Выявив недостатки механических систем телевидения, приятели переходят к изучению электронных методов. Для этого они начинают изучать основное устройство всякого, телевизионного прибора — электронно-лучевую трубку, применяемую как в передающих телевизионных камерах, так и в телевизионных приемниках. Это показывает, насколько она заслуживает подробного изучения. Предметом изучения наших приятелей будут, следовательно, следующие вопросы: электроника; устройство электронной пушки; атмосферное давление на электронно-лучевую трубку; возможность ее разрыва; люминесцентный экран; электронная оптика; электростатическая фокусировка; электростатическая линза; электронное пятно; скорость электронов; их возврат в источник; алюминированные экраны; электростатическое отклонение; горизонтально и вертикально отклоняющие пластины; формирование изображения.

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОНИКИ

Незнайкин. — Все же кое-что мне решительно не удается понять. Во время последней беседы ты заявил, что «механические способы» в наше время уступили место «электронным». Так вот, по-моему, диск Нипкова по существу электронный.

Любознайкин. — Как это?

Н. — Разве его атомы не состоят из протонов, электронов и нейтронов? Что тебе еще больше нужно электронного?

Л. — Просто-напросто электроны в свободном состоянии, отделенные от протонов. А где ты их найдешь в таком виде?

Н. — Ничего я об этом не знаю… Впрочем, знаю: в пустоте радиоламп, когда они выполняют «сальто», чтобы перелететь от катода к аноду.

Л. — Правильно. И вся важная отрасль современной техники, которую определяют термином «электроника», рассматривает применение электронных токов, протекающих в пустоте или полупроводниках, некоторые усилительные свойства которых недавно научились использовать.

У ИСТОЧНИКА ЭЛЕКТРОНОВ

Н. — Но вернемся к телевидению. Как создают электронные токи, которые в нем используются?

Л. — Совершенно таким же образом, как и в усилительны радиолампах: путем электронной эмиссии горячею катода.

Н. — А что делать с этими электронами?

Л. — Их собирают в узкий пучок, который наподобие невидимого карандаша пробегает строка за строкой все элементы передаваемого изображения. Таким образом осуществляется развертка изображения как при передаче, так и при приеме изображения.

Н. — Я прекрасно вижу, как поток электронов идет от катода к аноду в триоде. Но как может он сконцентрироваться и особенно переместиться, чтобы последовательно развернуть элементы изображения?

Л. — Именно это-то мы сегодня и рассмотрим. Основное устройство, в котором происходят все эти явления, — электронно-лучевая трубка. Она состоит прежде всего из триода, весьма похожего на триоды, используемые в радиолампах. Однако, чтобы облегчить концентрацию электронов, используют катод с очень малой поверхностью (его называют «точечный катод»).

Н. — Очевидно, чтобы собрать электроны в узкий пучок, лучше с самого начала держать их вместе. Но почему же в таком случае они стремятся иметь расходящиеся траектории?

Л. — Разве ты забыл, дружище, что одноименные заряды (отрицательные электроны) взаимно отталкиваются?

СТРАННЫЙ ТРИОД

Н. — Но где собираются электроны?

Л. — Обычно после их прохода через анод.

Н. — Ничего не понимаю. В твоем любопытном триоде электронам удается, значит, пройти через анод?

Л. — Вот именно. Потому, что у анода в центре отверстие. Притягиваемые анодом с высоким положительным потенциалом (несколько тысяч вольт), электроны развивают очень большую скорость и пролетают через отверстие, чтобы закончить свой пробег гораздо дальше (рис. 13).

Рис. 13. Простейшая электронно-лучевая трубка.

1 — нить накала; 2 — катод; 3 — управляющий электрод; 4 — анод; 5 — электронный луч; 6 — люминесцирующий экран.

Н. — Вот странный триод!

Л. — И даже более странный, чем ты думаешь. Не только анод в нем образован диском с отверстием, но и то, что эквивалентно сетке и называется управляющим электродом, на самом деле состоит из цилиндра, окружающего катод.

Н. — А как он действует?

Л. — Так же, как в сетка. Если его потенциал имеет большое отрицательное значение, он отталкивает вылетевшие электроны обратно к катоду, а к аноду пропускает лишь очень небольшое количество их. Наоборот, когда цилиндр лишь немного отрицателен, большей части электронов удается пройти сквозь него, чтобы устремиться к аноду… и за него.

Н. — А какова величина тока?

Л. — Ток гораздо слабее, чем в радиолампах. Вообще-то он порядка сотен микроампер, тогда как в приемных триодах он достигает нескольких миллиампер. Впрочем, триод трубки был бы очень плохим усилителем, так как, его крутизна не превышает десятка микроампер на вольт, тогда как внутреннее сопротивление близко к сотням мегом!..

ЛЕГКАЯ АРТИЛЛЕРИЯ

Н. — Для чего же тогда служит этот необычный триод?

Л. — Он служит электронной пушкой (его называют также электронным прожектором). Для телевизионных систем нужно было создать устройство, излучающее электроны в достаточном количестве и к тому же поддающееся управлению благодаря тому цилиндру, о котором я тебе говорил. В электронно-лучевых трубках электронная пушка помещена в цилиндрической части стеклянной колбы, расширяющейся далее в виде конуса, его основание служит экраном, на котором воспроизводится изображение.

Н. — Должен ли быть удален воздух из этой колбы?

Л. — Конечно, иначе электроны будут ударяться о тяжелые молекулы газа и потеряют свой разбег. Внутри трубки должна царить совершенная пустота настолько, насколько это возможно.

Н. — Как и природа, я боюсь пустоты, а пустота в трубке ничего хорошего не сулит. Ты отдаешь себе отчет в том, что в этих условиях каждый квадратный сантиметр поверхности трубки должен выдерживать полное атмосферное давление, т. е. один килограмм?

Л. — Я это знаю. И если ты не забыл свои уроки геометрии, ты легко подсчитаешь давление, которое действует на экран трубки диаметром 43 см.

Н. — Около тысячи двухсот килограммов!

Л. — Если ты учтешь еще конические и цилиндрические стенки, ты увидишь, что общее давление — около трех тонн, или нес 40 взрослых людей.

Н. — Трубка, выдерживающая всех бессмертных Французской Академии! Решительно, она должна быть необыкновенно прочной…

Л. — Именно поэтому ее экран обычно делают слегка выпуклым, хотя теперь научились изготовлять и плоские. А конические стенки часто делают из стали.

Н. — Недостает только, чтобы во избежание взрыва трубки я занимался телевидением лишь высоко в горах.

Л. — Почему это?

Н. — Потому, что на высоте атмосферное давление меньше…

Л. — Согласен. Но спустимся обратно па землю, чтобы исправить ошибку терминологии: трубка не взрывается, она «раздавливается»… И это дорого обходится.

ЛЮМИНЕСЦЕНЦИЯ, ФОСФОРЕСЦЕНЦИЯ И ФЛУОРЕСЦЕНЦИЯ

Н. — Что же происходит с электронами, выброшенными электронной пушкой, когда они достигают экрана?

Л. — Его внутренняя стенка покрыта слоем полупрозрачного вещества, которое светится под ударами электронов.

Н. — Это вещество вроде того, что светится в темноте на стрелках моих часов?

Л. — Не совсем, потому что на твоих стрелках фосфоресцирующее вещество очень долго светится после того, как оно было предварительно облучено. А в электронно-лучевых трубках длительность послесвечения экрана сравнительно невелика.

Н. — То ли это явление, которое происходит во флуоресцирующих лампах, все шире используемых в кафе и магазинах?

Л. — Ну да. В этих лампах электрический разряд в ртутных парах дает ультрафиолетовые лучи, не ощущаемые нашим глазом. Однако, падая на флуоресцирующее вещество, которым покрыты внутренние стенки экрана, ультрафиолетовые лучи вызывают видимое световое излучение.

Н. — Твоя флуоресцирующая лампа, мне кажется, совершенно подобна супергетеродину.

Л. — ??

Н. — Разве это не преобразователь частоты, преобразующий очень высокую частоту ультрафиолетовых лучей в менее высокую частоту видимого света?..

Л. — Ты совершенно прав. Но ближе к делу. У нас есть электронная пушка, посылающая свои снаряды на экран, который начинает светиться. Так как при стрельбе происходит рассеивание, на экране образуется широкое световое пятно. Пробовать получить изображение при помощи этого пятна было бы так же бесполезно, как пытаться нарисовать картину при помощи платяной щетки.

ЭЛЕКТРОННАЯ ЛИНЗА

Н. — Вот мы и вернулись опять к проблеме фокусировки. Как ты думаешь пробудить в электронах дух солидарности?

Л. — Я могу это сделать при помощи «электронной линзы». В этом термине нет ничего неправильного, потому что электронные лучи на пути от катода до экрана ведут себя более или менее подобно световым. Они подчиняются законам «электронной оптики», которая имеет много общего с разделом физики, рассматривающим поведение световых лучей.

Н. — Уж не хочешь ли ты мне сказать, что электронной линзой служит диск из двояковыпуклого стекла? Ведь электроны не могли бы пройти через него.

Л. — Подобную линзу получают, помещая за первым анодом второй, имеющий более высокий потенциал (а иногда даже и третий). Электрическое поле между анодами действует на элементарные электрические заряды, какими являются электроны, изменяя их траекторию и стремясь направить их к оси трубки. И вот таким-то образом электроны образуют сходящийся пучок (рис. 14).

Рис. 14. Электростатическая фокусировка электронного пучка.

1 — управляющий электрод; 2 — первый анод; 3 — второй анод.

Н. — А наш триод превращается в тетрод или даже пентод?

Л. — У него будут в некоторой степени свойства тетрода. В частности, изменения напряжения на последнем аноде почти не будут оказывать влияния на количество электронов, образующих электронный луч, т. е. на интенсивность тока в вакууме.

Н. — Какие же напряжения прикладываются к электродам?

Л. — На первом аноде относительно небольшое напряжение, порядка 220 в. Зато второй анод находится под высоким напряжением в несколько тысяч вольт. При этом напряжение на первом аноде можно изменять, влияя таким образом на распределение электрических полей и тем самым изменяя «кривизну» электронной линзы.

Н. — Значит, электронная линза совершеннее обычной оптической линзы?

Л. — Нет, не всякой. Вот, например, глазной хрусталик тоже обладает способностью изменять свою кривизну, чтобы приспосабливаться к рассматриванию близких и удаленных предметов.

Н. — Значит, регулируя напряжение на первом аноде, изменяют фокусировку пучка?

Л. — Совершенно верно. Стараются получить очень узкий пучок, дающий на экране светящееся пятно очень небольших размеров, которое и является элементом растра, определяющим размер элемента изображения.

ПЕЧАЛЬНАЯ УЧАСТЬ ЭЛЕКТРОНОВ

Н. — По что делается с электронами, достигшими экрана? Нужно, чтобы они вернулись к источнику высокого напряжения, каков бы он ни был.

Л. — Вот вопрос, который раньше мало интересовал изготовителей трубок. Электроны, падающие на экран с большой скоростью…

Н. — Какого порядка?

Л. — Эта скорость зависит от напряжения, приложенного к последнему аноду, и пропорциональна квадратному корню из этого напряжения. Так, при 10 000 в на этом аноде электроны будут иметь скорость около 60 000 км/сек. Но при 20 000 в она едва превзойдет 80 000 км/сек.

Н. — Какой же смысл увеличивать эту скорость?

Л. — Чем сильнее электроны ударяются об экран, тем ярче он светится.

Н. — Вернемся, с твоего разрешения, к электронам, которые ударяются об экран. Что с ними происходит?

Л. — Как камень, с силой брошенный в воду, поднимает фонтан брызг, электроны выбивают другие электроны из люминесцентного слоя. Эти электроны…

Н. — …вторичные.

Л. — Ну да, я вижу, ты ничего не забыл из наших прежних бесед. Эти вторичные электроны медленно и как умеют передвигаются к аноду. По крайней мере, так было в старых трубках. В наше время им облегчают обратный путь, покрывая внутренние стенки колбы между экраном и выводом последнего анода проводящим графитовым слоем. Я должен тебе, кстати, заметить, что вывод последнего анода производится через стекло в конической части колбы (рис. 15).

Рис. 15. Электронно-лучевая трубка с фокусировкой посредством электронной линзы. Высокое напряжение на последнем аноде требует хорошей изоляции; поэтому его вывод осуществляется вне цоколя трубки.

1 — управляющий электрод; 2 — первый анод; 3 — второй анод; 4 — проводящее покрытие.

Н. — А почему не через штырек цоколя?

Л. — Да потому, что из-за высокого напряжения на этом электроде его следует по возможности отдалить от других электродов.

Н. — Теперь я ясно представляю себе всю цепь. Электроны вылетают из катода, пролетают отверстия управляющего электрода и одного или нескольких анодов и попадают на какую-то точку экрана. Оттуда они движутся вдоль стенок по направлению к последнему аноду и через источник высокого напряжения возвращаются на катод. Я полагаю, что самая трудная часть пути — это та, которая ведет от пятна к краю экрана.

Л. — Верно, потому что люминесцентный слой очень далек от идеального проводника. Но в современных трубках на этот слой часто наносится очень тонкий зеркальный слой алюминия, сквозь который легко проходят электроны, вылетающие из электронной пушки, и который облегчает удаление вторичных электронов. Впрочем, истинная цель алюминиевого слоя — увеличить яркость изображения, отражая по направлению к зрителю ту часть световых лучей, которая без этого безвозвратно терялась бы для него, уходя внутрь трубки.

ПЯТНО ХОДИТ ВВЕРХ И ВНИЗ

Н. — Вот мы и владеем электронным карандашом, предназначенным для вычерчивания светящихся изображений на экране. Однако, чтобы рисовать, нужно сделать его подвижным. Как схватить этот невидимый пучок и манипулировать им по своему желанию?

Л. — Когда настоящая пушка выпускает снаряд, он следует по прямолинейной траектории?

Н. — Нет, конечно. Он описывает параболу, так как земное притяжение искривляет его траекторию по направлению к Земле.

Л. — Не видишь ли ты возможности воздействовать на электрон аналогичной силой, способной отклонить его от прямого пути?

Н. — Да, вижу. Можно было бы расположить под пучком положительно заряженный электрод, который притягивал бы электроны так же, как Земля притягивает снаряд. Таким образом, пучок искривился бы книзу.

Л. — Правильно! Можно поступить еще лучше, поместив одновременно над пучком второй, отрицательно заряженный электрод (рис. 16).

Рис. 16. Электростатическое отклонение. В соответствии со знаком напряжения на отклоняющих пластинах пятно отклоняется вниз или вверх.

Н. — Понимаю. Отталкивая электроны пучка, он дополнит действие электрода, помещенного внизу. Но два таких электрода в действительности образуют обкладки конденсатора.

Л. — Конечно. Заметь, впрочем, что на отклоняющие пластины нужно подавать не постоянное напряжение, так как, отклонившись от центра экрана, пятно займет неподвижное положение. Однако не это нам нужно. Что произойдет, если к двум отклоняющим электродам приложить переменное напряжение?

Н. — Во время полупериода, когда верхний электрод становится положительным, а нижний — отрицательным, пучок будет притягиваться вверх (отталкиваясь при этом снизу). Мы увидим, как пятно поднимается. Во время следующего полупериода верхний электрод, становясь отрицательным, его оттолкнет, в то время как он будет притягиваться к нижнему электроду, который станет положительным. Наше пятно, следовательно, переместится вниз.

Л. — Ты видишь, что пятно будет передвигаться туда и обратно вдоль вертикального диаметра экрана. И если частота переменного напряжения, приложенного к отклоняющим пластинам, превышает тридцать герц…

Н. — …глаз воспримет светящуюся вертикальную черту, так как, принимая во внимание инерцию светового ощущения, он не будет различать мгновенных положений, занимаемых пятном.

ПЯТНО КОЛЕБЛЕТСЯ ВПРАВО И ВЛЕВО

Л. — Предположим теперь, Незнайкин, что на пути пучка мы помещаем вторую пару отклоняющих пластин, на этот раз расположенных вертикально по обе стороны пучка (рис. 17).

Рис. 17. Электронно-лучевая трубка с электростатическим отклонением.

1 — вход видеосигнала; 2 — к пластинам вертикального отклонения (кадры); 3 — к пластинам горизонтального отклонения (строки).

Н. — Ясно, что они создадут возможность отклонять пучок вправо и влево. И если приложить к этим пластинам переменное напряжение, то пятно прочертит на экране горизонтальную линию.

Л. — Справедливость и логичность твоих выводов заслуживают комплиментов.

Н. — Но мне не нравится, что вертикальные пластины создают горизонтальное отклонение, и наоборот.

Л. — Это, действительно, очень досадно. И некоторые авторы создают плачевную путаницу, когда говорят о «горизонтальных отклоняющих пластинах», тогда как хотят сказать о «горизонтально отклоняющих пластинах» или «пластинах горизонтального отклонения», которые сами по себе расположены вертикально!

ИЗОБРАЖЕНИЕ ВЫРИСОВЫВАЕТСЯ

Н. — Мы умеем теперь отклонять пятно как в вертикальном, так и в горизонтальном направлениях. Как его заставить теперь вычерчивать изображение?

Л. — Не будем торопиться и ограничимся сначала ориентировочным представлением. Предположи, что к горизонтально отклоняющим пластинам приложено периодическое напряжение такой формы, что пятно пробегает с постоянной скоростью горизонтальную линию слева направо, потом почти мгновенно возвращается налево, возобновляет такое же движение вправо и т. д.

Н. — Это вроде того, как если бы я читал без конца одну и ту же строчку книги.

Л. — Остается, следовательно, сообщить пятну гораздо более медленное движение сверху вниз, прикладывая соответствующее напряжение к вертикально отклоняющим пластинам.

Н. — Таким образом, когда одна строка будет прочитана, мы не будем больше возвращаться к началу этой же строки, а будем переходить к началу следующей.

Л. — Конечно. И так будет для всех строк изображения, потому что пятно будет медленно с постоянной скоростью перемещаться сверху вниз. Но когда оно пробежит последнюю строку, резкий переброс вертикально отклоняющего напряжения возвратит пятно кверху, чтобы начать развертку следующего изображения.

Н. — Мы закончили страницу и перевернули ее, чтобы начать новую… Все это ясно. Но наше пятно вычертит только ряд однообразно светящихся строк, которые создадут впечатление прямоугольника с равномерной яркостью во всех точках. Это как книга, у которой все буквы одинаковы!..

Л. — Да, но ведь мы забыли нечто очень существенное: изменять интенсивность электронного пучка так, чтобы каждая точка изображения была воспроизведена со свойственной ей яркостью.

Н. — Я что-то не пойму, как ты этого добьешься.

Л. — Послушай-ка, Незнайкин, уж не устал ли ты? Подумай же. Какой электрический сигнал в приемнике точно отражает все изменения яркости последовательно развертываемых точек изображения?

Н. — Сигнал видеочастоты.

Л. — А на какой электрод трубки нужно подать этот сигнал, чтобы промодулировать интенсивность электронного пучка?

Н. — Ах, да! Hа сетку. Я хочу сказать на управляющий электрод Понятно… Пятно будет более или менее ярким в соответствии с величиной, которую будет иметь в этот момент видеосигнал. И вот таким-то образом переданное изображение будет элемент за элементом воспроизведено на экране трубки.

Л. — Само собой разумеется, нужно, чтобы движения электронных пучков при передаче и приеме были строго синхроннизированы.

Н. — Я чувствую, что у меня возникают сотни вопросов.

Л. — С моей стороны есть только один: не думаешь ли ты, что на сегодня хватит?