно свести воедино все фрагментарные теории и результаты экспериментов с разными моделями реальности. Вот только никто не знает, какие из них верны. Возможно, вообще никакие. «Теория струн — это часть более глубокой теории, — говорит Аркани-Хамед, — но, кто знает, может быть, даже не самая важная».

 

Вверх — это новое вниз

Когда Аркани-Хамед предложил для получения новой теории подтолкнуть физическую науку к обрыву, а затем сделать с него шаг в неизвестность, он предполагал, что мы имеем все необходимые эмпирические данные для получения ответов на свои вопросы. На данный момент нам известно о существовании 12 строительных блоков материи (шести кварков и шести лептонов) и о четырёх фундаментальных взаимодействиях. Но хорошо изученная нами атомная материя, из которой состоят звёзды, галактики и мы сами, составляет примерно 1/6 массы загадочной тёмной материи. «Тёмная материя может оказаться критически важной. Она может изменить всё наше понимание о Вселенной и опровергнуть теорию струн», — говорит Аркани-Хамед.

Нельзя исключать, что в мире существуют тёмные частицы и тёмные силы, которые могут полностью перевернуть наши представления о физике. Как говорил шекспировский Гамлет, «есть многое в природе, друг Горацио, что и не снилось нашим мудрецам».

Поразительно, что обычная материя, состоящая из частиц, предусмотренных Стандартной моделью, составляет всего 4,9% всей массы-энергии Вселенной, да и из неё мы сумели увидеть в свои телескопы лишь половину. Предполагается, что вторая половина приходится на водородные облака, плавающие между галактиками. Такие облака должны быть слишком холодны или слишком горячи, чтобы испускать регистрируемое свечение. Для сравнения: на долю тёмной материи приходится около 26,8% массы-энергии Вселенной, а на тёмную энергию — 68,3%.

Как уже говорилось выше, тёмная энергия (несмотря на то что она является основной составляющей Вселенной) была открыта лишь в 1998 году. Она невидима, заполняет собой весь космос и имеет отталкивающую гравитацию. Именно она и ускоряет расширение Вселенной, которое привело к её открытию.

Если в школах детей ещё учат называть гравитацию силой притяжения, значит, эти школы отстали от жизни. Более двух третей всего сущего во Вселенной имеет гравитацию, которая не притягивает, а отталкивает. «Мы знаем, что гравитация существует, потому что яблоки падают с деревьев вниз. Мы можем наблюдать её действие в окружающем мире, — замечает исследователь тёмной материи Адам Рисс из Университета Джона Хопкинса в Балтиморе. — Но если бы мы швырнули яблоко к краю Вселенной, мы бы увидели, что оно ускоряется».

Скорее всего, тёмная энергия не сможет вставить физике такие же большие палки в колёса, как тёмная материя, потому что и общая теория относительности, и квантовая теория предсказывают существование вакуумной энергии (пускай никто и не понимает, как эти предсказания сочетаются друг с другом).

Итак, нам не хватает множества эмпирических сведений о Вселенной. Может быть, есть необходимость и в новой масштабной идее? «Наша система поразительно верна во многих аспектах, — отмечает Аркани-Хамед. — Но очевидно также, что мы ошибаемся в чём-то важном. Следующий шаг потребует от нас революционных мыслей». Как однажды сказал Джон Уилер, «за всем этим наверняка стоит настолько простая и прекрасная идея, что, когда мы поймём её, пускай через десять, сто или тысячу лет, мы спросим у себя: разве могло быть иначе?».

Берман напоминает, что, хотя необычное движение Урана и объяснялось существованием предсказанного Леверье Нептуна, с Меркурием эта схема не сработала. Потребовалась новая идея: фундаментальное изменение самой концепции гравитации. «Тёмная материя действительно может быть причиной аномалий в движении звёзд и галактик, — говорит Берман, — но, может быть, нам снова придётся поменять концепцию».

 

Нужна ли нам новая идея?

Прямо сейчас где-то на Земле новому Эйнштейну может прийти в голову мысль, которая позволит свести все наши знания воедино и совершить революцию в физике. Но, как показывает история, одинокого гения для этого может быть недостаточно.

Теория относительности Эйнштейна действительно была результатом работы одного блестящего учёного (хотя и сам Эйнштейн иногда говорил: «Какой из меня Эйнштейн?»). Но, как замечает Аркани-Хамед, для революции в физике одного человека недостаточно. Чтобы создать квантовую теорию, два десятка учёных трудились почти 25 лет. Стандартная модель физики частиц потребовала примерно такого же состава участников и времени. Соответственно, очень вероятно, что более глубокая теория, чем общая теория относительности, будет похожа на своих предшественниц и будущие историки науки не прибавят к ряду «Ньютон, Эйнштейн и…» третье имя.

Аркани-Хамед ожидает, что в нашем видении мира произойдёт ещё более существенная перемена, чем квантовая революция 1920-х годов. При этом он проводит параллель с появлением, развитием и признанием квантовой теории. Первым шагом в новом направлении стало открытие Планком кванта в 1900 году. Затем в 1913 году датский физик Нильс Бор использовал это открытие, чтобы по-новому объяснить строение атома. Наконец, в 1927 году была создана самостоятельная квантовая теория, построенная на твёрдых научных основаниях. «Я думаю, что сейчас мы где-то на середине пути, — говорит Аркани-Хамед. — По меркам квантовой теории на дворе примерно 1917 или 1918 год».

 

Неизведанная страна

«Самое потрясающее время для того, чтобы быть физиком, наступило после 1920-х, — считает Аркани-Хамед. — Начиная с древних греков, каждое поколение людей спрашивало себя, откуда появилась Вселенная и что представляют собой пространство и время. Но людям прошлого требовалось ответить на множество других вопросов, прежде чем они могли перейти к этим. Мы же сумели на них ответить. Теперь перед нами стоят новые важнейшие вопросы».

По словам Аркани-Хамеда, это исключительный момент в истории фундаментальной физики. Впервые мы имеем систему, позволяющую нам задаваться фундаментальными вопросами, и поразительные экспериментальные средства (например, БАК) для ответа на них. «Мы поднялись к базовому лагерю на склоне Эвереста и видим перед собой вершину», — говорит Аркани-Хамед.

Сколько времени пройдёт, прежде чем мы достигнем цели? По мнению Аркани-Хамеда, «возможно, нам хватит результатов всего лишь пяти экспериментов. С другой стороны, возможно, их получение займёт у нас 500 лет. Но я так не думаю, я настроен оптимистично».

Более глубокая теория расскажет нам о рождении Вселенной, о том, как возникли пространство, время и всё остальное, и, самое важное, о том, почему они существуют. Кроме того, говоря словами Эйнштейна, она ответит на вопрос, имелся ли у Бога выбор, когда он создавал мир.

Подобная теория не только даст нам глубочайшие знания о нашей реальности, но и наделит нас техническим владычеством над ней. Объединение электрической и магнитной силы Максвеллом в 1863 году в конце концов привело к созданию специальной теории относительности и квантовой теории. Последняя, можно сказать, стала основой современного мира, дав нам лазеры и компьютеры, смартфоны и ядерные реакторы. Технологии, использующие квантовую теорию, составляют около 30% ВВП США.

Теория Максвелла также предсказала существование радиоволн, а потому сделала нашу планету миром коммуникаций, где данные, движущиеся картинки и бесшумная болтовня миллиардов людей постоянно передаются по воздуху. Ни Максвелл, ни его современники не могли предсказать подобного. Если бы жители XIX века увидели телевизор, Интернет или мобильный телефон, они, скорее всего, посчитали бы их не технологическими артефактами, а творениями дьявола.

Кто знает, что может дать нам углублённая теория Эйнштейна. «Я бросаю вызов гравитации!» — заявляла Мэрилин Монро. Кто знает, может, и мы сделаем то же самое. Возможно, мы получим власть над пространством и временем, способность создавать «кротовые норы», строить космические корабли или машины времени. «Мы будем создавать целые Вселенные в своих лабораториях», — мечтает Аркани-Хамед.

Как замечал Майкл Фарадей, не бывает ничего слишком чудесного, чтобы быть правдой.

«Ваша способность путешествовать во времени зависит от законов квантовой гравитации, — говорит Кип Торн, — и мы всего в нескольких десятилетиях от их полного понимания. Нам нужно 20–30 лет, а может, и меньше».

«Наука теперь столь быстро двигает прогресс вперёд, что я иногда сожалею, что родился слишком рано, — писал Бенджамин Франклин. — Невозможно представить, до каких высот поднимется власть человека над материей через тысячу лет. Возможно, мы научимся лишать массивные тела гравитации и станем для удобства перемещать их по воздуху».

Как показывает пример теории Максвелла, последствия новой теории могут стать столь же потрясающими, сколь и непредсказуемыми. Лучше всего об этом сказал писатель-фантаст Артур Кларк: «Любая достаточно развитая технология неотличима от магии».

Магический мир ждёт нас за горизонтом. Приготовьтесь к встрече с ним. Кто знает, что мы можем найти в этой неизведанной стране.