Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография

Панцхава Евгений Семенович

Предлагаемая читателю монография, прежде всего, посвящается выдающимся отечественным ученым и специалистам, стоявшим у истоков создания отечественной биоэнергетики задолго до ее активного развития за рубежом. В книге представлены зарубежные и отечественные достижения по всем современным направлениям бурно развивающейся биоэнергетики как самостоятельного сектора общей мировой энергетики, ее теоретическим основам, технологиям, оборудованию и практическому применению.

Большое внимание уделяется теории и практики природного метаногенеза как сложнейшего биологического процесса, активно участвующего в кругообороте углерода в биосфере, роли этого процесса в эволюции живого на земле, его глобальному участию в образовании ископаемых углеводородов.

Книга рекомендуется для специалистов России, работающих в указанной области, для студентов, аспирантов и преподавателей кафедр, факультетов, вузов, изучающих и развивающих отечественную биоэнергетику.

Предисловие

Предлагаемая читателю монография, прежде всего, посвящается выдающимся отечественным ученым и специалистам, стоявшим у истоков создания отечественной биоэнергетики задолго до ее активного развития за рубежом: академикам АН СССР – В.Н. Шапошникову, А.И. Опарину, Н.М. Сисакяну, Н.Д. Иерусалимскому, Е.Н. Кондратьевой; членам-корреспондентам АН СССР – С.И. Кузнецову, Н.В. Букину, И.В. Березину; академикам АН Лат ССР – М.Е. Бекеру, У.Э. Виестуру; профессорам – В.Я. Быховскому, В. А.Зуеву, Л.Л.Гюнтер, А. А. Ковалеву, Л.Л. Гольдфарбу, Г.Д. Ананиашвили, В.В. Алексееву; инженеру-технологу И. С. Логоткину, инженерам – В. А. Пожарнову, Н. И. Майорову, И.И. Школе, Т.Я. Андрюхину, В.М. Шрамкову, П.И. Гридневу, В.П. Лосякову, И.В. Семененко, В.Б.Костяку, Л.И.Монгайту, специалистам ГКНТ СССР В.И. Доброхотову, М.И. Фугенфирову, Н.Л. Кошкину, И.Х. Нехорошему, Скабиеву Е.М., Шкапкину В.И. и другим.

В книге представлены зарубежные и отечественные достижения по всем современным направлениям бурно развивающейся Биоэнергетики как самостоятельного сектора общей мировой энергетики, ее теоретическим основам, технологиям, оборудованию и практическому применению..

Большое внимание уделяется теории и практики природного метаногенеза как сложнейшего биологического процесса, активно участвующего в кругообороте углерода в биосфере, роли этого процесса в эволюции живого на земле, его глобальному участию в образовании ископаемых углеводородов.

В книге в значительном объеме использованы и цитируются работы, обзоры и монографии выдающихся зарубежных ученых и специалистов как в области биоэнергетики, так в области биологического метаногенеза и его практического применения.

Книга рекомендуется для специалистов России, работающих в указанной области, для студентов, аспирантов и преподавателей кафедр, факультетов, вузов, изучающих и развивающих отечественную биоэнергетику.

Часть первая

Биоэнергетика: мир и Россия

Глава 1. Введение

1.1. Биоэнергетика – самостоятельный сегмент мировой энергетики

Сжигая уголь, практически сжигают только углерод [1-45]. При сжигании нефти на каждый атом углерода приходится два атома водорода, т. е. на каждый потребленный атом углерода нефти выделяется вдвое больше энергии, чем при сжигании угля. А это значит, что при полной замене нефти или газа на уголь его необходимо будет сжигать вдвое больше, что приведет к резкому увеличению углекислого газа в атмосфере. В 1958 г. количество углекислого газа в атмосфере составило 315 млн. т, а в 1980 г. 338 млн. т, т. е. увеличилось за 22 года на 7 %, тогда как в 1880 г. эта цифра составляла 290 млн. т, или за 100 лет концентрация CO

2

в атмосфере увеличилась всего на 15 %. Таким образом, темпы роста концентрации CO

2

в атмосфере с каждым годом увеличиваются, что приводит к усилению «парникового эффекта» и повышению температуры на земном шаре.

Температура атмосферы Земли увеличивается не только за счет усиления "парникового эффекта", но, как впервые указал на это лауреат Нобелевской премии, един из создателей отечественной атомной энергетики, создатель теории цепных реакций академик Н. Н. Семенов, и благодаря постоянно увеличивающемуся тепловому загрязнению.

Постоянное сжигание в огромных количествах ископаемых топлив или создание других мощных топливных носителей приводит к постоянному выбросу тепла в биосферу. Сегодня человечество за счет различных источников энергий производит до 5 10

19

кал тепла в год, что составляет 1/20 000 часть падающей солнечной энергии на Землю или 1/5000 солнечной энергии, поглощаемой массой Земли. В среднем производство энергии увеличивается на 5 % в год. При таких темпах через 200 лет человечество будет производить столько же тепла, сколько дает Солнце, что скажется на изменении теплового баланса Земли. [1–2]

1.2. Биотопливо третьего поколения

Важным направлением в современной мировой биоэнергетике является широкомасштабное культивирование пресноводных и морских микроводорослей как продуцентов углеводородов, так и для производства дешевой биомассы.

Выращивание зеленых водорослей в современных модернизированных системах биореакторов имеют существенные практические и экономические преимущества для производства биотоплива по сравнению с традиционными культурными растениями [1-43].

Фотосинтез играет абсолютно центральную роль во всех биотопливных производственных процессах, так как это первый шаг в преобразовании солнечной энергии (света) в химическую энергию и, следовательно, в конечном счете, отвечает за управление производством их запасов необходимых для синтеза топлива: протоны и электроны (для био-Н2), сахаров и крахмала (на биоэтаноле), масла (для биодизеля) и биомассы (для BTL и биометан). Следовательно, любое увеличение продуктивности фотосинтеза будет способствовать повышению конкурентоспособности производства биотоплива в целом.

Экономическая эффективность производства

биотоплив при конверсии солнечной энергии посредством фотосинтеза определяется эффективностью фотосинтеза. Наибольшей эффективностью фотосинтеза обладает сахарный тростник, использующийся для получния биоэтанола в Бразилии, и кукуруза, использующаяся в США для производства биоэтанола. Эти технологии могут быть экономически выгодными при стоимости нефти выше 40 долларов США за баррель, тогда как стоимость барреля биодизельного топлива составляет 80 долларов США. Таким образом, даже при незначительном повышении фотосинтетической эффективности ожидается значительное увеличение экономической конкурентоспособности производства биотоплив. В этом плане водорослb имеют различные преимущества по сравнению с классическими сельскохозяйственными культурами для производства биотоплива и могут быть сканированы для выделения видов с высокой фотосинтетической эффективностью.

Культивирование водорослей, не требующее использования пахотных земель и лесной древесины, открывает новые экономические возможности для производства биотоплив в засушливых регионах.

1.3 История развития промышленной биоэнергетики в России

Известный русский микробиолог, член-корр. АН СССР С.И. Кузнецов и созданная им научная школа в 60-х – 70-х годах ХХ столетия экспериментально обосновали, что процессы деструкции органических веществ до метана имеют широкое распространение в осадочных отложениях в настоящее время и что промышленные месторождения природного газа – продукт биологических процессов, протекавших ранее. [45].

Промышленный эксперимент, проведенный С. И. Кузнецовым на нефтепромыслах Поволжья в 1956 г. по использованию биогазовых технологий для увеличения дебита оставшейся в залежах нефти объединил биологию и большую энергетику, и, фактически, был «предтечей» создания Отечественной (но возможно и мировой) биоэнергетики. Становление отечественной Промышленной Биоэнергетики в СССР было связано с крупномасштабным применением биогазовых технологий для решения ряда народнохозяйственных задач: эффективной переработки осадков сточных вод больших городов-миллионников, таких, как г. Москва, и промышленного производства кормового препарата витамина В-12 с целью повышения эффективности откорма и продуктивности отечественного животноводства и птицеводства.

Теория биологического происхождения природного газа и современные научные и технические достижения еще в 1964 г. позволили сделать вывод о возможности промышленной биоконверсии биомассы в метан в масштабах достаточно близких к современной добыче природного газа.

Метан, как ископаемый, так и образующийся в современной биосфере, является конечным продуктом сложной цепочки превращения продуктов фотосинтеза в анаэробных, без доступа воздуха, условиях.

То есть, «новейший» метан современной биосферы и, возможно, значительная часть разведанного ископаемого метана содержит в себе законсервированную энергию Солнца.

Литература

1-1.Энергетическая стратегия России на период до 2020 года, www.wood-pellets.com.

1-2.Панцхава Е.С., Будущее мировой энергетики-водород биофотолиза воды, Энергия, № 10, 2011, стр. 11-17

1-3.Михайлов А, Кризис изобилия, g. Газета. гц.

1-4.Терентьев Г.А. и др., Моторные топлива из альтернативных сырьевых ресурсов., Химия, 1989 г.

1-5.Кузнецов Б.Н., Моторные топлива из альтернативного нефти сырья., Химия 2000, www.pereplet.ru.

Глава 2. Биомасса

2.1. Биомасса – сырье для производства топлив и энергии

Научно-техническое промышленное направление «Получение твердого, жидкого, газообразного топлив, электрической и тепловой энергий из биомассы посредством термохимических технологий и биотехнологий» относится к общеэнергетической проблеме «Промышленная биоэнергетика».

Решение проблем Биоэнергетики определяется развитием таких направлений, как:

1. изыскание и создание крупномасштабных, высокопродуктивных источников биомассы (фотосинтез, производство древесной биомассы, промышленное разведение растений – продуцентов углеводородов, производство углеводсодержащей непищевой биомассы, производство водной биомассы, использование твердых отходов городов);

2. биотехнологическая конверсия (получение этилового и других спиртов, органических кислот, растворителей из различных видов биомассы, получение биогаза и водорода;

3. термохимическая конверсия (прямое сжигание, газификация, пиролиз, сжижение, фест-пиролиз, синтез) для получения жидкого, твердого и газообразного топлива (рис. 1).

2.2.Источники биомассы

Древесина является типичным источником биомассы.

Объем производства биомассы в мире составляет 146 млрд. тонн в год, состоящий в основном из диких растений. Энергию биомассы получают из шести различных источников биоэнергии: бытовых отходов, древесины, энергетических растений, отходов агропромышленных комплексов, свалочного газа, и алкогольного топлива.

Биомасса может быть преобразован в другие полезные формы энергии: газ метан или транспортные топлива – этанол, бутанол, биодизель и биоуглеводороды.

Широкие перспективы для рентабельного производства различных видов энергии и топлива открывает использование для этих целей пресных и морских водорослей.

Энергия созданная путем сжигания биомассы (дров), также известна как dendrothermal.

2.3. Энергетический потенциал биомассы России

Исследования, проведенные в 2005 г. Институтом энергетической стратегии показали, что объем производимых органических отходов АПК и городов по всем регионам России в сумме составлял почти 700 млн. тонн (260 млн. т по сухому веществу) в год:

350 млн. т (53 млн. т с.в.) – животноводство,

23 млн. т (5.75 млн. с.в.) – птицеводство,

220 млн. т (150 млн. т с.в.) – растениеводство,

30 млн. т (14 млн. т с.в.) – отходы перерабатывающей промышленности,

Литература

2-1.Hall D.O., Inst. Chem. Eng. Symp., Sept. 1982, n 72, T6/1-T.

2-2.БИОМАССА(ЭНЕРГИЯ БИОМАССЫ),

2-3. Biomass From Wikipedia, the free encyclopedia Jump to: navigation, search

2-4.Storl E. // Energia. 1988. V. 10. № 1. P. 4.

2-5. Я. М. Паушкин, Г. С. Головин, А. Л. Лапидус, А. Ю. Крылова, Е. Г. Горлов, В. С. Ковач., Получение моторных топлив из газов газификации растительной биомассы, Институт горючих ископаемых.

Глава 3. Общие вопросы биотоплива и биоэнергетические технологии

Энергия, продукты питания и труд – ресурсная триада, определяющая социально-экономическую ситуацию современного общества. При этом, если первые два ресурса привычно записываются в разряд дефицита

(Миллиард

(!) людей на планете голодает, а большая часть энергии добывается варварским способом, отравляющим атмосферу), то третий – трудовой ресурс – все время в избытке (есть страны, где безработица среди трудоспособного населения превышает 80 %). [335]

Этот парадокс объясняется – отсутствием системного подхода к проблеме ресурсов. [3-35].

Цена на нефть в условиях глобальной экономики – один из критичных и очень неустойчивых показателей. В результате, программы по биотопливу то открываются, то закрываются. Так будет продолжаться до тех пор, пока проблема не будет решаться как системная: не отдельно – продовольствие, энергия, трудовые ресурсы, а только в единой системе (куда естественно войдёт и экология, автор). Для того чтобы выявить факторы, лимитирующие решение проблемы, необходимо ответить на ряд вопросов. Прежде всего, достаточно ли биоресурсов второго поколения, чтобы сколь-нибудь значительно сократить использование ископаемого углеводородного топлива.

Биотопливо по механохимическим характеристикам делится на:

3.1. Поколения растительных биотоплив [3-36]

После мирового энергетического кризиса в начале семидесятых годов ХХ столетия в мире возник интерес к возобновляемым источникам энергии, в частности к биотопливу. Первая причина – озабоченность запасами невозобновляемого углеводородного сырья и ростом цен на него. Вторая – попытка стран – импортёров нефти уменьшить зависимость от стран-производителей. Третья – необходимо улучшить экологическую ситуацию. Четвертая – нужно поддержать сельское хозяйство, демпфируя перепроизводство зерновых.[3-37].

Технологии производства биотоплива, в отличие от других альтернативных технологий (использования энергии Солнца, ветра, приливов, геотермальных источников, водорода), могут давать дополнительный выигрыш при эксплуатации биосферы, в том числе повышать эффективность сельского хозяйства и лесного комплекса. Биоэтанол производится из сахарного тростника, багассы, свеклы или отходов свекловичного производства– мелассы, кукурузы, пшеницы, картофеля, соломы, шелухи, опилок – в общем, из любого сырья, которое содержит крахмал или сахар.

Биодизель – это моноэифры жирных кислот – из органических отходов, в частности древесных, можно получать газ – синтез-газ методом пиролиза – разложения органических веществ под действием температуры без доступа воздуха, с ограниченным доступом кислорода.

Биогаз можно получать путем метанового брожения куриного помета или навоза или других жидких отходов растительного и животного происхождения, осадков сточных вод, твердых бытовых отходов, причем побочный продукт этого процесса – отличные удобрения. Наконец, из отходов лесопиления и деревообработки можно под высоким давлением делать так называемые пеллеты (маленькие цилиндрические брусочки), которые охотно используются в Германии, Австрии и скандинавских странах в специальных котлах для отопления домов. Выход тепла у них почти в два раза больше, чем у обычных дров, а места они занимают намного меньше.[3-37]

Из этих технологий наибольшее распространение в мире получили биоэтанол, биодизель и биогаз.

3.2. Растительное сырье разделяют на три поколения

3.2.1. Растительное сырье первого поколения

Биотопливо первого поколения производят из сахара, крахмала, растительного масла и животного жира, используя традиционные технологии. Основными источниками сырья являются семена или зерно. Например, семена подсолнечника прессуют для получения растительного масла, которое затем может быть изпользовано в биодизеле. Из пшеницы получают крахмал, после его сбраживания – биоэтанол. Вместе с тем из подсолнечника, пшеницы и других подобных культур можно произвести продукты питания, поэтому возникает конкуренция с жизненно важным для человечества сегментом рынка пищевым. Более того, производство биотоплива из подобных культур требует существенной финансовой поддержки государства и зачастую экономически невыгодно. Кроме того, многие экологи уверены, что при производстве данных видов биотоплива выбрасывается слишком много парниковых газов, что перекрывает экологическую выгоду от использования этих биотоплив.

3.3. Растительное сырье второго поколения

К биотопливам второго поколения относятся все виды жидкого и газообразного биотоплива, которые производятся не из пищевых культур: древесины, шелухи, и другой биомассы – органических отходов растительного и животного происхождения. Лигноцеллюлозный этанол получают из гидролизатов целлюлозы, используя: нагревание паром, ферменты и другие предобработки. С помощью брожения из данных сахаров можно получить этанол таким же путем, как и биоэтанол первого поколения. Побочным продуктом этого процесса является лигнин, которой может быть сожжен как не влияющий на концентрацию углекислого газа в атмосфере для выработки тепла и энергии. Также лигноцеллюлозный этанол сокращает выбросы парниковых газов на 90 % по сравнению с ископаемой нефтью.

3.4. Растительное сырье третьего поколения

Совершенно новый видбиотопливо третьего поколения или водорослевое топливо изготовляется из водорослей. Водоросли – одновременно дешевое и высокопродуктивное сырье для получения жидкого биотоплива. Эксперты утверждают, что с одного акра водорослей можно произвести в 30 раз больше биотоплива, чем с акра любого наземного растения. Более того, жидкое биотопливо из водорослей может без труда заменить продукты из нефти без качественных потерь для пользователей и с улучшением экологической составляющей. Эксперты утверждают, что как только жидкое биотопливо из водорослей станет экономически рентабельным для производства в большим масштабах (а сейчас к этому приближаются), то нефтяное топливо уже будет неконкурентоспособным.[3-38]

Биотопливо (кроме биогаза [3-26]) пока дороже топлива, получаемого из углеводородных ископаемых. Но развитие технологий скоро изменит эту ситуацию, а экологические требования и задачи стимулирования агропрома делают это горючее интересным уже сегодня.[3-36]. Рассмотрим две главные статьи расхода энергоресурсов: производство электроэнергии и транспорт. Возобновляемые ресурсы второго поколения: отходы лесопереработки (термохимия и биотехнологии), торф (только ежегодный прирост), навоз (через биогаз), солома (через газификацию), твердые бытовые отходы (биогаз и газификация) могут дать около 12.6 трлн. кВт ч/год электроэнергии. Если к этому добавить потенциальный ресурс мискантуса (слоновьей травы (Miscanthus Giganteus), выращиваемого на площади 200 млн. га (Это ок. 20 % мирового резерва пахотно пригодных земель, который сейчас по самой скромной оценке составляет 1 млрд. гектар), то можно получить в сумме приблизительно 29.4 трлн. кВт ч/год электроэнергии. Сейчас уровень потребления электроэнергии в мире приближается к отметке 56 трлн. кВт ч/год в том числе за счет сжигания ископаемого топлива примерно 4.8 млрд. ту.т. (37.5 трлн. кВт ч/год) образом, потенциал биоэнергоресурсов второго поколения позволяет сократить почти на 80 % использование ископаемого топлива, а главное, полностью исключить сжигание нефтепродуктов для производства электроэнергии. [3-39] Глава 3.5. Как обстоят дела с транспортом? Сейчас мировое потребление нефтепродуктов на транспортные нужды составляет около 4.1 млрд. ту.т. Если использовать ещё 40 % мирового резерва земли для выращивания двух культур: топинамбура в качестве сырья для производства биоэтанола, и ятрофы (Jatropha) – сырья для получения биодизеля, то можно получить транспортное топливо эквивалентом примерно 1.7 млрд. ту.т. сократив на 40 % использование ископаемых углеводородов на транспорт.[3-39].

Таким образом, потенциал биоэнергоресурсов второго поколения, наряду с решением важнейшей экологической проблемы, позволяет вернуться к производству продовольствия из кукурузы, пшеницы, сахарного тростника, сои, рапса и пр. Дополнительные возможности связаны с технологией биоконверсии отходов животноводства и растениеводства в биогаз, позволяющей, наряду с энергоносителем, получить еще один весьма важный продукт – высокоэффективное, экологически безопасное органическое удобрение.

Глава 4. Технологии, используемые для производства исходного сырья из биомассы для синтеза моторных топлив разного класса

Ниже представлены короткие описания различных способов переработки биомассы: термохимические методы переработки, физикохимические методы переработки биомассы, а также биохимические методы.

Рис. 4–1. Технологии переработки биомассы. Переработка биомассы [4–1]

4.1. Термохимические технологии

4.1.1. Прямое сжигание

Древнейший, но наименее выгодный процесс с КПД получения тепловой энергии 15… 18 %. Однако существуют такие виды биомассы, которые выгоднее сжигать при условии создания тепловых агрегатов с более высоким КПД. К таким видам – биомассы относятся:

• солома злаковых и крупяных культур, стебли подсолнечника и кукурузы, из которых готовят топливные гранулы – пеллеты;

• некоторые виды древесины, древесные отходы;

• твердые отходы сельскохозяйственного производства;

• городские твердые отходы [4–2];

4.1.2. Пиролиз

Термохимическая конверсия сырья без доступа воздуха при температуре 450…550 °C позволяет из 1 м

3

абсолютно сухой древесины получать: 140… 180 кг древесного угля, не содержащего ни серы, ни фосфора и используемого для получения лучших сортов стали, 280.. 400 кг жидких продуктов – метанола, уксусной кислоты, ацетона, фенолов; 80 кг горючих газов – метана, монооксида углерода, водорода [4–2].

Разные виды высокоэнергетического топлива могут быть получены с помощью нагрева сухой древесины и даже соломы. Процесс использовался в течение столетий для получения древесного угля. [4–4].

Традиционный пиролиз заключается в нагреве исходного материала (который часто превращается в порошок или измельчается перед помещением в реактор) в условиях почти полного отсутствия воздуха, обычно до температуры 300 – 500 °C до полного удаления летучей фракции. Остаток, известный под названием древесный уголь, имеет двойную энергетическую плотность по сравнению с исходным материалом и сгорает при значительно более высоких температурах. В зависимости от влажности и эффективности процесса, 4-10 тонн древесины требуется для производства 1 тонны древесного угля. В случае если летучие вещества не собираются, древесный уголь содержит две трети энергии исходного сырья.[4–4].

Пиролиз может проводиться в присутствии малого количества кислорода (газификация), воды (паровая газификация) и водорода (гидрогенизация). Одним из наиболее полезных продуктов в этом случае является метан, представляющий собой топливо для производства электроэнергии с помощью высокоэффективных газовых турбин.

Более сложная техника пиролиза позволяет собрать летучие вещества. Кроме того, контроль температуры позволяет контролировать их состав. Жидкие продукты могут использоваться в качестве жидкого топлива. Однако они содержат кислоты и должны очищаться перед использованием.[4–4].

Получение древесного угля.

4.1.3. Газификация

Сжигание биомассы при температуре 900… 1 500 °C в присутствии воздуха или кислорода и воды с получением синтез-газа, состоящего из смеси монооксида углерода, водорода и стеклообразной массы (7… 10 % массы исходного материала), применяемой как наполнитель для дорожных покрытий. Газификация – более прогрессивный и экономичный способ использования биомассы для получения тепловой энергии, чем пиролиз. Синтез-газ имеет высокий КПД тепловой конверсии. Он может употребляться для получения метанола, этанола и углеводородов. [4–2].

Интерес к газификации вновь возрос во время энергетического кризиса 70-х годов, а затем упал вместе с снижением цен на нефть в 80х годах. По оценкам Мирового Банка (1989) всего лишь 1000–3000 газификаторов установлено в мире, преимущественно в Южной Америке для производства древесного угля. [4].

Газификация древесины.

Газификация древесины называется также газогенерацией или сухой перегонкой. Монооксид углерода, метиловый газ, метан, водород, газообразные углеводороды и другие компоненты в различных пропорциях могут быть получены с помощью нагрева или сжигания древесины в условиях отсутствия или недостатка кислорода. В разных процессах получаются разные продукты. Если при сжигании древесины обеспечить необходимое количество кислорода, то в процессе такого сжигания образуются двуокись углерода, вода, небольшое количество золы (соответствующее содержанию неорганических веществ) и тепло. Этот тип сжигания реализуется в обычных древесносжигающих печах. После начала процесса горения можно ограничить поступление воздуха. При этом горение будет продолжаться, но с частичным сгоранием. В случае полного сгорания углеводорода (древесина в основном состоит из углеводородов) кислород объединяется с углеродом, а также с водородом. В результате чего получаются CO

2

(двуокись углерода) и H

2

O (вода). Ограниченное количество воздуха и тепло обеспечивают продолжение неполного сгорания. В этих условиях один атом кислорода объединяется с одним атомом углерода, в то время как водород взаимодействует с кислородом лишь частично. В результате получается монооксид углерода, вода и газообразный водород. Кроме того, образуются и другие компоненты, например, углерод в виде дыма. Под воздействием тепла разрываются химические связи в молекулах сложных углеводородов, содержащихся в древесине (а также в любом другом углеводородном топливе). Одновременно в процессе объединения атомов углерода и водорода с кислородом выделяется тепло. Таким образом, процесс поддерживает сам себя. Если количество воздуха недостаточно, то в результате такого процесса образуется достаточно тепла для разложения молекул древесины, но продуктами этого процесса будут монооксид углерода и водород – горючие газы. Другие продукты неполного сгорания – это преимущественно диоксид углерода и вода.[4–4].

4.1.4. Коммерческие и демонстрационные установки газификации биомассы с целью выработки теплоты в Европейских странах и США [4–5]

Газификация БМ с целью получения тепловой энергии достигла коммерческого уровня. Наиболее известными сегодня являются газификаторы с ВДГ Bioneer компании Bioneer Oy (теперь Foster Wheeler Energia Oy, Финляндия) и реакторы PRM Energy Systems, Inc. (США), газификаторы с ЦКС Pyroflow компании A. Ahlstrom Oy (теперь Foster Wheeler Energia Oy) а также компаний Lurgi Energie und Umwelt (Германия) и TPS Termiska Processer AB (Швеция). Foster Wheeler Energia Oy входит в состав Foster Wheeler Corporation с главным офисом в США [3]. Кроме упомянутых выше, в мире имеется около 25 производителей газификаторов с НДГ и более 10 производителей газификаторов с КС и ЦКС; ряд компаний выпускает реакторы с ВДГ и другие виды. Производители газификаторов с НДГ – это, в основном, мелкие компании, выпускающие газификационные системы небольшой мощности (ректор + двигатель внутреннего сгорания) и уже соорудившие 1–2 демонстрационные установки. Среди крупных производителей газификаторов можно выделить PRIMENERGY Inc. (США, ВДГ), Babcock & Wilcox Volund ApS (Дания, ВДГ), KARA Energy Systems BV (Нидерланды, НДГ, КС), Kvaerner Pulping AB Power Division (Швеция, ЦКС), Future Energy GmbH (Германия, НДГ, газификация в потоке). На установках, производящих только тепловую энергию, генераторный газ, в основном, сжигается в котлах или используется в печах для обжига извести. [4–5].

4.1.4.1. Газификатор Bioneer с восходящим движением газа

Газификатор Bioneer с ВДГ разработан в Финляндии компанией VTT в сотрудничестве с SME Company. Bioneer проводит низкокалорийный генераторный газ с большим содержанием смол. Генераторный газ может применяться на тепловых станциях 1…15 МВтт и мини-ТЕЦ 1…3 МВтэ, на дизельных электростанциях после каталитической очистки. В 1982–1986 гг. были построены девять газификаторов Bioneer (4…5 МВтт) и введены в эксплуатацию на коммерческом уровне в Финляндии и Швеции: восемь – на тепловых станциях малой мощности, один – в паре с сушильной печью. Газификаторы Bioneer полностью автоматизированы. В настоящее время технология газификации, подобная Bioneer, предлагается также компанией Carbona Oy (Финляндия) [4–5].

В целом, газификация в плотном слое с ВДГ проявила себя как надежная и экономически жизнеспособная технология для использования на тепловых станциях небольшой мощности. Требования к качеству сырья соответствуют способу применения генераторного газасжигание в котле. Наиболее подходящим топливом является древесная щепа, тогда как газификация измельченной коры, опилок и измельченной строительной древесины вызывает определенные проблемы.

4.1.4.2. Газификатор Pyroflow с циркулирующим кипящим слоем

Газификатор Pyroflow с ЦКС разработан компанией A. Ahlstrom Oy. Первый коммерческий газификатор мощностью 35 МВтт был установлен в 1983 г. для обжиговой печи компании Wisaforest Oy (Финляндия). После этого еще три газификатора мощностью 15…35

Мвтт

были установлены для коммерческого использования полученного газа в обжиговых печах в Швеции и Португалии.

Простая технология газификации, реализованная на ТЭЦ Kymijarvi, подходит только для древесной биомассы и чистой горючей части отходов. При такой техноогии много золы вместе с генераторным газом попадает в угольный котел. Использование ряда других потенциальных видов биомассы (солома, энергетические культуры) и отходов (промышленные, ТБО) практически невозможно, поскольку они содержат большое количество хлора, щелочных металлов и алюминия, которые вызывают коррозию и засорение трактов котла 4–5].

4.1.4.3. Газификатор Lurgi с циркулирующим кипящим слоем

Немецкая компания Lurgi Energie und Umwelt является известным разработчиком и производителем газификаторов с циркулирующим кипящим слоем. Первый коммерческий газификатор мощностью 27 МВтт был установлен в 1987 г. на крупной бумажной фабрике в Австрии и работал на древесной коре. Процесс газификации протекал при давлении около 1 бара, проведенный ГГ частично охлаждался и сжигался в печи для обжига извести. С 1996 г. реактор Lurgi 100 МВтт эксплуатируется на цементном заводе в Rudersdorf (Германия). Генераторный газ используется в кальцинаторе цементной печи, обеспечивая 30…40 % необходимой тепловой энергии. Зола применяется для производства цемента. Газификатор работает только на достаточно чистой биомассе (древесных отходах). Lurgi имеет также установки на электростанциях в Нидерландах и Италии.[4–5].

4.1.4.4. Газификатор PRM Energy Systems с восходящим движением газа

PRM Energy Systems (США) уже более 20 лет специализируется на коммерческих газификаторах ВДГ и имеет 19 установок, работающих на пяти континентах мира. Ежегодно на этих установках перерабатывается около 500 тыс. т биомассы, в основном, рисовой шелухи.

Как правило, произведенная тепловая энергия используется в промышленных сушильных аппаратах или в промышленных технологических процессах в виде насыщенного пара низкого давления. Ряд установок также вырабатывают электроэнергию. Первые два коммерческих газификатора были внедрены на крупной фабрике по переработке риса в 1982 г. в США. Произведенный ГГ сжигается в котле, замещая потребление природного газа, а пар используется в сушильных аппаратах. С 1985 г. газификаторы этой компании работают в Австралии, с 1987 г. – в Малайзии, с 1995 г. – в Коста-Рике.

Одна из последних установок PRM Energy Systems (4 МВтэ) построена в 2003 г. в Rossano (Италия). Она состоит из газификатора PRMES KC-18, системы охлаждения, очистки и контроля качества генераторного газа, а также шести газовых двигателей Guascor S.A. (Испания). Газификатор работает на жмыхе маслин (потребление 4500 кг/час) без какой-либо предварительной подготовки сырья.[5–5].

4.1.5. Сжижение

Производство жидкого топлива из биомассы путем термической конверсии: термический пиролиз или газификация в присутствии катализаторов. Реакции происходит так, чтобы в качестве основного продукта получалось жидкое топливо, и при этом можно производить уголь и газ.

4.2. Биотехнологии

К биотехнологиям относятся такие процессы, как: биогазовые технологии; производство этанола, бутанола, изобутанола; получение биодизельных топлив, жирных кислот, растительных углеводородов; производство биоводорода, получение тепловой энергии.

4.2.1. Биогазовые технологии

Биогаз – смесь метана и углекислого газа – продукт метанового брожения органических веществ растительного и животного происхождения, осуществляемого специфическим природным биоценозом анаэробных бактерий различных физиологических групп. Метановое брожение протекает при температурах от 10 до 55 °C в трех четко определенных диапазонах: 10…25 °C – психрофильное; 25…40 °C – мезофильное; 52…55 °C – термофильное; влажность составляет от 8 до 99 %, оптимальная 92–93 %.

Содержание метана в биогазе варьируется в зависимости от химических свойств сырья и может составлять от 50 до 90 %. В зависимости от природы исходного сырья изменяется и выход биогаза: от 200 до 600 л на 1 т абсолютно сухого вещества.

К настоящему времени разработано и применяется множество технологий получения биогаза, основанных на использовании различных вариаций температурного режима, влажности, концентраций бактериальной массы, длительности протекания биореакций.

4.2.2. Биогаз полигонов ТБО (свалочный газ)

Большая часть муниципальных отходов – твердых бытовых отходов (ТБО) – представляет собой биологические материалы, а их вывоз на полигоны создает пригодные условия для анаэробного сбраживания. ТБО имеют более сложный состав, чем сырье в биогазовых установках. Сбраживание происходит медленнее, обычно в течение нескольких лет, а не недель. Конечный продукт, известный под названием «свалочный газ», также представляет собой смесь преимущественно CH

4

и CO

2

. Теоретически выход газа в течение «жизни» полигона может составить 150–300 м

3

на тонну ТБО при концентрации метана от 50 до 60 объемных процентов. Это соответствует 5–6 ГДж энергии на тонну ТБО. На практике выход биогаза меньше.

Все больше свалочный газ используется для производства электроэнергии. В настоящее время большинство установок использует двигатели внутреннего сгорания, например, стандартные судовые двигатели. При типичном выходе газа, равном 10ГДж/час, могут быть установлены двигатель и генератор мощностью 500 кВт.[4–4].

4.2.3. Производство этанола

Этанол, а также другие низшие спирты, альдегиды и кетоны – продукты спиртового брожения разнообразных сахаро– и крахмалосодержащих субстратов. Однако наиболее распространенными видами сырья для производства этанола являются отходы сахарного производства: багасса или меласса (сахарная свекла), а также крахмал кукурузы, сорго, картофеля, пшеницы и риса. В России этанол получают также при брожении гидролизатов древесины (целлюлозы).

Наиболее значительный интерес в мире к жидким биотопливам (особенно к этанолу) для использования на транспорте появился в период с 1970 по 1990 г. и обязан этим высоким ценам на нефть. Однако и в настоящее время в развивающихся странах он имеет тенденцию к продолжению вследствие экологических проблем [4–3].

В некоторых странах этанол в чистом виде или в смеси с бензином (газо-хол) широко применялся в 70-е годы для двигателей внутреннего сгорания.

Наиболее значительный интерес в мире к жидким биотопливам (особенно к этанолу) для использования на транспорте появился в период с 1970 по 1990 г. и обязан этим высоким ценам на нефть. [4–7].

В последние годы разработаны технологии получения биоэтанола из синтез-газа, что значительно расширяет сырьевые возможности от лигноцеллюлозы до угля. Эти технологии включены в производственную цепочку получения углеводородов – биокеросина и биобензина.

4.2.4. Биодизельное топливо

Биодизельное топливо имеет те же характеристики, что и обычные дизельные масла, которые могут использоваться в дизельных двигателях. Биодизельное топливо может быть получено из любого маслосодержащего растения – семян рапса, сои, кактусов и т. д… Преимущество биодизельного топлива состоит в том, что его производство основано на широко известных технологиях получения растительных масел с их дальнейшим метилированные и растительных углеводородов.

В 80-е годы возрос интерес к растительным углеводородам. Как правило, эффективные продуценты углеводородов и масел являются представителями тропической и субтропической флоры. Однако и в умеренном климате имеются культурные растения, семена которых содержат значительные количество масел, – подсолнечник, конопля, лен, рапс и др.

4.3. Химико-каталитическая конверсия продуктов расщепления растительных полимеров в жидкие углеводороды

4.3.1.Применение биотоплива в авиации

15 июля 2011 г. немецкая авиакомпания Lufthansa запустила первый коммерческий рейс по маршруту Гамбург – Франкфурт – на – Майне на смеси традиционного керосина и биотоплива, произведенного финской компанией Neste Oil. Использование биотоплива NExNTL стало возможным в авиации после 1 июля 2011 г., когда данный вид топлива был одобрен ASTM International – Американским обществом испытаний и материалов.[4-10].

Neste Oil принимает активное участие в программе ЕС “Европейский план авиаперевозок на биотопливе, которая поставила цель использования биотоплива и других ВИЭ в авиации в объеме 2 млн. тонн к 2020 г. Lufthansa Airbus A321 с регистрацией D-AIDG будет летать по маршруту Гамбург-Франкфурт-Гамбург четыре раза в день. Один из его двигателей будет работать на 50/50 смесь регулярных топлива и биосинтетических керосин. Био-синтетических керосин, используемые Lufthansa, получается из биомассы, состоящей из ятрофы, рыжика(растение) и животных жиров.[4-11]. Ранее биотоплива в авиации были испытаны в ряде стран.

Штурмовик А-10 летает на смеси биотоплива и авиакеросина 29 марта 2010 г.

4.3.2. Применение биотоплива в других видах транспорта

В мире существует три лидера по использованию жидкого моторного биотоплива: Бразилия, США и Европейский Союз. И каждый имеет свои мотивы перевода транспорта с бензина на биодизель или биоэтанол. Бразилия использует этанол из сахарного тростника, чтобы не зависеть от импорта нефти.

В США распространяется этанол из маиса (кукурузы), для того чтобы поддержать местное сельское хозяйство, с одной стороны, а с другой – улучшить состояние окружающей среды.

Европейский Союз, внедряя новые биотопливные технологии, преследует сразу несколько целей: ликвидация зависимости от импорта нефти, предотвращение глобального потепления климата, выполнение обязательств по Киотскому Протоколу, а также развитие сельского хозяйства. В 2010 году ЕС намерен использовать биотопливо в 5,75 % автомашин. К 2020 году эта цифра должна увеличиться до 8 %. Пока доля моторного биотоплива в странах Европейского Союза – порядка 2 %.

Таблица 4-1

4.4. Получение моторных топлив из газов [4-16]

До середины XIX в. человечество использовало в качестве теплоносителя для бытовых и промышленных целей (металлургия, паровые машины и др.) почти исключительно биомассу растений и продукты ее переработки (древесный уголь).

При использовании в качестве энергоносителя газа, нефти и угля возникает ряд проблем, связанных с ограниченными запасами горючих ископаемых, в особенности нефти. Помимо истощения запасов нефти важными проблемами являются перевозка на большие расстояния и хранение всех видов топлив.

В Норвегии применяются передвижные установки на лесосеках, где перерабатываются растительные отходы методом пиролиза. Производительность отдельной установки от 10 до 30 т древесного угля в сутки [4-16]. При пиролизе из 1 т отходов (щепа) получается 280 кг угля, 200 кг смолы пиролиза и около 222 кг газообразного топлива. Газообразное топливо используется для поддержания процесса пиролиза. Смола пиролиза применяется как котельное топливо или подвергается гидрооблагораживанию под давлением водорода для получения бензина и дизельного топлива. Стационарные установки пиролиза могут иметь до 40 печей и рассчитаны на переработку 300–350 тыс. т органических отходов в год [4-16].

В ряде стран (Италия, ФРГ, Аргентина и др.) созданы специальные энергетические плантации быстрорастущих пород древесины и других пород на землях, не пригодных для сельского хозяйства.

Плантации ивы в Швеции на заболоченных землях дают 25 т древесины с 1 га в год. Сбор древесины осуществляется через 2 года специальными комбайнами в зимнее время года, когда заболоченная земля замерзает. С 1 млн. га получается 15 млн. т древесины в виде сухого древесного топлива, что эквивалентно 20 % энергии, необходимой для этой страны [16].

Глава 5. Сырье для биоэнергетики

Получение энергии из биомассы является одной из наиболее динамично развивающихся отраслей во многих странах мира. Этому способствуют такие ее свойства, как большой энергетический потенциал и возобновляемость. А так-же тот фактор, что она может быть произведена и использована без значительных финансовых затрат, что немаловажно для малоразвитых стран.

5.1.Виды биомассы

Все источники биосырья для биоэнергетики можно разделить на три основные группы.

К первой

относятся специально выращиваемые для энергетических целей наземные растения. Наибольшее значение имеют лесоводческие энергетические хозяйства для выращивания различных пород деревьев: эбеновое дерево, эвкалипт, пальма, гибридный тополь и др. Одними из перспективных энергетических культур являются сладкое сорго, земляная груша, сахарный тростник.

Рис. 5–1. Уборка урожая Энергетической вербы в Валынской области в Украине.

5.2.Топливо из биомассы (сырье) [17]

5.2.1. Древесные отходы

Древесина добывается на постоянной основе: в лесах в процессе вырубки. По одной из приблизительных оценок прирост древесины в мире составляет 12,5x10

9

м

3

/год с содержанием энергии 182 ЭДж 6.2 млрд. ту.т… Это соответствует 1,3 от общего потребления угля на планете. Среднегодовая добыча древесины в период 1985–1987 г.г. составила 2.7x10

9

м

3

/год (эквивалент 40 ЭДж/год 1.36 млрд. Ту.т.). Таким образом, часть прироста может быть дополнительно использована в энергетических целях в процессе ухода за лесами и, возможно, даже увеличения при этом их производительности. топливо из биомассы (сырье) [5-17].

В развивающихся странах, широко использующих древесный уголь в качестве топлива, производство угля в печах на месте образования древесных лесных отходов может уменьшить расходы на транспортировку.

Механические рубительные машины для производства древесной щепы (30–40 мм) были созданы в Европе и Северной Америке в течение последних 15 лет. (Рис. 5-28) Использование порубочных остатков для отопления и/или производства электроэнергии представляет собой растущий бизнес во многих странах. Американские энергоснабжающие компании имеют более 9000 МВт мощностей, работающих с использованием биомассы (эквивалент 9 атомных блоков). В Австрии общая мощность домашних котлов и котлов централизованного теплоснабжения (ЦТ), сжигающих древесные отходы, кору и щепу, достигает 1250 МВт. Мощность большинства котлов ЦТ находится в диапазоне 1–2 МВт. Имеется несколько установок большей мощности (15 МВт) и большое количество малых когенерационных установок. топливо из биомассы. (сырье) [5-17].

Следующим источником древесных отходов является обработка деловой древесины. Сухие опилки и другие отходы, возникающие в процессе распиловки, представляют собой качественное топливо. По существующим оценкам, британская мебельная промышленность поставляет 35000 тонн таких отходов в год (третья часть от общего количества), обеспечивая 0,5 ПДж энергии для отопления и горячего водоснабжения, а также для получения пара. В Швеции, где биомасса уже сегодня обеспечивает около 15 % первичной энергии, отходы лесной и деревообрабатывающей промышленности дают 200 ПДж в год, в основном в качестве топлива для ТЭЦ. топливо из биомассы (сырье) [5-17].

5.2.2. Отходы сельского хозяйства

Сельскохозяйственные отходы представляют собой огромный источник биомассы. Отходы растениеводства и животноводства обеспечивают значительное количество энергии, уступающее только древесине, которая является главным видом топлива из биомассы на Земле. Сельскохозяйственные отходы включают: отходы растительных культур, например, солому, некондиционную продукцию и излишки производства, а также отходы животноводства в виде навоза. В Индии в 1985 году в качестве топлива было использовано 110 млн тонн навоза и растительных остатков, что близко к объему использования древесины -133 млн тонн. В Китае количество сельскохозяйственных отходов в 2,2 раза превышает количество древесного топлива. топливо из биомассы (сырье) [5-17].

Каждый год в мире образуются миллионы тонн соломы. Более половины этого количества не используется. Во многих странах она сжигается на полях или запахивается в землю. В некоторых развитых странах экологическое законодательство запрещает сжигание соломы на полях. Это привлекло внимание к соломе как к потенциальному источнику энергии. топливо из биомассы (сырье) [5-17].

Энергетическое использование растительных остатков вызывает вопрос о том, какое количество может быть использовано без негативного воздействия на урожай. В соответствии с опытом развитых стран, около 35 % растительных остатков может быть удалено без воздействия на будущий урожай.

Промышленные отходы, содержащие биомассу, также могут быть использованы для производства энергии. Например, из отходов производства спирта можно получить горючий газ. Другие полезные виды отходов включают отходы пищевой и текстильной промышленности. топливо из биомассы.[5-17].

5.3. Использование топлива из биомассы

Рис. 5-46. Эвкалипт царственный.[5-29].

Древесное топливо составляет 10 % топлива, используемого в мире. В Азии и Латинской Америке его доля составляет 20 %, в Африке – 50 %. При этом древесина является главным источником энергии, особенно в бытовых целях, во многих бедных развивающихся странах. В 22 странах древесное топливо обеспечивает от 25 до 49 % потребления энергии, в 17 странах – 50–74 % и в 26 странах – 75-100 %. [5-30].

Увеличение производства древесины путем внедрения эффективных технологий является необходимым условием устойчивого развития в развивающихся странах.

5.4. Клетчатка [5-38]

5.4.1. Микрокристаллическая клетчатка [5-34]

Растительная клетчатка – естественный углеводородный ресурс, запасы которого не уступают нефти, но твердую клетчатку нельзя залить в топливный бак и дорого перерабатывать в жидкое биотопливо. Клетчатку нельзя залить в баки, но можно засыпать плотный легкосыпучий порошок, получаемый при ее несложной химической модификации. Порошковое биотопливо может стать одним из потенциальных «Зеленых» топлив для автомобилей.

Кристаллическая клетчатка.

Самый распространенный в природе углеводный продукт растительного происхождения – биоклетчатка, химическую основу которой составляет "целлюлоза".. Топливо из биоклетчатки дешево и повсеместно доступно, но целлюлоза твердое вещество. Целлюлоза служит первоначальным сырьем для производства жидкого моторного биотоплива. "Биоэтанол" или "Гидролизный спирт", получается при брожении сахаристых продуктов гидролиза целлюлозы. "Метанол" или "Метиловый спирт" получается при сухой перегонке – пиролизе, древесины или другого целлюлозного сырья. [5-38].

Биотопливо широко используется только в странах Латинской Америки из-за дефицита нефти и высокопродуктивного сельского хозяйства. Если использовать целлюлозное биотопливо без переработки в спирт, это повысит его КПД и снизит стоимость, но целлюлоза твердое вещество, а автомобильные двигатели не приспособлены для работы на твердом топливе. [5-38].