Журнал «Вокруг Света» №08 за 2008 год

Вокруг Света

Имитация жизни

Одна из стен Музея мировой культуры на набережной Бранли в Париже — живая в буквальном смысле слова, поскольку засажена травой и декоративными садовыми культурами. Жиль Клемент, Патрик Блан, 2006 год. Фото: RUSSIAN LOOK

Павильон в виде кроны пальмы, жилые дома, имитирующие своими очертаниями птиц и насекомых, офисы, не отличимые от окружающей природной среды — все это причудливые объекты биоархитектуры. В основе ее лежит принцип подражания живым формам с помощью использования новейших технологий и экологически чистых материалов.

Термин «биоархитектура» сами архитекторы не жалуют, считая его слишком неопределенным, любительским. И действительно, приставку «био» сейчас модно добавлять к названию любой отрасли науки, производства и вообще ко всякому действию или продукту, выражая таким образом приобщение к живой природе. Зачастую сами изобретатели неологизма не могут внятно объяснить его смысл, так произошло и в архитектуре: некоторые ее направления назвали «живыми», хотя в буквальном смысле оживить ее стремятся считанные архитекторы-утописты. Достижения же бионики (или биомиметики) — науки, которая собственно и занимается применением в технике различных особенностей живых организмов, — к сожалению, еще очень далеки от практического применения в архитектуре. Возможно, из-за подобной неточности в определениях того, что же представляет собой приближенная к живой природе архитектура и что именно она может у нее заимствовать, каждый талантливый архитектор создает свое собственное направление и дает ему уникальное название.

Создателем органической архитектуры стал американец Луис Салливен. Как и большинство творческих людей XIX века, он проникся эволюционным учением Дарвина и передовыми достижениями биологии. Салливен считал, что человек должен жить и работать в домах, которые гармонично вписываются в окружающий ландшафт. Хотя философия органической архитектуры звучала, скорее, как некий идеал, к которому надо стремиться, ее последователи, включая самого знаменитого из них — Фрэнка Ллойда Райта, творившего в конце XIX — первой половине XX века, создали прекрасные образцы. Поселившийся в Индии англичанин Лаури Бэйкер воплотил эти идеи в домах, вполне традиционных внешне, но так органично встроенных в зеленые заросли тропиков, что можно подумать, они сами выросли из земли, как грибы после дождя. Сходное впечатление производят сооружения австрийского художника и архитектора Фриденсрайха Хундертвассера. Отличительной чертой органической архитектуры стала приверженность к природным материалам: вместо стали, бетона и пластика используются камень, дерево и стекло.

Межпланетная эквилибристика

Со времен Кеплера и Ньютона астрономам известно, что в поле тяготения массивного центрального тела движение происходит по классическим траекториям — эллипсам, параболам и гиперболам. Однако современные космические трассы часто сильно отличаются от классических. И порой только благодаря изощренной фантазии навигаторов удается найти нестандартные решения, позволяющие осуществить, казалось бы, невыполнимые космические проекты. Рис. вверху NASA

В начале XX века, когда принципиальная выполнимость космических полетов была научно обоснована, появились первые соображения об их возможных траекториях. Прямолинейный полет от Земли к другой планете энергетически крайне невыгоден. В 1925 году немецкий инженер Вальтер Гоман (Walter Hohmann) показал, что минимальные затраты энергии на перелет между двумя круговыми орбитами обеспечиваются, когда траектория представляет собой «половинку» эллипса, касающегося исходной и конечной орбит. При этом двигатель космического аппарата должен выдать всего два импульса: в перигее и апогее (если речь идет об околоземном пространстве) переходного эллипса. Данная схема широко используется, например, при выведении на геостационарную орбиту. В межпланетных полетах задача несколько осложняется необходимостью учитывать притяжение Земли и планеты назначения соответственно на начальном и конечном участках траектории. Тем не менее полеты к Венере и Марсу выполняются по орбитам, близким к гомановским.

Биэллиптические траектории

Пожалуй, первым примером более сложного космонавигационного приема могут служить биэллиптические траектории. Как доказал один из первых теоретиков космонавники Ари Абрамович Штернфельд, они оптимальны для перевода спутника между круговыми орбитами с разным наклонением. Изменение плоскости орбиты — одна из самых дорогих операций в космонавтике. Например, для поворота на 60 градусов аппарату надо добавить такую же скорость, с какой он уже движется по орбите. Однако можно поступить иначе: сначала выдать разгонный импульс, с помощью которого аппарат перейдет на сильно вытянутую орбиту с высоким апогеем. В ее верхней точке скорость будет совсем невелика, и направление движения меняется ценой относительно небольших затрат топлива. Одновременно можно скорректировать и высоту перигея, немного изменив скорость по величине. Наконец, в нижней точке вытянутого эллипса дается тормозной импульс, который переводит аппарат на новую круговую орбиту.