Космические двигатели будущего

Дмитриев Александр Сергеевич

Кошелев Владимир Алексеевич

В брошюре сделана попытка представить себе возможные пути развития космических двигательных систем завтрашнего дня. Рассматривается ряд традиционных и новых идей и проектов в области космических двигателей, их возможности и соответствие тем — задачам, которые по сегодняшним представлениям станут наиболее актуальными в не очень отдаленной перспективе.

Брошюра рассчитана на широкий круг читателей.

ВВЕДЕНИЕ

Два с половиной десятка лет отделяют нас от 4 октября 1957 г., которому суждено было разделить историю человечества на две эпохи: докосмическую и космическую. За это время родилось и выросло поколение, которое первичные знания о космосе приобрело не из романа Жюль Верна, а из почти ежедневных сообщений телеграфных агентств, телерепортажей и кинохроники. Космосом сегодня в той или иной степени «занимаются» сотни тысяч людей в лабораториях, научных центрах, конструкторских бюро, заводах и фабриках. Он давно перестал быть сенсацией, но стал очень нужным. Пилотируемые аппараты, космические средства связи, метеорологические спутники и навигационные системы в значительной степени определяют облик нашего времени.

Вместе с тем не зря дороги космоса называют крутыми. Не все на них происходит так, как этого бы хотелось. Радикально изменились за прошедшие два с половиной десятилетия представления о первоочередных задачах освоения космического пространства. Почти очевидная не только для любителей, фантастов, но и для специалистов «магистральная» линия развития космонавтики «Луна — Марс — далее везде» значительно трансформировалась с учетом потребностей и возможностей общества. Ряд проектов, как, например, полет человека на Марс, оказались на грани технически реализуемых при современном уровне развития космической техники и в то же время за гранью экономически допустимых на эти цели затрат.

[1]

Сам факт отказа от дальнейшего следования по «магистральному» пути показывает, что космос и космическая индустрия превратились в весьма существенный не только эмоциональный и политический, но и экономический фактор. Дальнейшее увеличение затрат становится оправданным только в том случае, если от вложенных средств можно будет ожидать отдачи, покрывающей значительную часть вложений. Требование экономической окупаемости космических программ на этом новом этапе в значительной степени определяет пути развития космонавтики в целом.

В данной брошюре сделана попытка представить себе возможные пути развития космических двигательных систем завтрашнего дня. Естественно, в таком сложном и трудном деле, как создание космических средств, всегда существуют многочисленные варианты решения одной и той же задачи. Кроме того, арсенал технических идей и возможностей постоянно пополняется, и многие из новых могут оказаться в чем-то лучше тех, которые известны сегодня. Поэтому тех из читателей, которые хотели бы получить ясный ответ на вопрос, какими же двигателями будут оснащены космические аппараты, скажем, через 30–50 лет, возможно ждет разочарование. В брошюре не содержится однозначного ответа на этот вопрос, да и вряд ли он вообще возможен. Здесь рассматривается ряд традиционных и новых идей и проектов в области космических двигателей, их возможности и соответствие тем задачам, которые по сегодняшним представлениям станут наиболее актуальными в не очень отдаленной перспективе.

С точки зрения перспектив космического двигателестроения основные направления развития космической техники условно можно разбить на четыре группы.

АВТОНОМНЫЕ ДВИГАТЕЛЬНЫЕ СИСТЕМЫ

Возможности автономных двигательных систем.

Роль ракетного двигателя заключается в преобразовании какого-либо вида энергии в кинетическую энергию ракеты. В соответствии с известным принципом реактивного движения это преобразование может быть реализовано путем отбрасывания вспомогательной массы, т. е. путем сообщения рабочему телу двигателя некоторой скорости. Таким образом, любая двигательная система должна включать в себя источник энергий, источник отбрасываемой массы (рабочее тело двигателя) и собственно двигатель — устройство, в котором энергия источника преобразуется в кинетическую энергию рабочего тела.

В некоторых схемах двигателей источник энергии и рабочее тело могут быть совмещены. Например, в жидкостных ракетных двигателях (ЖРД) энергия выделяется за счет химической реакции компонентов рабочего тела. Если же источник энергии и рабочее тело располагаются на борту ракеты, то такие двигательные системы называются автономными.

Из закона сохранения энергии следует, что минимальный се запас на борту ракеты должен равняться сумме кинетической энергии полезного груза и работы, затрачиваемой на преодоление силы тяжести и сопротивления воздуха при старте ракеты с поверхности Земли. Например, затраты на вывод массы 1 кг при запуске искусственного спутника на орбиту высотой 300 км составляют 4,5 · 10

7

Дж.

Поскольку на разгон источника энергии также требуются затраты работы, то желательно использовать такие источники, которые обладали бы максимальным энерговыделением на единицу массы. Энергия может быть запасена в самой разнообразной форме — механической, электрической, магнитной, химической, ядерной. Наилучшие характеристики имеют источники энергии, использующие химические и ядерные реакции.

Удельные энергии для реакций, использующихся в настоящее время, и перспективных реакций, приведены в табл. 1.