Революция в физике

де Бройль Луи

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!

Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги. Это одна из немногих книг, где популярно и довольно полно излагается нерелятивистская квантовая теория, ставшая уже классической, но все еще не очень понятная и не очень знакомая тем. Кто непосредственно не занимается этой областью физики.

Это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах, предполагающая у читателя способность к такому же точно интеллектуальному напряжению, которое приходится делать автору для того, чтобы трудные вопросы изложить по возможности ясно и доступно.

Предисловие редактора

Предлагаемая вниманию читателей книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики, еще когда она делала свои первые шаги. Это одна из немногих книг, где популярно и довольно полно излагается нерелятивистская квантовая теория, ставшая уже классической, но все еще не очень понятная и не очень знакомая тем, кто непосредственно не занимается этой областью физики.

Это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах, предполагающая у читателя способность к такому же точно интеллектуальному напряжению, которое приходится делать автору для того, чтобы трудные вопросы изложить по возможности ясно и доступно.

Популярной книгу делает главным образом, то, что при изложении совершенно не употребляется математический аппарат и от читателя не требуется никаких специальных знаний. От него требуется только общая культура и добрая воля, которая стимулируется непосредственным интересом к предмету.

Эта книга была написана в 1936 и переиздана в 1946 г. почти без изменений. Действительно, нерелятивистская квантовая физика практически окончательно сложилась к 1930 г. Только несколько поправок внесено в текст этой книги 15-летним развитием науки и притом все они не имеют принципиального значения, а относятся к частным фактам. И больше того, к фактам не той нерелятивистской квантовой механики, которая составляет содержание книги де Бройля, а к области квантовой теории поля или теории элементарных частиц, близко с нею связанной. Эти последние области очень сильно развились за послевоенные годы, хотя мы все еще, видимо, далеки здесь от истинного понимания.

Так, например, сейчас точно установлено, что любая частица (в настоящее время насчитывают около 30 разных элементарных частиц) имеет свою античастицу, подобно тому как электрону соответствует позитрон. В отдельных редких случаях истинно нейтральных частиц частица совпадает со своей античастицей, поэтому некоторые из рассуждений де Бройля оказываются несостоятельными или сильно упрощенными. Например (см. стр. 56), «странная асимметрия», о которой говорит де Бройль в связи с протонами и электронами, воспринимается нами теперь как глубокая особенность асимметричного строения нашего мира на фоне полной симметрии физических законов по отношению к частицам и античастицам. Этот факт, очевидно, связан с выделенным характером положительного направления времени (ср. обсуждение этого факта на стр. 74, 75), поскольку при формальном обращении времени (замена

Введение. Значение квантов

1. Зачем нужно знать о квантах?

Многие, взглянув на заглавие этой небольшой книжки, бесспорно, будут напуганы загадочным словом «кванты». Действительно, даже о теории относительности, которая довольно оживленно обсуждалась в последние несколько лет, широкие круги читателей имеют весьма смутное представление. Что же касается квантовой теории, то о ней, я полагаю, читатель имеет еще более смутное представление. Правда, это и простительно, ведь кванты довольно загадочная вещь.

Что касается меня, то я начал заниматься квантами, когда мне было около двадцати лет, и продолжал изучать их в течение четверти века. И все же я должен честно признаться, что если за все это время я и добился несколько более глубокого понимания некоторых сторон этого вопроса, то я не могу еще с полной уверенностью сказать, что таится под маской, скрывающей подлинное лицо квантов. Тем не менее мне кажется, что, несмотря на всю важность и значительность прогресса, происшедшего в физике за последние века, ученые были не в состоянии глубоко понять истинную природу явлений, пока они ничего не знали о существовании квантов. Ибо без квантов нельзя было бы представить себе ни света, ни материи.

Можно понять, какое существенное влияние было оказано на само направление развития человеческих знаний в тот день, когда кванты исподтишка вошли в науку. В тот самый день величественное и грандиозное здание классической физики было потрясено до самого основания, хотя никто тогда еще и не отдавал себе ясного отчета в этом. В истории науки не много было подземных толчков, сравнимых по силе с этим.

И только сейчас мы в состоянии понять и оценить грандиозность и важность свершившейся революции. Классическая физика, верная идеалу Декарта, изображала Вселенную в виде некоего огромного механизма, поведение которого можно совершенно точно описать, задав положения всех его частей в пространстве и изменение положения со временем; механизма, поведение которого в принципе можно было бы предсказать абсолютно точно, зная некоторое число параметров, определяющих его начальное состояние. Однако такая точка зрения основывалась на некоторых гипотезах, которые при этом делались и справедливость которых казалась очевидной. Одна из них состоит в предположении, что та область в пространстве и времени, в которую мы почти инстинктивно стремимся поместить все наши ощущения, – область совершенно жесткая и определенная и в ней каждое физическое явление может быть в принципе совершенно строго локализовано вне зависимости от всех динамических процессов, управляющих этим явлением. Поэтому все развитие физического мира сводилось к изменениям пространственного положения тел с течением времени. Именно поэтому динамические величины, такие, как энергия и количество движения, выступают в классической физике как производные, образованные с помощью понятия скорости. Таким образом, кинематика оказывается основой динамики.

Совсем иное положение в квантовой физике. Существование кванта действия приводит к противоречию между концепцией строгой локализации в пространстве и во времени и концепцией динамического развития. Каждая из них в отдельности может быть использована для описания действительного мира. Однако их нельзя одновременно применять со всей строгостью. Точная локализация в пространстве и во времени – это некая статическая идеализация, исключающая всякое развитие и всякое движение. Понятие же состояния движения, взятое в чистом виде, напротив, есть динамическая идеализация, противоречащая понятиям точного положения и момента времени.

2. Классическая механика и физика – это всего лишь приближения

Теперь обсудим вкратце вопрос о том, какую роль современная физика отводит классической механике и физике. Разумеется, они полностью сохраняют свое практическое значение в той области явлений, для описания которой они были созданы и в которой их справедливость подтверждается опытом. Открытие квантов ни в коей мере не нарушает законов падения тел или законов геометрической оптики. Всякий раз, когда с определенной степенью точности подтверждается какой-либо закон (а всякий результат может быть проверен лишь с определенной точностью), можно утверждать, что этот результат в основном является окончательным и никакие последующие теории его не смогут опровергнуть. Если бы это было не так, то никакая наука вообще не могла бы развиваться. Однако может так случиться, что появление новых экспериментальных данных или новых теорий приведет к тому, что найденные ранее законы будут рассматриваться лишь как некоторое приближение. Иными словами, при увеличении точности измерений справедливость их в конце концов нарушается. Такие случаи неоднократно встречались в истории развития науки. Из законов геометрической оптики, например, известно, что закон прямолинейности распространения света, хотя он и был проверен с большой степенью точности и считался вначале совершенно точным, оказался верным лишь приближенно. Это стало ясным после открытия явления дифракции и установления волновой природы света. Именно таким путем последовательных приближений, устраняя внутренние противоречия, и может развиваться наука. Созданные в процессе ее развития теории не будут полностью опровергнуты и уничтожены последующим развитием науки, а войдут в качестве составных частей в новые, более общие теории. С этой точки зрения механику и классическую физику можно рассматривать как введение в квантовую физику.

Механика и классическая физика были созданы для описания явлений, протекающих в масштабе наших повседневных явлений. Они остаются справедливыми и для описания процессов, происходящих в еще больших астрономических масштабах. Но как только мы переходим к масштабам атома, существование квантов сразу ограничивает область применения механики и классической физики. С чем же это связано? А с тем, что величина кванта действия, характеризуемая знаменитой постоянной Планка, чрезвычайно мала по сравнению с нашими обычными единицами измерений. Возмущения, вносимые в измерения в результате существования квантов, оказываются в обычных условиях настолько малыми, что в используемых при этом единицах их практически невозможно заметить. Эти возмущения значительно меньше ошибок измерений, неизбежно возникающих в экспериментах, поставленных для проверки того или иного классического закона.

В свете квантовой теории классическая механика и физика уже не являются абсолютно точными. Однако в обычных условиях нарушение классических законов оказывается незаметным из-за имеющихся всегда ошибок измерений. Таким образом, для явлений, протекающих в наших обычных масштабах, классические механика и физика оказываются очень хорошим приближением.

Итак, здесь мы снова встречаемся с обычным процессом развития науки. Твердо установленные принципы, надежно проверенные законы, хотя и сохраняются в дальнейшем развитии науки, но уже рассматриваются не как абсолютно точные, а лишь как некоторое приближение, пределы применимости которого определяются новой, более общей теорией.

Поскольку все же для явлений нашего масштаба классическая механика и физика, совершенно не учитывающие наличия квантов, остаются справедливыми, то некоторые, возможно, скажут, что, в сущности, кванты не имеют такого уж всеобщего значения, какое им приписывается, поскольку в чрезвычайно широкой области явлений, включающей, в частности, область практических приложений, квантовую природу явлений можно совершенно не учитывать. Однако подобная точка зрения кажется нам неправильной. Во-первых, в такой важной и перспективной области как атомная и ядерная физика, кванты играют настолько существенную роль, что без привлечения квантовой теории понять явления, относящиеся к этой области, оказывается совершенно невозможно. Во-вторых, в макроскопической физике, где благодаря малости величины квантов и неизбежным ошибкам эксперимента квантовая природа процессов не проявляется явно, наличие кванта действия влечет за собой все те следствия, на которые мы указали ранее. И если они практически не оказывают заметного влияния, то это никоим образом не умаляет их значения, как для физики, так и для философии. Поэтому в настоящее время квантовая теория является одной из существенных основ естествознания.