Посещение воображаемого музея позволит читателю ознакомиться с различными устройствами, изобретенными для воспроизведения цветного изображения из сигналов, приносящих «электрический перевод» этого изображения. Во время посещения музея рассматриваются следующие вопросы:

Проектор с тремя электронно-лучевыми трубками. Проблема сходимости. Гамма. «Эйдофор». Кинескоп с теневой маской. Проблема чистоты. Размагничивание. Кинескоп будущего.

Молодой экскурсовод остановился на пороге зала и повернулся к группе студентов, пришедших со своим профессором. Он окинул юношей взглядом, чтобы убедиться, что ни один из них не отстал от группы, увлекшись лампой бегущей волны, запоминающей электронно-лучевой трубкой или не остался в «Зале Ли де Фореста».

Он только что окончил Высшую школу телевизионной техники и готовил свою диссертацию в лабораториях Международного музея электронно-лучевой трубки, а теперь он водит по Музею молодых посетителей и дает им пояснения. Он любит историю техники и поэтому довольно долго остановился на пришедшей Эдиссону идее поместить в электрическую лампу дополнительную нить накала с целью повысить световую отдачу, что по сути дела породило диод и положило начало великой истории электроники.

Молодой экскурсовод с большим энтузиазмом относится к своей новой работе; объясняет он очень просто, и студенты не переговариваются; они внимательно слушают и даже задают вопросы.

Когда вся группа собралась около него, он начал свой рассказ:

— Теперь мы войдем в совершенно новый зал — его всего лишь неделю тому назад открыли для посетителей. Это Отдел специальных электронно-лучевых трубок и методов воспроизведения цветных телевизионных изображений.

Он открыл дверь, и группа вошла в новый зал. Экскурсовод запер дверь, прошел через расступившуюся перед ним группу и указал на стоящее в зале устройство внушительных размеров. Как только он заговорил, студенты немедленно смолкли.

— Все вы знакомы с принципами цветного телевидения; вы также знаете, что в приемнике на выходе декодирующего устройства мы получаем три видеосигнала, которые соответственно представляют красный, зеленый и синий цвета, содержащиеся в цветном изображении.

Он выдержал паузу. Стоящие напротив него студенты утвердительно кивнули головами; в это время профессор, высоко подняв бровь, внимательно разглядывал студентов, выясняя, нет ли среди них лентяя, который не сумел воспользоваться его поучительными уроками и до сих пор остался в неведении относительно этих элементарных понятий цветного телевидения. Экскурсовод продолжил свои объяснения:

— Первой приходит в голову идея использовать три таких же кинескопа, как в черно-белом телевизоре, подавая на них соответственно сигналы R, G и В. Если перед кинескопом, на который подается сигнал R, поставить красный фильтр, перед кинескопом, получающим сигнал G — зеленый фильтр, а перед третьим кинескопом — синий фильтр, то получим три изображения в основных цветах; для получения полного цветного изображения достаточно совместить оптическим способом эти три первичные изображения (рис. 28).

Рис. 28. Проектор с тремя электронно-лучевыми трубками. Изображения с трубок K 1 , К 2 и К 3 окрашиваются фильтрами R ,  G и  B и проецируются тремя объективами на общий экран.

Снова тридцать голов склонились в знак понимания. Молодой человек чувствовал себя в своей стихии; он полюбил эту небольшую группу слушателей и был счастлив иметь возможность объяснить этим девственным умам то, что сам он постиг несколько лет тому назад.

— Один из способов совмещения первичных изображений заключается в использовании трех проекционных кинескопов и в проецировании с помощью объективов трех полученных изображений на общий экран.

Он нажал кнопку на пульте, у которого стоял; зал постепенно погрузился в темноту, и его белый халат причудливо выделялся на сером фоне аппаратуры. Все головы повернулись к экрану, который медленно разворачивался в нескольких метрах от установки. Цветное изображение очаровательной молодой женщины в соломенной шляпке появилось на экране. Экскурсовод неожиданно нажал две кнопки сразу, и женщина вдруг стала вся зеленой. Дружный взрыв смеха приветствовал такую метаморфозу; профессор, улыбаясь, шепнул студентам «тихо». Демонстратор подождал, пока шум уляжется, и продолжал:

— То, что вас так позабавило, представляет собой зеленую составляющую цветного изображения. Я выключил видеосигналы красного и синего. Теперь посмотрите одну синюю составляющую, а затем одну красную… и, наконец, полное цветное изображение.

Эксперимент был весьма убедительным. Однако один студент попросил слова: «Почему вдоль соломенной шляпки идет кайма зеленого цвета?».

И так как все засмеялись, а профессор нахмурил брови, он сразу же раскаялся, что задал нелепый вопрос. Демонстратор взглянул на изображение и повернулся к аудитории.

— Вы указали на постоянную проблему воспроизведения цветных изображений. Это то, что называют недостатком наложения, или, как чаще говорят, сходимости. Вы легко это поймете; мои три кинескопа со своими объективами нацелены на экран так, чтобы их оптические оси сходились вместе в центре этого экрана. Но если кинескоп, экран которого параллелен экрану, дает изображение строго прямоугольной формы, то у двух других вследствие параллакса изображение получается несколько искаженным — оно имеет трапецеидальную форму (рис. 29). Поэтому мы вынуждены «предварительно искажать» изображения двух крайних кинескопов посредством электрического воздействия на их системы развертки и так отрегулировать эту коррекцию, чтобы во всех точках экрана геометрия проецируемых изображений была строго идентичной.

Рис. 29. Неправильная сходимость из-за трапецеидальной деформации изображений.

Он занялся целой батареей маленьких ручек, и присутствующие увидели, как зеленая кайма стала уже и исчезла совсем, а затем появилась с противоположной стороны!

— Как вы видите, я перекрутил регулятор.

Он вновь занялся регулировкой, и изображение, наконец, стало безукоризненно четким.

— Обратите внимание на то, что контраст и яркость должны быть одинаковыми на всех трех кинескопах, чтобы можно было получить белый цвет без цветной доминанты. Вы сами понимаете, что если на красном кинескопе контраст или яркость будет выше, чем на других, то изображение получится с красным оттенком. Но необходимо идти еще дальше: все кинескопы должны иметь одинаковую нелинейность — без этого условия невозможно правильно воспроизвести нейтральную серую шкалу.

Излучаемый кинескопом свет не пропорционален напряжению видеосигнала. Свет определяется по формуле

L = U·γ

где L — яркость, U — напряжение сигнала, а γ — гамма зависит от конструкции электронной пушки и напряжения на электродах. Следовательно, даже при использовании идентичных кинескопов нужно так регулировать напряжение, чтобы все три характеристики свет/напряжение были идентичными (рис. 30).

Рис. 30. Характеристики свет/напряжение кинескопов проектора с тремя электронно-лучевыми трубками (или трех пушек цветного масочного кинескопа).

Гамма зеленого больше гаммы синего, которая в свою очередь больше гаммы красного. Черный и белый цвета при данном напряжении между нулем и величиной, соответствующей белому, получаются без цветной доминанты, но кинескоп излучает красного света больше, чем синего, и синего больше, чем зеленого. Поэтому серые тона неизбежно страдают от красно-фиолетовой доминанты.

Экскурсовод включил свет в зале и направился к другой установке; это было вертикальное сооружение, в верхней части которого находилось нечто похожее на иллюминатор. Он взглянул на этот иллюминатор и повернулся к студентам.

— Вместо проецирования на экран можно с помощью системы зеркал совместить три изображения, в результате чего полное изображение будет существовать только в наших глазах. Можно даже обойтись без цветных фильтров перед кинескопами, так как некоторые зеркала, которые называются дихроичными, обладают свойством отражать только один основной цвет и пропускать оба других. Иначе говоря, это избирательные полупрозрачные зеркала. То, которое отражает красные лучи, пропускает синие и зеленые, а отражающие синие лучи пропускает красные и зеленые. Теперь вы можете подойти и посмотреть в дихроичный монитор.

И пока юноши по одному подходили полюбоваться в конце тоннели миловидным личиком той же молодой женщины в соломенной шляпке, демонстратор продолжал объяснять:

— В дихроичном мониторе все три кинескопа симметричны относительно оптической оси системы и, следовательно, вызываемая параллаксом трапецеидальная деформация отсутствует. И тем не менее недостаток схождения может иметь место, если центровка кадра, амплитуда или линейность развертки всех трех кинескопов не отрегулированы строго одинаково. Следовательно, имеется регулировка совмещения, хотя воздействует она иным образом: необходимо, чтобы геометрия изображения на всех трех кинескопах была абсолютно идентичной (рис. 31).

Рис. 31. Дихроичный монитор.

Модулированный «синим» сигналом кинескоп K В излучает белый свет, а дихроичное зеркало ДЗ В отражает лишь синюю составляющую этого света. Эта составляющая беспрепятственно проходит через дихроичное зеркало Д3 R и достигает глаза. Из белого света, излучаемого кинескопом К R дихроичным зеркалом Д3 R , выделяется красная составляющая, которая и направляется к глазу, а сине-зеленая составляющая проходит через зеркало и, следовательно, теряется. Излучение с кинескопа K G проходит через оба дихроичных зеркала и в результате глаза достигает только зеленая составляющая этого излучения.

Все студенты группы посмотрели в дихроичный монитор и попутно вполголоса обсудили соответствующие достоинства гаммы. Не обращая никакого внимания на шушуканье, демонстратор подошел к шкафу еще более внушительных, чем трехцветный проектор или дихроичный монитор, размеров.

— Этот аппарат представляет собой приспособленный для цвета черно-белый проектор «Эйдофор». При проецировании изображения с экрана электронно-лучевой трубки мы ограничены светоотдачей люминесцентного слоя.

Для получения очень яркого изображения, которое обеспечивало бы требуемое увеличение, приходится работать с очень высокими напряжениями и слой очень быстро «выгорает». Большое преимущество этого аппарата, изобретенного швейцарцем Фишером, заключается в том, что его световая отдача не зависит от люминесцентного слоя и поэтому изображение можно проецировать на очень большой экран. Принцип работы этого аппарата при проецировании черно-белых изображений заключается в следующем.

Свет от мощного источника (вольтова дуга или ксеноновая лампа) отражается вогнутым зеркалом на экран. Это зеркало представляет собой тонкую пленку масла; почему сделали такую конструкцию, мы поймем позже. Отраженный свет не достигает экрана, так как на его пути установлена перехватывающая система из непрозрачных решеток (рис. 32).

Рис. 32. Схематическое изображение « Эйдофора ».

Благодаря модулированному видеосигналом электронному лучу один из световых лучей отклоняется. « Скребок » (на рисунке не показан) после каждого полукадра разглаживает масляный слой и устраняет возникшую в результате модуляции деформацию.

Если масляная пленка изменит свою форму, то попадающие на зеркало в месте этой деформации световые лучи в большей или меньшей степени отклонятся от первоначальной «траектории» и смогут пройти через систему решеток.

Для изменения формы масляной пленки используют модулированный видеосигналом электронный луч, который «рисует» на зеркале точную копию проецируемого изображения.

Чтобы приспособить «Эйдофор» для передачи цветных изображений, можно использовать или три «Эйдофора» с фильтрами (в этом случае мы опять сталкиваемся с проблемой коррекции трапецеидального искажения для достижения точного совпадения одноцветных изображений), или использовать систему последовательного сложения цветных полукадров, как в системе CBS, где красные, синие и зеленые элементы изображения передаются поочередно со скоростью чередования полукадров. В этом случае проблемы сходимости не возникает, но приходится столкнуться со всеми недостатками, присущими системам с последовательной передачей.

Студенты с изумлением любовались этим гигантом телевидения, проецировавшим очень яркое изображение на экран размером в несколько квадратных метров. Демонстратор направился к «препарированной» громадной электронно-лучевой трубке, установленной на подставке с надписью «Масочная электронно-лучевая трубка». Рядом с этим макетом стоял действующий телевизор. На его экране красовалась молодая женщина в соломенной шляпке, но в зале было уже не темно, и изображение казалось значительно бледнее, чем несколько минут тому назад

— В связи с тем, что не может быть и речи об установке дихроичного монитора, трехтрубочного проектора или «Эйдофора» в современной квартире (смех в зале…), потребовалось найти другое решение. И сейчас вы видите решение, предложенное американской фирмой RCA; поместить все три трубки в одну стеклянную колбу (что решает проблему синхронной развертки) и создать цветное изображение на экране этого единственного кинескопа. Так как на экран попадают не световые, а электронные лучи, то сам собой отпадает вопрос об установке на их пути цветных фильтров. Здесь требуются другие средства: известно некоторое количество химических веществ, которые под воздействием электронов дают свечение определенного цвета. Эти вещества называют люминофорами, и вы их знаете, так как экраны ваших осциллографов светятся зеленым или голубым цветом. Можно создать люминофоры, свечение которых соответствует основным цветам.

Но как сделать так, чтобы модулированный видеосигналом электронный луч действительно попадал на вещество, светящееся красным, а не другим цветом? Как обеспечить избирательное возбуждение люминофоров электронами?

Для этого используют явление параллакса; вот тут-то уж поистине справедливо, что несчастье одних служит счастьем для других. Очень близко к экрану на пути электронов устанавливают маску с проделанными в ней отверстиями. Исходящие из трех пушек три электронных луча, проходя через одно отверстие, неизбежно попадают на экран в трех разных точках. Достаточно, чтобы в этих точках они попали на таблетки из соответствующих люминофоров (рис. 33).

Рис. 33. Схематическое изображение хода электронных лучей в цветной электронно-лучевой трубке.

Лучи R , G и В проходят через отверстия в маске и попадают на соответствующие участки люминофора.

Эта заключительная часть речи была преисполнена величия и математической строгости. Последовавшая за нею тишина нарушалась лишь гудением блоков питания и потрескиванием больших электронно-лучевых трубок.

Один из студентов пробормотал в пробивающиеся усы: «надо сделать».

Не ожидая неизбежной реакции аудитории, демонстратор энергично подхватил:

— Да, это нужно сделать!

А это не так легко, потому что помимо несовпадения первичных изображений (ведь все три одноцветных изображения страдают некоторым трапецеидальным искажением), которое приходится корректировать батареей постоянных магнитов и катушек, изменяющих траекторию электронов, имеется риск возникновения погрешности чистоты, которая отсутствует в системах с тремя кинескопами. Это происходит, когда электроны заставляют светиться люминофор чужого цвета. Тогда для повышения точности стрельбы нужно повернуть вот это магнитное кольцо.

Он повернул кольцо на соседнем работающем кинескопе, и все увидели, как на изображении неба появилось фиолетовое пятно, а в нижней части изображения — зеленое.

Пока он производил эти эксперименты, профессор добросовестно рассматривал «препарированный» кинескоп, затем он спросил:

— Сколько отверстий в маске?

— Столько же, из скольких точек состоит телевизионное изображение, разлагаемое на 625 строк, или примерно 400 000.

Один из студентов спросил: «А что происходит с электроном, который не попадает в отверстие»?

— Это наиболее типичный случай, — ответил демонстратор. — Прозрачность сетки равна всего лишь 15 %. Это означает, что 85 % излучаемых электронными пушками электронов не участвует в создании изображения, потому что они не точно направлены в соответствующие отверстия. Вот почему ток высокого напряжения велик (1 ма), а напряжение достигает 25 кв, и вы, конечно, понимаете, что для его регулирования требуется мощный каскад.

Ответив таким образом на заданный вопрос, демонстратор взял большую катушку индуктивности, намотанную на плексигласовое кольцо, и включил ее в розетку осветительной сети.

— Теперь через эту катушку протекает сетевой ток; следовательно, вокруг нее существует переменное магнитное поле; вы знаете, что такое поле может изменить направление электронного луча. Это поле очень мало, и его воздействие на геометрию изображения на черно-белом кинескопе едва заметно, но в цветном масочном кинескопе даже небольшого отклонения траектории электронов достаточно для искажения цветов, так как электронный луч, который, например, должен попасть на таблетку люминофора красного цвета, отклонится в сторону и попадет на зеленый или синий участок.

Демонстратор поднес катушку к экрану, и на нем появились многоцветные линии. Не перемещая катушки, он отключил ее от сети.

— И вот! Стальные части телевизора и, в частности, маска кинескопа намагнитились, и отрегулировать чистоту цвета больше невозможно. Даже земное магнитное поле намагничивает кинескоп, и регулировку чистоты и сходимости можно производить только тогда, когда телевизор находится на своем постоянном месте в комнате в постоянных условиях по отношению к внешнему (земному или искусственному) магнитному полю. Теперь смотрите внимательно, я размагничу кинескоп.

Он вновь включил катушку в сеть и сделал перед экраном несколько круговых движений, постепенно удаляясь от телевизора. Когда он был достаточно далеко от телевизора и когда цветные муаровые полосы исчезли, он повернул плоскость катушки перпендикулярно плоскости экрана и выключил ток. Затем он повернулся к группе и сказал с печальной улыбкой:

— Если вам впоследствии придется размагничивать цветные телевизоры, никогда не делайте этого так, как я… Прежде всего нужно снять с руки часы. В противном случае их также необходимо размагнитить!

Взрывы смеха прерывались замечаниями об антимагнитных часах, но профессор призвал студентов к порядку, и все быстро успокоились. Демонстратор возобновил свои объяснения:

— Производство масочного кинескопа весьма сложно и обходится чрезвычайно дорого. Посмотрите в лупу на маленькие точки красного, синего и зеленого люминофоров. Этих точек миллион двести тысяч, а их нужно с большой точностью разместить по экрану. Работающие совместно с кинескопом устройства — блоки питания, развертки и т. д. потребляют много энергии, и изображение получается не очень ярким. Специалисты придумали и ряд других решений, но полученные результаты пока еще недостаточно хороши для того, чтобы промышленность могла приступить к производству новой продукции. Я могу сказать здесь несколько слов о кинескопах с одной электронной пушкой.

Лица всех слушателей отразили удивление.

— Совершенно правильно, цветное телевизионное изображение можно получить на кинескопе с одной электронной пушкой, если ее электронный луч модулируется «красным» сигналом, — когда электроны попадают на красный люминофор, «зеленым» сигналом — когда электроны попадают на участки зеленого люминофора, а «синим» сигналом — когда электроны попадают на участки синего люминофора. Следовательно, в данном случае речь идет о последовательном воспроизведении (последовательная передача точек) цветного изображения с помощью электронной коммутации. Вы можете видеть здесь различные модели однопушечных цветных кинескопов: хроматрон, кинескоп Лоуренса, трубка с индексацией положения луча (трубка, «Эппл») и т. д.

Сейчас мы ограничены требованиями вашей программы и отведенным вашим расписанием временем, и я не могу более подробно рассказать вам об этих трубках. Запомните просто, что один общий недостаток всех этих кинескопов (хотя они основаны на различных принципах) заключается в сложности и ненадежности схем коммутации, что препятствует их практическому использованию.

Тогда профессор сказал: «Все это выглядит очень пессимистично. Вы называете нам не вошедшие в промышленное производство кинескопы, вы демонстрируете нам гигантские установки и показываете нам кинескоп, про который вы сами говорите, что он сложен и дорог в производстве и, кроме того, обладает многочисленными недостатками, хотя, как я полагаю, именно этот кинескоп распространился во всем мире!..»

— Уважаемый профессор, самое лучшее я оставил на закуску. Вы можете не сомневаться, что технические специалисты уже на протяжении ряда лет непрерывно занимаются поисками оптимального решения. И теперь я расскажу вам об устройстве и принципах работы «трехпушечного» кинескопа с цветоделительной сеткой и с плоским экраном, который представляет собою революцию в области воспроизведения цветных телевизионных изображений (рис. 34).

Рис. 34. Разрез (вид сверху) нового цветного кинескопа: полосы люминофора расположены вертикально.

Три соседние полоски (синяя, зеленая и красная) образуют тройную полосу. Сетка представляет собой полотнище из проволочек диаметром 0,1 мм, натянутых между верхним и нижним краями экрана.

Знаете ли вы разницу между камерой-обскурой и фотографическим аппаратом?

— ???

— В камере-обскуре нет объектива и его роль выполняет маленькая дырочка. Создание объектива явилось колоссальным прогрессом, так как позволило значительно эффективнее использовать световой поток: все попадающие в объектив лучи (а площадь объектива намного больше площади маленькой дырочки) фокусируются в плоскости изображения. Применительно к трехцветной электронно-лучевой трубке эта идея заключается в замене маленьких отверстий перфорированной маски серией линз… — разумеется, электронных, так как здесь мы имеем дело не со световыми, а с электронными лучами.

Такой линзой будет служить сетка из тонких параллельных металлических проволочек; на все эти проволочки подается одинаковый потенциал. Возникающее между двумя соседними параллельными проволочками электромагнитное поле фокусирует падающие электроны на полосы красного, зеленого и синего люминофоров на плоском экране, установленном параллельно плоскости сетки на расстоянии 25 мм от нее. Полосы люминофора нанесены непосредственно на внутреннюю совершенно плоскую сторону лицевой стенки кинескопа, благодаря чему телезритель лучше видит изображение.

Отметим попутно, что натяжение проволочек сетки (600 г), впаянных между лицевой стенкой и конусом кинескопа (чтобы предотвратить просачивание воздуха в местах прохода проволочек через стекло, на колбу в этом месте наносится эмалевый пояс), позволяет сделать экран строго плоским при приемлемой толщине стекла.

Для обеспечения чистоты цветов на краях экрана пришлось бы ввести дифференциальную коррекцию траектории электронных лучей. Для этого можно было изменить потенциал проволочек сетки (в зависимости от их удаления от вертикальной оси экрана), но конструкторы кинескопа предпочли нанести на колбе дополнительный электрод с постоянным потенциалом; форма этого электрода рассчитана так, чтобы его воздействие более продолжительно ощущалось на электронных лучах, траектория которых требует большой коррекции (лучи, идущие к краям экрана).

Рис. 35. Принцип послефокусировки и послеускорения, создаваемых «электронной линзой» в пространстве между сеткой и экраном.

Само собой разумеется, что в отличие от маски цветоделительная сетка не перехватывает большинства испускаемых пушками электронов и что поэтому изображение на кинескопе нового типа намного ярче, чем на масочных кинескопах (рис. 36).

Рис. 36. Каждый электронный луч с любой из трех пушек направляется на соответствующую ему полосу люминофора.

а — показана траектория электронных лучей вдоль оси кинескопа;  б — у края экрана.

Точно так же и создаваемое сеткой послеускорение позволяет значительно снизить мощность системы развертки и уровень модуляции видеосигнала по сравнению с тем, что требуется для масочного кинескопа, а это создает возможность упростить конструкцию телевизора и сделать его полностью транзисторным.

Однако, как и любое недавнее изобретение (работы начались в 1960 г. под руководством Роже Каена, а с 1966 г. ими руководит Пьер Бонвало), трехпушечный кинескоп с цветоделительной сеткой и с плоским экраном (который также называют «кинескопом Compagnie Frangaise de Television — «Французской телевизионной компании») для окончательной разработки еще требует продолжительных научно-исследовательских и опытно-конструкторских работ.

Экскурсия закончена. Профессор от имени всей группы тепло поблагодарил молодого демонстратора и попрощался с ним. Вся группа вышла из Международного музея электронно-лучевой трубки.