В предыдущей беседе Любознайкин и Незнайкин рассмотрели основные характеристики транзисторов. Последние могут выражаться численными значениями различных отношений — малосигнальных параметров или, что лучше, в виде семейств кривых, показывающих, как одни величины изменяются под воздействием других. Графический метод дает более полное представление о свойствах транзистора, чем малосигнальные параметры, которые справедливы только для строго определенных условий. Однако у транзисторов, как мы без сомнений можем сказать, все зависит от всего…

В этой беседе двое наших друзей сумеют извлечь из семейства характеристик ценные сведения о действительной работе транзистора в усилителе с определенным нагрузочным сопротивлением. Попутно они также изучат способы подачи смещения.

Содержание: Статические и динамические характеристики. Вычерчивание нагрузочной прямой. Рабочая точка. Усиление по току, напряжению и мощности. Максимальные значения переменной составляющей. Область насыщения. Выбор сопротивления нагрузки. Динамическая крутизна. Подача смещения.

Транзистор в мире не одинок

Незнайкин. — Со времени нашей последней встречи меня преследуют чудовищные кошмары. Мне снится, что я муха, попавшая в гигантскую паутину, состоящую из характеристик транзистора. Я отчаянно бьюсь, но не могу вырваться… Не правда ли, ужасно?

Любознайкин. — Я чрезвычайно огорчен, что нарушил твой ночной покой… Не лучше ли мне отныне отказаться говорить об этих несчастных кривых?

Н. — Напротив, я хотел бы, чтобы ты объяснил мне, как нужно ими пользоваться в различных условиях эксплуатации транзисторов.

Л. — Что ты подразумеваешь под этим?

Н. — Мы снимали эти характеристики, изменяя напряжение U к , приложенное между коллектором и эмиттером. И мы делали это при различных значениях тока базы I б (или, что в принципе одно и то же, при различных значениях напряжения базы U б ). В действительности же наш транзистор не живет как эгоист, изменяя свои- напряжения и токи лишь ради собственного удовольствия… Он должен подавать напряжения или токи на другой транзистор, установленный в следующем каскаде. Или же, если он стоит последним в цепочке усилителя, он должен «выдавать ватты» громкоговорителю. В любом случае транзистор должен иметь в цепи коллектора сопротивление нагрузки R н (рис. 50).

Л. — Совершенно верно, но что же тебе непонятно?

Рис. 50. Для снятия динамических характеристик транзистора достаточно дополнить схему, показанную на рис. 43, нагрузочным резистором R н , включенным в цепь коллектора. Начиная с этого рисунка транзистор на схемах будет изображаться общепринятым условным обозначением.

Еще раз о кухонной батарее

Н. — То, что теперь мои напряжения на коллекторе будут зависеть от величины тока коллектора. Ведь фактическое напряжение U к , между коллектором и эмиттером меньше напряжения батареи Е к-э , так как из последнего нужно вычесть падение напряжения, вызываемое током I к , на нагрузочном сопротивлении R н . Следовательно, если, увеличив ток базы, вызвать приращение тока коллектора, то падение напряжения на сопротивлении R н возрастет и напряжение на коллекторе снизится.

Л. — Ты правильно рассудил, Незнайкин! И я понимаю, что тебя беспокоит: сеть наших кривых совершенно не учитывает этих явлений.

Н. — Я все больше и больше думаю о своей кухонной батарее, которую я некогда создал, связав между собой все кастрюли…

Из-за наличия этого сопротивления нагрузки все наши напряжения и токи связаны. И достаточно повернуть ручку потенциометра R 1 , чтобы стрелки всех наших четырех приборов двинулись в едином порыве подобно солдатам, маневрирующим по команде офицера…

Одна прямая среди кривых

Л. — Попытаемся навести в этом порядок. Возьмем транзистор малой мощности, скажем, на 75 мВт. Посмотри на его кривые (рис. 51), где проведена и прерывистая линия, обозначающая предельную мощность, которую не следует превышать. Предположим, что батарея Е к-э , питающая коллектор, имеет напряжение 9 В. Скажи, при каких условиях такое же напряжение мы обнаружим на коллекторе?

Рис. 51. Характеристики транзистора малой мощности и линия нагрузки.

Н. — Если не происходит никакого падения напряжения на сопротивлении R н , т. е. если ток I к равен нулю.

Л. — Ну вот, это условие мы и обозначим на нашем графике первой точкой А, где U к = 9 В и I к = 0. Теперь допустим, что сопротивление R н = 275 Ом. Можешь ли ты рассчитать, при каком значении коллекторного тока на этом резисторе упадет все напряжение, так что на самом коллекторе не будет никакого напряжения?

Н. — Разумеется, применяя закон Ома, я могу найти ток I к , который на резисторе R н = 275 Ом создаст падение напряжения в 9 В и полностью погасит напряжение батареи Е к-э :

Л. — Прекрасно! Это позволяет нам поставить вторую точку Б, где U к = 0 и I к = 32,5 мА. Нам остается теперь только взять линейку и соединить наши точки А и Б прямой линией, которая будет называться нагрузочной прямой для сопротивления нагрузки в 275 Ом.

Н. — Изрядно же мы продвинулись вперед! Я совершенно не вижу, что дает нам эта нагрузочная прямая. Начать хотя бы с того, например, как ток коллектора может достичь 32,5 мА, если в этот момент на коллекторе нет никакого напряжения.

Л. — Твое смущение вызвано тем, что ты не делаешь различия между статическими и динамическими характеристиками. Первые показывают, как изменяются интересующие нас напряжения и токи при отсутствии в цепи коллектора сопротивления нагрузки. Такие характеристики мы рассматривали во время предшествующей беседы. Сегодня же мы выясним, что происходит, когда в цепь коллектора включено нагрузочное сопротивление и, кроме того, ко входу, т. е. между базой и эмиттером, приложено переменное напряжение u б (рис. 52). Теперь следует говорить о динамических характеристиках, и проведенная нами нагрузочная прямая позволяет их определить.

Рис. 52. Схема применения транзистора в качестве усилителя. Переменное напряжение u б приложено между базой и эмиттером. На выходе на нагрузочном резисторе R н получают переменное напряжение u к .

Две составляющие

Н. — По твоей схеме входное переменное напряжение u б порождает выходное переменное напряжение u к , и я начинаю догадываться почему. Здесь в цепи коллектора происходит то же самое, что и в анодной цепи электронной лампы: мирное сосуществование двух токов. Во-первых, мы имеем постоянную составляющую — средний ток, определяемый рабочей точкой (у лампы — смещением сетки). И, во-вторых, имеется переменная составляющая, определяемая изменением потенциала сетки по отношению к катоду. Полупериоды переменной составляющей входного напряжения то складываются с постоянной составляющей (когда обе составляющие имеют один знак), то вычитаются из нее.

Л. — Действительно, у транзистора происходит аналогичное явление. Батареи Е к- э и Е б-э определяют рабочую точку. Целесообразно установить ее так, чтобы и положительные, и отрицательные полупериоды входного переменного напряжения могли создать максимальные отклонения напряжения коллектора от его среднего значения.

Н. — В этом случае мы должны условиться, что среднее напряжение U к на коллекторе должно быть равно половине напряжения питания Е к- э . В нашем случае это половина от 9 В, т. е. 4,5 В.

Л. — Я ставлю точку на нашей нагрузочной прямой в месте, соответствующем U к = 5 В, это почти середина нашей прямой. Ты сейчас увидишь, что можно выбрать величину, несколько большую половины Е к- э . Теперь, если изменение напряжения база — эмиттер (или, что то же самое, изменение тока базы) определяет изменение тока I к и напряжения U к коллектора, то эти две последние величины всегда оказываются связанными отношением, которое выражает наша прямая.

Н. — Это чересчур философски, и я предпочел бы конкретный пример.

Качели

Л. — Хорошо, допустим, что ты прикладываешь между базой и эмиттером переменное напряжение с амплитудой примерно в 20 мВ, которое создаст изменения тока базы с амплитудой в 0,1 мА по одну и по другую сторону от среднего тока, величина которого в точке Р составляет 0,2 мА.

Н. — В результате ток базы изменяется, принимая следующие крайние значения:

0,2 + 0,1 = 0,3 мА и 0,2–0,1 = 0,1 мА.

Л. — Совершенно верно, при первом значении мы достигнем на нашей прямой точки В (где нагрузочная прямая пересекает кривую I б = 0,3 мА), а при втором значении мы дойдем до точки Г (место пересечения с кривой I б = 0,1 мА).

Н. — Значит, мгновенные значения u к и i к колеблются между точками В и Г вдоль нагрузочной прямой, как если бы они качались вокруг точки равновесия Р.

Л. — Правильно, ты видишь, что напряжение коллектора колеблется в обе стороны от точки Р между 3,2 и 6,8 В.

Н. — Следовательно, амплитуда составляет 1,8 В, так как средняя точка Р соответствует напряжению 5 В. И если это происходит при амплитуде напряжения на базе 20 мВ = 0,02 В, то можно ли сделать вывод, что усиление по напряжению составляет 1,8:0,02 = 90 раз?

Л. — Пожалуйста. А каково усиление по току?

Н. — Его рассчитать нетрудно. Между точками В и Р, с одной стороны, и Г и Р — с другой, изменения тока коллектора достигают 7 мА. Происходят же они вследствие изменения тока базы на 0,1 мА. Следовательно, усиление по току составляет 7:0,1 =70 раз.

Л. — Я начинаю думать, что ты, совершая набеги на рыбный магазин, изрядно зарядил свой мозг фосфором… Теперь ты понимаешь, что мощность, которая выражается произведением напряжения на ток, подвергалась усилению в…

Н. — …90 х 70 = 6300 раз. Просто колоссально!

Берегись искажений

Л. — Совершенно нормально, но я хотел, чтобы ты понял, что амплитуда переменного напряжения на коллекторе не должна превышать 4,5 В. При такой амплитуде значения u к и i к будут перемещаться вдоль всей нагрузочной прямой от точки А до точки Б. Действительно, допустив, что рабочая точка находится строго посередине линии АБ, мы увидим, что один полупериод достигает одного конца этой линии, а другой — противоположной точки.

Н. — Одним словом, это предельные мгновенные значения напряжения коллектора u к ?

Л. — Да, но не следует допускать его падения до нуля (точки Б), так как характеристики там перестают быть прямыми. Ты видел на рис. 47 и еще более ясно на рис. 49, как резко они изгибаются при малых значениях U к . Вот почему остается зона в несколько долей вольта, именуемая областью насыщен и я, вхождение в которую запрещено из-за искажений.

Н. — А не полезно ли в связи с этим немного сдвинуть точку Р с середины прямой АБ в сторону большего напряжения?

Л. — Конечно, если хотят быть требовательными. Вот почему мы выбрали для этой точки напряжение 5 В.

Н. — У меня сложилось впечатление, что 275 Ом в качестве нагрузочного резистора R н ты взял тоже не случайно. Что было бы при ином сопротивлении?

Букет из прямых

Л. — Вот несколько нагрузочных прямых для больших или меньших нагрузок (рис. 53). На нагрузке 1000 Ом мощность выделяется меньшая, так как мы располагаем меньшими амплитудами изменений токов как на входе (тока базы), так и на выходе (тока коллектора). Нагрузки с сопротивлением, меньшим 275 Ом, увеличивают амплитуды и мощности, но, используя такие нагрузки, мы попадаем в запрещенную область мощностей выше 75 мВт.

Рис. 53. Нагрузочные прямые для различных сопротивлений резистора R н . Чем меньше сопротивление нагрузки, тем больше наклон линии нагрузки. При  R н = 0 линия нагрузки поднимается вертикально.

Н. — Так вот почему ты, великий хитрец, избрал эту величину 275 Ом, которая позволяет получить нагрузочную кривую в виде касательной к гиперболе, обозначающей предельную допустимую мощность… Минутку, я вижу, что ты даже провел нагрузочную кривую для R н = 0.

Л. — Да, Незнайкин, эта строго вертикальная прямая линия — единственная среди наших нагрузочных прямых, описывающая статический режим транзистора. Разве при отсутствии сопротивления нагрузки напряжение на коллекторе не остается постоянным и неизменным?

Н. — Это очевидно. Но разве раньше не изучали мы с тобой другие сопротивления нагрузки, кроме банального омического сопротивления? Я помню симпатичное семейство реактивных сопротивлений, с которыми мы тогда познакомились: индуктивности, колебательные контуры (рис. 54)…

Рис. 54. В качестве нагрузки может использоваться не только омическое сопротивление. На этом рисунке нагрузкой служит колебательный контур LC , настроенный на частоту сигнала.

Л. — Ты хорошо сделал, что напомнил мне о них. Разумеется, что при расчете такого рода цепей часто не учитывают омическое сопротивление катушек постоянному току. В этих условиях рабочая точка коллектора совпадает с напряжением источника питания Е к- э . Тогда без риска изменить полярность коллектора можно допуская на реактивных сопротивлениях напряжения, амплитуда которых достигает величины Е к- э . При этом точка А (где обычная нагрузочная прямая пересекает горизонтальную ось U к ) может соответствовать удвоенной величине напряжения батареи Е к- э . Так, если оно равно 9 В, то точка А находится при напряжении 18 В.

Н. — Подводя итоги, следует сказать, что для проведения нагрузочной прямой я ставлю точку А, откладывая на горизонтальной оси величину Е к- э , если в цепь коллектора непосредственно включена омическая нагрузка (R н ), или 2Е к- э , если в качестве нагрузки выступает эквивалентное сопротивление R э , цепей, содержащих реактивности и обладающих малым сопротивлением постоянному току (колебательный контур, трансформатор). Соответственно точку Б я ставлю на вертикальной оси, откладывая Е к-э /R н и Е к-э /R э (где R э — эквивалентные сопротивления нагрузки) в зависимости от характера сопротивления нагрузки (рис. 55).

Рис. 55. Общее правило для определения нагрузочных прямых. В скобках указаны значения для случаев, когда сопротивление резистора R н , цепи нагрузки постоянному току значительно меньше ее эквивалентного сопротивления  R э для переменного тока.

Л. — Ты исключительно точно сформулировал правило, и я надеюсь, что ты сам без малейшего труда сумеешь провести нагрузочные прямые и, пользуясь ими, сможешь получить кучу интересных данных. Например, нет ничего проще, исходя из имеющихся сведений, вычертить кривую, показывающую, как изменяется ток коллектора I к   в зависимости от напряжения на базе U б . Для этого достаточно снять по нагрузочной прямой значения I к для всех точек, где она пересекает характеристики, соответствующие различным значениям U б и перенести их на график. Ты увидишь, что в этом случае мы получим прямую (рис. 56). Это показывает, что изменения крутизны невелики, когда мы имеем дело с большими значениями коллекторного тока, т. е. усиление транзистора имеет достаточно линейный характер.

Рис. 56. Эта характеристика, повышающая зависимость тока коллектора I к от напряжения U б при наличии сопротивления нагрузки, построена на основании выходных характеристик и нагрузочной прямой, изображенных на рис. 51.

Н. — Я отмечаю, что в данном случае полная проводимость прямой передачи (крутизна) равна 300 мА/В.

Л. — Да, это динамическая крутизна. С такой же легкостью ты можешь вычертить график, показывающий изменения I к в зависимости от I б .

Одна батарея — все напряжения

Н. — Конечно. Но, как попавшая в паутину муха, я спешу вырваться из паутины характеристик, которая наяву заставляет меня вновь переживать приснившиеся мне кошмары… Уже давно с языка у меня готов сорваться вопрос. На всех твоих схемах ты изображал две батареи: Е к- э , дающую напряжение на коллектор, и Е б- э , служащую источником соответствующего смещения базы. Однако я вскрыл все транзисторные приемники у своих друзей и убедился, что все они имеют только по одной батарее. Это, очевидно, батарея, питающая коллектор. Откуда же поступает напряжение смещения на базу?

Л. — От этой же батареи. Впрочем, разве в ламповых схемах ты не сталкивался с таким же положением?

Н. — Действительно, напряжение сеточного смещения создается источником анодного напряжения: анодный ток вызывает падение напряжения на резисторе R (рис. 57), включенном в цепь катода, в результате чего последний становится положительным по отношению к сетке или, иначе говоря, сетка становится отрицательной по отношению к катоду… Поступают ли так же в схемах с транзисторами, создавая падение напряжения на резисторе, установленном на пути коллекторного тока?

Рис. 57. Так в ламповой схеме создается сеточное смещение за счет падения напряжения на резисторе R , введенном в цепь катода.

Л. — Нет, Незнайкин. На этот раз с транзисторами дело обстоит проще, чем с лампами. У лампы анод должен быть положительным, а сетка отрицательной по отношению к катоду. А у транзистора типа р-n-р и коллектор, и база должны быть отрицательными по отношению к эмиттеру.

Н. — Точно так же у транзистора типа n-р-n и коллектор, и база должны быть положительными по отношению к эмиттеру. Я понял: для того чтобы база имела нужное напряжение, достаточно воспользоваться делителем напряжения из двух резисторов, присоединенным к той же батарее, от которой питается цепь коллектор — эмиттер (рис. 58).

Рис. 58. Подача напряжения смещения на базу при помощи делителя напряжения.

Л. — Правильно, мой друг. А чтобы подать на базу переменное входное напряжение, преградив ответвление постоянного тока базы в предшествующие цепи, применяют разделительный конденсатор С. Однако подать на базу необходимое ей смещение можно еще проще с помощью только одного резистора R (рис. 59), присоединив его к тому же полюсу батареи с которым соединен коллектор.

Рис. 59. Довольно часто напряжение смещения создается с помощью резистора R , включенного последовательно с переходом база — эмиттер.

Н. — Я вижу, что происходит. Ты пропускаешь через резистор R ток, идущий от базы к эмиттеру.

Л. — Этот ток, Незнайкин, называется током смещения. Именно он определяет положение рабочей точки на нагрузочной прямой. Так, для точки Р на рис. 51 необходим ток 0,2 мА, или 0,0002 А. Пусть напряжение батареи 9 В, а небольшим сопротивлением эмиттерного р-n перехода можно пренебречь (ты помнишь, что в проводящем направлении сопротивление р-n перехода весьма мало?). Можешь ли ты рассчитать необходимое сопротивление резистора R?

Н. — Если верить закону Ома, то R получим, разделив 9 на 0,0002, что даст нам 45 000 Ом, или 45 кОм.