1. ОПРЕДЕЛЕНИЕ, ОСНОВНЫЕ ПРОБЛЕМЫ И КРАТКАЯ ИСТОРИЯ МЕТОДА ССП
1.1. Связанные с событиями потенциалы мозга
ССП представляют собой широкий класс электрофизиологических феноменов, которые специальными методами выделяются из «фоновой», или «сырой», электроэнцефалограммы (ЭЭГ). Термин ССП – калька введённого Г. Воном термина Event-Related Potentials of the Brain, ERPs [Vaughan, 1969]. В характеристиках ССП проявляется связь активности мозга с событиями во внешней среде (например, с предъявлением стимулов), во внешне наблюдаемом поведении испытуемого (например, с двигательной активностью) и с психологическими характеристиками активности испытуемого (например, с ожиданием или с принятием решения) [Rockstroh et al., 1982]. «Промежуточное» положение ССП (по выражению Т. Пиктона и Д. Стасса [Picton, Stuss, 1980]), с одной стороны, отражающих активность мозга, а с другой, – характеристики поведения и психологическую феноменологию, обладает очевидной привлекательностью для психофизиологов, поскольку может обеспечить экспериментальные основания для решения фундаментальных проблем психофизиологии (см. для обзора [Psychophysiol. Brain Res., 1990; Rohrbaugh et al., 1990; Event-Related, 1991]).
Краткая история метода ССП
Связь электрической активности мозга с событиями в окружающей среде и поведении впервые была продемонстрирована и описана англичанином Р.Кейтоном (Richard Caton) в 1875–1887 гг. и независимо от него русским учёным В.Я. Данилевским в 1875 г. [Brazier, 1984]. Эксперименты Кэтона были проведены на кроликах и обезьянах. Он помещал один регистрирующий электрод на обнажённую кору, а другой – на поверхность вертикального среза мозга и, используя в качестве стимула свет лампы или звук колокольчика, наблюдал изменения потенциала по колебаниям стрелки гальванометра. В этих опытах была открыта связь изменений коркового потенциала со стимуляцией разной модальности (свет, звук), с двигательной активностью животного, с уровнем бодрствования, а также отмечены региональные особенности активности коры и изменения электрической активности при фармакологических воздействиях. В 1890–1891 гг. А. Беком были исследованы потенциалы на свет в окципитальной коре и на звук – в височной. В 1898 г. В.Е. Ларионовым было проведено сопоставление вызванной электрической активности в разных областях коры. Таким образом, к началу XX в. был описан основной круг феноменов связи электрических потенциалов мозга с событиями и очерчены основные проблемы, которые до сих пор остаются актуальными (см. параграфы 3 и 4).
2. МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ РЕГИСТРАЦИИ И ОБРАБОТКИ ССП
2.1. Общая характеристика сигнала
ССП выделяют при помощи специальных методов из ЭЭГ. Частотный диапазон ССП включает полосу от 0 Гц до 3 кГц и ограничен, с одной стороны, сверхмедленной электрической активностью мозга [Илюхина, 1977], а с другой – спайковой активностью нейронов. Кроме ритмических колебаний на низкочастотном («ноль-частотном») краю этого диапазона выделяют такие электрические феномены, как постоянный потенциал (DC-potential) и сдвиги постоянного потенциала (DC-shifts, DC-fluctuations). Суммарная активность в полосе частот, превышающих 300 Гц, остаётся мало изученной [Думенко, 1979].
2.2. Стандартные способы получения воспроизводимой конфигурации ССП
Методические требования к регистрации ЭЭГ (установка электродов, выбор системы отведения, полосы пропускания усилителей, способы устранения артефактов) описаны в главе 2. Заметим, что для регистрации ССП разных типов применяют разные частотные полосы (например, для ранних компонентов ВП и УНВ, см. параграф 3). Поскольку анализ ССП включает рассмотрение их конфигурации, амплитудно-временных характеристик и топографии, применение монополярного отведения предоставляет возможность оценить отклонения этих параметров от некоторого единого стандарта. Это обстоятельство делает очевидными преимущества монополярной системы отведения для исследования ССП.
2.3. Считывание сигнала
Для компьютерной обработки сигнала «сырая» ЭЭГ переводится в цифровую форму. Частота считывания мгновенных значений сигнала при этой процедуре («квантование», sampling) определяется согласно теореме Шеннона–Котельникова. Для того чтобы описать сигнал частоты F, частота считывания должна быть не меньше 2 F, т.е. для того, чтобы описать, например, частоту колебаний 100 Гц, необходимо применить частоту считывания сигнала не менее 200 Гц.
2.4. Усреднение
В основе выделения ССП из сигнала ЭЭГ лежат следующие допущения:
1. в ситуации многократного повторения события регистрируемый сигнал ЭЭГ (SUMi (t)) является суммой двух компонентов: спонтанной ЭЭГ S i(t) и потенциала, связанного с событием P i (t);
2. компонент S i (t) распределён случайно для ряда последовательных повторений события;
3. компонент P i( t) постоянен для всех повторений события, т.е. сигнал при i -м повторении события в момент t представляет сумму:
.
При суммировании N сигналов, зарегистрированных при последовательных повторениях события, компонент P i(t) будет устойчив, a S i(t), как ошибка среднего значения, изменяется пропорционально величине 1/ N. Это означает, что, например, при исходном соотношении сигнала и шума 1:1, при суммировании 25 реализаций ЭЭГ в полученном ССП отношение сигнал/шум будет 1 : 5, а при 100 реализациях – 1 : 10. Для разных типов потенциалов применяют разное количество накоплений: например, для УНВ и Р 300 достаточно 30–50 реализаций, а для потенциалов ствола мозга требуется от 4000 до 7000 реализаций (Hughes, 1985).
В качестве мгновенных значений накопленного ССП могут быть использованы не средние, а медианы [Rockstroh et al., 1982]. Медиана, в отличие от среднего, обладает свойством робастности, т.е. в значительно меньшей степени чувствительна к отклонениям выборки от нормального распределения. Хотя различия между средним и медианой уменьшаются по мере увеличения количества суммируемых реализаций и «медианные» кривые менее гладкие, чем усреднённые, тем не менее, предпочтительно использование медианы, если артефакты (такие, как моргания) не могут быть устранены. При малом количестве реализаций следует предпочесть медиану или даже единичную реализацию.
2.5. Фильтрация
Случайная, «шумовая» составляющая единичной реализации ССП («сырой» ЭЭГ) может быть устранена посредством сглаживания.
АЛГЕБРАИЧЕСКИЕ ФИЛЬТРЫ
Суть данной процедуры состоит в скольжении «окном», которое представляет собой набор из п коэффициентов (где n – нечётное произвольное число, например, для п = 5 окно «0,5; 1,0; 2,0; 1,0; 0,5») по последовательности мгновенных значений сигнала, так что каждое значение в последовательности умножается на поставленный в соответствие ему коэффициент фильтра. Затем исходное значение сигнала, соответствующее «центральному» коэффициенту окна-фильтра, заменяется частным от деления суммы вычисленных произведений на сумму коэффициентов фильтра. После этого фильтр смещается на одно значение сигнала, и процедура повторяется, так что все исходные значения сигнала кроме (n–1)/2 мгновенных значений, примыкающих к границам эпохи анализа (эти значения должны быть исключены из дальнейшего анализа), заменяются на новые вычисленные значения. Очевидно, что свойства фильтра определяются количеством коэффициентов и их соотношением. Например, окно «1, 1, 1, 1, 1, 1, 1» сглаживает сигнал сильнее, чем «1, 5, 10, 15, 10, 5, 1», a «1, 1, 1, 1, 1, 1, 1, 1, 1» – ещё сильнее.
ГАРМОНИЧЕСКАЯ ФИЛЬТРАЦИЯ
Гармоническая фильтрация основана на обработке спектров исходного сигнала, рассчитанных, например, при помощи быстрого преобразования Фурье (Fast Fourier Transformation – FFT). Спектр Фурье представляет собой сигнал в виде набора sin и cos функций, которые при суммировании образуют исходный сигнал, т.е. спектр Фурье содержит всю информацию об исходном сигнале. Действительно, алгоритм обратного преобразования Фурье ( FFT-1) позволяет восстановить сигнал из спектра без потерь. Спектр Фурье представлен двумя доменами – частотным и фазовым. Первый содержит информацию о частотном составе сигнала, а второй – о фазовых сдвигах для разных частотных составляющих. Возможно произвольно изменять величины в том и другом доменах, например «вычёркивая» частоты, что после восстановления сигнала (при помощи FFT–1) проявится как изменение частотных характеристик сигнала: или исключение 50 Гц, или сглаживание сигнала, или устранение постоянной величины, или снятие медленных составляющих и т.д. Следует учитывать, что «хвосты» эпохи анализа, представленной спектром, будут искажены после восстановления сигнала из обработанного спектра, как и при алгебраической фильтрации.
2.6. Описание ССП
В результате накопления отрезков ЭЭГ, связанных с определёнными событиями, их усреднения, цифровой фильтрации или других процедур, получают ССП – кривую, которую описывают как последовательность значений амплитуд или как последовательность колебаний (волн).
В морфологии ССП выделяют волны, колебания, отклонения и сдвиги (wave, oscillation, deflection, shift) – непосредственно наблюдаемые изменения потенциала, и компоненты – составляющие ССП, которые не обязательно совпадают с определённой волной/колебанием, могут взаимно перекрываться во времени и определять форму нескольких последовательных волн (ср. с понятием «синтетический компонент» [Naatanen et al., 1993; Rockstroh et al., 1982, p.107– 108]). Для выделения компонентов потенциал описывают как последовательность значений амплитуд и применяют специальные процедуры, например реконструируют компоненты как разность мгновенных значений амплитуд волн ССП, зарегистрированных в ситуациях, когда предполагаемый компонент входит и не входит в состав ССП. Так выделяют, например, негативность, связанную с рассогласованием (mismatch negativity – MMN) [Naatanen et al., 1993], негативность, связанную с обработкой сигнала (processing negativity) [Ritter et al., 1984], продолжающуюся негативность (sustained negativity) [Naatanen, Michie, 1979] и компоненты позднего позитивного комплекса (CNV, Р300 и Slow Wave)[Sutton, Ruchkin, 1984].
Для идентификации волны или компонента используют: 1) амплитудно-временные характеристики: полярность (позитивное или негативное отклонение, обозначаются Р и N соответственно), длительность, латентный период начала отклонения или его пика по отношению к моменту появления события (полярность и латентный период колебания обозначают, например, Р100, N200) или его порядковый номер (например, Р1, N1, P2…, P3 и т.д.), амплитуду от «нулевой линии» (baseline) или «от пика до пика» (peak-to-peak amplitude); 2) распределение амплитуд по скальпу (topography); 3) связь с событием, с его характеристиками; 4) связь с задачей (task dependence).
Волны ССП, идентифицированные как принадлежащие к одному и тому же классу, могут существенно различаться по амплитуде и временным характеристикам, например, колебание Р300 может развиваться с латентным периодом от 250 до 1500 мс. Именно поэтому при сопоставлении формы волн применяют как сравнение мгновенных значений амплитуд волн, так и статистики пиковых значений амплитуд и латентных периодов.
2.7. Особенности метода ССП
В последние десятилетия разработаны методы регистрации активности мозга, обладающие значительными исследовательскими возможностями (см. также гл. 2). Однако и при разработке новых методов исследований активности мозга, и при верификации результатов, получаемых при помощи этих методов, электрическая активность мозга широко используется как референтный способ анализа. «Привилегированное» положение метода ССП объясняется простотой регистрации, не требующей хирургического вмешательства (неинвазивностью), возможностью наблюдать активность многих областей мозга в динамике, в течение длительных интервалов времени, при выполнении сложных задач, у здоровых испытуемых любого возраста, у пациентов и у животных. Ограничения и преимущества ССП как исследовательского инструмента можно видеть при его сопоставлении с другими методами (включая и методы, основанные на регистрации ЭЭГ). Особенности метода ССП важно учитывать при его совместном использовании с другими современными методами исследования активности мозга [Gevins et al., 1995]. Сопоставимость результатов, получаемых различными методами, включая ССП, обеспечивается тем, что все они являются дополнительными описаниями метаболизма мозговой ткани (см. [Event-Related, 1991]).
3. ФЕНОМЕНОЛОГИЯ И ТИПОЛОГИЯ ССП
Одним из наиболее значительных результатов, которые получены при изучении ССП, является описание различных потенциалов, связанных по времени с определёнными событиями и имеющих специфические амплитудно-временные характеристики, конфигурацию и топографию.
3.1. Зрительные вызванные потенциалы
Зрительные вызванные потенциалы (ЗВП, visual evoked potentials - VEP) [Шагас, 1975; Рутман, 1979; Максимова, 1982; Rockstroh et al., 1982] регистрируются в ситуации предъявления зрительной стимуляции – вспышек или каких-либо структурированных изображений (геометрических или предметных). В последовательности колебаний ЗВП, зарегистрированных со скальпа, выделяют волны (см. параграф 2.6) Р40, N70, Р100-130, а также комплекс волн N240-420 (рис. 16.1 А). Волны с ЛП до 80 мс более выражены во фронтальных отведениях, что связывают с вкладом в ЗВП потенциала электроретинограммы (см. гл. 2). Начиная с 70 мс волны максимально представлены в постцентральных отведениях ( Т5 , Т6 О1, О2 , О z).
3.2. Слуховые вызванные потенциалы.
Слуховые вызванные потенциалы (СВП, auditory evoked potentials – АЕР) [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982; Hughes, 1985] регистрируются в ситуации предъявления слуховой стимуляции (тонов различной частоты, интенсивности и длительности). Комплекс из восьми волн, развивающийся в интервале до 15 мс после стимула, амплитудой 0,1–0,5 мВ, максимально выраженный в вертексе (С z), называют слуховым потенциалом ствола мозга (brain stem auditory evoked potentials – BAEP). Предполагают, что эти волны отражают вызванную активность в структурах слухового анализатора – от слухового нерва до медиального коленчатого тела. Среднелатентные ( N0, Р0, Na, , Р a, Nb) и длиннолатентные колебания Р50-80 (Р1), N80-120 ( N1 ), Р160-200 (Р2), N200-250 ( N2 ), имеют максимальную амплитуду в центральных и фронтальных отведениях, хотя наиболее позднее из них – Р300 (Р3.), преимущественно выражено в постцентральных отведениях (рис. 16.2 А).
Рис. 16.1. ЗВП, усреднённые от момента предъявления вспышки света высокой интенсивности (0.26 Дж), N = 30
Испытуемые должны были как можно быстрее нажимать на кнопку при предъявлении вспышки света. А – С z, Oz (отведения ЭЭГ); 1 – распределение ЛП начало активации mm. thenar; Б – соотношение компонентов ЗВП с накопленной ЭМГ-активностью (2). Момент предъявления вспышки отмечен вертикальной линией.
Рис. 16.2. Потенциалы, усреднённые от предъявляемых сигналов
ССП зарегистрированы в ситуации обнаружения светового порогового сигнала. Серию вспышек нарастающей интенсивности (от 10–5 до 10–2 нт) предъявляли после предупреждающего сигнала. Испытуемый должен был нажимать кнопку после первой из обнаруженных вспышек. Регистрировали семь отведений ЭЭГ, ЭОГ, ЭМГ и механограмму нажатия кнопки.
На каждом фрагменте рисунка представлены: усредненый потенциал (для одного испытуемого), основные компоненты обозначены арабскими цифрами (справа); распределение средних значений амплитуд соответствующих компонентов потенциала по разным отведениям (для группы испытуемых) (слева).
А – СВП, усреднённый от звукового тона (60 дБ, указан стрелкой), отведение Р 3 N = 30. Под потенциалом отмечен интервал наиболее вероятного появления (95% событий) микронажатий и саккадических движений глаз; Б– ЗВП, усреднённый от момента обнаруженной вспышки света (чёрный треугольник), отведение О2 N =116. Под потенциалом отмечен интервал наиболее вероятного начала нажатия на кнопку (95% событий); В – ЗВП, усреднённый от необнаруженных вспышек света (белый треугольник), отведение О 1 , N= 101. Внизу отмечен интервал наиболее вероятного появления (95% событий) микронажатий и саккадических движений глаз
3.3. Соматосенсорные вызванные потенциалы
Соматосенсорные вызванные потенциалы (ССВП; somatosensory evoked potentials, SEP) [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982] регистрируются в ситуации механической или электрической черезкожной стимуляции периферических нервов. Колебания устойчивой конфигурации регистрируются со скальпа, начиная с Р15. Колебания N20, P20, P25 и P45 максимально выражены в контралатеральном нанесённому раздражению полушарии (поля 1 и 3). Развитие колебания ЛП связывают преимущественно с активностью в постцентральной извилине. Колебания с ЛП более 50 мс представлены слева и справа, комплекс колебаний сложной конфигурации с ЛП более 100 мс (включая Р300) проявляется преимущественно в центральных и париетоокципитальных отведениях [Rockstroh et al., 1982].
3.4. Потенциалы, связанные с выполнением движений
Потенциалы, связанные с выполнением движений (ПСВД, movement-related potentials – MRP, movement-related brain potentials – MRBP; в русскоязычной литературе используют неточный термин «моторные вызванные потенциалы – МВП»). К этой группе феноменов, впервые описаных Н.Н. Kornhuber и L. Deecke (см. [Rockstroh et al., 1982; Deecke et al., 1984; Иванова, 1991]), относят потенциалы, которые выделяются усреднением от начала быстрых произвольных движений, определяемых по ЭМГ или механограмме (рис. 16.3 А). На интервале около 1 с до начала движения развивается медленное негативное отклонение – потенциал готовности (Bereitschaftpotential, ВР, readiness potential), в первые 500 мс представленный билатерально-симметрично в прецентральных и париетальных отведениях, а в следующие 500 мс лучше выраженный в центральных отведениях, контралатеральных движущейся части тела. Потенциал готовности завершается приблизительно за 150 мс до начала движения коротким позитивным колебанием (премоторная, или преддвигательная позитивность – ПМП, premotion positivity – РМР). Распределение амплитуд ПМП по скальпу характеризуется высокой межиндивидуальной вариативностью. Последующая негативность (моторный потенциал, МП, motor potential – МР) совпадает во времени с началом движения и максимально выражена в центральных или прецентральных областях, контралатеральных движущейся части тела. После МП равивается позитивная волна, называемая потенциалом реафферентации (reafferent potential, responce after potential, RAP). Характерная для баллистических движений конфигурация ССП может изменяться так, что при выполнении плавных, длительных и медленных движений регистрируются ССП с небольшой амплитудой колебаний (рис. 16.3 Б).
Рис. 16.3. Потенциалы, связанные по времени с двигательной активностью
А – ПСВД, усреднённые от начала ЭМГ-активаций (чёрный кружок) при нажатии на кнопку после обнаруженной вспышки света, отведение О 1, N= 101, внизу отмечен размах распределения окончаний движения. Б– ПСВД, усреднённые от начала микронажатий: первых после звукового тона (белый кружок), отведение Р 3, N= 15 (вверху); на этапе наблюдения (перечёркнутый кружок), отведение F 3 N=33 (внизу). B – I- потенциалы, усреднённые от начала саккадических движений глаз: от первых после звукового тона (белый кружок), отведение F 4 N =17 (вверху); на этапе наблюдения (перечёркнутый кружок), отведение О 2 N= 14 (внизу). Под каждым потенциалом на Б и В показаны распределения окончаний движений. Остальные обозначения см. на рис. 16.2
3.5. Условная негативная волна
Условная негативная волна (УНВ, contingent negative variation – CNV, или волна ожидания, expectancy wave – E-wave). В ситуации предъявления двух стимулов, первый из которых служит предупреждающим, а второй – императивным (т.е. сигналом к началу заданного инструкцией действия), в интервале между ними наблюдается медленное негативное отклонение потенциала. Впервые этот феномен был описан в экспериментах на кроликах B.C. Русиновым в 1962 г., а в 1964 г. зарегистрирован у человека Греем Уолтером (см. [Кануников, 1980]). Негативная волна начинается приблизительно через 400 мс после предупреждающего сигнала и завершается высокоамплитудной позитивностью после императивного сигнала. При коротком интервале между предупреждающим и императивным стимулами УНВ представляет собой унитарное медленное колебание, в котором при увеличении интервала между стимулами выделяют два компонента: О-компонент, проявляющий связь с ориентировочным компонентом активности, более выраженный во фронтальных отведениях, и Е-компонент, связанный с готовностью к действию и выраженный преимущественно в центральных и постцентральных областях (рис. 16.4 А).
Рис. 16.4. Потенциалы, связанные с задачей обнаружения
А – фрагменты УНВ, усреднённые от предупреждающего сигнала (стрелка) и императивного сигнала (чёрный треугольник), отведение F 3, N=22; Б– потенциалы, связанные с обнаружением сигнала (чёрный треугольник – обнаруженная, белый треугольник – необнаруженная вспышка света), отведение О1, N =45. Остальные обозначения см на рис. 16.2
3.6. Колебание Р300
Колебание Р300 (Р3 ; позднее позитивное колебание, late positive wave). Впервые этот феномен был описан в 1965 г. С.Саттоном (см. [Sutton, Ruchkin, 1984]) как позитивная волна, амплитуда которой зависит не от физических характеристик стимула, а от степени неопределённости, разрешаемой при его предъявлении. Для исследования Р300 наиболее часто используют ситуацию предъявления двух сигналов в случайном порядке, варьируя их вероятности (oddball paradigm). В случае привлечения внимания к более редким стимулам или при каких-либо операциях с ними, например при их счёте или обнаружении, развивается волна Р300 (см. рис. 16.4 Б, фрагмент 4). Колебание Р300 имеет сложную структуру. В нём выделяют компоненты Р3 a и Р3 b. Вопреки точному наименованию, к этому классу феноменов относят позитивные колебания с ЛП от 250 до 600 мс, и даже до 1500 мс. Волна Р300 максимально выражена в центро-париетальных отведениях [Pritchard, 1981; Rockstroh et al., 1982; Sutton,Ruchkin, 1984; Aleksandrov, Maksimova, 1985].
3.7. Принципы упорядочения феноменологии ССП
Перечень известных типов ССП постоянно пополняется, и нет оснований считать его близким к завершению [Donchin, Isreal, 1980]. Приведём в качестве примеров наиболее известные феномены: N 200 связанный с некоторыми аспектами процесса распознавания; N 400 – с семантическим рассогласованием; N a – с распознаванием паттерна; Nd – с определением канала, по которому поступает обрабатываемый сигнал; MMN – негативность, связанная с рассогласованием; негативный потенциал направленного внимания, связанный с предвосхищением изменения направления движения сигнала при выполнении задачи слежения; финальный потенциал (низкоамплитудная позитивость и последующая медленная негативность, связанные с окончанием произвольного движения); лямбда-потенциал (1-potential) – комплекс колебаний, связанный с саккадическими движениями глаз (см. рис. 16.3 В); ССП, связанные с обнаружением сигнала (см. рис. 16.4 Б); ССП, связанные с целенаправленными движениями и мн. др. [Cooper et al., 1977; Yagi, 1979; Deecke et al., 1984; Ritter et al., 1984; Максимова, Александров, 1987; Иванова, 19916; Naatanen etal., 1993].
Предполагается, что чем больше будет известно различных типов потенциалов, тем более подробно можно будет описывать активность мозга в поведении [Sutton, Ruchkin, 1984]. При этом одной из самых важных задач становится упорядочение феноменологии потенциалов, т.е. построение классификации, определяющей как соотношение между уже известными типами ССП, так и место для новых феноменов.
В настоящее время общепринятой классификации ССП не существует. Можно выделить несколько принципов упорядочения феноменологии СПП, использующихся исследователями.
По мнению Б. Рокстроха [Rockstroh et al., 1982], наиболее общим и исходным является разделение ССП на экзогенные и эндогенные. К экзогенным относятся колебания ССП с ЛП менее 100 мс, модально-специфическим распределением амплитуд по скальпу, высокой интраи интериндивидуальной стабильностью характеристик и зависимостью параметров от физических характеристик стимула (ср. ЗВП, зарегистрированные при различной интенсивности вспышек света, на рис. 16.1 и на рис. 16.2 Б и В). Для эндогенных ССП характерны: ЛП более 100 мс, широкое модально-неспецифическое распределение амплитуд по поверхности головы, независимость характеристик ССП от физических свойств события, их вызвавшего, связь параметров ССП с задачей, которую выполняет испытуемый, а также с его психологическим состоянием.
Из этого же принципа исходили Р. Наатанен и П.Т. Мичи [Naatanen, Michie, 1979], которые построили классификацию эндогенных негативностей: потенциала готовности, О- и Е- компонентов УНВ, негативности, связанной с речью, продолжительного негативного сдвига (sustained negative shift), негативности, связанной с рассогласованием (mismatch negativity, MMN), и многих других феноменов. Классификация построена на нескольких категориях признаков – на характеристиках ситуаций, в которых феномены выявляются, а также на психических функциях, вовлекающихся в решение задачи. Некоторые феномены не вошли в классификацию (негативность, связанная с речью), а некоторые (О-компонент УНВ) – оказались принадлежащими к двум её классам одновременно.
Принцип деления потенциалов на экзогенные и эндогенные, а также связанным с ним делением на поздние и ранние, специфические и неспецифические является весьма условным и не согласуется с результатами нескольких направлений исследований. Экспериментально показана зависимость параметров ранних компонентов ВП от характеристик поведения [Швырков, 1978; Максимова, 1982; Desmedt, 1984]. Установлена зависимость от уровня бодрствования и состояния внимания для волн слухового потенциала ствола мозга с ЛП менее 10 мс [Hughes, 1985]. В то же время известна зависимость характеристик поздних компонентов ВП от физических характеристик стимуляции (например, амплитуды, топографии и ЛП Р300 от модальности и интенсивности стимула) [Рутман, 1979; Pritchard, 1981].
Широко распространённая классификация Г. Бона [Vaughan, 1969] перечисляет сенсорные вызванные потенциалы (ЗВП, СВП, ССВП), которые по времени связаны с предъявлением стимулов; потенциалы, связанные с подготовкой и выполнением движений (ПСВД); потенциалы с продолжительными латентными периодами, которые связаны со «сложными психологическими явлениями» (УНВ, Р300 и др.), а также сдвиги постоянного потенциала.
Итак, в современных исследованиях сосуществуют несколько несовпадающих друг с другом, неполных и внутренне противоречивых классификаций ССП. Это приводит к тому, что остаются неопределёнными отношения между уже известными ССП. Принятые способы упорядочения феноменологии ССП по существу представляют собой не классификации, а лишь перечисления, каталоги феноменов [Donchin, Isreal, 1980; Rockstroh et al., 1982].
Очевидно, что система классификации ССП, количество классов и соотношения между ними зависят от общего представления о том, какие процессы, лежащие в основе поведения, отражаются в ССП.
4. ПРОБЛЕМА ФУНКЦИОНАЛЬНОГО ЗНАЧЕНИЯ ССП
В рамках коррелятивной психофизиологии (см. [Швырков, 1995] и гл.14) предполагается, что колебания (компоненты) ССП отражают специфические функции структур мозга, которые реализуют соответствующие психические функции, т.е. имеют определённое функциональное значение. Чтобы найти функциональное значение ССП, неоходимо установить взаимооднозначное соответствие между ССП, гипотетическим источником – структурой мозга и реализацией определённой психической функции (процесса, поведенческого феномена).
При определении функционального значения ССП предполагается, что использование строгих процедур эксперимента и точных инструкций испытуемым, т.е. связь с задачей, предопределяет активацию определённых структур мозга и вовлечение соответствующих психических функций. При этом по топографии амплитуд колебания ССП может быть выявлена структура мозга – локальный источник этого колебания, по ЛП колебания – время, необходимое для проведения и развития нервного процесса, по полярности – наличие процесса возбуждения или торможения, интенсивность которого может проявляться в амплитуде колебания [Шагас, 1975; Рутман, 1979; Rockstroh et al., 1982].
4.1. Психологические корреляты
Поиски психологических коррелятов ССП показали, что:
1. один и тот же ССП связан со многими психологическими процессами (функциями)
2. одни и те же психические функции оказываются связанными с разными ССП.
Так, например, амплитуда, ЛП и топография Рздц связаны с принятием решения, ожиданием, ориентировочной реакцией, значимостью стимула, степенью субъективной уверенности, процессом сравнения, рассогласованием, осознаванием и неосознаваемыми процессами, а также характеристиками эпизодической памяти. В то же время процесс внимания оказывает влияние на характеристики ранних и поздних компонентов ВП, Р300, УНВ и потенциала готовности [Шагас, 1975; Рутман, 1979; Pritchard, 1981; Rockstroh et al., 1982; Psychophysiol. Brain Research, 1990; Rohrbaugh et al., 1990; Event-Related, 1991]. Следует заметить, что многозначность связей ССП с психологическими и поведенческими переменными вопреки исходным предположениям о функциональном значении ССП оказалась узаконенной в исследовательской практике как основной многократно подтверждённый факт. Правила публикаций исследований ССП требуют детальнейшего описания ситуации эксперимента и состояния испытуемого, включая его принадлежность к какой-либо социальной группе, степень заинтересованности, атмосферное давление и температуру воздуха и т.п. [Donchin et al., 1977].
4.2. Мозговые источники
Поиски мозговых источников ССП показали следующее:
1. любое колебание ССП, регистрируемое с поверхности головы, представляет собой отражение активности множества корковых и подкорковых структур;
2. разным типам ССП соответствуют перекрывающиеся наборы активных областей мозга [Squires et al., 1983; Wood et al., 1984; Илюхина, 1977; Иванова, 1991].
Продемонстрирована тесная, но непостоянная связь между корковыми и подкорковыми эквивалентами поверхностных ССП, например показана несинхронность, инверсия полярности и непостоянство локализации подкорковых эквивалентов УНВ в повторных пробах [Илюхина, 1977].
Попытки уточнить локализацию источников ССП, применяя регистрацию активности отдельных нейронов, продемонстрировали, что любому колебанию ССП, сопровождающему поведение, соответствуют активации нейронов в большом количестве разных структур мозга [Швырков, 1978, 1995] (см. гл. 14). Не удалось выявить и точного соответствия между полярностью волн ССП и количеством активирующихся нейронов [Думенко, 1979; Максимова, Александров, 1987].
Основной результат поиска функционального значения состоит в том, что каждое колебание или компонент ССП: 1) является электрическим проявлением одновременной активности множества мозговых структур и 2) может быть поставлен в соответствие множеству психологических феноменов, функций и процессов. Очевидно, что этот факт находится в очевидном противоречии с исходной гипотезой о взаимооднозначном соответствии активности определённой структуры мозга и определённого психологического (поведенческого) явления. Поскольку проблема функционального значения ССП остаётся нерешённой, принцип классификации феноменологии ССП в коррелятивной психофизиологии остаётся неопределённым (см. параграф 3).
Можно предположить, что многозначность связей ССП с активностью мозга и с психологическими переменными представляет собой не непосредственное следствие несовершенства методов исследования активности мозга или нечёткости психологической терминологии [Donchin, Isreal, 1980], а является важным, надёжно подтверждённым экспериментальным фактом. Этот факт не получил непротиворечивого объяснения в рамках морфофункциональных представлений об организации поведения, поскольку искомое взамооднозначное соответствие структур и функций составляет один из исходных постулатов этого подхода.
5. ССП КАК ОТРАЖЕНИЕ ДИНАМИКИ ИНДИВИДУАЛЬНОГО ОПЫТА
ССП представляют собой суммарный электрический потенциал различных компонентов ткани мозга, вклад в который вносят нейроны (сома, дендриты и аксоны), глиальные клетки, мембраны клеточных органелл (например, митохондрий), элементы гематоэнцефалического барьера, кровеносные сосуды, динамика электролитов межклеточных жидкостей и т.д. [Rockstroh et al., 1982]. Протекание процессов, отражающихся в ССП, в том числе и активность нейронов, согласовано в рамках поведения, рассматриваемого в системной психофизиологии как взаимоотношение целостного организма со средой [Швырков, 1978, 1995] (см. гл. 14). Следовательно, феноменология ССП детерминирована динамикой компонентов структуры индивидуального опыта субъекта, которая лежит в основе поведения. Под компонентами структуры индивидуального опыта понимаются единицы опыта (см. гл. 14), а также их объединения и взаимоотношения между ними.
Компоненты структуры опыта представлены группами нейронов различных структур мозга, специализированными относительно систем поведенческих актов. Активность этих нейронов обеспечивается согласованным метаболизмом тканей мозга. Именно поэтому ССП отражают динамику активации групп нейронов, соответствующих компонентам опыта. Специфика актов поведения, которые осуществляются для достижения результатов, удовлетворяющих потребности субъекта, определяется составом актуализированных компонентов опыта, поэтому в параметрах, сопровождающих поведенческие акты ССП, отражаются разнообразные психологические характеристики реализующегося поведения. Эта гипотеза о соотношении ССП и процессов, лежащих в основе поведения, объясняет экспериментально показанную связь ССП с одновременной активностью многих областей мозга, а также с различными проявлениями и психологическими описаниями поведения. Заметим, что приведённые положения соответствуют фундаментальному принципу неразделимости целостного поведения на изолированные «сенсорные», «моторные», «эмоциональные», «мотивационные» и другие составляющие [Швырков, 1978, 1995]. Например, отказ от регистрации двигательной активности при изучении ЗВП лишь сужает возможности исследования, но не отменяет неустранимую двигательную активность субъекта.
Взаимодействие субъекта с окружающей средой осуществляется как последовательность поведенческих актов. Хотя специфика поведенческого акта определяется конкретным набором актуализированных компонентов опыта и их взаимоотношениями, последовательность изменений состава компонентов опыта на протяжении каждого акта обладает общими чертами для разных поведенческих актов, независимо от их содержания [Максимова, Александров, 1987; Александров и др., 1997].
5.1. Потенциал универсальной конфигурации
Сопоставление ССП, сопровождающих поведение испытуемых в различных экспериментальных ситуациях, показывает, что реализации и смене поведенческого акта соответствует потенциал универсальной конфигурации (см. рис. 16.4, А). Основными составляющими этого потенциала являются позитивно-негативный комплекс, наблюдающийся в начале реализации акта, следующая за ним медленная позитивность, за которой развивается негативная волна, сопровождающая реализацию акта, а затем – негативно-позитивный комплекс, соответствующий переходу к следующему акту. Начальные фрагменты универсального потенциала более ярко выражены во фронтальных и центральных, а завершающие – в париетоокципитальных отведениях.
Потенциал универсальной конфигурации устойчиво воспроизводится в ситуации обнаружения зрительных, слуховых и тактильных сигналов, в стратегической игре с партнёром, при обнаружении движущихся объектов, исполнении партии на музыкальных инструментах, в различных ситуациях, используемых для исследования УНВ, ПСВД и сложных навыков, в ситуации вероятностного прогнозирования, у человека и у животных различных видов [Александров, 1985; Aleksandrov, Maksimova, 1985; Максимова, Александров, 1987; Александров и др., 1997].
Негативная волна потенциала универсальной конфигурации, сопровождающая реализацию поведенческого акта, разделена на фрагменты низкоамплитудными позитивностями, которые соответствуют во времени движениям (например, пальца и/или глаз; см. рис. 16.3 Б и В). Для различных экспериментальных парадигм, например при регистрации ЗВП в ситуации простого времени реакции (см. рис. 16.1 Б), СВП и ЗВП в ситуации обнаружения (см. рис. 16.2 А, Б, В) характерно совпадение во времени позитивных колебаний потенциала и начала движений испытуемых [Максимова, 1982; Максимова, Александров, 1987]. Это продемонстрировано также в экспериментах на животных [Александров, 1985].
Сопоставление основных составляющих потенциала универсальной конфигурации с динамикой актуализации компонентов структуры опыта, установленной при исследовании активности корковых нейронов, которые специализированы относительно систем определённых поведенческих актов, показало (рис. 16.5), что конфигурация ССП отражает необходимые этапы преобразования наборов компонентов опыта в процессе реализации поведения: позитивизация – уменьшение специфичности набора (см. рис. 16.5, фрагменты 2 и 3), а негативизация – увеличение специфичности набора компонентов опыта по отношению к достигаемому результату поведения (см. рис. 16.5, фрагмент 4). Амплитуда колебаний отражает объем изменений наборов компонентов опыта, крутизна фронтов и длительность колебаний – скорость этих изменений, а особенности их топографии – соотношения количеств нейронов, представляющих различные компоненты структуры опыта, в разных структурах мозга [Aleksandrov, Maksimova, 1985; Максимова, Александров, 1987; Александров и др., 1997]. С этой точки зрения связь позитивных колебаний с двигательной активностью отражает изменение состава набора актуализированных элементов опыта, которое лежит в основе перехода от одного этапа поведения к другому.
5.2. Основания классификации ССП
Различные типы ССП представляют собой не специфические феномены [Швырков, 1978], а фрагменты или варианты анализа потенциала универсальной конфигурации в соответствии с различными аспектами описания поведения и событиями во взаимоотношениях субъекта с внешней средой. В соответствии с тем или иным аспектом анализа один и тот же фрагмент потенциала универсальной конфигурации, зарегистрированный в ситуации обнаружения сигнала, может быть отнесён к разным типам ССП. Например, фрагмент ССП, совпадающий по времени с завершением акта ожидания предъявления вспышки света; может быть описан как ЗВП по отношению к вспышке света, как «негативно-позитивный комплекс, связанный с обнаружением сигнала», – по отношению к обнаруживаемому сигналу; как «комплекс Е- волна – высокоамплитудная позитивность» – по отношению к императивному значению того же сигнала (если методика предусматривает регистрацию двигательной активности, то этот комплекс может быть интерпретирован как ПСВД; ср. рис. 16.2 Б; рис. 16.3 А; рис. 16.4 А и Б) [Максимова, 1982; Максимова, Александров, 1987]. В коррелятивной психофизиологии для регистрации каждого типа потенциалов стремятся к применению «рафинированных» экспериментальных ситуаций, позволяющих, как предполагается, «изолировать» отдельные аспекты поведения и психические процессы. Приведённые данные показывают, что в ситуации в которой не предусмотрено такого расчленения поведения, можно выделить основные типы ССП, не нарушая самых строгих критериев идентификации.
Рис. 16.5. Соотношение компонентов потенциала универсальной конфигурации с характеристиками активации совокупностей нейронов, специализированных относительно последовательных этапов поведения при обнаружении сигнала у кролика
1 – схема потенциала, ЛП и амплитуды колебаний (средние данные по 10 животным); 2 – распределение начала и завершения активации корковых нейронов; 3 – распределение вероятности одновременной активации нейронов, специализированных относительно последовательных этапов поведения, которое совпадает по времени с развитием высокоамплитудной позитивной волны; 4 – распределение количества нейронов, связанных с актом ожидания предъявления сигнала при разных исходах обнаружения: либо при правильных обнаружениях, либо при ложных тревогах (количество нейронов, специфически связанных с конкретным исходом обнаружения, увеличивается на протяжении развития медленной негативной волны).
Фрагменты 1, 2 и 3 совмещены по моментам предъявления вспышек света (обнаруженная вспышка – чёрный треугольник, необнаруженная – белый треугольник). На фрагменте 4 (чёрный кружок – момент начала движения после обнаруженной вспышки света) подчёркнуты интервалы распределений предъявленных вспышек света
Поскольку в ССП отражается динамика актуализации индивидуального опыта, основанием для построения классификации ССП могут быть характеристики этой динамики: количество, степень актуализации и взаимоотношения компонентов структуры опыта, характерные виды и этапы трансформации их составов, а также особенности их распределения по различным областям мозга [Максимова, Александров, 1987; Александров и др., 1997].
Важно отметить, что предлагаемый подход к классификации ССП не только учитывает основные феномены, выявленные при исследованиях ССП, но, вводя их в контекст исследования поведения, позволяет дать им собственно психофизиологическую трактовку.
6. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ССП
Эффективность использования ССП как метода психофизиологического исследования определяется решением основной проблемы: каково соотношение параметров ССП, активности мозга, феноменов поведения и психологических явлений. Решение этой проблемы необходимо: 1) для построения классификации, непротиворечиво включающей известные ССП и предусматривающей места для новых ССП т.е. классификации, которая может заменить существующие каталоги феноменов ССП и 2) для того, чтобы по характеристикам ССП судить о скрытых для непосредственного наблюдения процессах, которые лежат в основе поведения.
Вывод; который можно сделать на основании многочисленных исследований, посвящённых различным аспектам этой проблемы, состоит в многозначности связей ССП с активностью мозговых структур и феноменами поведения. Этот вывод находится в противоречии с предполагаемым в коррелятивной психофизиологии взаимооднозначным соответствием между ССП, активностью мозга и психологическими характеристиками поведения. Полагают, что разрешить это противоречие можно, уточняя психологическую терминологию, фокусируя экспериментальные процедуры на конкретных психологических процессах и разрабатывая точные методы определения источников биоэлектрических феноменов.
С позиций системной психофизиологии многозначность связей ССП с активностью мозговых структур и феноменами поведения представляет собой важнейший экспериментальный факт. Гипотеза о том, что характеристики ССП отражают динамику индивидуального опыта, предполагает существование связи любых феноменов ССП с одновременной активностью многих областей мозга и различными психологическими описаниями текущего поведения. В таком случае проблема соответствия параметров ССП, активности мозга, феноменов поведения и психологических явлений будет решена, если:
1. будут разработаны методики, позволяющие одновременно оценивать различные характеристики целостного поведения субъекта, и, исходя из объективного описания внешне наблюдаемого поведения, реконструировать структуру и динамику индивидуального опыта субъекта;
2. будет установлено соответствие между формальным количественным описанием структуры и динамики индивидуального опыта и психологическими описаниями текущего поведения;
3. будет установлено соотношение между активностью совокупностей нейронов с различной системной специализацией и основными параметрами динамики индивидуального опыта, учитывая принадлежность нейронов к тем или иным структурам мозга и их морфологическую специфику.
Именно с решением этих вопросов связаны перспективы использования метода ССП для психофизиологического изучения поведения в строго регламентированных парадигмах, традиционных для экспериментальной и клинической практики, а также не регламентированной экспериментатором произвольной предметной деятельности человека.