Новая Физика Веры

Тихоплав Виталий Юрьевич

Тихоплав Татьяна Серафимовна

Спустя семь лет после выхода в свет знаменитой книги «Физика Веры» ее авторы – доктор технических наук В.Ю.Тихоплав и кандидат технических наук Т.С.Тихоплав – приводят новые убедительные доводы в пользу божественной природы Мироздания. Основанные на строгих научных теоретических и экспериментальных исследованиях, выводы ученых поражают: Сознание – это особая субстанция, способная активно взаимодействовать с живой и косной материей в окружающем нас мире.

Но остаются еще «вечные» вопросы: в чем смыслжизни в физическом мире? что ждет бессмертную душу в Тонком мире? возможна ли такая трансформация физического тела, которая позволит человеку жить на Земле вечно, пусть даже в некоей другой, но физической ипостаси?

Авторы предлагают заинтригованному читателю вместе продолжить поиск ответов на эти волнующие каждого вопросы.

Предисловие

В эволюции Земли есть поразительный факт. В палеозойскую эру часть рыб оказалась в высыхающих водных лунках и была поставлена перед необходимостью перейти от дыхания жабрами к легочному дыханию. То есть рыбы должны были научиться дышать по-другому или… умереть.

Биологи, правда, оговариваются, что ничего необычного в этом нет, потому что подобные изменения происходили в течение многих миллионов лет. Такое утверждение можно поставить под сомнение, ибо, когда у природы есть в запасе миллионы лет, необходимость изменяться не возникает.

Как пишет Сатпрем, первый опыт всегда странен и может даже показаться безумием.

Сегодня человечество стоит на пороге самоуничтожения от глобальной экологической катастрофы. Основной причиной, поставившей человечество на эту грань, является бездуховность нашей цивилизации. Известный американский ученый Питер Рассел считает: «Вся наша цивилизация нежизнеспособна, и причина этого в нежизнеспособности нашей ценностной системы, самого нашего сознания, которое определяет наше отношение к миру» (2). Но это еще не все!

Глава 1

Субатомный мир

Чуть-чуть истории

Современная физика оказывает влияние почти на все стороны научной и общественной жизни. Она является основой для всех естественных наук, а союз естественных и технических наук коренным образом изменяет условия нашей жизни на Земле, что приводит как к положительным, так и к отрицательным последствиям. Влияние современной физики затрагивает также всю культуру в целом и образ мышления – в частности, а изменение существующей парадигмы выражается в пересмотре наших взглядов на жизнь и на Вселенную.

Изучение мира атома и субатомного мира в XX веке неожиданно ограничило область приложения идей классической механики и обусловило необходимость коренного пересмотра многих наших основных понятий. Понятие материи в субатомной физике, например, абсолютно не похоже на традиционные представления о материальной субстанции в классической физике. То же можно сказать о понятиях пространства, времени, причины и следствия.

Но поскольку эти понятия лежат в основе нашего мировоззрения, в случае их радикального пересмотра начинает изменяться привычная для нас механистическая картина мира, модель которой разработал великий Ньютон.

Корни всей западной науки в целом следует искать в истоках греческой философии VI века до н. э., в которой не делалось различий между наукой, философией и религией. Греческих философов не интересовали такие разграничения, поскольку они не видели различий между одушевленным и неодушевленным, между материей и духом. Они стремились постичь истинную природу («физис») вещей, воспринимая все формы существования как проявления «физиса», наделенные жизнью и духовностью.

Их взгляды были близки Гераклиту из Эфеса, который интуитивно чувствовал, что Вселенная находится в постоянном движении, что стабильность и постоянство не являются нормой. Гераклит учил, что все изменения в мире происходят в результате активных циклических взаимодействий различных пар противоположностей, и рассматривал каждую такую пару как единое целое. Единство, содержащее противоположности, но стоящее над ними, он называл логосом.

Модель Вселенной Ньютона

Согласно модели Ньютона, все физические явления происходят в трехмерном пространстве, которое описывается евклидовой геометрией. Как утверждал Ньютон: «Само абсолютное пространство, без учета внешних факторов, всегда остается неизменным и неподвижным… Абсолютное, истинное математическое время по своей сущности течет с постоянной скоростью, не подвергаясь внешним воздействиям».

По представлениям Ньютона, в неподвижном и неизменном пространстве двигаются материальные частицы – атомы, маленькие, твердые и неразрушимые предметы, из которых состоит вся материя. Отличие представлений Ньютона от представлений Демокрита заключалось в том, что, по Ньютону, между материальными частицами действуют силы взаимодействия, очень простые и по сути зависящие только от масс и расстояний между частицами. Анализируя многочисленные данные наблюдений движения планет, Ньютон открыл закон всемирного тяготения, который явился одной из вершин классической физики.

В своей книге «Оптика» Ньютон писал:

Для того чтобы дать строгое математическое описание силы тяжести или гравитации, вызывающей взаимное притяжение материальных частиц, Ньютон использовал абсолютно новые понятия и математические операции дифференциального исчисления. Ньютоновские уравнения движения – основы классической механики. Считалось, что они отражают незыблемые законы, управляющие движением материальных частиц, а значит, и всеми природными явлениями. По мнению Ньютона, Бог создал материальные частицы, силы между ними и фундаментальные законы движения. Таким образом, вся Вселенная была запущена в движение и движется до сих пор подобно хорошо отлаженному механизму.

Полюшко-Поле

Простейшие электрические и магнитные явления были известны еще в древние времена. Люди знали, что существуют минералы, притягивающие кусочки железа, а янтарь (по-гречески – электрон), потертый о шерсть, притягивает легкие предметы. Однако сведений об изучении этих необыкновенных явлений практически до конца XVI века не имелось. По-видимому, этими вопросами всерьез никто не занимался.

Впервые разграничил электрические и магнитные явления английский ученый У. Гильберт, который в 1600 году опубликовал свой труд «О магните, магнитных телах и о большом магните – Земля». Именно благодаря Гильберту человечество узнало о существовании магнитного поля нашей планеты. В XVII–XVIII веках проводились многочисленные опыты с наэлектризованными телами, были даже построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов, обнаружена электропроводимость металлов, а в середине XVIII века появился первый конденсатор – лейденская банка, – который позволял накапливать большие электрические заряды.

В первой половине XVIII века американский ученый Б. Франклин сформулировал первую последовательную теорию электрических явлений, установил электрическую природу молнии и изобрел молниеотвод. Во второй половине XVIII века в результате экспериментальных исследований французский физик Ш. Кулон вывел «основной закон электростатики» (закон Кулона), а позднее установил закон взаимодействия полюсов длинных магнитов и ввел понятие магнитного заряда.

Начиная со второй половине XVIII века работы известных ученых Ш. Кулона, Г. Кавендиша, А. Вольты, Г. Ома, Дж. Джоуля и других вывели исследовательские работы по электрическим и магнитным явлениям на высокий уровень. Однако электрические и магнитные явления исследовались ими вне зависимости друг от друга.

Наиболее фундаментальное открытие было сделано в 1820 году датским физиком Х. Эрстедом; он обнаружил действие электрического тока на магнитную стрелку – явление, свидетельствующее о связи между электрическими и магнитными явлениями. В том же году французский физик А.-М. Ампер установил закон взаимодействия электрических токов и показал, что свойства постоянных магнитов можно объяснить циркуляцией электрических токов в молекулах намагниченных тел. То есть, согласно Амперу, все магнитные явления сводятся к взаимодействию токов, магнитных же зарядов не существует. Именно с открытиями Эрстеда и Ампера обычно связывают рождение электродинамики как науки (4).

О теории относительности

В нашей книге «Физика Веры» рассмотрены специальная и общая теории относительности Эйнштейна (2). Однако в связи с тем, что при рассмотрении физики ХХ века невозможно оставить в стороне основные положения теории относительности, кратко напомним их читателям.

В 1905 году молодой Эйнштейн опубликовал ряд работ, которые содержали три радикально новые идеи. Первая полностью отвергала существование эфира; вторая стала основой специальной теории относительности; третья заставила по-новому взглянуть на электромагнитное излучение и легла в основу теории атома – квантовой теории, которая в окончательном виде сформировалась через двадцать лет благодаря совместным усилиям целой группы физиков. Однако теорию относительности практически полностью разработал сам Эйнштейн.

Об эфире

. Следует отметить, что во второй половине XIX века эфир был «притчей во языцех». Любые явления природы и любые процессы (физические, химические, биологические) ученые пытались объяснить с помощью эфира, наделяя его необходимыми для этого свойствами. Он должен был обеспечивать действие закона всемирного тяготения, а после открытия электромагнитных полей эфир оказался средой, по которой идут световые волны; на эфир была возложена ответственность за все проявления электромагнитных свойств (2).

Бурное развитие волновой теории света заставило наделять эфир просто фантастическими свойствами, причем зачастую свойства, приписываемые эфиру для объяснения одних явлений, противоречили свойствам, требующимся для объяснения других явлений. И в то же время не было экспериментов, которые позволили бы отрицать эфир. Постепенно, однако, объяснения световых явлений на основе эфирной гипотезы стали выглядеть все более искусственными. Стало складываться убеждение о несовершенстве основ классической физики. С целью выхода из кризиса был взят курс на разработку специальной физики – физики больших скоростей, близких к скорости света (релятивистская физика).

Проверка действенности основных положений классической физики при световых и околосветовых скоростях привела к обоснованным сомнениям в существовании эфира. Особенно к печальным последствиям привел науку опыт Майкельсона, проведенный в 1881 году (2). В начале ХХ века Альберт Эйнштейн, основываясь на результатах экспериментов Физо и Майкельсона, вынес смертельный приговор эфиру, предложив «забыть об эфире и постараться никогда больше не упоминать о нем» (7).

Первые шаги в мир бесконечно малого

Началом атомной физики явились два открытия конца XIX века, необъяснимые с позиций классической физики. Первое свидетельство в пользу того, что атомы обладают какой-то структурой, появилось в 1895 году с открытием немецким физиком В. Рентгеном рентгеновских лучей – нового вида излучения, быстро нашедшего свое применение в медицине. При помощи рентгеновских лучей Макс фон Лауэ исследовал атомную структуру кристалла. Однако рентгеновские лучи были не единственным видом излучения, испускаемого атомами. Вскоре после их открытия французский физик А. Беккерель в 1896 году обнаружил другой вид излучений, испускаемых так называемыми «радиоактивными элементами». Это излучение стали называть радиоактивным. «Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием некоторых частиц» (4).

Явление радиоактивности подтверждало, что атомы таких элементов не только испускают различные излучения, но и превращаются при этом в атомы совершенно других элементов, что говорит о сложности строения атома.

Планетарная модель атома

. Английский физик Эрнест Резерфорд обнаружил, что так называемые альфа-частицы, исходящие от радиоактивных веществ, можно использовать в качестве высокоскоростных снарядов субатомного размера для исследования внутреннего строения атома. Он подвергал атом обстрелу альфа-частицами и по их траекториям после столкновения определял, как устроен атом.

В результате бомбардировки атомов потоками альфа-частиц Резерфорд получил сенсационные и совершенно неожиданные результаты. Вместо описанных древними твердых и цельных частиц перед ученым предстали невероятно мелкие частицы-электроны, движущиеся вокруг ядра на достаточно большом расстоянии. Электроны, казалось, были прикованы к ядрам некими силами.

В 1911 году Резерфорд предложил планетарную модель атома, состоящего из тяжелого ядра и окружающих его электронов. Миниатюрный атом, диаметр которого примерно одна миллионная сантиметра, состоит из положительно заряженного ядра, которое на то время считалось неделимым, и движущихся вокруг него по орбите отрицательно заряженных электронов. Стоит заметить, что электрический заряд атома равен вовсе не нулю, а нулевой сумме противоположных электрических зарядов. Нуль есть тривиальность (небытие), которая не содержит в себе никаких компонентов, в то время как нулевая сумма есть объективная реальность (бытие), состоящая из компонентов, равных по величине, но противоположных по знаку.