Космические твердотопливные двигатели

Назаров Герман Алексеевич

Прищепа Владимир Иосифович

Брошюра посвящена созданию и использованию космических твердотопливных двигателей. Рассматриваются некоторые типы таких двигателей, а также возможные перспективы их использования в космонавтике.

Брошюра рассчитана на всех тех, кто интересуется современными проблемами космической техники.

Твердотопливные двигатели (ракетные двигатели твердого топлива, РДТТ) широко используются в современной космонавтике, удачно дополняя жидкостные ракетные двигатели (ЖРД), работающие на жидком топливе

[1]

. Области конкретного применения этих двух типов двигателей определяются их сравнительными конструктивными, энергетическими, эксплуатационными, финансовыми и другими характеристиками. Большее содержание потенциальной химической энергии, запасенной в единице массы жидкого ракетного топлива, легкость регулирования рабочего режима (величины тяги) и осуществимость многократного включения и выключения ЖРД в полете предопределили главенствующую роль этих двигателей в космонавтике. ЖРД широко применяются в качестве маршевых, т. е. основных, двигателей, обеспечивающих разгон ракет-носителей (РН) и космических аппаратов (КА), торможение КА и перевод их на другие орбиты и т. д. В качестве вспомогательных двигателей ЖРД используются, например, почти во всех реактивных системах управления полетом КА.

Что касается РДТТ, то прежде всего следует отметить, что благодаря быстродействию и простоте устройства (а следовательно, надежности) этот двигатель является наиболее подходящим или даже незаменимым средством для создания тяги при проведении таких «вспомогательных» операций, как аварийное спасение космонавтов на начальном участке вывода космических кораблей на околоземные орбиты, разделение ступеней РН, раскрутка ракетных ступеней и КА с целью их стабилизации в полете, создание начальных перегрузок для нормального запуска основных ЖРД в невесомости и т. д. Во многих случаях оказывается целесообразным использование маршевых космических РДТТ. В этом качестве твердотопливные двигатели широко применяются на верхних ступенях РН и в так называемых разгонных блоках, включаемых в космосе. Установка на ракеты-носители навесных РДТТ, включаемых при старте, является эффективным способом повышения мощности РН. В арсенале космонавтики имеются и полностью твердотопливные РН.

Несмотря на большое место, которое занимают твердотопливные двигатели в современной космонавтике, космические РДТТ не нашли достаточного отражения в литературе. Настоящая брошюра восполняет этот пробел. В ней рассказывается об устройстве и особенностях космических РДТТ, истории их создания и применения. Наряду с общим уровнем развития РДТТ рассматриваются конкретные конструкции двигателей, обсуждаются перспективы дальнейшего развития и использования РДТТ в космонавтике.

ОСНОВНЫЕ СВЕДЕНИЯ О КОСМИЧЕСКИХ РДТТ

РДТТ относятся к так называемым химическим или термохимическим ракетным двигателям. Все они работают по принципу превращения потенциальной химической энергии топлива в кинетическую энергию истекающих из двигателя газов. РДТТ состоит из корпуса, топливного заряда, реактивного сопла, воспламенителя и других элементов (рис. 1).

Корпус РДТТ представляет собой прочный сосуд цилиндрической, сферической или другой формы, изготовленный либо из металла (сталь, реже — титановый и алюминиевый сплавы), либо из пластика. Это — основной силовой элемент твердотопливного двигателя, а также всей двигательной установки и твердотопливной ракеты (ракетной ступени) в целом. В корпусе содержится прочно скрепленный с ним заряд твердого топлива: обычно — механическая смесь кристаллического неорганического окислителя (например, перхлората аммония) с металлическим горючим (алюминий) и полимерным горючим-связующим (полибутадиеновый каучук). При нагреве этого топлива от воспламенителя (который в простейшем случае представляет собой пиротехнический заряд с электрозапалом) отдельные составляющие топлива вступают между собой в химическую реакцию окисления-восстановления, и оно постепенно сгорает. При этом образуется газ с высокими давлением и температурой.

Рис. 1. РДТТ в разрезе: