Посвящается физикам-любителям и физикам-профессионалам.
1. Как я стал физиком-любителем
Я сделался физиком-любителем потому, что со мной произошли три истории. Первая произошла в далекие годы голодной студенческой юности, когда море было по колено и все казалось возможным. В этом смысле для меня мало что изменилось — и море по колено и кажущиеся возможности, но теперь я лучше стал понимать, что одного моря по колено мало для реализации потенциальных возможностей. Чтобы они стали реальными, кинетическими, над ними надо упорно работать, причем в одном направлении и не дергаясь в разные стороны. Всякая масса поедет тогда, когда вы на нее давите не только сильно, но и долго, ибо в соответствии с законами механики путь, проходимый массой, пропорционален силе давления на нее в первой степени, а времени-то в квадрате. Но тогда я над этим не задумывался, а пытался решить все проблемы сразу.
В комнате общежития мы жили вчетвером: Жорка Элиасберг — выдающийся на весь курс автолюбитель, владелец мотоцикла, Вася Простов — тоже выдающийся на весь курс фотограф, я — выдающийся на весь курс и ближайшие окрестности радиолюбитель, и Артем Кулиш, ничем не выдающийся. И все мы отчаянно голодали, потому что только что схлопотали по тройке на зимней сессии.
А правила в нашем Ленинградском политехническом институте были хотя и справедливые, но суровые: схватил на сессии трояк и не успел пересдать вовремя — сиди полгода без стипендии. А что? Надо учиться лучше. А мы учиться лучше не могли, потому что каждый из нас занимался важным делом: Жорка — своим мотоциклом, Вася — фотографией, а я — телевизором, который строил, ничего в нем не понимая. Но меня это нисколько не смущало. И все свои капиталы, которых у нас не было, мы относили на соответствующие отделения ленинградской барахолки.
В то время на ленинградской барахолке можно было купить все и для мотоцикла, и для фотографирования, и для радиолюбительства. Поэтому по воскресеньям мы проводили время на ней, а все остальные дни недели реализовывали свои приобретения в своих любимых делах. А заодно использовали советы, полученные на барахолке.
Телевизор мой, хотя и был практически готов, работать не хотел. Сначала у него не было трубки. Трубка стоила бешено дорого, продавалась на Литейном проспекте и была для меня совершенно недоступна. Но на мое счастье и на жоркину беду он как-то поспорил со мной, что я не съем полкило соевых батончиков, которые продавались в нашем буфете. И если я все же их съем, то он, так уж и быть, купит мне эту трубу. А если не съем, то уж не помню чего, потому что взять с меня было абсолютно нечего, а у него деньги были отложены на какую-то запчасть для мотоцикла. И батончики купит он сам. Я согласился, потому что условия спора не показались мне кабальными.
Жорка сбегал в буфет, купил полкило батончиков, их оказалось тридцать пять штук, я выстроил их в ряд и, хотя по условиям спора я должен был их съесть за полчаса, в течение трех минут было съедено 25 штук, после чего я объявил перерыв на пять минут. Жорка и Артем с ужасом смотрели на исчезающие батончики. Через пять минут я объявил, что пора заканчивать операцию. Тогда Жорка потребовал, чтобы я дал честное слово, что способен доесть эти оставшиеся батончики. Я поклялся, что еще и мало будет. Тогда они с Артемом отобрали оставшиеся батончики, слопали их сами, и мы поехали на жоркином мотоцикле за трубкой для телевизора. И появилась потенциальная возможность смотреть телевизионные передачи, которые в Ленинграде тогда показывались два, кажется, раза в неделю, потому что во всем городе тогда было не более двух десятков телевизоров. Но это была возможность лишь потенциальная, потому что телевизор все равно не работал и с трубкой тоже.
Чего я только ни делал. Я его разбирал и снова собирал. Я достиг в этом такого совершенства, что за один вечер полностью разбирал телевизор, а за второй — полностью собирал. А у него не то что не было изображения, но вообще ничего не было. Только трансформатор гудел. Но однажды ночью, часа в три я догадался измерить напряжение не на панельке генераторной лампы, а непосредственно на ее ножках. И обнаружил, что на одной ножке нет напряжения, хотя на лепестке панельки оно было. Я подогнул лепесток, включил телевизор, и раздался оглушительный свист, а потом и мой вопль: появилась ослепительная зеленая полоса света на трубке: генератор заработал.
Сбежался весь наш этаж и два соседних. Никто даже не ругался, а все, столпившись в дверях, смотрели на полосу. А через неделю телевизор заработал почти полностью, хотя в нем оказался еще один дефект: у него изображение заворачивалось само на себя, но смотреть его уже было можно, тем более, что и звук появился. Однако требовалась большая фантазия, чтобы понять, что же там показывают.
Тогда существовала книга «Сто ответов на вопросы любителей телевидения», и там было сказано, что чтобы убрать этот хорошо известный дефект, надо изменить фазу на детекторе. Хорошо сказано! А где сидит эта самая фаза? И вообще, что такое детектор? Что такое генератор, я уже знал, а до детектора еще не дошел, хотя весь телевизор уже работал. Тогда я применил испытанный метод разборки и сборки. Но, тщательно собирая его обратно, я тем самым повторял ту же ошибку. И только на пятый, а может быть, и на десятый раз я понял, что детектор — это диод, и надо всего лишь поменять анод и катод местами. И все получилось. Изображение стало нормальным, и никакой фантазии больше не требовалось.
А потом я сделал второй телевизор с изображением побольше, мы поставили его в бытовку, и его ходили смотреть не только с нашего курса, но и с других, и даже приводили с собой знакомых девушек. И помнят наши сокурсники этот телевизор до сегодняшнего дня.
Тогда я понял, что всякую проблему надо изучать, а не просто разбирать и собирать устройство в надежде на то, что все получится само собой. И нужно проникать в глубь явления, например, измерять напряжение не на лепестках панельки, лежащих на поверхности, а на ножках лампы, то есть в глубине, если возникает такая нужда. И вообще думать.
Вторая история произошла, когда я уже работал в Филиале ЛИИ. Мне было поручено заниматься емкостными датчиками перемещения, которыми до меня занималось множество людей, но у них из этого ничего не получалось. А не получалось потому, что, хотя емкостные датчики и имели ряд неоспоримых достоинств — малогабаритность, легкость изготовления, малые усилия противодействия чувствительному элементу и т. п., они же имели и один могучий дефект, сводящий к нулю все их достоинства: они были крайне нестабильны. Стрелки приборов, в которых использовались емкостные датчики, гуляли по шкале безо всякой к тому видимой причины. А уж если в сети изменялось напряжение, то стрелка уходила на пол-диапазона и не желала возвращаться обратно. И мне это дело передали, в частности, потому, что оно казалось начальству совершенно безнадежным. Но он молодой, пусть попробует. А вдруг?
Я попробовал, результат был тот же, что и у других. Но однажды я увидел, что если прибор закрыть плексигласовым колпаком, то стрелка уходит, а если металлическим — то нет. Было над чем подумать. Кроме того, выяснилось, что если на емкостной датчик дыхнуть, то можно стрелку загнать вообще куда угодно. Что это, влажность? Температура? И я полез в справочники.
Выяснилась любопытная вещь. Оказалось, что температура на емкостной датчик влиять не может, поскольку он дифференциальный, все в нем должно быть пропорционально, изменения размеров малы, и они взаимно уравновешены. И влажность влиять не может, ибо при изменении влажности от 0 до 100 процентов диэлектрическая проницаемость воздуха 0 меняется на одну сотую процента. А стрелка гуляет на полшкалы. После различного рода манипуляций удалось разобраться, что вредное влияние оказывает поверхностное сопротивление изоляторов, на которые крепятся детали емкостного датчика: с поверхности изоляторов наводятся паразитные сигналы. Мною после этого были проведены направленные исследования, которые все это подтвердили. И была разработана конструкция, исключающая наводки на ротор датчика со стороны изоляторов. Емкостные датчики стали стабильными, и на их основе стало возможным создавать очень точные и чувствительные приборы. А ведь чуть было от них не отказались.
А третья история произошла там же, но немного погодя. Суть ее сводится к тому, что мне показалось странным, почему, если вода является проводником, она не пропускает высокочастотные колебания, а изолятор, который не является проводником, их пропускает. Это заставило меня заинтересоваться этим вопросом, результаты этого разбирательства привели к созданию нового направления в физике — эфиродинамики. Хотя надо признаться честно, что на многие вопросы я не ответил до сих пор. А наоборот, возникли еще и многие другие вопросы. И чем дальше я залезаю в эту проблему, тем больше этих вопросов возникает. Хотя перед умными физиками-профессионалами эти вопросы не возникают, поскольку им и так все понятно. И вообще, учатся только дураки, потому что умные и так все знают. Вот такие истории. Они привели к мысли, что в каждом деле надо знать физику предмета, то есть внутренний механизм явления, а не удовлетворяться внешним его описанием или видом. И не использовать на этом основании метод тыка, хотя надо признаться, что этот метод иногда бывает весьма продуктивен.
Вот поэтому я и стал физиком-любителем, для которого в физике не существует никаких авторитетов, чего не могут позволить себе физики-профессионалы. Потому что им за физику платят зарплату, а мне ее платят за то, чтобы мои приборы работали хорошо и надежно. А как я отношусь к физическим авторитетам моему начальству все равно, ибо физика — это другой департамент, там другие начальники.
Будучи физиком-любителем, я могу себе позволить то, чего не могут профессионалы: критиковать все то, что с моей точки зрения абсурдно. Потому что в своих работах нам, прикладникам, приходится опираться на физические законы, и нам совсем не безразлично, что именно там навыдумывают выдающиеся теоретические умы. Нам бы хотелось, чтобы то, что они насочиняют, отражало реальную действительность, а не их собственные фантазии типа компактифицированных многомерных пространств, которых никто не видел и пощупать не может.
Нас не устраивают постулаты, потому что природа как-то умудряется обойтись без них. И неевклидова геометрия нам тоже не нравится, потому что в нашей жизни мы пользуемся только евклидовой. А неевклидова геометрия, наверное, будет верна не в нашей реальной жизни, а в неевклидовой.
Мои друзья утверждают, что за такие мысли я бы и года не продержался в Академии наук или в высшей школе. Наверное, это так! Но что с этого, я ведь там и не работаю.
Иногда я думаю: а что было бы, если бы Жорка не поспорил со мной на батончики?!
2. Тепловая смерть
В одной из совершенно самостийных стран ближайшего зарубежья на лекции лектор сообщил о том, что наше Солнце погаснет через девять миллиардов лет. В зале возникла паника. Наконец, один из слушателей овладел собой:
— Через скилько, через скилько? — спросил он.
— Через дэвьять миллиардив рокив, — повторил лектор.
— Слава Богу! — воскликнул слушатель. — А то нам послышалось, что через дэвьять миллионив!
Паника улеглась. До дэвьяти миллиардив рокив было все-таки еще далеко.
Вопрос о тепловой смерти Вселенной возник вскоре после того, как немецкий физик Рудольф Юлиус Эммануэль Клаузиус в 1850 г. сформулировал Второе начало термодинамики: «Теплота не может сама перейти от более холодного тела к более теплому». Именно он, Клаузиус, введя в 1865 году понятие энтропии, распространил принцип возрастания энтропии на всю Вселенную, что и привело к мысли о тепловой смерти Вселенной: однажды все температуры выровняются, и на этом процессы во всей Вселенной остановятся. И с тех пор грозный призрак Тепловой Смерти не дает спокойно спать всему человечеству. Потому что однажды Вселенная даст дуба. Или отдаст концы. В общем, сыграет в ящик. И хоть это произойдет не скоро, а все же обидно.
Общий методологический подход к решению этой проблемы, по-видимому, первым предложил французский король Людовик XIV, которого называли королем-Солнцем из-за его склонности к кардинальному решению вселенских проблем:
— После нас — хоть потоп! — воскликнул король, имея в виду, что до Тепловой Смерти он может и не дожить.
В 1872 году 26-летний австрийский физик Людвиг Больцман, не удовлетворенный методологическими разработками короля Луи Четырнадцатого, предложил иное решение проблемы. Поскольку он был газовиком и знал, что молекулы газа все время флуктуируют, то он подумал, что Вселенная, пожалуй, не успокоится никогда, а тоже будет флуктуировать. Это предположение Больцмана на некоторое время приглушило остроту проблемы.
О проблеме Тепловой Смерти вспомнили уже в XX столетии, когда обнаружилось, что вся Вселенная разбегается. Центром, от которого все разбегалось, естественно, сначала была Земля, но потом кто-то сообразил, что это вовсе не обязательно, хотя в том, что центр, от которого все побежало, где-то был, никто не сомневался. Здесь трудности возникли в связи с тем, что этот центр не к чему было привязать, так как тогда, когда вся Вселенная была сконцентрирована в одной точке, названной сингулярной, ничего, кроме этого центра, вообще не было. И значит, где именно этот центр находился, сказать было невозможно.
Однако это не помешало физикам заняться актуальной проблемой Большого Взрыва — как вела себя Вселенная после Большого Взрыва. Они тщательно, за самую скромную зарплату и в настоящее время исследуют это состояние — через 1 секунду, через 0,1 секунды после Взрыва и даже через 0,00…1 секунды после Взрыва. А на вопрос о том, что было хотя бы перед самым Взрывом, за секунду до этого или за год, физики, не краснея, отвечают, что не было ничего. Потому что раз не было ни Земли, ни Солнца, ни даже самих физиков, то нечем и некому было все это измерить. И значит, таким вопросом можно и не интересоваться. Так что король Луи Четырнадцатый и здесь оказался прав, только не вперед, а, наоборот, назад.
Но и здесь оказалась закавыка. Что же это, начало есть, а конец? Так и будет разбегаться Вселенная? Нехорошо! И умные теоретики решили, что Вселенная так вести себя не должна, поскольку такое поведение неэтично. Тем более, что до этого не учитывали Законы Всемирного тяготения. Надо учесть. А после того, как учли, оказалось, что перед Вселенной открывается масса возможностей. Она может разбегаться, она может сбегаться, правда, не сразу, а чуть погодя, а может пульсировать туда-сюда. И все эти варианты находятся в полном согласии с великой научной теорией ОТО — Общей Теорией Относительности, созданной величайшим гением мира А. Эйнштейном. Потому что главная задача Вселенной — не противоречить этой замечательной теории.
А уж если Вселенная однажды снова сойдется в сингулярной точке, не имеющей ни размеров, ни координат, то все процессы в ней снова остановятся, и время как таковое исчезнет. И в таком состоянии она снова простоит или провисит неопределенно долго, потому что некому и нечем будет измерить время от конца сжатия до нового Взрыва, так как не будет никого из тех физиков-теоретиков, кто придумал всю эту галиматью.
Здесь пора вспомнить о той дискуссии, которая развернулась по близкой проблеме в нашей печати в 50-е годы. Проблема эта касалась обыкновенных холодильников. Дело в том, что обычный домашний холодильник работает как-то неправильно, не совсем соответствуя Второму началу термодинамики, открытому Клаузиусом. Он, видите ли, выделяет энергии больше, чем потребляет из сети. Ну, в самом деле, из сети он берет энергию, скажем, сто ватт, а на своем конденсаторе, который расположен сзади холодильника, выделяет двести. Потому что еще сто ватт он добывает из холодильной камеры, в которой охлаждаются продукты. Эту энергию, отобранную у продуктов, он и выдает в виде тепла в комнату, в которой стоит, обогревая воздух.
О чем здесь можно спорить, мне лично непонятно, но дискуссия была, причем очень жестокая, и одному из ее участников — Павлу Кондратьевичу Ощепкову, изобретателю радиолокатора, очень крепко досталось именно за то, что он не видел здесь никаких проблем. Единственно, чего он добивался, это признания того, что всю эту могучую задачу надо рассматривать не с точки зрения коэффициента полезного действия, а с точки зрения рассеивания или концентрации энергии.
Во всех обычных процессах, когда что-нибудь сгорает или теплообменивается, происходит рассеивание энергии, тут кпд меньше единицы. А в холодильнике энергия извлекается из двух мест — сети и морозильной камеры, а выделяется в одном — конденсаторе. И поэтому холодильник всегда и принципиально имеет кпд больше единицы, и тут ничего не поделаешь. И вообще, напоминал Павел Кондратьевич, создать энергию невозможно, а можно лишь перегнать ее с одного места на другое, преобразовав по дороге из одного вида в другой. Это все так, соглашались оппоненты, но все равно все это антинаучно, потому что кпд-то у вас больше единицы? Больше. Ну и вот!
С тех пор, несмотря на всю антинаучность утверждений П.К. Ощепкова, во всем мире построено много обогревательных станций типа «тепловых насосов», в том числе и у нас в Крыму. Принцип действия этих станций простой: морозильная камера опускается в воду — в реку или море, а лучше — сразу в океан, и оттуда тепло перегоняется в батареи водяного отопления в дома. И из комнат тепло выдувается через щели, обогревает земную атмосферу и снова возвращается в океан. Или в реку. А оттуда снова поступает в морозильник. Тем самым осуществляется кругооборот тепла вокруг дома, в котором установлены тепловые насосы. И если из сети забирается 100 Вт энергии, то в домах оседает 400 Вт, а если 100 кВт, то соответственно 400 кВт. А стало быть, это очень выгодно, в чем и убедились тепловики во всем мире. Поэтому дискуссия на тему о кпд, который больше единицы, как-то увяла, хотя в своих мнениях оппоненты нисколько не переменились. Но теперь их давно уже никого нет на свете, а их ученики на всякий случай не возникают с подобными вопросами, да и время сейчас для дискуссий не очень подходящее.
И остается только удивляться, почему вокруг таких очевидных вопросов возникают дискуссии. Хотя, как рекомендовали древние римляне или кто-то еще древнее, если вы не можете разобраться, почему происходят дискуссии о кпд, большем единицы, ищите, кому они выгодны.
Таким образом, дорожка к случаям, когда Второе начало термодинамики не соблюдается, была протоптана, в том смысле, что оказалось, что оно, это Второе начало, не ко всему имеет отношение. Однако Тепловая Смерть от этого не отодвинулась, а как бы заколебалась. Но сегодня на горизонте появилась эфиродинамика, которая опять по-иному ставит вопрос, и автор надеется, что на этот раз Тепловой Смерти не сдобровать.
Дело в том, что эфиродинамика основана на представлениях об эфире как об обычном реальном газе. Когда ее автор, то есть я, понял, что эфир — это газ, то для меня, это явилось сильнейшим потрясением. Потому что я не имел ни малейшего представления о том, как ведет себя газ вообще и эфир, в частности. Ибо я был всего-навсего инженером-электриком, специалистом по электроприводу в бумагоделательной промышленности и в металлургии, поэтому работал в области авиационного бортового оборудования и занимался емкостными датчиками перемещения, в авиации пока не употребляющимися и не имеющим к авиации и электроприводу никакого отношения. И вообще не знал, как к газовой динамике подступиться. А потому я засел за книжки по газовой динамике. И тут выяснилась прелюбопытная вещь.
Во-первых, оказалось, что газовая динамика — интереснейшая область науки. Во-вторых, выяснилось, что эфир обладает всеми свойствами обычного реального, то есть вязкого и сжимаемого газа. В-третьих, что в микромире действуют обычные физические законы, те же, что и в макромире. В-четвертых, что все законы микромира, в том числе квантовость, корпускулярно-волновой дуализм и т. п., и т. д., элементарно объясняются законами газовой динамики.
А в-пятых, оказалось, что в самой газовой механике полно всяких нерешенных проблем, над которыми профессионалы еще не доломали свои головы. И одной такой проблемой является энергетика газовых вихрей. Потому что с точки зрения все того же Второго начала термодинамики совершенно непонятно, откуда газовые вихри — смерчи, циклоны и т. п. берут энергию. Ибо кпд у них больше единицы и поэтому их не может быть на свете. А они есть. И хотя известно, что если факты противоречат теории, то тем хуже для фактов, все же надо было что-то придумать, чтобы эти факты объяснить. Но придумать тут решительно ничего невозможно, потому что газовые смерчи никак не вписываются в теорию. Тем более, что изучать смерчи небезопасно: был случай, когда смерч наполовину побрил курицу, выщипав на одной ее половине все перья, а на второй не тронув ни пушинки. Представляете, если то же самое произойдет с любопытным газодинамиком, как он тогда покажется своим жене и подругам?
А главное, даже представления о том, какую структуру имеет газовый вихрь, в учебниках нет. Все, что написано для жидких вихрей, не годится, так как жидкость не сжимается. Да и представления о вихрях в жидкости тоже какие-то неполноценные: там столько натяжек, что не видеть их могут только профессора, читающие студентам лекции на эту тему. Например, центр такого вихря должен вращаться по закону твердого тела, хотя это жидкость. А с чего бы это? Мне это показалось непонятным, но я утешился тем, что профессионалам виднее. Но о газовых вихрях профессионалы вообще ничего не говорят, так что тут я оказался совершенно свободным в своих изысканиях. И я пошел в одно из отделений своего родного института к Васе К., молодому, но уже талантливому инженеру.
— Вася, — спросил я его, — правда ли, что ты занимаешься газовыми вихрями, которые ломают наши авиационные двигатели, даже несмотря на то, что они самые крепкие в мире?
— Правда, — сказал Вася, — ломают, стервецы. 75 процентов всех поломок двигателей по этой причине. А все потому, что вихри образуются перед двигателями, никого не спросясь. Эти вихри бегают перед стоящим самолетом и тащат в турбину все, что плохо лежит перед самолетом на стоянке, даже булыжники или забытые пассатижи. Им все равно. И эта штука — отвертка или гаечный ключ — летит в компрессор и ломает там лопатки. Ты бы тоже не выдержал, если бы они полетели тебе в голову или в какое-нибудь другое место.
— Это верно, — согласился я. — Конечно, не выдержал бы. Ну и что вы собираетесь делать?
— А мы пока не знаем, — признался Вася, — посмотреть на вихри надо бы, да не знаем как. Подскажи что-нибудь.
Я подсказал. Надо сделать перед самолетом ямку, на нее положить доску с дырками, укрепить все это, чтобы вихрь не утащил эту доску в турбину, а под доску положить дымовушку, чтобы вихрь стал виден. Вокруг доски нужно поставить вертикальные пластинки, чтобы вихрь не болтался, а стоял на месте. А тогда уж можно и фотографировать. При этом я сказал, что вероятнее всего вихрь должен представлять собой трубу, то есть иметь уплотненные стенки, поскольку центробежная сила из центра выгонит молекулы газа на периферию, а пограничный слой, образовавшийся на внешней стороне вихря, не даст ему разбросаться. Вася согласился попробовать.
Но когда все это попробовали, и все получилось, то выяснилось, что при размере воздухозаборника метр на метр диаметр вихря составляет всего лишь 5–6 сантиметров. И если взять железную штангу и водить ею около вихря, то никакого воздействия на нее со стороны газового потока не наблюдается. А вот если, не приведи Господь, конец штанги попадет в вихрь, то ее рвет из рук с громадной силой.
— Руки вывернет и голову снесет, — пообещал Вася. — Так что ты поосторожнее, а лучше отойди подальше.
Получалось, что весь воздух в турбину поступает через образовавшийся вихрь, а значит его тело сильно уплотнено и скорости в нем очень даже большие. Но ведь вихрь образуется перед турбиной, а не сзади нее. Значит, турбина не может быть причиной вихреобразования, она только с помощью компрессора сосет воздух, образуя сильное течение воздуха. А вихрь образуется сам. Тогда кто же его сжимает, и что же при этом получается?
И тут я вспомнил, что в механике существует два способа движения массы при переменном радиусе ее вращения вокруг центра. В соответствии с первым способом масса движется вокруг гвоздика, на котором сидит гномик. Для того чтобы уменьшить радиус вращения массы, гномик должен потянуть на себя веревочку, к которой привязан груз. Но тогда он должен совершить работу, ибо нужно преодолеть центробежную силу. А во втором случае нет ни гномика, ни гвоздика, а есть цилиндр или палец, на которые наматывается веревочка. Если груз толкнуть, то он полетит вокруг цилиндра или пальца, это не принципиально, веревочка начнет наматываться на них, и радиус начнет уменьшаться.
Однако, пардон! В обоих случаях это движение с переменным радиусом. А в механике существует закон о том, что при вращении с переменным радиусом должен соблюдаться момент количества движения, то есть произведение радиуса на массу и на скорость ее движения должно оставаться неизменным. И если радиус уменьшается, то скорость должна расти, а энергия расти. А за счет чего? Ведь не из пальца же она высасывается, то есть не из цилиндра же, вокруг которого масса движется по инерции безо всякого дополнительного подвода энергии. Не получается ли, что мы имеем два разных случая движения массы с переменным радиусом? Где в механике эти случаи положены рядом и вместе рассмотрены? И тут выяснилось, что нигде. За 300 лет существования механики, которая изъезжена вдоль и поперек, никто не догадался этого сделать. А может, и догадался, но не опубликовал. А может быть, и опубликовал, но я этого не нашел, хотя и перевернул не одну книгу.
И тогда я пошел к своему товарищу Михаилу Ефимовичу.
— Дорогой Ефимыч, — сказал я ему. — Помоги моему горю. Поставь, пожалуйста, на попа вон те два цилиндра, которые остались у нас от морских экспедиций. Диаметр у них подходящий — по 10 сантиметров, и укрепи на них два маятника из стальных шариков с ниткой. Вот я тебе их принес, прямо из проходной шарикоподшипникового завода. Они, правда, бракованные, в подшипники не годятся. Но на проходной даже не спросили, что я несу. Так что я мог вполне вынести не только бракованные шарики, но и ползавода. Но ползавода нам с тобой пока не нужны, это в другой раз. Придумай, как просверлить дырки в закаленных шариках, а потом два шара подвесь за нитки к этим цилиндрам. А третий шарик на горизонтальной нитке прикрепи к одному из цилиндров.
Михаил Ефимович все так и сделал, добавив к каждому маятнику по шкале. Тогда мы отклонили первый маятник, отпустили шарик, он стукнул по шарику номер три, тот соскочил с гвоздя, описал спираль вокруг второго цилиндра, намотав на него нитку, и ударил по шарику номер два. И оказалось, что углы отклонения первого и второго маятников практически одинаковы, у второго чуть-чуть поменьше, потому что потери. И все встало на свои места.
Значит, когда шарик движется по инерции вокруг цилиндра, мы имеем закон постоянства энергии, а не момента количества движения. Постоянство момента мы имеем тогда, когда подводим энергию, т. е. когда имеется гномик или что-то его заменяющее. Это все тут же было подтверждено математическими выкладками. И, значит, при формировании газового вихря мы именно этот случай и имеем. А роль гномика выполняет внешняя атмосфера, которая сжимает вихрь. Она это может сделать потому, что стенки вихря состоят из газа, и если сумма внутреннего давления в вихре и давления, вызванного центробежной силой, превышает внешнее давление, то лишний газ тут же отлетит, а внешнее давление будет сжимать тело вихря, увеличивая его энергию.
Таким образом, над формированием каждого воздушного вихря трудится вся атмосфера планеты, и над циклоном, и над смерчем, и над тем вихрем, что образуется перед самолетом. И этот процесс перегоняет потенциальную энергию давления воздуха в кинетическую энергию тела вихря. И если потенциальной энергией атмосферы воспользоваться трудно, то кинетической легко, например, засунув в тело вихря турбину. Только при этом нужно соблюдать осторожность, а то этот вихрь может вас побрить, как упомянутую курицу, наполовину, отделив или прическу, или голову, это уж как получится.
Вот вам и кпд! Оказывается, мы в виде вихрей имеем природную машину по переработке потенциальной энергии атмосферы в кинетическую энергию вращения вихря и по самопроизвольной концентрации рассеянной энергии. То есть, это антиэнтропийный процесс!
Так-то, дорогой Рудольф Юлиус Эммануэль Клаузиус, вот вам и Второе начало! Концентрация энергии есть, а Второго начала нет и в помине, не тот случай.
Ну, а как же со Вселенной?
Если с позиций эфиродинамики рассмотреть процесс образования протонов в ядре Галактики в результате соударения струй эфира, поступающего туда по спиральным рукавам Галактики, то станет ясно, что это тот же процесс образования вихрей, только тороидальных. Из протонов образуется макрогаз водород, из него — звезды, которые движутся в спиральных рукавах навстречу эфирному потоку к периферии. За время своего движения протоны за счет вязкости эфира потеряют свою энергию и устойчивость, и на периферии Галактики вещество развалится и вновь обратится в свободный эфир, который потечет обратно к ядру. И так будет крутиться до тех пор, пока эфир не отсосет соседняя галактика. Но тогда там начнется то же самое. А значит, Вселенная может существовать вечно, никуда не разбегаясь, в среднем сохраняя свой вид таким, каков он сейчас. И Тепловая Смерть не состоится на радость всему человечеству и его потомкам.
И все это поддается экспериментальной проверке. Для этого надо встретиться через девять миллиардов лет и во всем, что сказано выше, убедиться лично.
3. Помехи, помехи…
Автору со товарищи пришлось много лет заниматься вопросами проводных связей, одним из них является проблема помехоустойчивости передачи информации.
На борту самолета полно всяких электромагнитных помех, особенно много их в окрестностях системы зажигания, около двигательных установок. Помех хватает и во всех остальных местах самолета, напичканного всевозможными радиоизлучающими устройствами. Но самым главным источником помех являются обычные провода, подводящие питание к обычным электронным блокам. Эти провода подключены к источникам электроэнергии — генераторам, но по дороге они проходят через различные коммутационные устройства, и к ним самим, к этим проводам, через контакты реле подключены самые разнообразные нагрузки. Когда эти нагрузки во время полета самолета подключаются к сети электропитания, ничего особенного не происходит. Но когда они отключаются, то в сетях возникают короткие импульсы, амплитуда которых достигает 600 вольт. Поскольку же питающие провода уложены в тех же кабелях, что и информационные, а в других местах их положить негде, то эти импульсы создают помехи в информационных сигналах и искажают их. А исказят ли они при этом информацию, которую несут сигналы, зависит от многих причин — от выбора типа сигнала, типа линии связи, от того, экранированы ли информационные линии связи, и много от чего еще.
Самым простым способом защиты является разнесение информационных и энергетических проводов друг от друга подальше. Такая рекомендация однажды была выдана одной из наших лабораторий. Но когда попытались ее реализовать на практике, оказалось, что самый маленький самолет становится диаметром с дирижабль, и по этой причине такую рекомендацию использовать затруднительно. Однако можно поискать другой способ, не требующий превращения самолета в дирижабль.
Когда мы начали интересоваться подобными вопросами, то выяснили, что все помехи надо разделить на две группы — электродинамические и электромагнитные. Первые связаны с изменением напряжения в помехонаводящей цепи, а вторые — с изменением тока там же. В последнем случае напряжение в сети может быть и очень маленьким, это не играет роли.
От помех первого вида можно отстроиться очень просто: достаточно на информационные провода надеть металлические экраны, заземлить их с обоих концов, и помеха внутрь не пройдет, потому что все емкостные токи будут отведены на землю, а там они никому не мешают. Но второй вид помех при этом остается, потому что экраны, хотя и металлические, но сами выполнены из медных проводов и практически никакого препятствия для магнитного поля не представляют. Разве что самую чуть. Чтобы экранироваться от таких помех, нужны железные трубы вроде водопроводных. Но если такие трубы использовать на самолете, то кроме этих труб самолет больше уже ничего не поднимет, поэтому такой способ экранировки не применяется, и электромагнитные помехи на самолетах никто не экранирует. Значит, надо выбирать такой тип сигнала, которому безразлично, есть помеха или ее нет. Если, конечно, она не очень большая, потому что в проводах, как и в жизни, всякой помехой можно пренебрегать только до определенной величины.
Мы выбрали такой помехоустойчивый вид сигнала — импульс, который надо передавать по двум скрученным проводам, помещенным в общий экран для отвода электродинамической составляющей наводки, потому что все-таки она дает самую большую часть помехи. А электромагнитная наводка хоть и дает помеху поменьше, но не такую, чтобы можно было ею пренебречь. В скрученных проводах наводка появляется в обоих проводах, и если сигнал в обоих проводах имеет противоположную полярность, а прием сигнала осуществляется дифференциальным способом, то на входе приемника сигнал суммируется, а помеха вычитается, и дальше сигнал пойдет чистенький, безо всякой помехи.
Мы так и сделали, сейчас этот способ передачи широко распространен, и никто теперь уже не верит, что на самолетах мы применили его первыми. Потому что в радиотехнике бифиляры известны с незапамятных времен. Еще при Петре Первом, помнится…
Но хотя дифференциальный способ передачи информации и известен со времен Петра Первого, во многих схемах, приводимых в солидных американских журналах, линии связи изображены так, что становится понятным, что их авторы несколько превратно понимают процесс устранения наводок, так как они сделали все, от них зависящее, чтобы никакого устранения не было. У нас тоже не все разработчики об этом помнят, и всегда находятся люди, которые пренебрегают всеми рекомендациями, а потом удивляются, что у них вместо сигнала, несущего информацию о пилотажно-навигационных параметрах, идут одни помехи, несущие информацию о неграмотности исполнителя.
Но исполнитель, увидев такое, не торопится исправить свою ошибку. Он начинает кричать, что его в свое время не убедили в необходимости использовать дифференциальные схемы. И вообще, сначала оплатите нам доработку нашей аппаратуры, установите новые сроки, а тогда, уж так и быть, мы ее доработаем. Раньше надо было нам об этом сказать, а теперь мы нашу аппаратуру подготовили к серии. И вообще, утверждают исполнители, они детки, и их надо за ручку водить в детский садик.
Такая история повторяется довольно регулярно. А потому мы решили, что надо создать методику, которая на корню пресекала бы подобные детские рассуждения. И мы задумали создать ГОСТ, в котором такая методика была бы отражена.
Однако наша лаборатория имеет привычку, прежде чем что-либо вводить в нормативную документацию, попробовать это дело самим. Ведь вот врачи, прежде чем рекомендовать новый прогрессивный метод лечения, пробуют его на себе. Если метод оказывается плохим, то врачу — изобретателю метода второй случай может и не представиться. Этим в медицине изобретательство ограничивается естественным образом.
Хорошие изобретения выживают вместе с авторами, хотя и не всегда. А плохие не выживают и тоже вместе с авторами. А у нас в промышленности не все разработчики ГОСТов ограничены в своих возможностях в смысле естественного отбора, иногда выпускается тако-е!.. Но мы — нет. Мы сначала испытываем все на себе, то есть в лаборатории или на самолете, а потом уж пытаемся это куда-то пристроить. И поэтому мы начали соображать, как все это сделать.
А чего тут особенно думать? Ведь больше всего нас беспокоят наводки от проводов, лежащих в том же жгуте, что и информационные провода. Значит, надо уложить в этот жгут провод с эталонной помехой, а еще лучше обвить этот провод вокруг жгута, чтобы не болтался, и вперед, генерируй помеху и смотри, что останется от полезного сигнала.
Но тут возникла новая и неожиданная проблема расположения обратного провода. И на пути решения этой проблемы мощной стеной встали уравнения электромагнитного поля, разработанные великим английским физиком второй половины XIX столетия Джеймсом Клерком Максвеллом.
Эта проблема стоит того, чтобы на ней остановиться хотя бы вкратце.
Дело в том, что если электродинамическую наводку можно создать, подав напряжение на один конец провода, то для электромагнитной нужно через провод пропустить ток. Тут без обратного провода никак не обойтись. Но из уравнений Максвелла вытекает, что чем дальше от прямого провода будет расположен обратный проводник, тем больше образуется площадь контура и тем больше будет создана помеха. И если это расположение не калибровать, то какую помеху вы создадите — неизвестно. Значит, надо калибровать.
Но на самолете калибровать расположение обратного провода практически невозможно. Во-первых, там не повернешься. Во-вторых, скажите спасибо, что вас вообще пустили чего-то мерить, потому что через полчаса надо лететь, а вы тут расположились, как у себя дома. Так что, давайте-ка побыстрее собирайте свое добро и топайте отсюда. Придете завтра утром или после обеда, если полета не будет.
А в-третьих, ну какой техник будет вообще чего-то там калибровать? Он бросит этот провод на пол безо всякого научного обоснования и будет топтать его своими сапожищами, не обращая внимания на уравнения электромагнитного поля великого английского физика Джеймса Клерка Максвелла. И поэтому эти уравнения оказались препятствием на пути разработки удобной и простой методики создания эталонных помех.
Как раз к этому времени автор начал разбираться с эфиродинамическими построениями в области электродинамики. И ему, автору, то есть мне, пришла в голову крамольная мысль, что я не понял самой сути законов Фарадея. А закон этот проверен многократно, по нему считаются все контуры, все трансформаторы, ну нет вопросов! Но я, как бывший радиолюбитель, помнил, что расчет — расчетом, но после того как катушка намотана, ее обязательно нужно потом подгонять, настраивать. А у трансформаторов вообще существуют так называемые магнитные поля рассеивания. Короче говоря, закон Фарадея точно почему-то не выполняется. А, кроме того, непонятен сам механизм возникновения ЭДС в контуре.
Тут надо сделать небольшое отступление. В соответствии с законом Фарадея электродвижущая сила возникает в контуре тогда, когда внутри этого контура, то есть в дырке, изменяется магнитное поле. Никакого взаимодействия между этим самым полем и проводом закон Фарадея не предусматривает. А ведь в другом случае, когда провод перемещается в магнитном поле, это взаимодействие налицо: там фигурирует скорость пересечения проводом магнитного поля, его длина и напряженность поля. Там никаких дырок нет. А тут есть. Что-то не так. Тем более, что эфиродинамика, столь любезная сердцу ее автора, то есть моему, рассматривает процесс иначе, чем это следует из закона Фарадея. Она утверждает, что магнитное поле выходит из одного провода, в котором ток течет, и распространяется во все стороны, ослабляясь по мере удаления от этого провода. Где-то по дороге оно, это поле, натыкается на второй проводник, пересекает его и создает в нем тем самым ЭДС, хотя это и не всегда желательно. Получается, что чем дальше вы отнесете этот второй провод от первого, тем меньше в нем будет создаваться ЭДС. А дырка тут совсем ни при чем.
Но тогда, если у двух рядом лежащих проводов расстояние между их осями составляет 3 мм, а обратный провод отнесен на 3 см, то он, этот обратный провод, создаст наводку всего лишь в 10 % от основной, а если на 30 см, то всего лишь в 1 %.
Получается, что техник может бросить обратный провод прямо на пол на полном законном основании, забыть про него, и все будет точно. Лишь бы не порвал, прогуливаясь по нему.
Но все это надо было проверить.
У нас в лаборатории работала одна дама, Любовь Михайловна. Она бывшая детдомовка, и у нее очень развито чувство правды и справедливости. Надо сказать, что избыток этого чувства иногда очень мешал в работе, но как работник она отличалась повышенной добросовестностью и тщательностью. И уж если она за что бралась, то ее можно было не проверять, все делалось в лучшем виде.
— Любовь Михайловна, — обратился я к ней, — сделали бы вы два мерных контура с калиброванными расстояниями между ними. Размеры контуров надо сделать такими, чтобы уместились на столе. Натыкайте, пожалуйста, гнезд на планочке, измерьте расстояния, запустите в один контур ток, в другой поставьте вольтметр, а потом расскажите, что получилось.
Любовь Михайловна все сделала. Она меняла токи, частоту, меняла расстояния и в результате всего этого выяснила, что для больших контуров права эфиродинамика, а не Максвелл. Правда, попутно выяснилось, что на малых расстояниях данные по Максвеллу и по эфиродинамике совпадают, но тоже не совсем. Но в основном стало ясно: методику можно создавать, ГОСТ писать, а обратный провод бросать, как попало. Что мы и сделали. Но стоило нам это сделать, как выяснилось, что в американском документе DО-160, который только что вышел, сделано все так же, как и у нас, хотя и безо всяких эфиродинамических рассуждений. И теперь у нас с американцами методика одна и та же, и опять нам не верят, что мы все сделали самостоятельно, не глядя на них. Потому что не могут же быть русские инженеры умнее американцев!
Однако мне не давали покоя те отклонения, которые обнаружила Любовь Михайловна при взаимодействии проводов на малых расстояниях. Дело в том, что здесь должен действовать Закон полного тока, вытекающий из тех же максвелловских уравнений. А тут были явные огрехи и совсем не малые. И я вспомнил, что эфир сжимаем, потому что это всего лишь обычный газ, хотя и тонкой структуры, а значит, и магнитное поле, сотворенное из этого же газа, тоже должно сжиматься. Если это так, то все становится объяснимым. Но сначала надо бы посмотреть, кто же до нас померил и проверил этот Закон полного тока, в соответствии с которым магнитное поле должно убывать строго обратно пропорционально расстоянию от токонесущего проводника. Ведь этот закон уже более ста лет переписывается из одного учебника в другой, значит, он верен, строг, его наверняка проверяли! Как же может быть иначе?!
И тут оказалось, о чудо! Никто и никогда за все время существования электротехники, электродинамики, радиотехники и электроники не производил таких измерений. Просто все верили этому Закону на слово, настолько он был очевиден. И о том, что в нем могут быть какие-либо неточности, с нами и разговаривать никто не хотел.
Было решено кое-что проверить. Контур был модернизирован, и та же Любовь Михайловна произвела измерения. И все подтвердилось. Оказалось, что в ближней зоне существуют о-о-чень даже большие отклонения от максвелловских зависимостей, раза в три, четыре и даже в пять. Это и понятно. Максвелл полагал, что эфир — несжимаемая жидкость, а он оказался сжимаемым газом. В ближней зоне эфир сжимается сильнее, и магнитное поле тоже, а подальше — слабее, поэтому там зависимости оказались ближе к максвелловским. Обо всем этом я рассказал на страницах своей книги «Общая эфиродинамика».
Из всего этого вытекает, что магнитное поле (как выяснилось, и электрическое тоже) помимо всего прочего должно характеризоваться еще одним параметром — плотностью его в вакууме, то есть характеристикой, которую электрики пока что забыли ввести в обиход. А надо бы. Энергия этого поля будет выше, чем если ее считать по обычным формулам или мерить обычными датчиками. Не в этом ли кроются истоки некоторых конфликтов между производителями электроэнергии на электростанциях и потребителями электроэнергии на всевозможных заводах? В этих конфликтах никак в свое время не могли разобраться, куда девалась энергия по дороге, и кто за нее будет платить? И вообще, из этой новой характеристики магнитного поля много чего следует для дальнейшего.
Вот до чего можно додуматься, если следовать заветам докторов: прежде чем рекомендовать способ лечения, попробуй его на себе.
4. Нам электричество сделать все сумеет
Несмотря на бесспорные успехи современной теории электромагнетизма, создание на ее основе таких направлений, как электротехника и радиотехника, электроника и полупроводниковая техника, а также и других направлений, широко подтвержденных экспериментальным и промышленным опытом, считать эту теорию завершенной нет оснований.
Однажды перед автором возникла проблема: потребовалось рассчитать плотность переменного тока, испускаемого двумя электродами, опущенными в соленую воду.
«Экое дело! — рассудил автор. — Граничные условия нам известны, это размеры электродов и расстояние между ними. Для воды все параметры даны, это магнитная и электрическая проницаемости и проводимость. Излучаемый ток и его частота нам тоже известны. Возьмем уравнения Максвелла, подставим туда граничные и начальные условия, зададимся расстоянием от оси диполя, вот и все! Решение будет найдено, недаром у меня в институте стояла пятерка по ТОЭ — теоретическим основам электротехники!»
Сказано — сделано. Однако почему-то решение не получалось. Вместо этого получилась система уравнений, в которой мнимости располагались так, что никакого решения не находилось.
«Ну что же, — подумал автор. — Зря, видать, мне поставили пятерку по ТОЭ. Пойдем на поклон к профессуре!»
И автор пошел на поклон.
— Это хорошо, что вы обратились именно к нам, — сказала профессура в лице доктора физ. — мат. наук профессора кафедры теоретических основ электротехники одного из ведущих вузов страны. — Лучше нас такие задачки никто не решает. И вообще мы демократичны. Если что — приходите. Мы всегда рады помочь. Что там у вас? Диполь в полупроводящей среде? Ну-ка, ну-ка… Гм! Знаете что? Тут надо кое-что прикинуть, а у меня сейчас лекция. Через два часа будет большой перерыв, минут двадцать, погуляйте пока и приходите. Только не опаздывайте. За перерыв мы ее, вашу задачу как раз и решим.
Автор погулял и пришел. Профессор морщил лоб.
— Настроение что-то не то, — пожаловался он. — Вот что. Приходите ко мне вечером домой, попьем кофе и решим вашу задачу. Вы любите кофе?
Кофе автор любил и вечером пришел к профессору домой.
— Ну, давай сюда твою задачу, — вздохнул профессор. — Слушай-ка, а давай заменим диполь эллипсоидом, какая тебе разница? А эллипсоид все-таки как-никак фигура геометрическая. А?
Но автор отказался заменять диполь эллипсоидом, даже, несмотря на то, что эллипсоид и в самом деле геометрическая фигура. Автор сказал, что задача физически полностью определена, и поэтому у нее должно быть точное решение.
— Ну, хорошо, — не сдавался профессор, — а пусть это будет идеальная среда безо всякой проводимости. А мы потом умножим полученное решение на уравнение плоской волны. Идет?
Но автор и тут не согласился. Ну, в самом деле, зачем эти искусственные приемы, когда должно быть простое и к тому же общее решение.
— Экий ты несогласный, — огорчился профессор. — Ну, Бог с тобой. Посиди на диванчике, почитай научные журналы. А то ведь ты их и в руках, наверное, не держал, сознайся? А в них, между прочим, пишут передовые ученые о своих больших достижениях в области науки, в том числе и в электродинамике.
Автор с удовольствием согласился. В журналах оказалось много любопытного. Например, описывался векторный потенциал, про который прямо было сказано, что никакого физического смысла он не имеет, и вообще не известно, что это такое. Но зато сильно помогает решать электродинамические задачи. А последние достижения электродинамики связывались с успехами специальной теории относительности.
— Нет, — сказал профессор три часа спустя. — Тут что-то не так. Позвони мне через неделю, я тебе скажу, что тут надо сделать. А лучше оставь мне свой адрес, и я тебе решение вышлю прямо на дом. Зачем тебе ехать в такую даль?
Но ни через неделю, ни через месяц решения не было. И я позвонил профессору домой.
— Оставьте меня в покое! — истерически закричал профессор. — Если вам делать нечего, это не значит, что и другим тоже! Вам надо, вы и решайте! А у меня есть задачи поважнее, я наукой занимаюсь, у меня учебный процесс, мне студентов учить надо, а вы ко мне со своими бреднями! И не звоните мне больше, я занят!
Тогда автор пошел к другому профессору. Но и там история повторилась. Тоже пили кофе и обсуждали достижения науки, но задача никак не решалась.
С этим вторым профессором удалось свести всю задачу к диполю Герца — конструкции, состоящей из двух медных шаров, соединенных проводниками с генератором переменного тока. Ток излучается в полупроводящую среду, сила тока и его частота известны. Известны и все параметры среды. Известны диаметры шаров и расстояния, на котором они находятся. Известно, что подводящие к электродам ток проводники изолированы, их излучением можно пренебречь. Так что в результате всего остаются только два шара, ток и среда. И известны координаты точки, в которой мы хотим определить плотность тока. Все известно. Неизвестно только, как решить эту задачу и даже хотя бы как к ней подступиться.
А сейчас автору уже известны целые классы подобных задач. И все они не могут быть решены с помощью уравнений Максвелла. И хотя автор согласен, что имеется множество проблем, которые удалось решить с помощью этих уравнений, он не может согласиться с мнением уважаемой академической и вузовской профессуры, что уравнения Максвелла — это и есть полное решение проблемы электромагнитного поля и дело только в том, чтобы эти уравнения умело применять.
5. Прилагательная дверь
Большой знаток русской грамматики недоросль Митрофанушка четко разделил двери на существительные и прилагательные. К первым он отнес ту дверь, которая ни к чему не приложена. Она существует сама по себе. А ко второй ту дверь, которая приложена к своему месту, та дверь — прилагательная. И это правильно. Но вот как классифицировать дверь, которая приложена, но не к своему месту, Митрофанушка не сказал. Потому что уже во времена Фонвизина, рассказавшего эту историю, двери, если и прилагались куда-нибудь, то только к своему месту, а не к чужому. Но прогресс науки многое в этом вопросе изменил. Это хорошо иллюстрируется на примере так называемого доплеровского эффекта, которого в 18 веке еще не знали.
Что такое доплеровский эффект, который, был открыт Кристианом Доплером, австрийским физиком и астрономом в 1842 году? Это вот что. Если некий источник колебаний чего-нибудь, например, звука или радиоволн, это все равно, издает сигнал, то приемник услышит этот звук ровно на той частоте, на которой он издается. Но это только в том случае, если приемник и источник неподвижны относительно друг друга. И при этом никакой ветер, дующий хоть от источника к приемнику, хоть наоборот, ничего поделать не может. Потому что, сколько колебаний из источника в единицу времени вышло, столько же колебаний в такую же единицу времени придет к приемнику. Если ветер подует, то поменяться может только фаза, т. е. некоторое запаздывание или опережение колебаний приемника относительно тех колебаний, которые приходили к приемнику тогда, когда ветер не дул. А частота — никак.
Доплеровский эффект нашел широкое применение в разных областях, например в авиации, где он очень хорошо себя зарекомендовал, поскольку лучи, посланные от самолета на землю, возвращались обратно на другой частоте, отразившись от земной поверхности. Здесь сначала источником сигнала был самолет, а приемником земная поверхность, а после отражения источником становилась земля, а самолет — приемником. И разность частот посланной и вернувшейся свидетельствовала о том, с какой путевой скоростью самолет летит относительно Земли. К тому же с высокой точностью. И тут дверь оказывалась вполне прилагательной.
Но некоторые физики, уверовав во всемогущество доплеровского эффекта, стали применять его по принципу того, что он может все. Вроде того деревянного маслица, которое как полагали некоторые дамы в далеком дореволюционном прошлом, лечит все болезни на том основании, что оно безумно дорого. Эти физики стали искать доплеровское изменение частоты у взаимно неподвижных источника и приемника колебаний на том основания, что, как они полагали, дующий вдоль тракта ветер изменит частоту колебаний у приемника. Про фазу они не вспоминали.
Среди таких физиков были, например, лауреат Нобелевской премии Ч. Таунс, изобретатель мазера, со своим помощником Дж. Седархольмом, который, по всей видимости, и соблазнил его на сей измерительный подвиг, в котором приняли участие и другие интеллектуалы. Они разместили источники (мазеры) и приемник (экран с частотомером) на общий круг, вращали его и ловили таким способом эфирный ветер. Не найдя ничего, они объявили об отсутствии эфира в природе. Все это происходило в Колумбийском университете, США, в 1958 году. Тут ничего не выдумано, желающие могут посмотреть 15 том БСЭ 3-е издание, стр. 218, статью «Майкельсона опыт». Автор этих строк направил запрос по этому поводу в редакцию БСЭ и получил ответ, в котором было разъяснение в смысле того, что все считают так, а вы один. Тоже нам, умник нашелся.
Поскольку некоторым ученым точность опыта Ч. Таунса показалась недостаточной, то они использовали для измерения эфирного ветра резонансный (по частоте) эффект Мессбауера и подняли точность измерения отсутствующих изменений частоты до недосягаемых пределов. Свою элементарную неграмотность они тоже приписали отсутствию эфирного ветра.
Какова же мораль из всего изложенного? Мораль простая: каждая дверь должна быть приложена к своему месту, а не к чужому. Если она приложена к чужому, то она уже не прилагательная, а за уши притягательная. Но с этим надо обращаться только к Митрофанушке, а не к науке.
6. Дальнодействие и близкодействие
Проблема дальнодействия и близкодействия возникла давно, еще в 17 столетии. Поставил ее, фактически, французский исследователь, ученый, математик и философ Рене Декарт. Декарту было ясно, что для того, чтобы тела взаимодействовали между собой, нужен промежуточный агент, который передавал бы воздействия от одного тела к другому. Через пустоту без чьей либо помощи передать никакие воздействия невозможно.
Поскольку еще в древнем мире все полагали, примерно, то же самое, то в науке тех времен фигурировала некая среда, которая и занималась всеми такими передачами. Греческий философ Фалес из города Милета называл такую среду «апейроном», что означало неопределенное. Вероятно, именно от этого слова произошло слово эфир, поскольку греческое «ph» по-русски звучит как «ф». Эфир упоминается в поэме Тита Лукреция Кара «О природе вещей». А всемогущая и неведомая сила, создающая и разрушающая миры вообще есть атрибут всех религий.
Вот и Декарт, заимствовав многие знания у арабов, вернулся к проблеме эфира, т. е. к среде, заполняющей все мировое пространство и являющейся строительным материалом для всего на свете. Вещество, по мнению Декарта, это набор вихрей эфира. Вообще, утверждал он, что «В мире нет ничего, кроме эфира и его вихрей». И потому проблема взаимодействия тел принципиально решается через эфир: источник возмущения воздействует на эфир, а эфир — на приемник возмущения. А пустоты вообще не существует. Планеты, например, как полагал Декарт, движутся потому, что они перемещаются под воздействием эфирных вихрей, окружающих Солнца. И хотя позже выяснилось, что Декарт не во всем прав, в вопросе о передаче взаимодействий он проявил удивительную прозорливость.
Исаак Ньютон, известный английский ученый, вначале придерживался подобной же точки зрения. Однако перед ним возникла уже техническая проблема: надо было выяснить, как конкретно устроен эфир, который способен и обеспечить гравитационные взаимодействия, и оптические явления. Испробовав многие варианты и не добившись удовлетворительного решения, Ньютон на старости лет отказался от самой этой задачи, заявив, что гипотез он не измышляет, и что «гипотезы не должны рассматриваться в экспериментальной философии». Раз не получилось, решил на старости лет Ньютон, то и не надо, не очень-то и хотелось! Но это было поражение, под которое была подведена философская база, правда, весьма сомнительного свойства. Отсюда и возникла идея дальнодействия, т. е. действия на расстоянии, когда никакого промежуточного агента между телами нет.
Эти две концепции — близкодействия, когда предполагается наличие механизма передачи взаимодействия, и дальнодействия, когда такого механизма нет, просматриваются во всей дальнейшей истории естествознания, и борьба между этими концепциями никогда не прекращалась. Наиболее рельефно эта борьба проявилась в дискуссии конца 30-х годов 20-го столетия, когда спор перешел уже на страницы официального философского журнала «Под знаменем марксизма». Позицию близкодействия отстаивали академики В.Ф. Миткевич, известный электротехник-прикладник, жестко стоявший не только на позициях близкодействия, но и существования в природе эфира, а также академик-философ А.А. Максимов. Позицию же дальнодействия отстаивала целая группа академиков, среди которых были А.Ф. Иоффе, И.Е. Тамм, В.А. Фок. Они категорически отрицали существование в природе эфира, поскольку, зачем он? Обходились и обойдемся! Тогда эта дискуссия все же окончилась частичным поражением этой группы, поскольку академик
В.Ф. Миткевич был введен в состав редколлегии главного журнала физиков УФН («Успехи физических наук»). Правда, ни на что он там повлиять не мог, поскольку вся остальная редколлегия состояла из приверженцев концепции дальнодействия и противников эфира.
После войны, уже в 50-е годы дискуссия возобновилась. На стороне близкодействия вновь выступал В.Ф. Миткевич, на стороне дальнодействия были все те же лица, что и до войны, но к ним добавились Я.И. Френкель, а позже В.Л. Гинзбург, Зельдович, Ландау. На этот раз их победа была полной, и именно они добились запрещения публикаций статей с критикой теории относительности Эйнштейна и с упоминанием самого слова «эфир». Это положение действует и сегодня! Правда, жизнь идет, работы ведутся, и скоро на этих корифеев и их запреты просто никто не будет обращать внимания. Мало ли кто и по каким мотивам чего-то там запрещает!
Автор этих строк столкнулся с упомянутой проблемой несколько с иной стороны. Его, то есть меня, заинтересовал вопрос, как работает обыкновенный трансформатор. Дело в том, что механизм работы трансформатора, так же как и некоторых установленных законов электротехники автору был не совсем ясен. Например, закон электромагнитной индукции Фарадея, лежащий в основе работы трансформатора, показался ему несколько физически необоснованным, хотя он и обеспечил все расчеты трансформаторов. В законе Фарадея магнитное поле изменяется в контуре, т. е. в дырке, а эдс от этого почему-то возникает на периферии этой дырки, т. е. в контуре. А внешние относительно контура поля закон вообще не учитывает. Что-то не так. И автор промучился над этой проблемой ни много, ни мало, а целых пять лет, пока не понял, что сначала надо рассмотреть взаимодействие лошади и телеги, которую она везет.
Вот едет эта система — лошадь и телега в гору. Кто кого везет? Ясное дело, лошадь везет телегу. А вот эта же система едет с горы. Кто кого толкает? Ясное дело, телега лошадь. А как об этом узнать, глядя на них со стороны? Оказалось, что узнать можно, но для этого надо встроить в связь между лошадью и телегой, т. е. в оглоблю динамометр. Если он показывает растяжение, то лошадь везет телегу, а если сжатие, то наоборот.
Но ведь в трансформаторе такой оглоблей является магнитное поле. Значит, для определения потоков энергии надо рассмотреть градиент напряженности поля, и это сделать не трудно.
Автор взял железо Ш-40, намотал первичную обмотку у одного конца сердечника, вторичную у второго и поместил между ними два встречно включенных витка измерительной обмотки. Когда он это сделал, сбежалась вся лаборатория посмотреть не на эксперимент, тут все было ясно, а на автора, с которым явно было не все в порядке. Но оказалось, что эдс на измерительной обмотке имеется, она, как и предполагалось, растет прямо пропорционально величине тока во вторичной обмотке. И хотя в электротехнике нигде об этом не сказано, факт оказался налицо. Народ успокоился, скорую помощь вызывать не пришлось.
Однако такая же история имеет место быть со всеми космическими влияниями на земные процессы. Они не могут идти в соответствии с идеями физиков-теоретиков через ничего. Ибо, как сказал еще Максвелл, если энергия вышла из одного места и не достигла второго, то она должна где-то находиться по дороге. А раз есть энергия, то должен быть и носитель, причем материальный. А где он в космическом пространстве? Конечно же, в мировой среде, заполняющей это пространство, т. е. в эфире. А это значит, что, исследуя состояние эфира, мы можем предвидеть последствия этих влияний на Землю.
Учитывая, что все без исключения процессы инерционны и не проявляются сразу, можно иметь хорошую фору для прогноза, возможно в несколько месяцев, и успеть принять необходимые меры. Но для этого надо ставить систематические исследования эфирного ветра, всевозможных вариаций его направлений и скорости. Измерения должны проводиться на земной поверхности, в горах и на спутниках. Нужно также измерять плотность эфира посредством наблюдений за тонкими изменениями емкости конденсаторов. Используя эти и другие, уже освоенные методы, можно будет создать систему прогнозирования ближайших земных катаклизмов и минимизировать их последствия. Ведь если знать, что через пять минут дом рухнет, то достаточно выбежать из него, чтобы не упокоиться под его развалинами.
Однако все это возможно только на путях утверждения концепции близкодействия. Ибо концепция дальнодействия ничего такого не предусматривает. Поэтому у последователей именно концепции дальнодействия больше шансов оказаться под развалинами, поскольку они сами лишили себя возможности исследовать эфиродинамические процессы в космосе. Впрочем, опыт подсказывает, что такие ребята успевают изменить свою позицию во время, презрев собственные убеждения, если от этого зависит их жизнь.
7. Веселый ветер
Веселенькая история приключилась с эфирным ветром. Эта история, определившая судьбы естествознания ХХ столетия, мало кому известна. Автору она тоже далась не вдруг. И когда он, то есть я, понял, что надо бы выявить истину в этом вопросе, то оказалось, что это сделать не так просто: дело давнее, все действующие лица давно умерли, и остался только след в виде сложившегося стереотипа — эфирный ветер пытались поймать, ничего из этого не получилось, потому что эфира в природе не существует, а значит, эфирного ветра быть не может. Чего ловить-то? И вообще, Майкельсон, пытавшийся этот ветер изловить еще в 1887 году, получил нулевой результат, а Эйнштейн это строго доказал, введя соответствующий постулат. А кто старое помянет, тому глаз вон, а лучше — оба.
Но автор оказался настырным. Он начал искать тех лиц, которые не только твердо знают, что эфирного ветра нет и что Майкельсон получил «нулевой» результат, то есть ничего не получил, но и тех, кто лично, а не понаслышке прочитал статьи или отчеты Майкельсона. Желательно, на русском языке. Но можно и на английском. Или хотя бы на китайском. Это все равно.
К удивлению автора, таких не оказалось ни в Московском, ни в Ленинградском, ни в Томском университетах ни на физических, ни на каких иных факультетах. Не обнаружилось таковых и в физических институтах Академии наук — ни в ФИАНе в Москве, ни в Физтехе в Ленинграде. И даже в Институте истории техники и естествознания, тоже в Москве. А остальные первоисточников вообще не читают, потому что им и так все ясно.
Тогда автор сделал попытку найти эти первоисточники лично и прочесть их на одном из упомянутых выше языков. Но и это оказалось не просто. Будучи в командировке в Ленинграде, автор забрел в библиотеку Академии наук.
— Есть ли вас статьи Майкельсона и Морли? — спросил автор.
— У нас все есть, — ответили ему. — Наша библиотека — самая фундаментальная из всех библиотек страны. И уж если кто-то где-то когда-то что-то написал, то это у нас имеется. И хранится как зеница ока. Так чего вам?
— Мне бы статьи Майкельсона и Морли за 1881 и 1887 годы. Они опубликованы в Американском научном журнале, а также в журнале Философикл Мэгэзин за эти годы.
— Подождите, пожалуйста, пять минут, сейчас принесем.
Но через пять минут выяснилось, что да, эти журналы есть, но только в каталогах, но никак не в наличии, потому что сгорели вместе с кучей других таких же редких журналов совсем недавно.
— Пораньше бы надо вам было приехать, — сказала сотрудница библиотеки, — до пожара. А теперь чего уж! Но вы не огорчайтесь. Наверное, эти журналы есть в других библиотеках — в Москве или в Новосибирске. А, скорее всего, в Томске. Это, знаете, старый университетский город с прекрасными традициями, там хорошая библиотека в университете.
Постепенно в разных библиотеках я все же разыскал все эти статьи, а также многие другие. В результате этих поисков выяснилось, что:
а) эти статьи на русском языке никто не читал и читать не мог, потому что на русский язык их никто никогда не переводил, и теперь этот долг повис на мне;
б) за последние пятьдесят лет, а может быть и больше, никто эти статьи ни в одной библиотеке не затребовал, а стало быть, и не читал;
в) в этих статьях написано совсем не то, что нам рассказывают в учебниках. А именно: эфирный ветер был обнаружен, причем на самом раннем этапе экспериментов, правда, он был совсем не тот, не той величины, которая ожидалась, и дул совсем не туда, куда требовалось. Но он был обнаружен, и это исторический факт. Уже совершенно твердо он был зафиксирован в 1905 году, т. е. именно тогда, когда А.Эйнштейн порадовал научную общественность своими постулатами, исходящими из утверждения, что Майкельсон и Морли не получили эфирного ветра. Причем ни Майкельсона, ни Морли об этом не спросили. А они, на самом деле, получили и опубликовали свои результаты, и теперь я их нашел, снял копии, перевел и опубликовал в сборнике статей под своей редакцией (Эфирный ветер. Сб. статей под ред. д.т.н. В.А. Ацюковского. М., Энергоатомиздат, 1993).
Чтобы не утомлять читателя всеми перипетиями трагикомической истории поисков эфирного ветра, когда рядом исследователей, включая самого Майкельсона, а также его учеников и соратников, была проведена громадная работа и получены отличные результаты, делающие честь этим исследователям, хотя они и не были признаны, я ограничусь краткой хронологией положительных и отрицательных результатов (приводятся даты публикации статей).
1877 г. Дж. К. Максвелл в 8-м томе Британской энциклопедии публикует статью «Эфир», в которой дает постановку проблемы: Земля в своем орбитальном движении вокруг Солнца проходит сквозь неподвижный эфир, и поэтому на ее поверхности должен наблюдаться эфирный ветер (ether drift), который надо бы измерить.
1881 г. А. Майкельсон сделал первую попытку обнаружить эфирный ветер, для чего он построил крестообразный интерферометр. Но оказалось, что чувствительность прибора мала, а помехи, главным образом, вибрации, очень сильны. Результат неопределенный.
1887 г. Майкельсон привлек для помощи профессора Э. Морли. Ими получен результат в виде скорости эфирного ветра 3 км/с. Это противоречило исходному положению, по которому ожидалось, что скорость эфирного ветра должна составлять 30 км/с. Возникло предположение, что скорость эфирного потока убывает с уменьшением высоты. Решили работы продолжить, подняв интерферометр на Евклидовы высоты. Но работы были приостановлены.
1904–1905 гг. Майкельсон не участвует в работах, их проводят профессора Д.К. Миллер и Э. Морли. Получена скорость эфирного ветра в 3–3,5 км/с. Результат уверенный, но непонятный. Написаны отчеты и статьи. Хотели работы продолжить, но участок земли отобрали, работы были отложены.
1921–1925 гг. Работы продолжены Миллером и его помощниками на горе Маунт Вилсон. Проведены громадные исследования: только в 1925 г. выполнено более 100 тысяч отсчетов. Твердо получены результаты, из которых вытекает, что Земля обдувается эфирным ветром откуда-то с севера, орбитальная составляющая скорости не найдена.
1926–1927 гг. К работам подключился Р. Кеннеди. Он сделал небольшой интерферометр повышенной чувствительности и заключил его в герметичный металлический ящик. Не получил ничего, о чем написал статью. На этом же интерферометре работы продолжил К. Иллингворт. Тоже ничего не получил и тоже написал об этом статью.
1927 г. 4 и 5 февраля. В обсерватории Маунт Вилсон состоялась конференция, на которой выступили Д.К. Миллер и Р. Кеннеди. Первый рассказал о полученных результатах, второй о том, что им ничего не получено. Конференция высказывания зафиксировала, но никаких выводов не сделала.
1927 г. Пиккар и Стаэль поднялись с интерферометром, заключенным в металлический ящик, на аэростате. Ничего не обнаружили. Пиккар по этому поводу сострил, что если эфирный ветер где-то и дует, то не над Брюсселем.
1929 г. Майкельсон сам лично повторил опыт, построив для этого на горе Маунт Вилсон специальный дом. Им получена скорость эфирного ветра 6 км/с, о чем им опубликована статья в Журнале оптического общества Америки № 3 за 1929 г.
1931 г. Майкельсон с помощниками пытались определить влияние эфирного ветра на скорость света, пропущенного внутри металлических труб, имеющих длину 1 милю, из которых откачан воздух. Влияния не обнаружено.
1933 г. Миллер написал большую обзорную статью, в которой подытожил достигнутое. Реакции на эту статью не последовало.
1958–1962 гг. Седархольм и Таунс, изобретатель мазеров, пытались обнаружить эфирный ветер с помощью доплеровского эффекта, забыв о том, что у взаимно неподвижных источника и приемника колебаний доплеровский эффект отсутствует. Разумеется, они истолковали свои результаты не как свою неграмотность, а как отсутствие в природе эфира.
1963 г. Сьямпней, Исаак и Кан использовали эффект Мессбауера для повышения чувствительности к изменениям частоты в доплеровском эффекте. Ничего не обнаружили по тем же причинам, что и Таунс, и тоже сделали вывод об отсутствии эфирного ветра.
Автор этих строк понял ошибку Кеннеди, Иллингворта, Пиккара и Стаэля, заключивших интерферометр в металлический ящик: они полностью экранировали прибор от эфирных струй, которые отражаются от металла так же, как и световые потоки от металлического зеркала. С таким же успехом они могли измерять обычный ветер, дующий на улице, глядя на анемометр, стоящий в закрытой комнате. То же относится и к работам Майкельсона 1931 г.
Однако все это оказалось весьма полезным, поскольку появляется возможность сделать интерферометр не второго порядка, как это было у всех исследователей эфирного ветра, а первого порядка, идея которого не могла их посетить, поскольку они не знали свойств эфира и не могли предполагать экранирующего действия металла. Нужно построить интерферометр первого порядка, один из лучей которого будет пропущен через металлическую трубу П-образной формы. Такой вариант описан автором в журнале «Юный техник» за 1994 г. Этот интерферометр будет иметь чувствительность на пять порядков выше майкельсоновского, и поэтому может быть маленьким, всего в полметра или меньше. А еще проще сделать лазерный прибор, поскольку лазерный луч изгибается под действием эфирно-ветровой нагрузки как консольно закрепленная балка. Этот метод проверен и дал неплохие результаты.
Трудности температурной стабилизации или обеспечения нечувствительности к вибрациям здесь не должны возникать. Работа ждет своих энтузиастов!
Вот и все. Нет, пожалуй, не совсем все. Нужен еще комментарий.
Как установлено Миллером, Земля обдувается эфирным ветром со стороны Северного полюса под углом 26 градусов к нему. Скорость эфирного потока в космосе составляет не менее 200 и не более 600 км/с. По мере приближения к земной поверхности относительная скорость потоков эфира уменьшается и на высоте 1,8 км составляет около 10 км/с а на высоте 350 м и на уровне земной поверхности — 3–3,5 км/с. Объяснения этого явления ни Миллер, ни кто-либо другой не дали. А я позволил себе дать такое объяснение.
В соответствии с положениями эфиродинамики, в той точке Галактики, в которой мы сейчас находимся, потоки эфира, текущие в спиральном рукаве Галактики направлены почти перпендикулярно плоскости эклиптики, но не совсем. Поэтому имеет место геометрическое сложение скоростей, и на фоне большой космической составляющей почти перпендикулярно направленная орбитальная скорость не просматривается из-за недостаточной чувствительности прибора.
Поскольку эфир — это вязкий газ, то, как и положено газу, его относительная скорость уменьшается по мере уменьшения расстояния до поверхности, то есть по мере уменьшения высоты. Об этом хорошо написано в книге Г. Шлихтинга «Теория пограничного слоя».
Если бы не было воздушной атмосферы, то толщина пограничного слоя эфира была бы очень маленькой, всего несколько микрон. Но атмосфера есть, и плавный переход скоростей осуществляется на расстоянии в десятки километров.
Скорость эфирного ветра на поверхности Земли была бы равна нулю, если бы эфир не поглощался Землей. Но он поглощается, скорость его вхождения в Землю составляет 11,18 км/с, т. е. это вторая космическая скорость, а поэтому затухание горизонтальной составляющей происходит не на поверхности Земли, а ниже, в пределах первых метров плотных пород под поверхностью. Это хорошо видно из результатов опубликованных экспериментов.
Поскольку эфир обдувает Землю с севера, то там имеется Северный ледовитый океан, ибо в этом месте повышено давление эфира за счет торможения эфирного потока. Материки в эту область Земли зайти не могут. Но далее эфирные потоки огибают Землю, а в градиентном течении давление понижено, поэтому материки смещаются к северу, так же как и вода. В результате Земля имеет грушевидную форму, вытянутую к северу.
Сейчас появились идеи иного плана. Поскольку обнаружена анизотропия реликтового излучения космоса, то уже последователями эфиродинамики выдвигается предположение о том, что Миллер ошибся, и эфирный ветер обдувает нас со стороны созвездия Льва, т. е. в направлении, перпендикулярном тому, которое обозначил Миллер. Представляется, что такое мнение поспешно, потому что именно в перпендикулярном миллеровскому направлению существует еще много различных анизотропий — градиент скорости эфирного ветра, градиент плотности эфира в спиральном рукаве Галактики и т. п. Все это должно быть внимательно проанализировано.
В настоящее время работы по измерению эфирного ветра проводятся группой Ю.М. Галаева, сотрудника Института радиотехники и электроники Национальной академии наук Украины. В период с августа 2001 по август 2002 г им выполнено порядка 4000 отсчетов на своем приборе. Принцип действия прибора основан на учете вязкости эфира.
Галаев не только подтвердил результаты Миллера, но и обнаружил ряд новых эффектов, разработка которых представляет исключительный интерес.
Поглощение телом Земли эфира выражается в том, что земной шар наращивает свою массу и увеличивается в объеме со скоростью порядка 0,56 мм в год по радиусу. Это и обусловило в свое время раскол земной коры. В Земле непрерывно образуется новое вещество, которое вылезает из недр в зоне рифтовых хребтов, расположенных посредине всех океанов. Сами хребты в виде целой гряды отдельных «торчков» высотой по 1,5–2,5 км образованы вылезающей из недр породой, в результате чего дно океанов растрескивается между этими «торчками», расходится и уползает под материки (субдукция). Все это подтверждается измерениями возраста донных пород: на вершинах «торчков» возраст пород составляет 5 млн. лет, у подножья — 10, далее возраст пород растет и у берегов составляет 200 млн. лет. А материковые плиты имеют возраст пород порядка 5,5 млрд. лет. В определении возраста океанского дна весьма преуспели французы.
Отдельные такие «торчки» попадаются и на суше. В недавнем американском фильме про инопланетян показана такая реально существующая горка, которая торчит на ровном месте в полном одиночестве. У нас таких горок несколько (должно же чего-то у нас быть больше, чем у американцев), они расположены, в частности, около Железноводска и выглядят довольно странно. Надо бы измерить их возраст.
Эфирные потоки огибают Землю и по всем законам газовой механики отрываются в южном полушарии от поверхности. В этом месте между 40-м и 50-м градусами южной широты образуется присоединенный тороидальный вихрь. Он приводит в движение массы воздуха, которые создают тороидальное движение воздушных потоков. На поверхности вследствие кориолисовых сил возникают западные ветры. Тороидальные потоки воздуха захватывают влагу из океана, поднимают ее вверх и выбрасывают ее на южные области. Так образовалась Антарктида. Над ней все время стоит устойчивый антициклон, который обусловлен непрерывно поступающим сверху воздухом из-за того же тороидального вихря. С этим же связана и пониженная по сравнению с севером температура.
С расширением Земли и движением океанского дна связан и первоначальный механизм горообразования.
Расположение материковых плит на шаре, радиус которого непрерывно растет, вызывает напряжения в породах. Плиты разламываются, а верхние слои образуют складки. Так, вероятно, образовались Уральские и Кавказские хребты, возможно, Пиренеи и ряд других хребтов. Анды образовались в результате того, что морское дно не подползает под плиты, а наползает на западное побережье Северной и Южной Америк. Это можно было бы проверить, измерив возраст пород на западном и на восточном склонах: на западном породы должны быть моложе.
Вот такие дела. Но и это не все.
Приобретает особое значение влияние Солнца на земные процессы. Солнце работает как центробежный насос, засасывая эфир по полюсам и выдувая его по экватору. А поскольку эклиптика наклонена по отношению к солнечному экватору на 7°, то Земля переходит из одних потоков эфира в другие, так что на ее поверхности время от времени эфирный ветер меняет свое направление.
На стационарные потоки эфира накладываются нестационарные потоки, генерируемые Солнцем. Они были обнаружены автором по записям положения лазерного луча. Эти колебания несут информацию о состоянии Солнца, это можно, а вероятно, и нужно использовать для прогнозирования земных событий — геофизических, климатических и т. п.
Что же нужно сейчас? Сейчас нужно налаживать системные исследования эфирного ветра с применением новых инструментальных средств в обсерваториях и на спутниках. Мы должны не только убедиться в том, что эфирный ветер существует, но и использовать полученную информацию для прогнозирования земных событий. Последнее может оказаться более, чем актуально.
Но с научной точки зрения подтверждение наличия эфирного ветра означает существование эфира в природе. А признание эфира — это качественный шаг в развитии естествознания, это переворот всех наших представлений об устройстве мира. Это совершенно новые возможности во всех областях науки, а также и практики. Ибо нет ничего более прикладного, чем хорошая теория.
8. А король-то голый!
Когда автор столкнулся с тем, что уравнения Максвелла, как и всякие уравнения, не полностью отражают явления электродинамики, он проявил интерес к тем исходным предпосылкам, которыми руководствовался Максвелл, выводя свои знаменитые уравнения. И тут выяснилось, что вопреки утверждениям многих учебников Максвелл ничего не постулировал, а строго вывел эти уравнения, исходя из механической эфирной теории электричества и магнетизма. А следовательно, усовершенствование уравнений электродинамики нужно начинать с рассмотрения этой модели, выявления и устранения ее недостатков. Если этого не делать, а просто производить доработки, то придется выдвигать постулаты, которых можно выдвинуть сколько угодно, но проку от них не будет. Ибо каждый постулат отражает не природу явлений, а природу автора постулата. А это не одно и то же.
Поскольку Максвелл рассматривал и электрическое, и магнитное поля на основе эфирной модели, то уточнить его модель электричества и магнетизма можно, только вернувшись к эфиру. Но этого сделать нельзя, так как по представлениям физики ХХ столетия эфир в природе не существует, по крайней мере, так утверждает всеми признанная специальная теория относительности Эйнштейна, которую изучают в университетах и школах и на базе которой возникают учения и строятся многие другие теории. Теория относительности дала начало таким фундаментальным наукам, как современная космология, релятивистская астрофизика, теория гравитации, релятивистская электродинамика и ряд других. И теперь теория относительности Эйнштейна стала эталоном правильности любых других теорий: все они должны соответствовать положениям теории относительности и ни в коем случае ей не противоречить. Об этом в 1964 году было даже принято специальное Постановление Академии Наук СССР: любую критику теории относительности Эйнштейна приравнивать к изобретательству вечного двигателя, авторам разъяснять их заблуждения, а в печать критику теории относительности не допускать. Потому что это антинаучно.
Теория относительности создала новую форму мышления: казавшиеся очевидными истины «здравого смысла» оказались неприемлемыми. Революционизировав мышление физиков, теория относительности первой внедрила «принцип ненаглядности», в соответствии с которым представить себе то, что утверждает теория принципиально невозможно.
Физические процессы оказались проявлением свойств пространства-времени. Пространство искривляется, время замедляется. Правда, к сожалению, оказывается, что кривизна пространства-времени непосредственно измерена быть не может, но это никого не смущает, так как эту кривизну можно вычислить.
Вокруг теории относительности и ее автора — Альберта Эйнштейна созданы легенды. Говорят, что теорию относительности по-настоящему во всем мире понимают лишь несколько человек… Снисходительные лекторы приобщают широкую аудиторию к таинствам теории — поезд Эйнштейна, парадокс близнецов, черные дыры, гравитационные волны, разбегающаяся Вселенная, Большой взрыв…
Сомневающимся в справедливости каких-либо частностей теории обычно объясняют, что теория для них слишком сложна, и что лучше всего им оставить свои сомнения при себе. Критика теории приравнивается к попыткам создания вечного двигателя и серьезными учеными даже не рассматривается. И, тем не менее, голоса сомневающихся не смолкают. Среди этих сомневающихся немало прикладников, привыкших иметь дело с наглядными процессами. Перед прикладниками возникают практические задачи, и прежде чем решать их, прикладники должны представить себе механизмы явлений: как же иначе они могут приступить к поискам решений? Но их голоса тонут в общем хвалебном тоне последователей теории.
Так что же такое теория относительности Эйнштейна?
Теория относительности состоит из двух частей: специальной теории относительности — СТО, рассматривающей релятивистские явления, то есть явления, проявляющиеся при движении тел со скоростями, близкими к скорости света, и общей теории относительности — ОТО, распространяющей положения СТО на гравитационные явления. В основе как той, так и другой лежат постулаты — положения, принимаемые без доказательства, на веру. В геометрии такие положения называются аксиомами.
В основании СТО лежит пять постулатов, а не два, как утверждают сторонники теории, а в основании ОТО к этим пяти добавлено еще пять.
Первым постулатом СТО является положение об отсутствии в природе эфира. Ибо, как остроумно заметил Эйнштейн, «…нельзя создать удовлетворительную теорию, не отказавшись от существования некоей среды, заполняющей все пространство». Почему нельзя? Можно предположить, что раз у самого Эйнштейна с эфиром ничего не получилось, то и ни у кого не получится. Значит, нельзя.
Вторым постулатом является так называемый принцип относительности, гласящий, что все процессы в системе, находящейся в состоянии равномерного и прямолинейного движения, происходят по тем же законам, что и в покоящейся системе. Этот постулат был бы невозможен, если бы эфир существовал: пришлось бы рассматривать процессы, связанные с движением тел относительно эфира. А раз эфира нет, то и рассматривать нечего.
Третьим постулатом является принцип постоянства скорости света, который, как гласит этот постулат, не зависит от скорости движения источника света. Этому можно поверить, поскольку свет, являясь волной или вихревой конструкцией, может двигаться со своей световой скоростью не относительно источника, а только относительно того эфира, в котором он в данный момент находится. Но выводы из такого положения уже будут иными.
Четвертым постулатом является инвариантность интервала, состоящего из четырех составляющих — трех пространственных координат и времени, умноженного на скорость света. Почему на скорость света? А ни почему. Постулат!
Пятым постулатом является принцип одновременности, согласно которому факт одновременности двух событий определяется по моменту прихода к наблюдателю светового сигнала. Почему именно светового сигнала, а не звука, не механического движения, не телепатии, наконец? Тоже ни почему. Постулат!
Вот такие постулаты.
Общая теория относительности — ОТО к этим постулатам добавила следующие.
Шестой постулат: все предыдущие постулаты распространяются на гравитационные явления. Это положение тоже не вытекает ни откуда и может быть сразу же опровергнуто, ибо рассматриваемые выше явления световые, то есть электромагнитные. Гравитация же совсем иное явление, не электромагнитное, не имеющее к электромагнетизму никакого отношения. Поэтому надо бы такое распространение постулатов как-то обосновать, что ли. Но оно не обосновывается, потому что в этом нет нужды, ведь это постулат!
Седьмой постулат заключается в том, что свойства масштабов и часов определяются гравитационным полем. Почему они так определяются? Это постулат, и задавать такие вопросы нетактично.
Восьмой постулат гласит, что все системы уравнений относительно координатных преобразований ковариантны, т. е. преобразуются одинаково. Обоснование его то же, что и в предыдущем пункте.
Девятый постулат радует нас тем, что скорость распространения гравитации равна скорости света. Обоснование его смотри в двух предыдущих пунктах.
Десятый же постулат сообщает, что пространство, оказывается, «немыслимо без эфира, поскольку общая теория относительности наделяет пространство физическими свойствами». Эйнштейн догадался об этом в 1920 году и подтвердил свою прозорливость в этом вопросе в 1924 году. Понятно, что если бы ОТО не наделила пространство физическими свойствами, то и эфира в природе не было бы. Но раз наделила — имеет право быть, несмотря на то, что в СТО эфира нет и в ней он права на существование не заработал (см. постулат № 1).
Вот так. Хорошее совпадение автор обнаруживается между первым и десятым постулатами.
Между прочим, все замечательные математические открытия Эйнштейна о зависимости движения массы тела, его длины, времени, энергии, импульса и много чего еще выведены им на основе так называемых «преобразований Лоренца», которые вытекают из четвертого постулата. Тонкость здесь заключается в том, что эти самые преобразования выведены Лоренцем в 1904 году, то есть за год до появления СТО. А выводил их Лоренц из представления о существования в природе неподвижного в пространстве эфира, что сильно противоречит всем постулатам СТО. И потому, когда релятивисты радостно кричат о том, что ими получены экспериментальные подтверждения расчетов, выполненных в соответствии с математическими зависимостями СТО, то, как раз и имеются в виду зависимости, основанные на преобразованиях Лоренца, первоначальная теория которых исходит из представления о наличии в природе эфира, что начисто противоречит теории Эйнштейна, хотя и получившего те же зависимости, но совершенно из иных соображений…
Логика СТО восхищает. Если СТО в основу всех рассуждений кладет скорость света, то потом, прокрутив все свои рассуждения через математическую мельницу, она получает, во-первых, что все явления зависят именно от этой скорости света, а во-вторых, что именно эта скорость является предельной. Это очень мудро, потому что если бы СТО положила в основу не скорость света, а скорость мальчика Васи в турпоходе, то именно со скорость его перемещения и были бы связаны все физические явления во всем мире. Но мальчик все же, наверное, тут ни при чем. А скорость света при чем?!
А в основу логики ОТО положено, что массы, обладающие тяготением, искривляют пространство, потому что вносят гравитационный потенциал. Этот потенциал искривляет пространство. А искривленное пространство заставляет массы притягиваться. Барон Мюнхаузен, который как-то раз вытянул себя за волосы вместе с конем из болота, вероятно, был учителем великого физика.
И уж совсем замечательно обстоят дела у теории относительности с экспериментальными подтверждениями, с которыми пришлось разбираться детально, о чем желающие могут прочитать книжку автора «Логические и экспериментальные основы теории относительности» (М., изд-во МПИ, 1990) или ее второе издание — «Критический анализ основ теории относительности» (г. Жуковский, изд-во «Петит», 1996). Внимательно проштудировав все доступные первоисточники, автор к своему изумлению выяснил, что нет и никогда не было никаких экспериментальных подтверждений ни СТО, ни ОТО. Они или приписывают себе то, что им не принадлежит, или занимаются прямой подтасовкой фактов. В качестве иллюстрации первого утверждения можно привести те же преобразования Лоренца, о которых сказано выше. Можно также сослаться и на принцип эквивалентности гравитационной и инертной масс. Ибо классическая физика от самого своего рождения считала их всегда эквивалентными. Теория относительности с блеском доказала то же самое, но результат этот присвоила себе.
А в качестве второго утверждения можно вспомнить про работы Майкельсона, Морли и Миллера, которые обнаружили эфирный ветер и опубликовали свои результаты (Майкельсон, правда, сделал это не сразу, а в 1929 г.), но релятивисты их как бы не заметили. Они их не признали , мало ли кто там чего намерил! И тем самым совершили научный подлог.
Можно вспомнить и про то, как обрабатываются результаты измерений лучей света от звезд во время солнечного затмения: выбирается из всех возможных тот способ экстраполяции, который лучше даст ожидаемый по Эйнштейну результат. Потому что если экстраполировать обычным способом, то результат получится значительно ближе к ньютоновскому.
А такие пустяки как коробление желатина на пластинках, о чем предупреждала фирма «Кодак», поставлявшая эти пластинки, как потоки воздуха в теневом конусе Луны во время затмения, что обнаружил автор, свежим взглядом оглядевший снимки, как солнечная атмосфера, о которой раньше не знали, но которая, тем не менее, существует, — все это вообще никогда не принималось во внимание. А зачем, если и так совпадения хорошие, особенно если принимать во внимание то, что выгодно, и не принимать того, что не выгодно.
Вот к каким интересным выводам можно прийти, если копнуть историю вопроса поглубже и пользоваться первоисточниками, а не просто хлопать в ладоши от восхищения «красотой» теории. Потому что в науке хлопать в ладоши и хлопать ушами — это часто одно и то же
9. Ускорительная логика
Как всем хорошо известно, чем меньше длина волны фотона, тем больше в нем содержится энергии, это утверждает закон Планка. Поэтому, если вы хотите узнать, как устроено вещество, вам нужно ударить по нему частицами, обладающими высокой энергией, ибо, чем выше их энергия, тем глубже они проникнут в глубь вещества и тем мельче будут те частицы, которые они оттуда выбьют. И значит, зондирующие частицы нужно разгонять до больших скоростей. А уж потом, ударив их о мишень, посмотреть, что из этой мишени посыплется. И, проанализировав эти осколки, можно будет сделать вывод о том, из каких же осколков, виноват, элементарных частиц состояло вещество до того, как об него шлепнулась зондирующая частица. И вот для этой цели приходится создавать ускорители частиц высоких энергий.
Автор сильно сомневается в строгости этой логики, вытекающей из квантовой механики совместно со специальной теорией относительности Эйнштейна, потому что этот метод напоминает ему битье посуды (см. в качестве учебного пособия оперетту «Принцесса цирка», в которой две дамы соревновались в этом искусстве), ибо осколки, добытые с таким трудом из посуды, не обязательно свидетельствуют о том, что эта посуда до битья состояла из этих осколков. Скорее всего, этих осколков до произведенной операции в посуде не содержалось, а появились они как раз в результате этого научного эксперимента. Но ускорительщикам виднее. Все-таки они занимаются этим всю жизнь.
Однако у автора есть и второе сомнение: он не понимает, почему фотонная логика распространяется вообще на все частицы микромира. Даже если сам Луи де Бройль провозгласил всеобщность корпускулярно-волнового дуализма. Ведь у разных частиц массовая плотность может быть разной, значит и энергосодержание у них будет разное. Почему вообще энергосодержание любой массы определяется через скорость света? Ведь это всего лишь скорость распространения фотонов в свободном пространстве и ничего более. Какое отношение все это имеет к частицам, образующим, например, ядро атома, в котором нет фотонов, нет свободного пространства для перемещения фотонов, а есть ядерные силы, не имеющие к электромагнитной природе фотонов никакого отношения? Правда, квантовая механика утверждает, что частицы микромира как-бы не имеют размера, они как-бы точечные, хотя имеют массу. Массу имеют, а объема не имеют? А их массовая плотность?.. М-да! И так далее.
Но, так или иначе, физики всего мира в попытках узнать тайну строения материи, а попутно сделать атомную бомбу пострашнее, начали строить различные ускорители, с помощью которых можно разгонять заряженные частицы и шлепать их о мишени. И тут развернулось соревнование между нами и американцами.
В 1931 году американцы построили первый электростатический генератор, а в 1932 году англичане добавили в нему каскадный генератор. Эти генераторы получали ускоренные частицы с энергией 1 МэВ (один миллион электронвольт). В 1940 году американцы построили бетатрон. В 1944 году у нас придумали автофазировку и создали синхротрон. Американцы спохватились, изобрели то же самое и тоже создали синхротрон, но побольше. А в 50-е годы они придумали принцип знакопеременной фокусировки и резко повысили предел допустимых энергий в линейных ускорителях.
В 1966 году в Станфорде они запустили линейный резонансный ускоритель на 22 ГэВ (гига-электрон-вольт, это что-то очень много). Но у нас в 1967 году под Серпуховым был создан синхрофазотрон на 76 ГэВ, и мы этим самым переплюнули американцев.
Тогда американцы, которые тоже не лыком шиты, создали синхрофазотрон на 200–400 ГэВ. Но не на таких напали! И мы решили создать ускорительный монстр на еще больше. А для этого вырыли в поселке Протвино под Серпуховым тоннель на глубине 50 м. и длиной в 22 км, в котором предыдущий ускоритель, в свое время переплюнувший американцев, будет являться лишь промежуточным каскадом.
К сегодняшнему дню наше богатое государство успело зарыть в этот подземный ускоритель сколько-то десятков миллиардов доперестроечных рублей. Но тут, похоже, и у нас, и у американцев оказалась кишка тонка. У нас вообще началась перестройка. А американцы подзастряли, возможно, потому, что они благодаря развитию нашей экономики после 1985 года и так сохранили свое первенство в размерах ускорителей. Исчез стимул.
Но научная работа на уже построенных ускорителях продолжается. И автору приятно было убедиться в том, что в Протвино, например, действует научный дискуссионный семинар, на котором автору удалось побывать. На этом семинаре обсуждалась главная, как было сказано, проблема — почему за рубеж ездят только администраторы, а не сами ученые?
Этот вопрос активно обсуждался всеми присутствующими учеными, обладателями разных ученых степеней. Другие вопросы не обсуждались, они, вероятно, не относились к главному направлению деятельности.
Все это так, к слову, потому что автор посетил Протвино совсем с другими целями. Он прослышал, что ускорителю понадобились линии связи для передачи сигналов от далеко находящихся датчиков к диспетчеру, который в любой момент должен знать, что у него все исправно. А помимо диспетчера это должны фиксировать автоматические регистраторы. У автора имелась тщеславная мысль внедрить туда свои авиационные связи, потому что он надеялся, что его связи, так хорошо зарекомендовавшие себя в авиации, поведут себя не хуже и в таком большом устройстве, как самый могучий в мире ускоритель. А когда связи будут опробованы на длине в 22 км или хотя бы на половине этого расстояния, об этом потом можно будет раструбить по всему свету. Поэтому автор со своим товарищем и со своими предложениями явился в Протвино. И там состоялся вот такой разговор.
— Мы приехали предложить вам самые лучшие в мире информационные связи для вашего самого большого в мире ускорителя.
— А из чего они сделаны, ваши связи? — поинтересовались эксплуатационники ускорителя, которые как раз и должны были делать связи для техобслуживания ускорителя.
— А они у нас из проводов. Проводов бифилярных, скрученных, помещенных в общий экран. Исключительно высокой надежности и помехоустойчивости.
— Это хорошо, — был ответ, — но нам нужно очень высокое быстродействие и поэтому ваши проводные связи не годятся. Потому что частоты у вас слишком малые, будет большая задержка во времени.
— Признаем, признаем! — сказали мы. — А что же вы поставите вместо проводов?
— Поставим мы волоконно-оптические линии связи, у которых пропускная способность значительно выше. Вот если вы разработаете такие линии для нас, то мы будем благодарны, и обязательно их применим. Правда, они раз в сто дороже, чем проводные линии связи, а может быть и в двести, но чего не сделаешь ради технического прогресса.
— Нет, — сказали мы, — их пусть разрабатывает кто-нибудь другой. Не хотите — как хотите. А мы поехали домой. Но все же любопытно, чем определяются столь высокие требования к быстродействию?
— Они определяются тем, что сигналы о неисправных датчиках должны как можно быстрее попасть на экран к оператору. И никакие задержки здесь не допустимы.
— Позвольте, позвольте, — засуетились мы. — Мы не понимаем. Ведь самое быстрое движение у оператора — это моргнуть глазом. На это уходит целая одна десятая доли секунды. Да за это время мы вам на обычных проводах любой сигнал доставим и не за 22 км, а хоть за сто! А если ваш оператор должен кнопку нажать, то на это уйдет 2–3 секунды. А если он еще должен подумать, прежде чем нажать, то это минимум десять секунд. Где логика?! А вы экономите десяток микросекунд! Зачем?!
— Вы неправильно понимаете весь этот сложный процесс, — ответили нам. — Какой там глаз, какая кнопка! Все это ненадежно и безответственно. Когда оператор получит сигнал о неисправности датчика, он должен убедиться в том, что автоматика сообщила эти данные правильно. И только после этого он должен записать показания в журнал. И обязательно расписаться. А наутро придут ремонтники, которые выпишут заявку на ремонт и пойдут менять датчик. А это знаете, как далеко? А уж после этого сделают отметку о том, что работы выполнены. Для этого, конечно, придется на время прекратить работу ускорителя, потому что техника безопасности у нас на первом месте. И включим мы ускоритель только после того, как ремонтники вернутся на место и дадут соответствующее разрешение. Так что поезжайте домой и подумайте насчет стекловолоконных линий связи. Они, конечно, дороже, но мы не можем скупиться в таком важном деле.
И мы уехали. Я потом подумал, что есть что-то родственное между задачами передачи сигналов и задачами выяснения строения материи с помощью ускорителей высоких энергий.
Природа едина, и подход к решению научных проблем тоже един.
10. Новаторы
Всякая наука, если это и в самом деле наука, никогда не может закончиться, потому что в ней все время будут открываться все новые и новые обстоятельства, до этого неизвестные. Я думаю, что общее число явлений природы бесконечно велико, но они выстроены в некую иерархическую лестницу, в которой есть фундаментальные законы, а есть надстройки.
Чем химия отличается от физики? Тем же, чем дом — архитектурное сооружение — отличается от кирпичей. Физика — это кирпичи, без которых здание не построишь. Если вы не знаете свойств кирпича и начнете строить дом, он неминуемо рухнет. Но, если вы знаете свойства кирпича, это еще не значит, что можете построить дом. Тут надо соображать еще мно-о-го в чем — и каким раствором скреплять эти кирпичи, как возводить стены, и чем крыть крышу. Надо уметь выбрать место для дома, уметь производить расчеты и составлять проекты. Много чего еще надо знать. Поэтому без знания физики вы, пожалуй, химию не освоите. Но знание физики совсем не гарантирует вам, что с химией у вас будет все в порядке.
Однако никакой предмет нельзя узнать полностью, потому что у него имеется бесконечно много всяких свойств, а вы можете узнать и использовать лишь часть из них. Эта часть может быть достаточной, а может быть и недостаточной, заранее это неизвестно. Так или иначе, все фундаментальные законы неполны и имеют ограниченную область применения, о чем забывают многие известные естествоиспытатели.
Ну, с чего это вдруг Ньютон назвал свой закон тяготения «Всемирным»? Он что, проверил его при всех обстоятельствах? И за пределами Солнечной системы? Ведь Ньютон получил свой закон всего лишь как математическое обобщение движения только нескольких планет Солнечной системы. Позже выяснилось, что у Меркурия есть свои особенности, а Плутон вообще не укладывается в этот «закон». А уж если распространять этот «Всемирный закон» на всю Вселенную, то получается вовсе конфуз: в каждой точке пространства должен существовать бесконечно большой гравитационный потенциал. И кто знает, как тут быть, ибо это и есть тот самый гравитационный парадокс, на который однажды в конце XIX столетия наткнулся немецкий физик Хуго Зелигер и который с тех пор носит его имя.
А ведь никаких неприятностей не возникало бы, если бы физики понимали, что в открытой закономерности принципиально не могут быть учтены все стороны исследуемого явления, потому что общее число сторон и свойств у него бесконечно велико и, следовательно, мы любой предмет знаем лишь частично. А это означает, что всегда могут быть уточнения любых «законов», в том числе и такого, как «Всемирный закон тяготения». У него может быть малю-ю-сенькая неточность, которая на больших расстояниях окажется определяющей…
Так что могут, могут быть доработки фундаментальных законов природы. Но уж если кто-то за это взялся, то ему следует помнить, что эти законы проверены многократно, а поэтому простыми абстрактными рассуждениями здесь обойтись нельзя, все равно никто не поверит, сколько бы ни кричать о консерватизме слушателей. Нужен эксперимент, однозначно подтверждающий эти рассуждения.
Но и этого, к сожалению, недостаточно. Трудность заключается в том, что удачный эксперимент, к великому сожалению, не подтверждает высказанную идею, а всего лишь не противоречит ей. Ибо на свете существует множество факторов, которые оказывают влияние на ход и результат экспериментов, все их учесть невозможно, так как число их бесконечно. Учитывать надо хотя бы существенные, то есть явно влияющие на результат опыта. Кроме того, один и тот же опытный факт может быть объяснен различными теориями. Поэтому и здесь нужен всесторонний анализ.
Однако мои наблюдения показали, то новаторы, претендующие на доработку фундаментальных законов, физику знают плохо, как правило, пренебрегают ею, обращаются с ней высокомерно, и все свои неудачи списывают не на свою фанаберию, а на консерватизм профессионалов.
Автору пришлось лично поучаствовать в нескольких подобных историях. Одна из них такова.
Уже довольно длительное время, пожалуй, лет двадцать на различных семинарах, симпозиумах и конференциях обсуждается проблема так называемого инерцоида. Если я не ошибаюсь, впервые идею инерцоида предложил томский инженер Толчин, поэтому и инерцоид был назван его именем — инерцоид Толчина. Суть этого инерцоида заключается в том, что в нем крутятся неуравновешенные массы, и это заставляет сам этот механизм — инерцоид рывками перемещаться по прямой линии.
Получается, что, создав внутри себя некие силы, этот механизм перемещается в пространстве вместе с самими этими силами, не отталкиваясь от опоры, а это полностью противоречит обыкновенной классической механике Ньютона, в соответствии с положениями которой он этого делать не может. А он движется, и плевать он хотел на все классические положения.
Самое интересное, что таких и всяких других инерцоидов на сегодняшний день понастроено много, и все они движутся, опровергая законы Ньютона. А академики-консерваторы смотрят и не верят, потому что этого не может быть никогда. Не может, и все тут. А он, собака, движется, и непонятно почему.
Есть тут, правда, одна запятая, за которую можно зацепиться. Фокус в том, что инерцоид, который движется, должен на чем-то стоять. Или висеть. Или плавать. Потому что иначе он упадет, и эксперимент может не состояться. Вот если бы его поместить в космос на спутник! Но к спутникам новаторов не подпускают, поэтому приходится обходиться лабораторией на земле, а тут нужна опора. А раз есть опора, то есть и трение. А раз есть трение, то как, уважаемые новаторы, вы его учли?
Но не таковы новаторы, чтобы сломаться на таком пустяке. Они говорят, что трение мало, а силы — слава Богу. И верно, силы — слава Богу, а трение мало. Или не мало? Кто его знает, надо бы все-таки разобраться.
Автор мало обращал внимания на эту захватывающую проблему, пока к нему не обратился ученый секретарь одной экзотической организации — Общественного института энергетических инверсий, сокращенно — ЭНИНа. Не того ЭНИНа, который Энергетический институт Академии наук, а другого. Потому что тот, который академический, и разговаривать бы не стал на эту тему. А этому, общественному, отвертеться от инерцоидов не удалось. Как тут быть, ученый секретарь не знал, а поэтому и обратился ко мне. Секретарю ученому, а не просто секретарю, хотелось все же разобраться, но он не знал, как, а автор знал и согласился.
Дело в том, что мне доподлинно известно, что всякое трение обладает нелинейностями. Возьмем, например, трение покоя. Пока вы не создадите силы, превышающей силу трения, ваш предмет вообще не поедет никуда. А теперь представьте, что вы создаете силы так, что в одном направлении они действуют длительно, но по величине не превышают силы трения, стало быть, сдвинуть эту телегу с места не смогут. А в другом направлении разовьют силу больше силы трения, но тогда эта сила будет действовать короткое время. И телега поедет! Чем не объяснение? То же и в жидкости. Там нет сухого трения, зато есть нелинейность сопротивления жидкости в зависимости от скорости. Значит, уж если испытывать инерцоид, то в таких условиях, в которых нелинейности нет, и надо искать соответствующую опору.
И такая опора у нас нашлась, так как мы работаем в девятиэтажном доме, в котором есть восьмиэтажная лестница.
Посреди лестницы есть пустое пространство размером 2х2 метра. Зачем оно предусмотрено — никто не знает. Но, наверное, архитекторы догадывались, что оно может нам понадобиться, вот и предусмотрели.
С помощью своего давнего товарища и помощника Михаила Ефимовича автор соорудил подвес длиной в 8 этажей, свесил над проемом лестницы доску, к которой были прикреплены концы четырех ниток, а внизу укрепил на них фанерную дощечку, и на дощечку поставил инерцоид, который дал нам на время испытаний ученый секретарь ЭНИНа. Дело было вечером, сотрудники в основном разбрелись, но не все. Самые трудолюбивые еще что-то доделывали, а потом только шли домой, по дороге обнаружив, что автор, широко известный своими чудачествами, возится с чем-то непонятным. Любопытные сотрудники затормаживались и принимали деятельное участие в дискуссии вокруг инерцоида — поедет или не поедет. Таких скоро набралось человек пятнадцать.
А идея была очень простой. Если инерцоид едет, то он создает постоянно действующую силу, и на длинном подвесе он должен уехать в сторону на расстояние, хотя бы превышающее его длину, то есть на двадцать сантиметров. При длине подвеса 25 метров он должен создать среднюю силу, составляющую 0,2/25 = 0,008 от веса инерцоида. И если инерцоид весит 1 кг, то достаточно силы 8 грамм, чтобы это свершилось. Вот все стояли и гадали, свершится или не свершится.
Дощечка с инерцоидом висела на высоте 5 мм над полом, карандашом были поставлены метки на дощечке и на полу, заведена механическая пружина, приводящая в движение неуравновешенные грузики, и поехали! То есть не поехали, потому что инерцоид с дощечкой дергался вокруг отмеченного положения туда-сюда с амплитудой 1–2 сантиметра.
Так было проделано много раз, пока все зрители не стали разбредаться по домам. Тогда мы свернули всю эту сложную аппаратуру — доску, нитки и дощечку, составили акт о том, что произошло, и пошли спать. А на следующий день акт отпечатали, подписали, поставили на нем печать и сдали акт вместе с инерцоидом ученому секретарю ЭНИНа, который теперь с нашей помощью получил возможность от этой проблемы отвертеться. Дополнительно мы дали совет ученому секретарю, чтобы он принимал проекты по инерцоидам на рассмотрение только с действующей моделью и с актом, удостоверяющим, что автор проекта проверил его по нашей методике. Может быть, он так и сделал, во всяком случае, к нам он больше не обращался.
И поэтому, уважаемые авторы инерцоидов, прежде чем упрекать академиков в консерватизме, что, в общем-то, справедливо, тем не менее, проведите сначала эти испытания сами. Дело ведь простое! Если нет такой замечательной лестницы, как у нас, то залезьте на крышу, спустите нитки в тихом месте, и посмотрите, что получится. Вот если получится, то вперед, на семинары и конференции! Правда, есть шанс, что вы не попадете на эти семинары никогда. Но это уж с кем не бывает! Зато вам самим станет ясно, откуда у академиков так развит консерватизм.
Когда предлагается новый движитель или еще что-нибудь новое, крайне невредно проанализировать все размерности и порядки величин. Анализ размерностей способствует пониманию физической сути явлений, так сказать, уяснению качественной стороны дела. Потому что если все размерности на месте, то тогда есть шанс, что явление понято вами правильно. Гарантии полной нет, конечно, но все же. А если размерности не сходятся, то и шансов нет. А порядки величин тоже нужно посчитать, потому что это количественная сторона дела. Если порядки не сойдутся, то хоть принципиально все и возможно, но технически реализовать все равно нельзя.
У многих из нас, физиков-любителей, есть один общий знакомый Г. Он давно предлагает новое решение задачи полета в космос. Суть этого изобретения, как я услышал это от него самого, заключается в следующем.
Если кольцо вращается с большой скоростью, то у него есть момент количества движения. А это вектор.
— Ведь это вектор? — захотел проверить меня изобретатель.
— Вектор, — успокоил я его, — конечно же вектор. И торчит этот вектор прямо из кольца вдоль его оси.
— Вот видите! — обрадовался изобретатель. — Значит, он сдвинет кольцо с места, и оно полетит в направлении этого вектора.
— Позвольте, — усомнился я. — Не всякий вектор есть сила. Мало ли какие векторы существуют на свете, что же, все они должны предметы двигать?
— Вот и вы тоже, — огорчился изобретатель. — А я так на вас надеялся!
Тогда я спросил:
— А скажите, пожалуйста, имеет ли вектор момента количества движения размерность силы, то есть выражается ли он в Ньютонах, которые, как известно, есть килограмм, умноженный на метр и деленный на секунду в квадрате? Если выражается, то это сила, и поскольку вращающееся кольцо имеет массу, то под действием этой силы оно полетит. Или в космос, или куда-нибудь еще. А если размерность вектора другая, то это не сила, а что-то другое. Тогда оно не полетит. Разве не так?
— Природа не знает размерностей, — гордо ответил изобретатель.
А векторы природа знает?
Однажды другой изобретатель рассказал мне про один новый способ обнаружения подводных лодок. По его мысли, на берегу моря должна стоять мощная радиостанция, которая время от времени будет излучать электромагнитный импульс. Этот импульс будет распространяться вдоль поверхности моря и падать на нее. Тогда возникнет звуковой удар, а вода хорошо распространяет звук. Звуковая волна достигнет подводной лодки, отразится от нее и выйдет на поверхность моря. Здесь она преобразуется в электромагнитную волну и будет распространяться во все стороны. Часть этой энергии достигнет той радиостанции, которая выпустила эту волну. И подводная лодка будет обнаружена ко всеобщему удовольствию.
Пренебрегая такой мелочью, что непонятно, на чем основана уверенность автора этого замечательного изобретения, что звуковая волна, выйдя на поверхность моря, преобразуется в электромагнитную волну, замечу, что с порядками величин полного согласия тоже нет, потому что, как показал расчет того же изобретателя, современная техника не дотягивает до нужных величин всего лишь на 14 порядков.
— Это плохо, — сказал изобретатель, — что у нас такая слабая техника.
Я с ним согласился, хотя подумал, что плохо не только это.
Плохо то, что новаторы от физики не дают себе труда понять сущности явлений и бегут предлагать свои идеи, никак их не апробировав и даже не обсудив в кругу своих приятелей. Они не воспринимают критику и относятся к тем, кто сомневается в справедливости их умозаключений, как к врагам прогресса науки. И тут они ошибаются. Потому что настоящими врагами прогресса науки являются они сами. Своим легковесным отношением к проблемам они дискредитируют не только себя, но и саму идею, за которую борются, а также вообще любые попытки изменить положение в физике, которое, конечно же, изменить нужно.
Однако здесь нужны не легковесные кавалерийские наскоки, а серьезная и кропотливая работа. Нужна продуманная методология, нужен анализ работ предшественников, нужно прежде всего глубокое изучение предмета. Потому что иначе вы, уважаемые новаторы, оказываете прогрессу науки медвежью услугу. Ибо консерваторы-академики, выплескивая вас из корыта науки, что вы честно заслужили, могут выплеснуть вместе с вами и ребенка, т. е. те действительно новые и полезные идеи, в которых наука реально нуждается, чтобы у нее был прогресс.
11. Звонари
В каждом деле существуют люди, которые полагают, что это дело существует для удовлетворения их быстро растущих потребностей. Ну, например, для чего существует торговля? Ясное дело, для удовлетворения очень быстро растущих потребностей работников торговли. То же самое происходит и в науке. Многие так называемые ученые совершенно искренне полагают, что уже самим своим присутствием в науке они ее осчастливили, и теперь наука должна отработать свой долг — создать им максимум престижа, удобств и материальных благ. Постижение же научных истин они отодвигают на второй и даже на третий план, а то и вовсе сдают в архив.
Много ли мы знаем аспирантов очных аспирантур при вузах, которые после успешной защиты кандидатской диссертации продолжили бы свою тему? Я лично не знаю ни одного. После того как они получили заветные «корочки», они пнули эту свою любимую тему ногой, и больше к ней никогда не возвращались. Научная деятельность большинства из них сводится к борьбе за очередное научное или преподавательское звание. И уже на смертном одре они тщетно пытаются припомнить, что же полезное для человечества они сделали в науке? Но кроме веселых застолий по поводу присвоения очередного звания ничего вспомнить не могут. Впрочем, большинство из них этим вполне удовлетворяется.
Тем не менее, даже в науке можно существовать и продвигаться вверх по лестнице только в том случае, если вас в этом вопросе поддержат коллеги. А для этого хочешь — не хочешь, а надо изображать свою полезность для науки. В прикладных отраслевых институтах это делать сложнее. Существует отчетность, есть конкретные разработки и, в общем, определенная ответственность. Конечно, и здесь есть свои возможности, но все-таки темами кандидатских диссертаций являются результаты конкретных проработок, а не абстракции. Но в фундаментальной науке можно доабстрагироваться до полной абсурдности. И ничего, все сходит!
Как-то случайно меня занесло на один из математических семинаров в МГУ, где молодой и полный талантов 29-летний доктор физико-математических наук Вова руководил темой, называвшейся «Сколько отрезков бесконечно малой длины может уместиться на отрезке конечной длины». Вам эта тема ничего такого не напоминает? Из времен недавнего средневековья? Мне лично напомнила насчет того, сколько чертей способно уместиться на кончике иглы, такая вот тогда ставилась актуальная проблема, и мне было интересно, как слушатели отнесутся к такому захватывающему предмету. Поднимут на смех? Освищут? Ничуть не бывало. Все с умным видом слушали Вову и глубокомысленно рассуждали о граничных и начальных условиях этой задачи. Любопытно, какую пользу народному хозяйству или чему-нибудь еще могла принести данная дискуссия?
Время от времени проходит слух о том, что в каком-нибудь университете появился особо одаренный мальчик. И вот он уже в 21–22 года защитил докторскую диссертацию и стал доктором физико-математических наук. А у нас в стране это звание ценится особо высоко. В этом плане доктор Вова был как раз из таких ребят. Он самостоятельно поставил и решил означенную выше задачу. Ничего плохого ни про него, ни про других столь же талантливых ребят я сказать не хочу. Но у меня всегда возникал вопрос, почему нигде не попадаются столь же юные доктора технических наук, в чем дело? Физико-математики есть, а техников нет.
Чем бы это объяснить? Не тем ли, что доктору технических наук приходится не только проявлять свою эрудицию, но еще и сделать что-то, да потом еще это и внедрить, и уходит у него на это, по крайней мере, половина жизни. А по дороге оказывается, что от первоначальной задумки остались пух и перья, все пришлось изменить не один раз, пока оно, это его детище, обрело право на внедрение в промышленные разработки.
А как с этим обстоит дело у докторов физ.-мат. наук? Никак? Каким образом и куда внедрены эти бесконечно малые отрезки? В какой отрезок конечной длины? Где он, этот отрезок, кому сослужил службу? Не кажется ли это несколько безответственным, даже если он, этот доктор, удовлетворил необходимым физико-математическим критериям докторства?
Но все это так, к слову.
Однажды меня пригласили в некую гравиметрическую лабораторию, размещенную в здании давно не действующей церкви. Лаборатория была неплохо оборудована, в ней стояли физические приборы, покоящиеся на массивных церковных фундаментах. Было понятно, что церковь сыграла выдающуюся роль в развитии отечественной гравиметрии, и, наверное, не только в ней. А по соседству с церковью стоял металлический сарай, и в нем на кварцевых растяжках висел массивный полуторатонный цилиндр, выполненный из чистейшего алюминия, в который были встроены датчики для улавливания его колебаний. Эти колебания, по мысли автора сооружения Владимира Борисовича Б., должны были возникнуть при прибытии из космоса гравитационных волн. Колебания же самого детектора, так назывался цилиндр, возникшие под воздействием этих волн, должны были улавливаться емкостными датчиками перемещения.
Поскольку гравитационные волны приходили из космоса, а космос большой, то предполагалось, что эти волны упадут сразу на все подобные детекторы, отнесенные друг от друга на сотни километров. И как только все они одновременно отметят это событие, так научная истина будет установлена: гравитационные волны на свете существуют, и ОТО — общая теория относительности, предсказавшая эти волны, права. А если таких совпадений не будет, то и волн нет. А есть что-нибудь другое, науке пока неизвестное.
Приглашение было связано с тем, что хозяин лаборатории Евгений Иванович, доктор наук и человек мною уважаемый очень глубоко и безо всяких кавычек, потому что он занимается совсем другой, крайне важной глобальной проблемой, решил познакомить меня, помогающего ему в создании некоторых его приборов, с уважаемым Владимиром Борисовичем. Это, как ему казалось, было полезно потому, что и я, и Владимир Борисович занимались емкостными датчиками. Но мои успехи в этом деле были скромными, я умел фиксировать лишь перемещения в сотые доли микрона, а Владимир Борисович, как сообщал он об этом в своих публикациях, в сто миллионов раз меньшую, то есть в десять раз меньше, чем размер электрона. Я этого не умел, и мне хотелось знать, как это можно сделать.
К приезду Владимира Борисовича сотрудники Евгения Ивановича приготовили чай с сухариками, и мы все прислушивались, когда приедет машина. Формальным поводом для визита была договоренность о том, что Владимир Борисович посмотрит результаты записей детектора, которые в виде осциллограмм были разложены на столе.
И вот Владимир Борисович прибыл. Он бурно прошел к столу с осциллограммами, глянул на них мельком и воскликнул: «Звона! Не вижу!», после чего тут же уехал. Для непосвященных докладываю, что звоном на осциллограмме называется появившееся после воздействия импульса затухающее колебание.
Господи, как у меня чесался язык сказать, что звон я слышу! И только усилием воли мне удалось подавить это желание.
А позже на заседании ученого совета одного из уважаемых институтов состоялся доклад о результатах работ по обнаружению гравитационных волн. Докладчик сказал:
— Если бы на трех детекторах, установленных там-то и там-то, было зафиксировано менее трех совпадений в месяц, то гравитационных волн в природе не существует. А если бы этих совпадений было зафиксировано более 25 в месяц, то следовало бы считать, что они есть.
Я быстренько сложил три и двадцать пять, поделил пополам, плюс-минус единица…
— Но мы получили, — сказал докладчик, — от 13 до 15 совпадений в месяц. Поэтому работы надо продолжать.
Все встало на свои места. Конечно, главное вовсе не то, есть гравитационные волны или их нет, какая, в конце концов, разница! Главное, чтобы были отпущены средства на продолжение работ и тем самым на зарплаты и премии. И надо сказать, что всех членов ученого совета такое решение проблемы вполне удовлетворило. Они проголосовали за продолжение работ, и цель доклада была достигнута.
Я думаю, что и Владимир Борисович был доволен. Помню, что я с удовольствием прочитал о выдающемся событии в мировой физике: к нам приезжает американский ученый, известный специалист в области ловли гравитационных волн господин В. Он приехал. Экскурсии, симпозиумы, заседания, приемы… А потом состоялось второе, не менее значимое событие: Владимир Борисович поехал в Америку с сообщением о своих достижениях в той же ловле. Приемы, заседания, симпозиумы, экскурсии…
Ну, а есть гравитационные волны на свете или их нет — наука в этом вопросе не разобралась и не скоро разберется, поскольку пока что ни наш ученый Б., ни американский ученый В. их пока не поймали и когда поймают неизвестно. Потому что если базироваться не на рассуждениях Эйнштейна, а на работах Лапласа, которые были выполнены тогда, когда про Эйнштейна еще никто не слыхал — в конце XVIII века, то гравитация распространяется со скоростью не менее, чем в 50 миллионов раз быстрее света (по моим данным — на 13 порядков). А поскольку вся небесная механика, точнейшая из наук, базируется на статических формулах гравитации, предполагающих вообще бесконечную скорость распространения гравитации, то похоже, что Лапласу можно верить больше, чем Эйнштейну. А это значит, что никакие подвешенные цилиндры звенеть не могут, даже если бы они были сделаны из чистого золота, настолько мал будет сигнал. Разве что Владимир Борисович применит те датчики, о которых он сообщал в своих трудах. Да и при этих условиях чувствительности не хватит, и, стало быть, вся эта работа затеяна зря. Хотя нет, ошибаюсь. Ведь состоялись же визиты двух выдающихся ученых от гравитации друг к другу. А это чего-нибудь да стоит!
12. Развесистая клюква современной теоретической физики
В марте 1985 года глава теоретической физики страны академик А.Б. Мигдал, выступая по телевидению в передаче «Очевидное — невероятное», нарисовал стройное и величественное здание современной теоретической физики. В его основе лежал фундамент, состоящий из двух блоков, — специальной теории относительности и квантовой механики. А далее из этих блоков-корней вырастало развесистое дерево: — Общая теория относительности и теория гравитации, квантовая теория поля как развитие квантовой механики и специальной теории относительности, квантовая статистика как прямое следствие и развитие той же квантовой механики, квантовая хромодинамика — теория сильных взаимодействий как следствие и развитие квантовой механики и СТО, принципы симметрии как привлечение геометрических форм с использованием свойств пространства-времени, выведенных из СТО, теория суперсимметрии как дальнейшее развитие принципов симметрии, теория суперструн как результат объединения теории поля и общей теории относительности.
— Вот видите, — сказал академик, — какое стройное и разветвленное здание представляет собой современная теоретическая физика. Из него нельзя вынуть ни одного кирпичика. Все это увязано между собой и представляет одно целое. Физическая теория была создана несколькими поколениями физиков, и сегодня это построение практически завершено.
Академик не сказал, что фундамент этого стройного здания базируется на постулатах — положениях, принимаемых без доказательств, не имеющих обоснования и даже противоречащих друг другу. Как уже было показано выше, СТО — специальная теория относительности — базируется на пяти постулатах, в основе которых лежит ложное истолкование результатов ранних опытов Майкельсона, а ОТО — общая теория относительности — уже на десяти постулатах, из которых последний находится в вопиющем противоречии с первым, поскольку первый постулат утверждает отсутствие в природе эфира, а десятый — его наличие. Квантовая механика базируется, по меньшей мере, на девяти постулатах, подтверждаемых в своих следствиях лишь частично. А все последующие блоки здания теоретической физики, кроме упомянутых, в своей основе имеют свои ни откуда не вытекающие постулаты, общее число которых перевалило за три десятка. Три десятка я называю потому, что могу их перечислить, а на самом деле, если произвести ревизию потщательнее, их значительно больше.
И это и есть «стройное и разветвленное» здание современной физической теории?! Уважаемые теоретики, что же вы такое построили за все двадцатое столетие?! А что будет со всем вашим храмом, если выяснится ложность исходных постулатов, например, если будет доказано наличие в природе эфирного ветра и самого эфира? Не рухнет ли все это ваше грандиозное сооружение, над которым столь эффективно и не безвозмездно трудились последние поколения физиков?
Нам говорят, что, возможно, оно и так, но ведь современная теория, несмотря на недостатки, обеспечила продвижение науки и помогла решить многие прикладные задачи. Возможно, возможно… Но так ли уж современные достижения обязаны именно этому теоретическому монстру? Давайте, посмотрим.
Как уже было показано выше, все формульные следствия СТО базируются на преобразованиях Лоренца, которые Эйнштейн вывел на основе представлений об отсутствии в природе эфира, а сам Лоренц, давший свое имя этим преобразованиям, вывел их же за год до создания СТО, т. е. в 1904 году, на основе представлений о существовании в природе абсолютно неподвижного эфира. И, значит, все так называемые подтверждения специальной теории относительности можно с равным успехом отнести к лоренцовской теории эфира.
Знаменитое соотношение E = mc 2 было получено еще Дж. Дж. Томсоном в 1903 году и тоже на основе представлений об эфире. А что такого особенного оно означает? Половина этой энергии — это всего-навсего энергия поступательного движения фотона, а вторая половина — внутренняя энергия вращения его вихрей. И относится эта формула только к фотону. Распространение ее на все виды материи — очередной постулат, не вытекающий вообще ни откуда и ничем не подтвержденный. Энергия, реализуемая в атомных реакциях — это энергия связей нуклонов, а вовсе не самих нуклонов.
Единственное, что действительно нового дала специальная теория относительности, это то, что, как выразился Эйнштейн, «аксиоматическая основа физики должна быть свободно изобретена»… Это и есть главное достижение физической «теории»?!
Квантовая механика дала неплохие методы вычисления внутриатомных явлений. А что дала ее философия? Заменили массовую плотность на «плотность вероятности появления электрона в данной точке» и тем самым исключили возможность выявления внутреннего механизма явления, фактически узаконив непознаваемость микромира. И куда нам теперь податься с этой непознаваемостью?
Но может быть, я пристрастен, а на самом деле в физической теории все прекрасно. Ой ли?
Уже внутри самой физической теории появились и продолжают накапливаться противоречия, деликатно именуемые «расходимостями», которые имеют фундаментальный характер.
Представляется, что самым главным противоречием теоретической физики сегодня является противоречие между необходимостью объяснения на единой основе многочисленных, в том числе и вновь открытых явлений природы, и невозможностью сделать это в рамках предпосылок, заложенных в основу фундамента существующей теоретической физики.
Практически оказалось невозможным на основе существующих в физике представлений объединить основные фундаментальные взаимодействия. Представляется весьма неопределенной структура не только «элементарных частиц» вещества, числа которых уже давно никто не может определить, но и атомного ядра. Непонятна природа генерации вещества ядрами галактик, когда из, казалось бы, совершенно пустого пространства непрерывно испускается протонно-водородный газ, из которого затем формируются звезды. Даже в такой освоенной области, как электродинамика, имеются целые классы задач, которые не могут быть решены с помощью существующей теории.
Существует множество так называемых «парадоксов», суть которых заключается в несоответствии реально наблюдаемых фактов положениям теории. Думали, что это так, а оказалось — этак. Парадокс!
А что такое все эти многочисленные «перенормировки»? А это вот что такое. Из теории следует, что значение такого-то параметра должно быть таким-то. Но эксперимент показывает, что на самом деле оно и рядом не лежит с этим значением, на самом деле оно такое-то. Ну что ж! Давайте «перенормируем» этот параметр, то есть подставим вместо теоретического значения то, которое дал эксперимент. И смотрите, как все хорошо получилось! А у студентов этот «научный» метод называется подгонкой под известное решение и сурово карается преподавателями, если это обнаруживается.
Может быть, благодаря столь хорошо обоснованной теории мы имеем большие достижения в прикладных областях?
Нет, уважаемые, не имеем!
В прикладной физике различные торжественные обещания все никак не сбываются. Уже много лет прошло с тех пор, как была получена «устойчивая» плазма, просуществовавшая «целых» 0,01 секунды. За эти годы построены многочисленные установки для проведения термоядерных реакций, призванные навечно обеспечить человечество энергией. Однако установки есть, созданы институты и заводы для этих целей, проводятся конференции и заседания, чествования и награждения. Нет лишь самого термояда, для которого все это затеяно, и никто не знает, будет ли он когда-нибудь.
То же самое и с МГД — магнитной гидродинамикой. То же самое и со сверхпроводимостью, то же самое и со всеми остальными прикладными делами. И лишь в области атомной энергетики дела как-то сдвинулись, поскольку атомные станции реально существуют и продолжают строиться. Правда, иногда они создают Чернобыли, что также не свидетельствует об их высокой полезности.
Современные экспериментальные исследования в области физики становятся все более дорогими, и далеко не каждое государство способно выдержать столь тяжкое бремя расходов на науку. И если наше государство, так же как и некоторые другие страны, идет на это, то лишь в надежде, что эти затраты окупятся сторицей. Реально же результаты исследований приносят все более скромные плоды. Таким образом, налицо еще одно противоречие — экономическое.
Наличие «парадоксов», отсутствие качественно новых идей означает, что существовавшие до сих пор в естествознании идеи уже исчерпаны и естествознание вообще и физическая теория в частности находятся в глубоком кризисе.
Давно и много говорится об НТР — научно-технической революции, о достижениях науки. Однако следует констатировать, что качественно новых открытий становится все меньше, что развитие носит в основном количественный характер, и даже при изучении «элементарных частиц» вещества используются не качественно новые приемы, а просто наращивается мощность ускорителей частиц в слепой вере, что новый энергетический уровень, может быть, даст что-нибудь новое, хотя пока что ничего качественно нового он не дал.
Фундаментальные исследования, базирующиеся на общепризнанных идеях, стали невообразимо дороги, а результаты все более скромны. Однако главным признаком кризиса естествознания является то, что теория и методология современной фундаментальной науки оказываются все менее способными помочь прикладным наукам в решении задач, которые выдвигает практика. А это означает, что методы современной фундаментальной науки стали тормозом в развитии производительных сил общества, в использовании человеком сил природы, а, следовательно, в развитии общества в целом.
Подобные трудности, имеющиеся в большинстве областей естествознания, отнюдь не являются, как это принято считать, объективными трудностями развития познавательной деятельности человека. Непонимание сути явлений, предпочтение феноменологии, то есть внешнего описания явлений исследованиям внутреннего механизма, внутренней сути явлений неизбежно порождает все эти трудности и неувязки, подобно белым ниткам скрепляющим лоскутное одеяло современной физической картины мира, безнадежно далекой от того, чтобы иметь право называться единой и реалистичной.
Каковы же главные пороки современной методологии физики, загнавшие ее и все естествознание в тупик?
Прежде всего, речь должна пойти о целях физической теории.
В отличие от физики XVIII и XIX веков, пытающейся понять внутреннюю сущность явлений и сводящей сложные явления к поведению и взаимодействию элементов, участвующих в этих явлениях, физика XX столетия фактически сняла эти цели. Ее целью было объявлено создание внутренне непротиворечивого описания явлений с помощью все усложняющегося математического аппарата. В качестве же самой важной, стратегической цели физики в целом представлена задача создания Теории Великого Объединения — ТВО, т. е. такой теории, которая позволит единым математическим приемом охватить все частные теории, что по мнению физиков-теоретиков и докажет единство всех явлений природы.
Нужно сказать, что в направлении поставленных целей современная физика добилась определенных успехов. Однако все чаще оказывается, что созданные частные теории не позволяют охватить все необходимые случаи, все чаще применяются искусственные приемы, в результате чего первоначально стройное здание начинает усложняться, надстраиваться и превращаться в теоретического урода. Но даже там, где получен успех, например, при объединении слабого и электромагнитного взаимодействий, становится совершенно непонятным, чего же добились физики и чего они добьются, если ТВО будет создана. Что-нибудь изменится в понимании сути явлений? Какие-нибудь новые приборы можно будет создать? Или просто теоретики будут наслаждаться «красотой» новой теории?
А на самом деле непонимание внутренней сути явлений, наличие лишь их частичного описания, всегда и принципиально неполного, не дает основания для надежды, что такое «объединение» вообще можно сделать на проторенных путях. Да и зачем и кому оно нужно?
Автор не собирается здесь исследовать все пороки методологии современной теоретической физики. В определенной степени это сделано им в книге «Материализм и релятивизм. Критика методологии современной теоретической физики» (М., Энергоатомиздат, 1992; М., изд-во «Инженер», 1993). Здесь ограничимся лишь перечислением ее недостатков.
Современная физика феноменологична, т. е. она предпочитает внешнее описание явлений в ущерб изысканиям их внутренней сущности.
Современная физика оказалась подчиненной математике вместо того, чтобы математика, как необходимое и полезное дополнение, как инструмент, использовалась физикой и ей подчинялась. Сама физика стала частью математики, из нее совершенно исчезла материя, т. е. исчезли представления о природе явлений, об их внутреннем механизме. Остались только формальные отношения, представленные функциональными зависимостями или дифференциальными уравнениями. Об опасности такого положения еще в 1909 году писал В.И. Ленин в известной работе «Материализм и эмпириокритицизм». Сегодня эта опасность лишь усилилось. Физики перестали интересоваться реальными явлениями, материей, они полагают, что природу можно высосать из математического пальца. Но они ошибаются.
Физика стала постулативной. Общепринятой является методология, допускающая выдвижение постулатов, под которые затем сортируются природные явления. То, что укладывается в выдвинутые постулаты, принимается, то, что не укладывается, — отвергается либо замалчивается. Так было, например, с эфирным ветром, и это перевернуло все естествознание с ног на голову. Но так же было и со многим другим. И это одно из проявлений идеализма в современной физике.
Современная физика вместо изучения движений материи во внутренних механизмах явлений сводит физические явления к искажениям пространства и времени, ко всяким «искривлениям» пространства и «дискретностям» времени, совершенно игнорируя тот факт, что все эти нелинейности и пространства, и времени есть функции, которые могут существовать лишь тогда, когда существуют их линейные аргументы, а сами по себе нелинейности относительно самих себя просто не могут существовать.
Физическая теория совершенно игнорирует задачу познания структур микрообъектов. Они состоят… из ничего, у них даже нет размеров! Все их свойства — заряды, магнитные моменты, спины и т. п. взялись ниоткуда. Вся их структура вероятностная. И это так устроено в природе потому, что так удобнее физической теории. Вот уж, поистине, нет предела зазнайству!
Перечень пороков современной теоретической физики можно продолжить, но, наверное, в этом нет необходимости.
Современная теоретическая физика находится в глубоком кризисе. Она, вероятно, долго бы в нем пребывала, если бы в нее не начали стучаться прикладники. Именно нас, прикладников, не устраивает далее положение в теоретической физике, состояние которой вовсе не является личным делом абстрактов-теоретиков. Нам для решения наших задач, которые выдвигает жизнь, нужна физическая теория, которая объясняет природу явлений, иначе как же мы будем строить машины и приборы, добывать энергию и решать экологическую проблему?!
И поэтому мы предупреждаем вас, господа, или вы займетесь делом, или мы обойдемся без вас!
13. Пути-дороги
По какому же пути должна развиваться физическая теория, чтобы выйти из тупика? Для этого надо вспомнить, как вообще естествознание развивалось раньше. А развивалось оно по уровням организации материи.
Когда-то в древности природа считалась единой. Не в очень глубокой древности, а этак 2–3 тысячи лет тому назад. Что было до этого, никто толком не знает, там, полагают историки, было сплошное рабовладельчество аж до самого каменного века. Поэтому эти исторические дали мы не рассматриваем. Но и в те времена не все верили в богов, а некоторые даже рассматривали природу как объективно существующую реальность, и поэтому мы их считаем наивными материалистами. Хотя совершенно не очевидно, кто был наивнее, те или, наоборот, эти, которые про тех пишут.
Затем древнегреческие философы ввели понятие субстанций. Их оказалось четыре: «земля», то есть твердь; «вода», то есть жидкость; «воздух», то есть газ; «огонь», то есть энергия. Таким образом, это были три основных состояния вещества и энергия, благодаря которой одни состояния переходили в другие. Это было уже кое-что, появилась возможность анализа состояний. И на этом поприще родилась философия.
В средние века такого деления оказалось недостаточно. В Европе, замученной эпидемиями, врач Парацельс (Филипп фон Гогенгейм) выдвинул концепцию, в соответствии с которой болезни являются следствием нарушения химического состава организма, несоответствия веществ нужным соотношениям. На этой основе стала развиваться фармакология. Таким образом, в рассмотрение были введены вещества.
Следующее углубление в материю произошло где-то в XVII столетия: было введено понятие молекулы — маленькой массы, обладающей всеми свойствами того вещества, частью которого она была. Это позволило создать механику материальных точек. Именно на этом фоне возникли Декарт и Ньютон. Но вскоре алхимики, которые еще и до этого занимались химией и металлургией, стали нуждаться в количественном анализе. В результате родилось представление об «элементах», из которых состоят все вещества, это было предложено Лавуазье в конце XVIII столетия, а в 1824 году Дальтон такой «элемент» назвал атомом. И стали развиваться химия, а чуть позже — электричество. Венцом химии уже в конце XIX столетия было открытие Менделеевым знаменитой системы, основанной, между прочим, на атомных массах, т. е. глубинных свойствах материи. Развитие химии привело к развитию электротехники, вскоре ставшей самостоятельной областью науки.
Но тут в физике стали появляться совершенно новые открытия. И вся наука остановилась, потому что непонятно было, куда двигаться дальше. Однако выход нашелся на тех же путях: ввели представление о новых «кирпичиках мироздания» — «элементарных частицах» вещества. И это дало нам атомную энергию и много всего интересного, связанного с нею, например, атомную бомбу и Чернобыль. Но, так или иначе, наука сдвинулась с мертвой точки, в которую она попала на время, и этот период до сих пор называют физической революцией в естествознании. На этом основании физики-теоретики до сих пор считают себя революционерами, хотя на самом деле они давно уже реакционеры и не должны претендовать ни на какие лавры. Старые заслуги — не ваши заслуги, это заслуги ваших предков. А вы, друзья, как говаривал дедушка Крылов, годны лишь… и так далее.
Так что же надо нам сейчас предпринять для того, чтобы выбраться из очередного тупика, в который забрело естествознание? Неужели не ясно? Надо поступить так, как это делали наши предки: ввести новый «кирпичик», то есть нечто материальное, значительно меньшее по своим размерам, чем самая маленькая известная «элементарная» частица, которая тоже на самом деле не может быть элементарной, потому что она тоже должна иметь структуру. Почему не попробовать?
Автор попробовал и разработал эфиродинамику, в которой главным действующим лицом является эфир — среда, заполняющая все мировое пространство, из которой состоит все на свете, в том числе и мы с вами. Движения этой среды воспринимаются нами и всей природой, как физические поля взаимодействий.
Не вдаваясь в подробности, которые все желающие могут почерпнуть из монографии автора «Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире» (М., Энергоатомиздат, 1990; 2-е изд. 2003), целесообразно вкратце изложить самую суть.
Выяснилось, что материя, пространство и время являются исходными, самыми первичными категориями, и поэтому они не могут быть функциями чего бы то ни было. А стало быть, реальное физическое пространство евклидово, время равномерно и однонаправлено, и на всех уровнях материи действуют одни и те же физические законы, потому что никаких предпочтительных масштабов ни у материи, ни у пространства, ни у времени не существует. В микромире действуют те же физические законы, что и в макромире. Это дает богатейшие возможности для привлечения аналогий макромира при изучении явлений микромира.
Мировая среда — эфир оказался обычным реальным вязким сжимаемым газом. Его параметры удалось определить с неплохой для сегодняшнего дня точностью. Плотность его оказалась на 11 порядков меньше, чем у воздуха, зато давление намного больше, и энергосодержание тоже.
Удалось разработать все основные модели структур вещества, в том числе устойчивых «элементарных частиц», атомных ядер, атомов и т. п. Удалось представить модели всех основных видов взаимодействий, над чем безуспешно ломают головы теоретические гении, дать модели основных физических явлений, кое-что предсказать, а кое-что даже проверить экспериментально. И создать единую эфиродинамическую картину мира безо всяких постулатов и натяжек. Но, конечно, это только самое начало, потому что автор всего лишь приподнял покрывало над бездной возможностей и неясностей. Здесь работы, как выяснилось, непочатый край.
Что может дать эфиродинамика? После одной лекции к автору подошел слушатель и сказал, что если атомная бомба способна разнести Землю, то с помощью вашей эфиродинамики можно, пожалуй, разнести всю Солнечную систему. И автор скромно согласился, что да, это так. Но пока что мы не знаем, как это сделать и, вероятно, узнаем не скоро. Потому что от принципиальной возможности до технической реализации дистанция огромного размера. Правда, если знать, что этого сделать нельзя, то тогда никто и не возьмется. А тут уже можно попробовать.
— Так не наложить ли мораторий на такие исследования? — спросили меня.
— Нет, не наложить, — подумав, ответил я. — Мораторий ничего не даст. Прежде всего, это бесполезно: раз до этого додумался рядовой инженер, значит, додумаются и другие. Потому что это означает, что проблема созрела и никакими запретами процесс не остановить.
— В чем же выход, — спросили меня. — Ведь должен же быть выход?
— Да, выход есть, — сказал я. — Из всякого нового открытия можно сделать оружие, а можно улучшить жизнь людей. Мы сейчас страдаем от нехватки энергии. Реки запружены плотинами и лишены рыбы. Нефть, это драгоценнейшее химическое сырье, сжигается в топках и загрязняет воздух. Океаны загажены, леса вырубаются, ресурсы истощаются. А мы живем в принципиально не ограниченном океане энергии и могли бы добывать из него экологически чистую энергию в любой точке пространства, включая космос, в любом количестве, в любое время. Мы можем сказочно улучшить жизнь людей и всех накормить, решив тем самым все экономические проблемы на Земле, включая и демографическую. Накормленное и культурное человечество застабилизирует свою численность, и она, пожалуй, даже пойдет на убыль, как и во всех сытых странах. Но все это при условии, что мы будем жить мирно и смотреть друг на друга не глазами врагов или хищников, а глазами друзей. Потому что, если мы будем враждовать, пытаться подчинить друг друга, закабалить, ограбить, то с помощью эфиродинамики сможем погубить не только себя, но и всю планету, взорвать ее, как это сделали обитатели планеты Фаэтон, от которой остался только жалкий пояс астероидов, суммарная масса которых составляет всего лишь около одной тысячной доли от массы Земли, все остальное разметало по космосу. Хотя уже и сейчас, как пишут в газетах, мы вполне способны много раз уничтожить самих себя.
Но у нас есть и другой пример. К нам прилетают НЛО — посланники далеких цивилизаций. В статье в «Технике-молодежи» № 10 за 1991 год я показал, что не существует принципиальных препятствий для межзвездных перелетов. Мы можем перемещаться в пространстве с громадными скоростями и огромными ускорениями без разрушения организмов, и энергия для всего этого есть в любой точке пространства. Каждый из пилотов НЛО, каждый обладатель этой энергии может безусловно уничтожить всех на своей планете и даже на соседних. Но они к нам прилетают, значит, они живут и никого не уничтожают, а мирно и дружно пользуются тем, что дает природа. Конечно, они давно решили все свои материальные и социальные проблемы, иначе не может быть. И тем самым они подают нам пример, наши старшие гуманные братья по разуму. Будем же достойны этого!