Секреты наследственности человека

Афонькин Сергей Юрьевич

Книга предназначена для широкого круга читателей, не имеющих специального медицинского и биологического образования. Доступным, ясным языком, полным образных сравнений, она рассказывает о наследственных заболеваниях человека и о роли генов в его наследственности. В частности, уделяется внимание роли хромосом и генов в определении пола, их влиянии на различные системы органов. С генетической точки зрения рассматриваются такие распространенные заболевания, как гемофилия, диабет и повышенное содержание холестерина в крови. Обсуждается роль генов в наследовании психических расстройств и проявлении гениальности. Изложены последние данные о влиянии наследственности на процессы старения и возникновения раковых опухолей. Дискутируется роль врожденных наследственных программ в поведении человека. Рассказывается о способах предупреждения передачи наследственных дефектов, в частности о пренатальной диагностике, и о возможности генной терапии.

Введение

Когда вы покупаете сложный бытовой прибор, скажем, кухонный комбайн со встроенной электроникой или музыкальный центр, к нему обычно прикладывается инструкция по эксплуатации. В ней сказано, чего не надо делать с вашим дорогостоящим приобретением, чтобы оно проработало вам на радость как можно дольше без сбоев и поломок. Наш организм без особых натяжек можно сравнить с суперсложным саморегулирующимся механизмом, который с высоким КПД использует энергию химических связей, получаемую нами с пищей. Тело человека способно к самопочинке — это характерно для технологии, которая в мире техники только начинает разрабатываться. И хотя некоторые марки автомобилей уже умеют самостоятельно подкачивать свои шины, наращивать на них стершуюся резину они еще не в состоянии. А наша кожа нарастает в течение всей жизни!

Несмотря на определенную прочность нашего организма, его способность к саморегуляции, репарации и сопротивляемости внешним воздействиям не беспредельна. Мы тоже должны знать, как правильно «эксплуатировать» его для того, чтобы с минимальными потерями здоровья дожить до счастливой старости. Хотя инструкции по эксплуатации к новорожденным детям в родильных домах не прилагаются, люди накопили уже достаточно медицинских знаний, чтобы точно знать, какие действия идут на пользу здоровью, а какие вредят ему. Основная проблема состоит в том, чтобы применять эти знания на деле. Нередко неправильное использование организма приводит к его досрочному выходу из строя. Так, гиподинамия, злоупотребление алкоголем и табаком быстро способны расшатать даже железное здоровье.

Аналогия нашего тела со сложным прибором может быть продолжена. Как и любой механизм, наш организм не застрахован от случайных травм и повреждений. Существует огромная область медицины, которая вполне успешно борется с такими «поломками» в пути — переломами, вывихами, ожогами и обморожениями… Практически все инфекционные заболевания тоже можно рассматривать как своеобразные «поломки», вызванные внешними причинами, только происходят эти сбои на клеточном или на молекулярном уровнях.

Клетки, белки и гены

Наше тело является империей клеток, каждая из которых представляет собой миниатюрную фабрику для производства белков. Многие из этих важнейших макромолекул могут быть выделены из организма в виде беловатых порошков, оседающих в результате химических реакций на дне пробирки. Отсюда и название. Вспомните — в кипящей воде часть содержимого куриных яиц также приобретает белый цвет.

Молекулы белков похожи на длинные цепочки бус, в которых роль отдельных звеньев играют 20 различных аминокислот, способных соединяться между собой в любом порядке. Если сравнить аминокислоты с буквами алфавита, то белки будут похожи на составленные из них слова, только очень длинные. Представить себе, как строится отдельный белок, очень просто. Вообразите, что у вас на столе стоят 20 стеклянных банок, каждая из которых заполнена бусинами своего цвета. Бусины — это аминокислоты. Вы начинаете составлять цепочку из таких бусин, последовательно беря их наугад из банок и нанизывая на нитку. В результате у вас получится разноцветная цепочка. Это и есть модель белковой молекулы. Число различных вариантов белков, составленных всего из пяти аминокислот, уже превышает три миллиона. В состав же среднего белка входит 100–200 аминокислот. Понятно, что разнообразие цепочек такой длины будет измеряться совершенно уже астрономическими числами.

Белки являются одним из основных «строительных материалов», из которых состоят клетки и многие части нашего тела. Например, в основном, из белков построены мышечные волокна, сухожилия, связки, волосы и ногти. Некоторые белки похожи на грузовые машины — они транспортируют в организме различные вещества. Хороший пример — находящийся в эритроцитах белок гемоглобин. Он способен присоединять две молекулы кислорода всего за две сотые доли секунды и затем переносить его по кровеносным сосудам в любую точку тела. Особые белки воспринимают свет и цвет, другие способствуют прохождению нервных сигналов, третьи — иммуноглобулины — борются с чужеродными микроорганизмами. Многие белки являются ферментами. Без них невозможно было бы переваривание пищи, да и вообще любые превращения химических соединений в процессе обмена веществ. Практически любая химическая реакция в нашем теле, в результате которой одно вещество превращается в другое, осуществляется с помощью своего белка-фермента. Без преувеличения можно сказать, что с помощью белков клетка создает все прочие свои молекулы.

Хромосомы

Катушка ниток

ДНК не случайно порой образно называют «нитью жизни». На фотографиях, полученных с помощью электронного микроскопа, она действительно напоминает тонкую ниточку. Чем сложнее организм, тем длиннее у него общая протяженность нити ДНК. Понять эту закономерность несложно. У более высоко организованного существа должно быть больше белков. Следовательно, и протяженность ДНК, с помощью которой хранится информация об этих белках, будет у него больше. Это правило имеет свои исключения. Например, у некоторых земноводных ДНК в клетках гораздо больше, чем у приматов и человека, хотя никто не усомниться, что обезьяны и люди все-таки несколько более развитые существа, чем лягушки и тритоны.

Однако если сравнивать длину ДНК у разных организмов, относящихся к самым разным группам (таксонам), то закономерность очевидна: в процессе подъема по эволюционной лестнице количество ДНК увеличивается. У большинства бактерий нить ДНК совсем невелика и свернута в виде колечка. Ее можно сравнить с телетайпной лентой, на которой записаны важные сведения. Пока длина ленты относительно невелика, обращаться с ней достаточно удобно: можно быстро просмотреть всю ленту, просто протаскивая ее между пальцами.

Что будет, если длина такой ленты увеличится в десять, в сто, в тысячу раз? Просматривать ее станет трудно, да и хранить будет неудобно. Только представьте себе целый ворох такой ленты, кучей лежащий на полу! Выход из сложившейся ситуации простой — ленту необходимо аккуратно намотать на бобину. Тогда с ней будет удобно обращаться. Кстати, так поступают и домохозяйки, которые наматывают длинные нитки на катушки, а шерсть предпочитают хранить, смотанной в аккуратные клубки или мотки.

Подобными «клубками» или «мотками» ДНК в ваших клетках и являются хромосомы. В переводе с греческого это слово означает «окрашенное тело». Хромосомы действительно удается окрашивать с помощью особых методик, и тогда у делящихся клеток они становятся хорошо видимыми под микроскопом. Неудивительно, что видны они именно в момент деления, ведь в этот относительно недолгий период времени хромосомы буквально «растаскиваются» по разным концам клетки. Поэтому нить ДНК в это время «смотана» наиболее компактно. У молодой, только что разделившейся клетки, хромосомы уже не видны, ее ДНК «расплетается», разворачивается для юго, чтобы все ее гены были доступны для работы.

Хромосомная колода карт

Проще всего можно представить, что происходит с хромосомами в процессе образования половых клеток, если сравнить эти хромосомы с обычными игральными картами. Последовательный ряд карт от шестерки до туза будет называться гаплоидным набором

(греч.

haplos — одиночный). В нашем случае такой набор равен девяти разным картам. Гаплоидный набор человека состоит из двадцати трех различных хромосом. Каждая из них имеет свой размер, форму и по-разному окрашивается с помощью специальных методик. В результате такой окраски на хромосомах возникает ряд полосок, отдаленно напоминающий штрихкод, который наносят на товары. У каждой хромосомы свой рисунок этой «полосатости». Опытный врач или биолог, работающий с хромосомами человека, расположит изображения хромосом его гаплоидного набора в ряд и скажет, какой номер имеет каждая из них. Гаплоидный набор хромосом содержат зрелые половые клетки человека.

Двойной набор хромосом — две шестерки, две семерки, две восьмерки и так далее в случае карт — называется диплоидным

(греч.

di — двойной). Число хромосом диплоидного набора человека равно сорока шести (два гаплоидных набора). Ядра подавляющего большинства клеток человеческого организма содержат именно диплоидный набор хромосом — 46 штук; при этом один гаплоидный набор составляют хромосомы, полученные от матери, а другой — хромосомы, полученные от отца. Поэтому все хромосомы диплоидного набора можно расположить парами — пара номер 1, пара номер 2 и так далее. Хромосомы одной такой пары (одна хромосома — материнская, другая — отцовская) называются гомологичными

(греч.

homologos — подобный). Они очень похожи друг на друга — как пиковая и трефовая дамы в нашей колоде карт. Разница между гомологичными хромосомами все же есть, но о ней мы поговорим чуть позже. Клетки, в ядрах которых находится два гаплоидных набора хромосом, называют диплоидными.

Все клетки нашего тела за исключением половых называются соматическими клетками

(греч.

soma — тело). Подавляющее большинство соматических клеток нашего тела диплоидны. Получается простая схема. Соматические клетки тела содержат двойной набор хромосом — они диплоидны. Половые клетки содержат одиночный набор хромосом. Они гаплоидны. Надо заметить, что кое-где, например, в печени, попадаются клетки, которые содержат не два гаплоидных хромосомных набора, а больше — четыре набора, восемь… Такие клетки называются полиплоидными

Хромосомы и пол

Гены сексуальности

Сразу надо оговориться — речь пойдет не о наследственных задатках, от которых зависит страстность сексуального поведения, а о генах, которые определяют развитие человеческого зародыша в существо мужского или женского пола. Не надо забывать, что немного интригующее слово «секс» в переводе с латыни означает вполне нейтральный в русском языке термин «пол». Латинский глагол scculare переводится при этом как «разделять», чем подчеркивается, что два пола являются как бы независимо существующими отдельностями. Русское же слово «пол» явно намекает на половинку, которой многим людям так недостает для счастья. Впрочем, это лини, замечание по ходу дела. Давайте лучше поговорим о механизмах определения пола на хромосомном и на генетическом уровнях.

До начала XX века у людей были самые смутные представления о том, каким образом определяется пол будущего ребенка. Например, древние греки верили, что девочка рождается при оплодотворении женщины семенной жидкостью из левого яичка мужчины, а мальчики появляются на свет в результате оплодотворения этой жидкостью из правого яичка. Понять логику их рассуждений несложно: правый — правильный — сильный — мужской… Бытовало мнение, что если во время соития женщина лежит на правом боку, она должна зачать мальчика, а если на левом — девочку. Аристотель совершенно всерьез считал, что овца зачинает плод мужского пола, если стоит головой к северу, и женского, если к югу. Долгое время врачи древности полагали, что в женской матке существует три камеры. Одна для мальчиков, другая для девочек, а третья, непарная, для гермафродитов. Развеять эту морфологическую несуразицу удалось только в эпоху Возрождения универсальному Леонардо да Винчи и великому анатому Андреасу Везалию.

В далеком от нас 1672 г. нидерландский анатом и физиолог Репье де Грааф впервые увидел фолликулы млекопитающих в их яичниках. Он работал с забитыми коровами и свиньями. Чтобы извлеченные из них яичники было легче резать, он варил эти репродуктивные органы в кипятке. Также, кстати, поступал и великий Леонардо да Винчи с глазными яблоками человеческих трупов, когда изучал анатомию органов зрения. Повышенная температура вызывала денатурацию белков, в результате чего фолликулы становились белыми шариками. Такой же процесс происходит при варке куриных яиц. Неудивительно, что де Грааф считал обнаруженные им фолликулы именно яйцами животных. Теперь-то мы знаем, что фолликул яичника — это своеобразная камера, стенки которой образованы особыми вспомогательными клетками. Внутри этой камеры и происходит созревание будущей яйцеклетки, которая гораздо меньше самого фолликула. Основываясь на своих наблюдениях и опытах, Грааф опубликовал работу «О женских органах, служащих делу размножения», в которой впервые описал структуру яичника. Впоследствии полость, в которой развивается яйцеклетка, была названа «граафовым пузырьком».

Выбор пола по желанию

Зная хромосомный механизм определения пола при зачатии, нетрудно сообразить, как можно повлиять на выбор пола будущего младенца по желанию заказчика. Для этого надо обеспечить оплодотворение яйцеклетки Х-сперматозоидом, если требуется девочка, и Y-сперматозоидом, если нужен мальчик. К сожалению, это простое соображение не так-то легко воплотить в жизнь. В каждом акте оплодотворения участвуют миллионы сперматозоидов. Разделить их марафонскую толпу на две порции в организме женщины пока не представляется технически возможным. Вне организма, однако, решение такой задачи представляется вполне реальным.

Дело в том, что X и Y сперматозоиды немного отличаются друг от друга. Хромосома X несколько тяжелее Y хромосомы, что приводит к разнице в массе содержащих эти хромосомы сперматозоидов примерно в 1 %. Различие крошечное, однако биологам вполне по плечу разделение даже макромолекул, имеющих разные молекулярные массы, что уж говорить о клетках. Для таких тонких процедур исследователи используют так называемые ультрацентрифуги. Эти приборы похожи на стиральные машины с компактными «каруселями» внутри. В них с невероятной скоростью крутятся роторы, в которых, в свою очередь, находятся пробирки с образцами. В результате сила тяжести в пробирках возрастает в сотни и тысячи раз, и даже почти невесомые клетки и молекулы начинают оседать на дно пробирок. Кстати, такой же прием используют в космонавтике, когда подвергают людей повышенным перегрузкам, только «карусели» в этом случае строят большими. Чем тяжелее образец, тем быстрее он будет двигаться вниз. Для более надежного разделения ученые создают в пробирках еще и градиенты плотностей различных веществ. В результате каждая фракция со своей молекулярной массой задерживается в слое с определенной плотностью. Очень удобно!

Действуя именно таким образом, японским исследователям из Токио удалось разделить мужские сперматозоиды на две фракции. В одной оказались гаметы с X хромосомами, в другой — с Y хромосомами. Можно только догадываться, что происходит с клетками и с их ядрами при таких чудовищных перегрузках. Однако — удивительный факт — в опытах на женщинах-добровольцах сперматозоиды, прошедшие разделение в ультрацентрифуге, не только оказывались жизнеспособными, но и были вполне годны для оплодотворения яйцеклеток. Шестеро женщин, оплодотворенных в процессе этих опытов Х-фракцией сперматозоидов мужа, забеременели и впоследствии, все как одна, родили девочек!

Другой метод разделения сперматозоидов основывается на их способности двигаться в жидкости, в которой создано электромагнитное поле. Дело в том, что на поверхности практически всех клеток расположены положительно и отрицательно заряженные молекулы белков и гл и ко протеидов (белков, связанных с сахарами). Их суммарный заряд часто отличается от нулевого, и поэтому клетки способны двигаться в электромагнитном поле, как это делают любые заряженные частицы. По непонятной пока причине заряд X и Y сперматозоидов отличается, и поэтому они двигаются с разной скоростью. К сожалению, пока такая процедура негативно сказывается на их последующей подвижности, однако со временем эта трудность, возможно, будет устранена.

Нарушения определения пола

Итак, на определение пола у человека в процессе его эмбрионального развития влияют половые хромосомы и половые гормоны. Гены, находящиеся в Y хромосоме, заставляют половые железы обрести свою половую принадлежность. В результате клетки этих желез начинают производить гормональные сигналы, под воздействием которых развитие всего будущего организма идет по мужскому или по женскому пути. Таким образом, на определение пола у человека может влиять способность клеток его организма выделять половые гормоны или реагировать на них. Сбои в определении половой принадлежности связаны также с самими половыми хромосомами, точнее, с их числом.

Дело в том, что, как вы уже поняли, поведение хромосом в процессе редукционного деления является очень сложным процессом. В популярной литературе его порой сравнивают с «танцем», хореографией которого руководит невидимый постановщик. Где сложность, там и ошибки. Одна из хромосом в результате может отстать от остальной братии и не попасть туда, куда следует. Хорошей образной аналогией данного процесса является пассажир, который не успел сесть в вагон уходящей электрички или вагона метро. Он сядет в следующий поезд, но от своей уже уехавшей компании он неизбежно отстал. В результате подобных «опозданий» образуется пара гамет, в одной из которых будет 22 хромосомы, а в другой — 24, то есть на одну хромосому больше или меньше, чем следует. Если «опоздавшими» являются половые хромосомы X или Y, в результате оплодотворения возникнет зародыш с отличающимся от нормы набором половых хромосом. Такие ошибки, случающиеся с вероятностью 1,5–2,0 на 1000 родов, чаще всего приводят к тяжелым последствиям. Рассмотрим наиболее распространенные из них.

Синдром Шершевского — Тернера

Отсутствие одной из хромосом диплоидного набора в генетике называется моносомией

(греч.

monos — один). В этом случае в клетках присутствует лишь одна из двух гомологичных хромосом. В подавляющем большинстве случаев зародыши с такой аномалией нежизнеспособны. В частности, именно такие случаи пополняют печальную статистику самопроизвольных абортов на ранних стадиях беременности. Единственный случай, когда на свет может появиться жизнеспособный ребенок не с 46, а с 45 хромосомами, ситуация, когда у него отсутствует одна из двух X хромосом. В медицинской литературе такое нарушение впервые было документально зафиксировано в 1926 г. Н. А. Шершевским и примерно десятилетие спустя более подробно охарактеризовано Тернером. Поэтому в современной медицинской литературе синдром носит название синдрома Шершевского — Тернера. Примерно в половине случаев синдром возникает также в результате отсутствия одного из фрагментов X хромосомы. В целом, такие новорожденные выглядят как девочки, однако их половые органы и вторичные половые признаки остаются недоразвитыми. Половые железы, как правило, отсутствуют, яичников нет вовсе, обычно вместо них удается обнаружить лишь тяжи из соединительной ткани. Маточные трубы и сама матка остаются недоразвитыми. Нечего и говорить, что подобные больные являются стерильными. Месячные отсутствуют, к деторождению женщины с таким синдромом не способны. Уровень женских половых гормонов у них снижен, поэтому волосы на лобке и под мышками с возрастом растут плохо. Женская грудь практически отсутствует, пигментация сосков слабая. Строением узкого таза и широким поясом верхних конечностей такие девушки немного напоминают мужчин. Внутренние углы глаз у них часто оказываются выше наружных.

Для синдрома характерны разнообразные пороки, включая различные пороки сердца вроде отсутствия межжелудочковой перегородки, а также низкий рост. Девочки уже в школе начинают отставать в развитии от своих сверстниц. В среднем они ниже детей того же возраста на 20–30 см, а рост взрослых людей с таким синдромом редко превышает 135 см. Возможно, низкорослость людей с синдромом Шершевского — Тернера связана с неспособностью клеток их костной ткани воспринимать гормон роста. Сам по себе низкий растете не является прямым указанием на тот или иной синдром, однако, специальное исследование показало, что среди низкорослых девочек в Санкт-Петербурге около 1,5 % не имеют одной из двух X хромосом.

У детей с этим синдромом формируется бочкообразная грудная клетка, уши оттопырены и низко расположены. Опытный врач в состоянии заподозрить наличие синдрома Шершевского — Тернера у новорожденной уже по внешнему виду ребенка. У таких девочек короткая шея с характерными перепончатыми кожными складками, ее голени, стопы и кисти отечны благодаря недоразвитости лимфатических сосудов, расстояние между сосками увеличено, ногти часто недоразвиты, нижняя челюсть маленькая. Иногда такие девочки рождаются с добавочным шестым пальцем (

Выявить такую аномалию для специалиста несложно. Дело в том, что еще в 1949 г. два канадских ученых — Барр и Бертрам — обнаружили, что при окрашивании клеток млекопитающих женского пола в их ядрах под микроскопом удается разглядеть маленькое компактное тельце. В ядрах мужских клеток такого тельца обнаружить не удавалось. Впоследствии выяснилось, что это таинственное пятно есть не что иное, как одна из двух X хромосом, которая перестает работать и чрезвычайно уплотняется. Ученые назвали его «половым хроматином». Впоследствии же за ним закрепилось название «тельце Барра». У женщин с хромосомным набором XX во всех диплоидных клетках в результате стандартной процедуры окрашивания легко удается выявить такое тельце. Образец клеток для исследования можно получить в результате банального мазка, взятого из ротовой полости. Ее поверхность покрыта эпителиальными клетками, которые постоянно слущиваются по мере старения. Следовательно, в каждом нашем плевке и в капле слюны есть клетки, годные для цитологических исследований.

Добавочные X хромосомы

Когда рассказываешь в школе о хромосомных нарушениях пола у человека, ученики порой выдвигают любопытную гипотезу о том, что добавочная X хромосома должна вызывать появление на свет «суперженщин», этаких описанных в скандинавской мифологии валькирий. На самом деле это не так. Более того, общаясь с симпатичной девушкой, можно и не заподозрить, что она является носительницей лишней X хромосомы, поскольку нередко такая хромосомная аномалия никак не сказывается ни на внешнем облике, ни на репродуктивной способности женщин. Вероятность же такой встречи не так уж и мала. По статистике каждая из тысячи женщин является носителем трисомии X, то есть обладает тремя X хромосомами! Обнаружить такую наследственную патологию можно достаточно просто в результате окраски клеток. Они имеют два тельца Барра. Чаще всего подобные хромосомные аномалии обнаруживаются случайно в результате цитологических исследований, которые проводятся с иными целями.

К сожалению, более часто женщины с хромосомным набором XXX встречаются среди умственно отсталых пациентов в психиатрических лечебницах. Врачи констатируют, что трисомия по X хромосоме в 75 % случаев приводит к умственной отсталости и, в частности, к шизофрении. Как при этом связаны между собой добавочные «гены X» и интеллектуальные способности, и почему в 25 % случаев отклонений в умственном развитии обнаружить не удается, совершенно неясно.

Иногда добавочная X хромосома является причиной высокого роста девушек. Она никак не сказывается на потенциальной половой активности. Наоборот — часто трисомия X приводит к недостаточному развитию фолликулов в яичниках, преждевременному бесплодию и раннему климаксу. Однако надо еще раз подчеркнуть — нередко добавочная X хромосома не приводит к каким-либо заметным отклонениям в развитии. Женщины с хромосомным набором XXX плодовиты, хотя риск спонтанных абортов и хромосомных нарушений у потомства у них несколько повышен по сравнению со средними показателями.

Синдром Клайнфельтера

Мужчины с так им синдромом обладают добавочной X хромосомой. Их набор половых хромосом — XXY. Исследования показывают, что лишнюю X хромосому они получают практически с равной вероятностью либо от матери, либо от отца, причем с увеличением возраста отца вероятность такою «сбоя» возрастает. Частота рождений детей с подобным хромосомным нарушением довольно высока, она составляет около 1/500. При этом до начала полового созревания обычно никаких отклонений от нормы при чисто внешнем осмотре ребенка обнаружить не удается, хотя при цитологических исследованиях у таких мальчиков в клетках обычно четко выявляется характерное для женского пола тельце Барра. В процессе возмужания у больных с этим синдромом складывается евнухоидный тип строения тела: узкие плечи и грудная клетка, широкий таз, слабо развитая мускулатура и волосяной покров на лобке и под мышками. Семенные канальцы часто атрофируются, а сперматозоиды не вырабатываются, что является причиной стерильности. У мужчин с синдромом Клайнфельтера регистрируется повышенный уровень характерного для женщин фолликулостимулирующего гормона, который выделяется с мочой. Молочные железы у них начинают увеличиваться (гинекомастия), что отмечал еще X. Клайнфельтер, впервые в 1942 г. описавший этот синдром. Если быть точным, то настоящими женскими молочными железами такую увеличенную мужскую грудь, впрочем, считать нельзя, поскольку она состоит из плотной соединительной ткани, которая не способна к лактации (к выделению молока).

Люди с синдромом Клайнфельтера обычно безынициативны и редко способны к творческой деятельности. Они легко поддаются внушению и эмоционально неустойчивы. Интеллект нередко при этом не страдает, хотя в некоторых случаях отмечается задержка умственного развития, достигающая порой дебильности. Около 15 % пациентов с синдромом Клайнфельтера страдают олигофренией. Некоторые замыкающиеся в себе дети, не реагирующие адекватно на внешний мир (аутисты), нередко при обследовании оказываются обладателями хромосомного набора XXY.

Почти всегда умственная отсталость выявляется у больных с хромосомным набором XXXY или даже с XXXXY. Внешне таких людей можно четко идентифицировать как мужчин, однако они стерильны и обладают внешностью евнухов. Несколько сгладить проявление синдрома Клайнфельтера можно с помощью инъекций аналога мужского полового гормона метилтестостерона, которые врачи рекомендуют начинать делать в возрасте 10–11 лет. Поэтому очень важно вовремя идентифицировать таких больных, что можно сделать в результате анализа их клеток.

Хромосома агрессивности

В 1961 г. достаточно случайно в результате цитологических анализов был обнаружен мужчина с необычным набором половых хромосом — XYY. Вряд ли это факт взволновал бы общественность, если бы через пять лет, в 1967 г. в известном научном англоязычном журнале «Природа» (Nature) не появилась статья У. Прайса и П. Уотмора «Преступное поведение и мужской генотип XYY». В ней они пытались доказывать, что наличие у мужчин в клетках дополнительной Y хромосомы связано со склонностью к агрессии и различным правонарушениям. Во многом выводы статьи основывались на данных, полученных двумя годами раньше английской исследовательницей Патрицией Джекобс и ее двумя сотрудницами из Эдинбурга. Они изучали хромосомные наборы пациентов, содержащихся в лечебных заведениях для лиц с умственным развитием ниже нормы, имевших склонность к жестокости и антисоциальному поведению. Выяснилось, что среди этой категории больных частота встречаемости лиц с хромосомным набором XYY составляла 3,5 %, то есть была в 35 раза больше, чем в среднем в обществе! Отсюда было уже недалеко до прямого вывода — добавочная «мужская» хромосома Y является «хромосомой преступности», которая заставляет ее носителей совершать различные правонарушения.

Отзывчивая пресса быстро откликнулась на новую и явно сенсационную гипотезу. В США был опубликован роман «XYY мужчина», который сразу стал бестселлером. В нем описывалось, как вышедший из тюрьмы взломщик с «роковой» добавочной Y хромосомой становится секретным агентом, работающим по приказу секретных британских служб. Для него не существует моральных и этических барьеров, он необычно агрессивен и способен выполнить самое рискованное и кровавое задание. В 1969 г. в одном из американских юридических журналов совершенно всерьез обсуждалась необходимость ограничивать свободу лиц с хромосомным набором XYY еще до того, как они совершили любые противоправные действия.

Не удивительно поэтому, что при ведении некоторых судебных процессов адвокаты обвиняемых пытались строить защиту, доказывая, что поведение их подзащитных было определено «преступной хромосомой»; следовательно, они не отвечают в полной мере за совершенные злодеяния. В подобных случаях мнения присяжных часто расходились. Например, в 1968 г. во Франции подсудимый Даниэль Югон обвинялся в убийстве пожилой женщины. Улики не вызывали сомнения, что именно он виноват в этом тяжком преступлении, совершенном в одном из парижских отелей. Югон имел хромосомный набор XYY, и это было известно суду. Тем не менее, он был признан вменяемым и ответил по всей строгости закона. Почти в то же время в Австралии Лоренс Хен обвинялся в аналогичном преступлении — он зарезал пожилую женщину, свою квартирную хозяйку. Защита выдвигала тезис о невменяемости Хена, основываясь на его хромосомном наборе XYY. В результате Хен был направлен в тюремную больницу «до выздоровления»! Нетрудно догадаться, что такой вердикт фактически означал для него пожизненное заключение.