Время вспять

Абрагам Анатоль

V. РОЩИ АКАДЕМИИ

 

 

Обычаи. — Визиты. — Костюмы. — Графит и алмаз. — *Теория или эксперимент. — Иностранные общества. — *Предсказывая прошлое. — Двенадцать физиков

Мальчик, выдернутый с корнем из русской школы, прилежный лицеист, студент без руководства, исследователь без исследований, солдат разбитой армии, солдат «победоносной» армии, между ними четыре года «зеленой плесени», младший научный работник, старший научный работник, профессор и начальник, чего ему не хватало? Академии, чего же еще!

Знаменитый онколог Антуан Лакассань скончался в декабре 1971 года. Его смерть впервые породила в моей голове странную мысль — сделаться академиком. Перед тем, как объяснить, что меня привлекало в академическом чине, неплохо бы сначала рассказать, что из себя представляет наша академия наук или, вернее, что она представляла в конце 1971 года, так как она сильно изменилась за последние семнадцать лет. (И она в этом нуждалась!)

Я был поражен, узнав, что наша академия, «старая дама набережной Конти», как ее фамильярно называют, на сто лет моложе Коллежа, настолько она казалась старинней. Прежде всего, ее старил возраст членов: старшему члену секции геометрии Полю Монтелю было девяносто шесть лет, за ним следовали Морис Фре-ше — девяносто три, мои бывшие экзаменаторы Данжуа и Гарнье, дружно провалившие меня тридцать пять лет тому назад, которым было восемьдесят семь и восемьдесят пять лет, и, наконец, «молоденький» Жюлья, которому было всего семьдесят девять лет. (В секции была одна вакансия.) Не все секции были такими дряхлыми, но в 1972 году среди сотни академиков, кроме геометров, еще троим перевалило за девяносто и многим за восемьдесят. Средний возраст был значительно выше семидесяти. В 1970 году Альфред Кастлер начертил две кривые, которые показывали возраст академиков на протяжении последних ста лет при вступлении в академию и при смерти. Кривые постепенно сближались и, экстраполируя можно было ожидать, что они пересекутся еще до конца ХХ-го века.

Уставы академии были «во вкусе умной старины». За исключением двух секций, к которым я вернусь, академики были распределены по специальностям в разных секциях с шестью членами каждая. Чтобы попасть в вашу секцию, скажем физическую, вы должны были терпеливо ожидать, чтобы один из шести физиков, ваш коллега, часто ваш друг или учитель, соизволил бы освободить место, для вас … или для другого. Я прозвал это ужасное правило — «трупным». Названия некоторых секций тоже были во вкусе умной старины. Секция «География и навигация» имела то же число членов, что и физика. В эту секцию обыкновенно выбирали старых адмиралов. Две секции, насчитывавшие четырнадцать и двенадцать членов, допускали кандидатов всех специальностей, что смягчало в известной мере эти железные правила. Первая была для так называемых «свободных академиков», вторая — для провинциалов, или, как они назывались, нерезидентов. В прошлом веке «свободные академики» чем-то отличались от обыкновенных, но это различие давно исчезло.

Попасть в «свободные академики» (так как я жил в Париже, нерезиденты для меня не подходили) было не легче, чем попасть в обыкновенную секцию. Вакансии открывались чаще, но вы сталкивались с соперниками всех специальностей и превосходства в вашей собственной было недостаточно, чтобы быть выбранным (как, кстати, и в специализированных секциях). После смерти Лакассаня, который был свободным академиком, когда я заявил свою кандидатуру на его вакансию, академия насчитывала шесть физиков вне физической секции, не считая де Бройля, постоянного секретаря.

Кандидат подробно описывал все свои работы и научные заслуги в так называемой «Notice des Titres et Travaux», т. е. в специально напечатанной (в типографии, не на машинке!) брошюре, которую он затем рассылал по почте всем академикам. Многое зависело от ее убедительности. В начале своей я написал: «От кандидата ожидается, чтобы он описывал свои заслуги, не раздражая взыскательного читателя ни фальшивой скромностью, ни нахальной самоуверенностью — тернистый путь». К брошюре кандидат прикладывал рукописное почтительное письмо, в котором излагал свое намерение быть кандидатом, и просьбу о разрешении представиться лично. Вся процедура — составление брошюры и сотня визитов (на самом деле немного меньше, так как некоторые престарелые академики не принимали) — занимала от трех до шести месяцев жизни кандидата, и в случае неуспеха Бог, и только Бог, знал, когда появится новый шанс.

Зачем полез я на эту галеру? Ответ не прост. Жажда славы? — Не думаю. Несколько лет спустя, когда обсуждали реформы устава академии, я предложил следующий критерий для ее успешного обновления: невозможность составить из не-академиков научное общество в объеме академии, которое превышало бы ее по качеству. В 1972 году до этого было далеко. Большинство выдающихся французских математиков — Serre, Cartan, Weil, Schwartz, — биологов и врачей — Hamburger, Dausset, Lwoff, Jacob, Ephrussi не были членами нашей Академии. А физики? Скажу только, что наш Нобелевский лауреат Альфред Кастлер еле проскочил после трех безуспешных попыток.

Чтобы быть справедливым к нашей академии, надо сказать, что она относилась довольно равнодушно к подобного рода иностранным погремушкам. Она не приняла ни Марию Кюри, ни ее дочь Ирину, ни Андрея Львова при его первой попытке, хотя все трое были Нобелевскими лауреатами. За границей мои друзья слышали, конечно, о де Бройле, Кастлере и Нееле, но лишь немногие слышали об остальных десяти физиках нашей академии.

Нет, не жажда славы или, чтобы назвать ее своим именем, тщеславие, толкнуло меня на галеру. — Так что же? Я рассказал в главе «Армагеддон», что в тридцать девятом году я угодил в самую гущу глубинной, провинциальной Франции, в среду крестьян, батраков, мясников и торговцев скотом, и что этот опыт расширил мой кругозор и некоторым образом обогатил меня. Со всем моим уважением к нашей Академии скажу, что в ней тоже я находил черты провинциальной Франции. Что могло быть ближе к настоящей, глубинной, народной Франции, чем Французская академия наук 1972 года со своими обычаями и обрядами, со своими двумя вечными секретарями. Не постоянными, а вечными(!), ведь наши академики «бессмертны» (immortels), со своими запечатанными конвертами, в которые вкладывают «открытия» для далеких потомков («plis cachetés»), со своими «Докладами», неизвестными за границей и не знающими ее, со своими архивами и архивариусами, со своими ежегодными торжественными заседаниями под куполом академии, на которых старцы «в душистых сединах» появляются под барабанную дробь в зеленых расшитых шелком мундирах при шпаге, и с массой других обычаев, которых «пересказать мне не досуг».

Для пришельца без предков, без традиций, без корней, проникнуть в эту тихую гавань, где время остановилось, великий соблазн. Кроме того, на горизонте, который семнадцать лет тому назад казался таким далеким, мерцала надежда сохранить связь со своими собратьями, которую только смерть могла бы порвать. Именно так следует понимать академическое бессмертие. Я помню, что после выборов, когда вечный секретарь де Бройль ввел меня в залу заседаний, все академики встали. «Обратите внимание», — сказал мне старый академик, мой сосед, — «после этого они встанут еще только раз, чтобы почтить вас». Наконец, я полагал, что ввести в академию реформы, в которых, как я был убежден, она нуждалась, возможно только изнутри. Любая критика от ученых снаружи воспринималась как выражение зависти (см. «Лисица и виноград»). Все эти соображения, некоторые из которых противоречивы, вместе взятые, толкнули меня на тернистый путь кандидата.

Эта академия больше не существует. В 1976 году при поддержке президента Жискара, благодаря энергии и энтузиазму некоторых из нас, удалось провести реформы, которые сохранили внешние черты академии, но изменили суть. Число академиков увеличилось до ста тридцати. Упразднили ужасное «трупное правило» и заменили его коллективными выборами каждые три года. Половина кандидатов должна была быть моложе пятидесяти пяти лет. В 1988 году была новая реформа, и эту границу снизили до пятидесяти. После восьмидесяти лет академик сохраняет все права, но его «кресло», как у нас говорят, считается свободным. Даже вечный секретарь уходит с должности в семьдесят пять лет. Качество «Докладов» улучшилось. Принимают статьи на иностранных языках. Создан редакционный комитет, который более не пропускает любую из статей, рекомендованных только одним академиком и даже бракует статьи самих академиков. В связи с реформами научный уровень академии значительно повысился. Все ученые, которых я упомянул раньше, как достойных этого звания, были избраны, за исключением Моно, который преждевременно скончался. Составить во Франции вторую академию такого же уровня было бы теперь невозможно.

Для советского читателя академия наук это могущественное учреждение, которое заведует наукой страны и сосредоточивает в своих руках большую власть. У нас не так. Академия пользуется известным влиянием и авторитетом, но власти у нее нет, есть только почет. Еще при царе был в России профессор физики Хвольсон, который написал знаменитый многотомный курс физики. (Курс был переведен на иностранные языки, в том числе и на французский, и во время моего юношеского «Хождения по мукам» я ухитрился и на него растратить долю моего драгоценного времени.) Он был награжден званием «почетного академика», про которое сам говорил, что оно отличается от звания академика, как «милостивый государь» от «государя». У нас все академики почетные.

Но вернемся к моей кандидатуре. Я не хочу томить читателя, который, проделав со мной столь длинный путь, не может не быть на моей стороне. Я был побит всего двумя голосами и на четвертом голосовании, но все же побит. В пользу моего счастливого соперника, известного онколога, сыграл тот факт, что, хотя избирали «свободного академика», предшественником был тоже онколог Лакассань. Подозреваю, что тут сыграл также активную роль некто «скромный в третьей степени». Не огорчайся читатель. Пару месяцев спустя скончался другой «свободный академик», «трупное» правило сработало, и меня избрали в результате первого же голосования.

После выборов я получил несколько писем от известных портных, которые предложили мне свои услуги, чтобы сшить вицмундир, подобающий моему новому званию. Один из них особенно хвалил искусство своих вышивальщиц! Цен никто из них не называл, чтобы не спугнуть новоиспеченного академика, но я знал, что они высоки, и не собирался тратить уйму денег на ненужную роскошь. Друзья, коллеги и сотрудники попросили назвать подарок, которым они могли бы отметить торжество. Обыкновенно дарят шпагу к мундиру. От шпаги я, понятно, отказался и назвал совершенно ненужную вещь, о которой давно мечтал, но которую мне было совестно купить самому, — старомодные золотые часы с крышкой. Мне их подарили, с золотой цепью и надписью на крышке.

В 1980 году я все-таки сделался счастливым обладателем, или, точнее, пользователем, прекрасного зеленого мундира при следующих обстоятельствах. В этом году наш вечный секретарь Поль Жермен, как его продолжали звать несмотря на реформы, предложил мне произнести традиционную речь на ежегодном торжественном заседании под куполом академии. Традиция требовала, чтобы я читал речь в мундире, которого у меня не было. Жермен сообщил мне, что некоторые академики завещают свой мундир академии и что я мог бы попробовать подобрать себе подходящий среди тех, которые она хранит. Я никогда не встречался с господином Андре Майером, бывшим профессором физиологии в Коллеж де Франс, но знаю про него то, чего даже его дети не знают, как, например, обхват его груди и талии. Знаю потому, что они совпадают с моими собственными. С тех пор на каждом торжественном заседании я надеваю его бывший мундир, который мне так идет, и который вернется в академию, когда смерть или упадок сил этому поспособствуют. После того, как вопрос с мундиром был решен, остались такие мелочи, как выбор предмета и написание лекции. Я решил прочесть доклад о чистой науке и ее отличии от прикладной, тема довольно избитая, но, по-моему, важная. Эта лекция мне самому так понравилась, что впоследствии я включил ее наряду со своей оксфордской лекцией в честь Чаруэлла и Саймона, в мою книгу «Reflections of a physicist». Не хочу скрывать (да и зачем), что и эта лекция очень понравилась слушателям.

Я забыл сказать, что одним из них был президент республики Жискар д'Эстен. Лекция уже была написана, когда я узнал, что он будет присутствовать на ней. Это меня смутило гораздо меньше, чем присутствие на моей лекции Бора и Гейзенберга двадцать пять лет тому назад. Из президентского дворца у меня запросили копию лекции, потому что, как мне сказали, президент может пожелать выразить свою точку зрения на вопросы, затронутые в лекции. Но я все-таки смутился, заметив в лекции неосторожное сравнение между взаимодействием медленных нейтронов с алмазом и с искусственным графитом; изучение первого принадлежало чистой науке, а второго — прикладной. Беда была в том, что не так давно в левых газетах были ожесточенные нападки на президента за то, что во время поездки в Центральную Африку он принял в подарок от местного диктатора несколько алмазов. В моей лекции алмаз мог стать динамитом. Я наскоро заменил алмаз кремнием, утешив себя тем, что у них одинаковая кристаллическая решетка.

Как-то раз перед толпою соплеменных … академиков у Рене Тома с Абрагамом был великий спор.

В 1984 году академия организовала серию эпистемологических дискуссий (я сам хорошенько не знаю, что это означает). Доклады и прения были опубликованы академией отдельным изданием. Меня пригласили быть оппонентом знаменитого математика Рене Тома (Renй Thorn), обязанного своей известностью широкой публике громким названием его «теории катастроф». Доклад Тома назывался (перевожу буквально): «Экспериментальный метод — миф эпистемологов (и ученых?)» Заключением его доклада было: «В наше время наше мышление — это то, что требует защиты от высокомерного авторитета эксперимента». Я решил привести здесь часть моего опровержения его тезисов (тщательно очистив его от шипов, порожденных вызывающим характером лекций Тома). Я решил это сделать, во-первых, потому, что мой доклад может осветить некоторые стороны истории современной физики, с которыми не все знакомы, а также взгляды того, кто в конце концов является героем этой повести.

*Теория или Эксперимент

(давнишний спор)

 

Я всегда с трудом воспринимал философию, ее методы и ее язык. Никогда не ощущал надобности для себя или обращаясь к другим в формальном определении понятий «теория» и «эксперимент», которые являются частью моей ежедневной деятельности. Я считаю, что те, кому надо знать эти вещи, их знают. (Это мне напоминает анекдот про даму, которая в лондонском зоопарке, тыча зонтиком в гиппопотама, спрашивает у сторожа: «Это самка или самец?» — «Мадам», — отвечает сторож, — «я не вижу, кого этот вопрос может интересовать, кроме другого гиппопотама; а он знает».)

Если будут очень настаивать, я скажу, что для меня эксперимент — это деятельность, которая протекает в лаборатории, главная цель которой подтвердить или опровергнуть предвзятые идеи, породить новые идеи, улучшить свои собственные методы и технику, и «last but not least», доставлять большое удовольствие. Как говорит любимый герой Анатоля Франса добродушный аббат Жером Куаньяр: «Если я перевожу писания Зосимы, это потому, что я извлекаю наслаждение из этого занятия». За несколько недель до смерти Альберт Майкельсон говорил Эйнштейну: «Если я провел большую часть своей жизни над улучшением моего интерферометра, то потому, что это доставляло мне удовольствие».

Моим определением теории было бы «привести в порядок идеи, которые были или будут подвергнуты проверке экспериментом». Это тоже доставляет удовольствие. В свои определения я ввел исподтишка слово «идея», но не требуйте от меня его определения, это относится уже к философии. Мне говорили, что отказываться от философии — это тоже философствовать, только плохо. Возможно, но я предпочитаю приписывать мои научные неуспехи ограниченности моих способностей, а не отказу философствовать. Скажу, как Полоний, что рассуждать, «… зачем день — день, ночь — ночь, и время — время, то было б расточать ночь, день и время».

*Раз я физик, то буду говорить только о физике, по крайней мере о той, с которой я более или менее знаком. Я не коснусь ни Галилея, ни Ньютона, мне хватит нашего века. Если рассмотреть внимательно прогресс физики с 1900 года до наших дней, можно увидеть, что теория и эксперимент связаны неразрывно.

Бывает, что целое множество экспериментальных результатов, необъяснимых в рамках существующих теорий, буквально силой заставляет теоретика разрубить гордиев узел и сформулировать новую теорию. В 1900 году, чтобы объяснить форму спектра излучения черного тела, Макс Планк неохотно сформулировал странную, нелепую гипотезу, специально придуманную для этой цели (ad hoc — по латыни), а именно, что энергия, излучаемая осциллятором, принимает только дискретные или, как теперь говорят, квантованные значения, пропорциональные его частоте. Это «дикое» предположение, вымученное из теоретика неумолимым экспериментом, стало исходным пунктом величайшей революции в современном научном мышлении — квантовой теории.

В 1913 году эксперимент заставляет снова, на этот раз Нильса Бора, сформулировать ряд постулатов, не менее странных и «неестественных», чем гипотеза Планка: в атоме могут существовать только некоторые квантованные электронные орбиты, круговые или эллиптические; вопреки законам электродинамики электрон движется по этим орбитам, не излучая энергии; энергию он излучает во время прыжка с одной квантованной орбиты на другую. «Нет, господин Том, ни вашим философам, ни вашим математикам этого не снилось!»

Между 1923 и 1928 годами де Бройль, Шредингер, Гейзенберг, Дирак, Паули, Борн и другие, исходя из того, что до тех пор было только собранием магических рецептов, строят грандиозное творение человеческого разума — современную квантовую теорию.

Рождению квантовой теории можно противопоставить появление специальной теории относительности, возникшей всецело в уме двадцатишестилетнего технического эксперта второго класса в бюро патентов швейцарского города Берна. Повлиял ли на его мышление отрицательный результат эксперимента Майкельсона, вопрос не решен. Сам Эйнштейн хранил молчание, но, по-моему, это не важно. Я не сомневаюсь, что его главным побуждением была слабость и противоречивость теории абсолютного эфира. Когда в 1906 году эксперименты Кауфмана дали указания о противоречии с предсказаниями теории относительности, Лоренц и Планк заколебались, но Эйнштейн остался невозмутим; более точные эксперименты показали, что он был прав. Но было бы неосторожно вывести из этого примера заключение о господстве теоретика над экспериментатором. Quod licet Jovi, non licet bovi (что дозволено Юпитеру, не дозволено быку).

В биографии Эйнштейна есть малоизвестный эпизод — его сотрудничество с де Гаазом (de Haas), зятем Лоренца, в поисках экспериментального доказательства пропорциональности между угловым моментом J и магнитным моментом M в веществе. Их соотношение содержит безразмерную константу g, которая согласно классической электродинамике равна единице. В остроумном эксперименте Эйнштейн и де Гааз наблюдали вращение, связанное с намагничиванием, и определили с точностью 10 %, что д действительно равняется единице. Увы, их результат был ошибочен на все сто процентов. Теоретическое значение д — не 1, а 2. Эта разница происходит (жестокая ирония!) от релятивистского эффекта, как было впервые строго доказано Дираком. Что случилось? Смошенничали ли они? Не думаю. Но они были неосторожны. Они пришли в восторг при наблюдении ожидаемою вращения и после этого, очевидно, работали спустя рукава. Например, магнитное поле и намагниченность они не измеряли, а подсчитали по параметрам эксперимента. Первый эксперимент дал для д значение 1,02, т. е. в замечательном согласии с теорией. Второй эксперимент дал 1,48, но они отбросили этот результат как аномальный! Полагали ли они, что классическая электродинамика слишком прекрасна, чтобы оказаться ошибочной? Рассказал все это де Гааз в 1923 году. Эйнштейн никогда не сказал об этом ни слова.

Хочу привести обратный пример двух искусных и честных экспериментаторов, которые однако известности не добились. Фриц Лондон предсказал, что в сверхпроводнике магнитный поток принимает только квантованные значения, множители элементарного кванта (hc/e). В 1961 году два немецких физика наблюдали квантование магнитного потока, но измеренный ими квант был меньше половины (hс/е) (около 40 %). После тщетных попыток найти грубую ошибку в калибровке своих измерений они решились опубликовать этот непонятный результат. Между тем в том же номере «Physical Review Letters» Янг (C. N. Yang) показал, что ввиду существования, так называемых, куперовских пар, на которых зиждется современная теория сверхпроводимости, заряд е в формуле магнитного кванта должен быть удвоен. Новое значение кванта — (hc/2e), т. е. в два раза меньше, чем предполагалось раньше, и в пределе экспериментальных погрешностей совпадает с результатом немецких ученых. Никто, в том числе и я, не помнит их имен. Несправедливо!

А вот еще маленькая история, связанная с «высокомерным авторитетом эксперимента». В 1923 году, за двадцать три года до открытия ЯМР, немецкий физик Отто Штерн решил измерить магнитный момент протона, пользуясь методом молекулярных пучков — не легкий эксперимент по тем временам. Узнав об его намерении, Паули объявил: «Бесполезный эксперимент. Что, кроме ядерного магнетона, надеется найти этот Dummkopf (глупец)?» (На это словечко Паули всегда был довольно щедр.) «Думкопф» нашел почти в три раза больше, чем ядерный магнетон.

Хочу теперь, хотя я сам не специалист, описать кратко несколько этапов в развитии квантовой электродинамики. Я выбрал этот пример потому, что близкое сотрудничество теории и эксперимента редко выступает так ярко, как в постройке этого замечательного здания современной физики, а также потому, что именно на эту область науки обрушились наименее снисходительные комментарии господина Тома.

В конце двадцатых годов формализм квантовой физики, в том числе и электродинамики, был хорошо установлен. Умели подсчитывать все процессы обмена энергии между материей и излучением. Точнее, умели их подсчитать в самом низшем порядке теории возмущений, чего в большинстве случаев было вполне достаточно ввиду малой величины (1/137) константы связи между материей и излучением. Но когда попробовали улучшить точность, подсчитывая члены более высокого порядка, результат всегда был одним и тем же: расходящиеся интегралы и бесконечности. В течение пятнадцати лет целая армия выдающихся теоретиков — Гейзенберг, Паули, Дирак, Борн, Вайскопф, Бете, Гейтлер и многие другие — тщетно пытались очистить теорию от проклятых бесконечностей. Была ли «какая-то в державе датской гниль»?

Неожиданно вывел всех из тупика эксперимент Уиллиса Лэмба в 1947 году. Пользуясь радиочастотной техникой, он обнаружил, что первые два возбужденных уровня водородного атома, на расстоянии десятка электрон-вольт от основного уровня, которые согласно точной теории Дирака должны были совпадать друг с другом, на самом деле были расщеплены на несколько микроэлектрон-вольт. Почти одновременно с этим другой экспериментатор — Поликарп Каш — нашел другое отклонение от теории Дирака: гиромагнитное отношение электрона отличалось от двух приблизительно на одну тысячную.

Теоретики быстро убедились в том, что эти отклонения объяснялись вакуумными флуктуациями излучения и материи, которые рассматривались и прежде, но до сих пор всегда приводили к бесконечным результатам. Теперь, благодаря результатам Лэмба и Каша, теоретики знали, что эффекты флуктуации реальны, что они измеримы и малы. Последнего следовало ожидать ввиду малой величины константы связи. Менее чем в три года благодаря усилиям Швингера, Фейнмана, Томанаги и Дайсона, появился на свет так называемый метод ренормгруппы, который позволил при расчете любой физической величины однозначно изолировать расходящиеся части интегралов всех порядков по константе связи, выделяя в результате вычисления ее конечную часть, которую можно было сравнить с результатами эксперимента.

Как известно, замечательное изобретение Фейнмана, так называемый метод диаграмм позволило представить наглядно и записать все члены любого порядка n. Когда порядок n увеличивается, число членов этого порядка растет, величина их уменьшается, а вычисление каждого члена быстро усложняется. Оправдывает подсчет членов высокого порядка, несмотря на их очень малую величину и на очень большую сложность, воистину умопомрачительное согласие теории с экспериментом. Такое согласие доказывает одновременно и правильность метода ренормгруппы как метода вычислений, и способность теории описывать физическую реальность. Я не сомневаюсь, что метод ренормгруппы легко мог бы быть открыт на десять лет раньше. Теоретикам, которых я только что назвал, вполне хватало и математического искусства и воображения. Чего им не хватало, так это уверенности, что квантовая электродинамика правильно описывает действительность. Только эксперимент мог им дать и дал эту уверенность. Они узнали, что «гнили» никакой не было, и после этого легко спасли «державу».

Господин Том смеется над физиками, которые «отыскивают» согласия до седьмого порядка между экспериментом и теорией, которая «математически неудовлетворительна». Тут заложена «маленькая неточность». Согласие, и не до седьмого, а до десятого порядка, не «отыскивают», оно «находится» само собой. Параметров, которые надо «подгонять» к результатам, здесь нет.

Надо признать, что, так называемых, феноменологических теорий, где параметры «подгоняют» к результатам, в физике немало. Есть анекдот, который это прекрасно описывает и который, с вашего разрешения, я расскажу. Дело происходит в США во время гражданской войны между северянами и южанами. Северянин, кавалерийский офицер, проезжает верхом по деревне в одном из западных штатов. На двери каждого амбара кто-то нарисовал несколько концентрических кругов, как на мишени для упражнения в стрельбе, и в самой серединке каждой мишени — один-единственный след пули. Офицер спрашивает у парня, который прислонился к амбару:

— Кто это тут упражнялся? Неплохой стрелок.

— Да это Билли Джонс баловался с кольтом.

— На каком расстоянии от амбара он стреляет?

— Шагов тридцать.

— Долго целился?

— Кто? Билли? Да нет, выхватывает из кобуры и стреляет.

— Вот это стрелок! Таких нам и надо.

— Не в обиду будь сказано, лейтенант, Билли вам не подойдет.

— Не твоего это ума дело. Он за тридцать шагов от мишени стоит, когда стреляет?

— Ну, тридцать, тридцать, иногда и за сорок. — И долго не целится?

— Да говорил же я вам, выхватывает и стреляет.

— Ладно, вот тебе парень доллар, приведи мне твоего Билли, да поскорее.

— Иду лейтенант, и большое вам спасибо. А все-таки разрешите сказать, что Билли сперва стреляет, а потом только круги рисует.

Как последний пример близкого сотрудничества между теорией и экспериментом назову несохранение четности в так называемых слабых взаимодействиях, к которым принадлежит, между прочим, и ядерный β-распад. Про теорию говорят, что она сохраняет четность, когда нельзя отличить явления, которые она описывает, от их отражения в зеркале. Давно было известно, что четность сохраняется с большой точностью в электромагнитных взаимодействиях, а также и в сильных взаимодействиях, которыми обусловлены ядерные силы.

До 1958 года предполагалось, что так же обстоит дело в слабых взаимодействиях. По крайней мере, не существовало экспериментальных данных, доказывающих обратное. И снова поднял тревогу эксперимент. В космических лучах открыли две неустойчивые частицы, названные γ и в. В пределах экспериментальных погрешностей масса и время жизни частиц были одинаковы, но их распады через слабое взаимодействие указывали на противоположные четности. Равенство массы и времени жизни двух частиц, казалось бы различных, было «заманчивой загадкой». Два теоретика — Ли и Янг, — которые «над нею голову ломали и чудеса подозревали», осмелились задать вопрос: «А что если m и 0 одна и та же частица, способная распадаться по двум различным схемам? (В одном знаменитом детективе из пары близнецов один — убийца, а другой — порядочный человек. И герой раскрывает тайну, догадавшись, что близнецы не существуют и что убийца и порядочный человек — одна и та же личность.) Ли и Янг рассмотрели все существующие опытные данные, на которых была основана гипотеза о сохранении четности в слабых взаимодействиях и убедились, что ни одно из них не противоречило нарушению четности. Задумали и наскоро провели два различных эксперимента, которые доказали, что в слабых взаимодействиях четность действительно нарушается и притом максимально. Последнее означает, что члены, нарушающие, и члены, сохраняющие четность, имеют одинаковый вес во взаимодействии.

И круг замкнулся: экспериментальное открытие частиц m и в — теоретическая гипотеза Ли и Янга — экспериментальное доказательство нарушения четности. Для анекдота расскажу, что наш дорогой Паули прозевал еще одну прекрасную возможность промолчать, предсказав, что опыт покажет, что четность не нарушается.

Могу поразить господина Тома, да и не только его, заявив, что теоретическая физика не является точным синонимом математической физики. Безусловно, на конечном этапе теория выражается математически, но иногда (не всегда, конечно) это вспомогательный процесс, после того, как идея была сформулирована обыкновенным языком.

На понятии „составного ядра“ (compound nucleus), предложенном Нильсом Бором, которое можно выразить в нескольких словах, целое поколение теоретиков-ядерщиков кормилось двадцать лет. Часть модели ядерных оболочек, которая принесла Нобелевскую Марии Мейер, содержалась в простом вопросе, который ей задал Ферми на семинаре: „Рассматривали ли вы роль спин-орбитальной связи?“.

Всей долгой научной деятельности Луи де Бройля можно подвести итог одной фразой: „Фотон, который — волна света, вместе с тем и частица, почему бы электрону, который — частица, не быть бы и волной материи“.

И есть ли более прекрасный пример теоретической физики, чем дискуссия, в которой Эйнштейн предлагает один за другим целый ряд „мысленных“ (gedanken) экспериментов, чтобы доказать несостоятельность квантовой теории, и где каждый раз Бор обнаруживает изъян в его рассуждениях, вершиной которых является недосмотр Эйнштейном смещения частоты световой волны в гравитационном поле.*

После того как я стал членом нашей академии наук, несколько иностранных академий обратили на меня свое благосклонное внимание. В 1974 году я был избран почетным членом Американской академии гуманитарных и точных наук (American Academy of Arts and Sciences). В 1977 году меня выбрали иностранным членом Национальной академии США (US National Academy). В 1981 году я был выбран в члены Ватиканской академии (Pontifical Academy). Канцлер академии (что не то же, что президент), милейший иезуит отец ди Ровазенда, пригласил меня представить (до выборов) очерк своих научных заслуг, нечто вроде Notice, которую я сочинил девять лет тому назад для нашей академии. Я нашел, что теперь слишком стар для такого рода упражнений и отказался это сделать. Я просил академию видеть в моем отказе знак не гордости, а смирения. Я написал любезному отцу, что „если мои труды для того, чтобы привлечь внимание академии, нуждаются в рекламе от меня самого, это означает, что они его недостойны, и что мне не место среди вас“. Мое „смирение“, очевидно, не слишком покоробило членов академии, потому что они меня выбрали.

В 1981 году я был в саббатическом отпуске в Оксфорде, когда из Ватикана пришло приглашение принять участие в пленарной сессии академии, которая оплачивала все расходы на поездку для Сюзан и для меня. Во время сессии предполагалась аудиенция Святого Отца, что вызвало радостное волнение у моей католички Сюзан. В лондонском аэропорту нас ожидало печальное известие. Персонал Alitalia бастовал, и казалось невозможным попасть вовремя на папскую аудиенцию. Сюзан была очень огорчена. Наконец, поздно вечером объявили единственный рейс в Палермо. С грустью в сердце мы отправились в Палермо. Только чудом могли бы мы попасть в Ватикан на папскую аудиенцию, назначенную на следующий день в двенадцать часов дня. И чудо произошло! Не успели мы усесться, как по радио объявили, к великому гневу всех пассажиров, направлявшихся в Сицилию: „Этот рейс будет в Рим“.

В октябре 1986 года праздновали пятидесятилетие Ватиканской академии и было запланировано несколько кратких докладов. Мне предложили прочесть, в десять или пятнадцать минут, доклад на тему „Куда идет физика?“ (Where to, Physics?), своего рода „Камо грядеши“, для которого требовался „горизонтальный“ физик. Я счел менее рискованным занятием „предсказывать“ прошлое, и назвал свой краткий доклад „Откуда идет физика“ (Where from, Physics?). И повел свое предсказание весьма произвольно — от 1945 года. Вот этот доклад, который не слишком перекрывается с тем, что я рассказал в своих дебатах с Томом.

**Революция квантов и революция, спровоцированная теорией относительности, были в прошлом; открытие позитрона увенчало их союз; строение атомов, в котором крохотные ядерные магнитные моменты играли ничтожную роль, названную очень подходяще сверхтонкой структурой, не хранило больше своих тайн. Теория, называемая квантовой электродинамикой, давала удовлетворительные результаты в любых вычислениях атомной физики в первом порядке, но вела, к сожалению, к бессмысленным бесконечностям при попытках улучшить ее точность. Физика твердого тела, развитая в рамках квантовой теории, объясняла электрическую и тепловую проводимость, но сверхпроводимость еще оставалась тайной. Существующая теория фазовых переходов казалась удовлетворительной, за некоторыми исключениями, которые считались маловажными. Оптика стала классической наукой, т. е. мертвой. Ядерная физика познала свои первые успехи, восхищающие или ужасающие. Знали про нейтрон и про ядерное деление, гипотеза нейтрино вернула веру в сохранение энергии. Юкава объяснил ядерные силы обменом между нуклонами тяжелыми частицами, которые, как казалось, были обнаружены в космических лучах и прозваны мезотронами. Сохранение четности стало догмой. Гигантские или казавшиеся такими, циклотроны и бетатроны ускоряли протоны, дейтроны, альфа-частицы и электроны до „баснословных“ энергий порядка сотен МэВ. Наконец „гигантские“ компьютеры, появившиеся во время войны для военных целей, могли проделывать сотни операций в секунду и были ограничены только загромождением, охлаждением и частыми авариями электронных ламп, на которых они работали. Но ситуация менялась и быстро.

В течение последних сорока лет во всех перечисленных выше областях науки теория и эксперимент быстро двигались вперед, стимулируя друг друга, разрабатывая новые орудия и улучшая старые. В атомной физике новая техника коротких волн, унаследованная от радара, позволила обнаружить в тонкой структуре атома водорода аномалию малых размеров, но громадного значения, так как теория этой структуры считалась незыблемым оплотом союза квантов и относительности. В этой аномалии, вместе с другой такого же порядка в магнитных свойствах электрона, скрывался ключ к непонятным и невыносимым бесконечностям квантовой электродинамики.

Ободренные экспериментом теоретики осмелились, наконец, вычитать одну бесконечность из другой и таким путем извлекать конечные результаты, соответствующие наблюдаемым аномалиям. Отсюда вышла теория ренормализации, которая затем распространилась на другие области теоретической физики. Изобрели диаграммы, с помощью которых велись вычисления, прежде безнадежные, иногда очень отдаленные от квантовой электродинамики.

Крошечные ядерные моменты, возбужденные надлежащим образом, испускали сигналы, наблюдение которых (под названием ядерный магнитный резонанс, или ЯМР) обратилось в одно из самых „проницательных“ орудий для изучения свойств сплошной материи, позже биологических молекул, и, наконец, дало ЯМР-томографию, которая видит насквозь сердца и чресла людей.

Физика твердого тела, в особенности изучение так называемых полупроводников, привела к самой фантастической революции нашего времени, через изобретение транзистора и его наследника микроскопического „чипса“, которые умножили возможности компьютеров во много миллионов раз.

Решили загадку сверхпроводимости и обнаружили одновременно новую породу сверхпроводников. Теория хорошо объяснила и практика широко использовала их технические качества для реализации гораздо более сильных магнитных полей при несравнимо меньшем расходе электрической энергии.

Совсем недавно открыли совершенно новую породу сверхпроводников с критической температурой выше жидкого азота, свойства которых еще не поняты основательно до сих пор (1988 год). Оптику воскресили сперва через остроумную комбинацию поляризованного света и радиочастотных полей, но еще больше благодаря изобретению лазера, который скоро научились перестраивать, что произвело революцию в спектроскопии и создало новую науку — нелинейную оптику. Применение лазера в голографии, офтальмологии и других областях медицинской практики, и конечно, увы, к вооружению, бесконечны.

Открыли частицу Юкавы, которая оказалась не той, что думали; доказали реальность нейтрино и открыли, что в слабых взаимодействиях догма сохранения четности нарушалась, причем очень сильно.

Энергия ускорителей увеличилась на три порядка, создавая целый рой эфемерных частиц, которые с трудом укладывались в теоретические схемы. Обратимость времени в нашей жизни нарушается повседневно. На микроскопической шкале она была догмой, как и четность, но тоже нарушаемой, хотя гораздо слабее. Появились изощренные теории, которые намеренно отказывались от попыток описать реальность с какой-либо точностью и которые для неспециалиста, пишущего эти строки, могли быть выражены утверждением „все содержится во всем“.

Затем, благодаря нескольким прекрасным открытиям, экспериментальным и теоретическим, сделанным за последние пятнадцать лет, все более или менее пришло в порядок, по крайней мере, до поры до времени. Существует теперь совокупность теорий, опирающихся на бесспорные экспериментальные факты, которая носит название „стандартной модели“. В этой модели существуют два типа первичных составляющих материи: во-первых, „кварки“, по три на нуклон, которые подвержены так называемым „сильным взаимодействиям“ и описываются теоретически „квантовой хромо-динамикой“; во-вторых, „лептоны“, которые взаимодействуют друг с другом, а также с кварками в рамках так называемой „электрослабой“ теории — слиянии квантовой электродинамики и теории слабых взаимодействий. Мечта теоретиков элементарных частиц это слияние квантовой хромодинамики и электрослабой теории в одно целое в рамках так называемого „великого объединения“. Они полагают, что такая теория дала бы правильное описание сущности вещей в самом начале после рождения невозможно горячей Вселенной, сразу после так называемого „большого взрыва“ (Big Bang). Но за „великим объединением“ мерцает еще одна возможность: старая мечта Эйнштейна — слияние всех физических теорий с тяготением.

Физика конденсированного состояния не осталась позади. Новые понятия ниспровергли существующую теорию фазовых переходов и показали, что за бесконечным разнообразием физических явлений вблизи фазовых переходов таится одно и то же поведение. Эти предсказания теории были проверены экспериментом с большой точностью. Для изучения конденсированного состояния были созданы новые методы и орудия; во-первых, конечно, лазер, а также дифракция медленных нейтронов и электронов, ЯМР и многие другие. Большое внимание привлекли двумерные системы, самым важным, но не единственным, примером которых являются поверхности. Замечательные возможности в этом направлении представляет недавно появившийся „сканирующий туннельный“ микроскоп. Наконец, беспорядочные системы всякого рода приобрели большую теоретическую и экспериментальную важность.

Возникла и пользуется большим интересом новая статистическая механика, не ограниченная требованиями эргодичности. Наконец, благодаря новым возможностям компьютеров пользуются большой популярностью так называемые „симуляции“ или „компьютерные эксперименты“, где реальность — незваный гость.*

Я пришел к концу этого перечня, в котором каждая область физики может считать себя обиженной, не понятой или просто забытой. Прошу заранее прощения у коллег, которые работают в этих областях.

Разрешите мне обратиться на минуту к нашим коллегам и друзьям — к биологам, молниеносные успехи которых, по мнению некоторых, вызывают нашу зависть. Не верьте им: если мы искренно радуемся вашим успехам, это потому, что мы считаем их своими. Вы заимствовали наше оборудование и нашу технику, то, что компьютерщики зовут hardware. Но, что важно, вы заимствовали наше мышление, наш software, а в этом все. Товарищи физики живой материи, я вас приветствую».

В 1983 году я был избран иностранным членом Британского Королевского общества. Можно заметить, что стать иностранным членом Королевского общества гораздо труднее, чем попасть в ту или другую из американских академий, к которым я уже принадлежал. Во-первых, число иностранных членов в Королевском обществе гораздо меньше, чем в этих академиях, но главное в том, что в Америке при выборе иностранцев среди претендентов отсутствуют, разумеется, американские физики, т. е. самые опасные соперники.

После выборов я получил приглашение на торжественный банкет Королевского общества, которое настаивало на фраке, которого у меня до сих пор не было, не допуская его младшего брата — смокинга, который у меня был. Мой мудрый друг Николас Курти посоветовал мне носить мой темно-зеленый академический мундир, который скроен, как фрак. Я последовал его совету и произвел настоящий фурор среди своих британских коллег.

Голландская Королевская академия не сделалась моей шестой академией, но оказала мне гораздо большую честь, наградив меня в 1982 году медалью имени Лоренца. Чтобы отпраздновать это событие, в Париже устроили прием под председательством тогдашнего министра науки Шевенмана (Chevénement). Я прочел небольшой доклад, часть которого я здесь включаю, во-первых, потому что он содержит несколько забавных истооий о знаменитых физиках, о которых я еще не рассказывал, а во-вторых (зачем скрывать), чтобы немножко похвастаться.

Двенадцать физиков

«Медаль имени Лоренца» присуждается каждые четыре года Королевской академией Голландии физику-теоретику. Она была основана в 1925 году в честь великого теоретика Антона Лоренца, профессора теоретической физики Лейденского университета. Кроме металлического кружочка с портретом Лоренца и именем лауреата, эта награда, в отличие от премий Нобеля, Ферми или Вольфа, не приносит никаких материальных благ, способных облегчить жизнь трудящихся. Для меня ее ценность заключена всецело в списке имен моих двенадцати предшественников. Для тех, кто не имеет счастья (или несчастья) быть физиком, я напомню очень кратко, что сделал каждый из них, чтобы заслужить эту медаль. Чтобы рассеять скуку такого перечисления, постараюсь рассказать про каждого из них маленький анекдот.

Вот что я слышал про самого Лоренца. «Ему, конечно, присылали очень много теоретических работ. Прежде всего он прочитывал формулировку задачи. Если задача казалась интересной, он откладывал работу и сам решал задачу. Затем он сверял свое решение с чужим. Если они совпадали, он выбрасывал оба в корзинку. Если они расходились, он выбрасывал чужое и печатал свое».

Первым лауреатом в 1927 году был создатель квантов Макс Планк. Вряд ли нужно что-либо прибавлять даже для нефизиков. Все слышали об его революционной гипотезе, опубликованной в 1900 году, о том, что свет испускается и поглощается не непрерывно, а отдельными квантами. «Одно время, испугавшись своей собственной смелости, Планк сделал попытку ограничить свою гипотезу: „свет испускается квантами, но поглощается непрерывно“. Это вызвало у юного Эйнштейна следующее непочтительное суждение: „В столовой всегда, а в уборной иногда?“».

В 1931 году второй лауреат — Вольфганг Паули — один из наиболее глубоких теоретиков нашего века, который открыл, между прочим, «принцип запрета», ответственный за устойчивость атомов. Про Паули существует бесконечное количество анекдотов. Все вращаются вокруг факта, что скромность и снисходительность не являлись его главными добродетелями. (Но я уже рассказал в этой книге все мои истории о Паули.)

Третий лауреат, в 1935 году, — Питер Дебай. Он создал теорию кристаллических и плазменных колебаний, изобрел охлаждение путем адиабатического размагничивания и т. д.

Согласно Капице, в 1925 году Шредингер прочел на дебаевском семинаре в Цюрихе доклад о новой волновой теории де Бройля, который показался неубедительным Дебаю. «Что это за волны? Где волновое уравнение?» — спросил он. Неделю спустя, по преданию, Шредингер вернулся со своим волновым уравнением.

Четвертый, в 1939 году, — Арнольд Зоммерфельд — один из лидеров математической физики начала века, автор важных трудов о распространении и дифракции света и релятивистского обобщения уравнения Шредингера. Гейзенберг и Паули оба были его студентами. Профессор Хунд (автор правила Хунда в спектроскопии) рассказал мне следующую историю (я указываю источник, потому что она мне показалась невероятной). Защитив диссертацию у Зоммерфельда в Мюнхене, Гейзенберг выставил свою кандидатуру на должность доцента в том же университете. Зоммерфельд ему написал: «Как умный человек, Гейзенберг, вы должны были бы понять, что Мюнхен не для вас». — «Быть можно дельным человеком…» и плохо разбираться в людях.

Пятым, и первым после войны, был Гендрик Крамер в 1947 году — пионер квантовой механики и автор (одновременно с Венцелем и Бриллюэном) мощного полуклассического приближения. Он дорог мне лично как автор теоремы, на которой зиждется возможность наблюдения магнитного резонанса. Не слышал ни одного анекдота про него.

Шестым, в 1953 году, был Фриц Лондон — автор мощной феноменологической теории сверхпроводимости, которая оказала и продолжает оказывать громадные услуги. Вместе с Гайтлером они создали квантовую теорию химической валентности. Тоже без анекдотов.

Седьмым, в 1958 году, был Ларе Онсагер — специалист динамики необратимых процессов, открывший соотношения симметрии, которые носят его имя, и точное решение задачи дальнего порядка в двух измерениях, которое далеко продвинуло теорию переходов. Он был одним из глубочайших мыслителей нашего времени и, как я могу лично засвидетельствовать, одним из его худших преподавателей. К счастью, в университете Yale, где он преподавал, у него был коллега по имени Кирквуд (Kirkwood), физико-химик, который, кроме своих личных качеств, оказал пользу человечеству тем, что понимал Онсагера и был понятен другим.

Восьмым, в 1962 году, был Рудольф Пайерлс, который внес важный вклад в квантовую теорию поля, в физику твердого тела и в ядерную физику, где он сыграл крупную роль в развитии ядерного оружия. Недавно он был награжден премией Ферми, но, кроме того, получил немалую сумму денег при забавных обстоятельствах, за то, что не умер. Вот как это произошло. Были слухи, что кроме трех советских агентов, Бэрджеса, Маклина и Филби, которые скрывались в СССР, в Англии остался четвертый сообщник, который был ученым. Один лондонский журналист, думая, что Пайерлс давно умер, написал в книге о советской разведке, что именно он был этим сообщником. После выхода книги в свет адвокат Пайерлса и адвокат издателя легко сговорились насчет компенсации, которую издательство должно было выплатить Пайерлсу за клевету — немалое количество тысяч фунтов стерлингов. Пайерлс мне говорил, что, если бы он обратился в суд, после длительного разбирательства ему присудили бы, вероятно, вдвое больше, но за это время он вполне мог бы умереть на самом деле.

Девятым, в 1966 году, был Фриман Дайсон, который принес далеко не очевидное доказательство эквивалентности электродинамики по Швингеру и по Фейнману, а также возможности ее ренормализации в любом порядке. Он сделал много важных работ в области беспорядочных систем. Он был студентом в Кембридже во время войны, когда его завербовали в группу, занимающуюся оценкой результатов стратегической бомбежки Германии. Там он сделал два предложения, которые сильно не понравились начальству. Он рекомендовал снять с бомбардировщиков тяжелые пулеметы, которые, как он считал, были совершенно бесполезны из-за большого мертвого угла, в котором они не могли достать немецких истребителей; кроме того, из-за большого веса они замедляли и скорость самолета, мешая ему спастись бегством от истребителей. Вторая рекомендация касалась трудности, с которой открывались люки, из-за чего экипаж не успевал выпрыгнуть с парашютом. На первое предложение военное начальство ответило с негодованием, что не могло быть и речи о том, чтобы посылать в бой безоружных бойцов, а на второе — что это было бы поощрением дезертирства.

Десятым, в 1970 году, был Джордж Уленбек — один из крупнейших специалистов статистической механики, который совсем молодым добился широкой известности в связи с открытием, вместе с Сэмом Гудсмитом, аномального магнитного момента электронного спина.

Отправив статью в редакцию, Гудсмит и Уленбек решили показать ее своему коллеге и ровеснику Паули, который был уже знаменит. Не теряя времени, Паули объяснил им, почему их статья была нелепицей, и посоветовал им взять ее обратно. Они поторопились это сделать, но, увы, или, вернее, к счастью, слишком поздно — статья уже была в печати.

Одиннадцатым, в 1974 году, был мой друг и учитель Ван Флек. (Я писал о нем в главе «Америка, Америка».)

Двенадцатым, в 1978 году, был Николаас Бломберген. (Его тоже я кратко описал в той же главе и ограничусь анекдотом, который он мне сам рассказал.) Когда Чарльз Таунс получил Нобелевскую премию за открытие лазера, он подарил своей жене рубин, чтобы отметить, что он сделал свое открытие на рубиновом лазере. И когда несколько лет спустя Бломберген получил Нобелевскую, его жена потребовала, чтобы он с ней обошелся, как Таунс со своей супругой. «Если ты настаиваешь», — ответил он, — «но я должен тебя предупредить, что мой работает на цианиде». Из моих двенадцати предшественников шестеро были награждены Нобелевской, но, за исключением Планка, после получения медали. Это стало неписанной традицией. В то время как Нобелевская премия опирается на проценты от капитала, единственный фонд, на который может рассчитывать медаль Лоренца, это перечень ее лауреатов.

Я питаю серьезные опасения насчет вклада, сделанного в 1982 году. Хочу уверить вас, что говорю это совершенно искренне. Если же вы сомневаетесь в моей искренности, я вам напомню изречение Жюля Ренара, с которого я начал эту книгу: «И ложная скромность не так уж плоха».

(С большим удовольствием я узнал, что четырнадцатым лауреатом в 1986 году стал молодой голландец Герхардт Туфт (Gerhardt Tooft), что составляет прекрасный вклад в «капитал» медали Лоренца. Он сделал для электрослабой теории то, что много лет до него Дайсон сделал для квантовой электродинамики, доказав возможность ее ренормализации.)

Вот и все.