Общее количество патентов на изобретения, выданных во всем мире, составляет около 13 миллионов. Предположим, что одно описание можно прочитать за 5 минут. Тогда на ознакомление с мировым патентным фондом потребуется около 125 лет.

Есть, однако, еще один «патентный фонд», в котором изобретений так много, что ознакомиться с ними человечеству не удалось за все время существования. Это п а-тентный фонд природы.

Человек издавна пользовался идеями, «запатентованными» природой. Количество изобретений, имеющих прямые прообразы в природе, вероятно, измеряется десятками тысяч. И все же пока освоена ничтожная часть «изобретений» природы, лишь те, которые лежали на виду.

Еще недавно господствовало мнение, будто одни и те же задачи в технике и в природе решаются разными путями. Действительно, технические решения чаще всего не похожи на решения природные. То, что в природе достигается тихо и как-то незаметно, в технике нередко связано с использованием огромных температур и давлений, с колоссальным расходом энергии, словом, с «большими потенциалами». Эти «.большие потенциалы» выглядят куда более внушительными, чём едва заметные приспособления каких-то букашек.

Считалось азбучной истиной, что копирование природы лежит в стороне от главной линии развития техники. Поэтому изобретатели, решая новые технические задачи, обычно даже не делали попыток использовать ответы, уже полученные природой.

Какой же путь предпочтительнее - традиционно-технический или тот, по которому развивались «живые машины»?

Сравним, например, крыло самолета и крыло птицы. Крыло современного самолета - одно из наивысших достижений техники. Но ни один самолет не может соперничать с птицами по количеству поднимаемого груза на единицу затрачиваемой мощности. Если бы крылья современных самолетов были машущими, они поднимали бы 120-130 кг груза на 1 л. с, развиваемую двигателями. А пока крылья наиболее совершенных машин способны поднять лишь вдесятеро меньший удельный груз.

Особенно велико превосходство природы в конструировании «контрольно-измерительных приборов». Кузнечик располагает слуховой аппаратурой, улавливающей колебания, амплитуда которых равна половине диаметра атома водорода! Не удивительно, что именно приборостроители первыми пришли к выводу о необходамости планомерно изучать и переносить в свою практику принципы, используемые природой. Так возникла бионика - наука, решающая инженерные проблемы приемами, заимствованными у природы.

Вначале бионика занималась лишь моделированием органов чувств. Сейчас круг решаемых ею проблем значительно расширился: бионика берется за задачи, относящиеся к самым различным отраслям техники. Общим является лишь метод*решения - использование прообразов природы.

В сущности, восьмой шаг оперативной стадии АРИЗ можно было бы сформулировать так: надо подойти к решению изобретательской задачи с позиций бионики. Теоретически здесь все просто-изобретатель заимствует готовое решение. Практически же, прежде чем позаимствовать, надо найти подходящий природный прообраз. И тут оказывается, что при всей теоретической бесспорности этого приема практически он может быть использован лишь в редчайших случаях.

На семинарах по методике изобретательства были решены сотни учебных и производственных задач, но ни разу в качестве подсказки не использовались природные прообразы! Правда, после решения задачи нередко удавалось «подобрать» для найденной идеи природный аналог. Это укрепляло уверенность в том, что решение правильное, но не больше.

В чем же дело?

Казалось бы, появление бионики должно было сразу дать каскад ошеломляющих изобретений во всех отраслях техники. Но отдача бионики пока заметна лишь в кибернетике. Здесь бионика стала надежным компасом исследователя. В других отраслях техники живые прототипы используются не чаще, чем в те времена, когда вместо нового слова «бионика» употреблялось выражение «копирование природных прообразов».

Достаточно прочесть несколько книг и статей по бионике, чтобы обнаружить один и тот же весьма скромный набор примеров: ультразвуковая локация у летучих мышей; жужжальца-гироскопы у мух; китообразная форма судов; кожа дельфина, снижающая сопротивление воды при движении; искусственное «ухо медузы», предупреждающее о приближении шторма…

И вот что характерно: сначала, как правило, делается изобретение, а потом отыскивается его живой прототип. Так, например, принцип метода снижения сопротивления бш1 предложен Крамером еще в 1938 году, а лишь в 1955 году тот же Крамер обнаружил, что дельфины «применили его идею».,.

Представьте себе патентную библиотеку, в которой миллиарды самых различных патентов расставлены по полкам в неизвестном для вас порядке. Именно такой видит «патентную библиотеку» природы изобретатель, работающий над решением новой технической задачи.

Н$деди*ой методики выбора живых прототипов пока нет. Поэтому в большинстве случаев изобретателю оказывается проще самому найти решение, чем отыскать подходящий патент природы.

И все-таки ддеративная стадия АРИЗ включает бионический ш$г. Есть два подхода, облегчающие ориентировку в гигантском патентном фонде природы!

1. Нужно искать прототипы среди древних животных: старые патенту природы проще и в то же вр^дея достаточно эффективны.

2. Нужно рассматривать общие тенденции в развитии патентов Природы. Найти готовое решение очень трудно, но почти всегда можно выявить тенденции развития природных аналогов.

Поговорим об этом подробнее.

В Древней Греции было создано великолепное по тем временам изобретение: тараны, которыми разбивали ворота осажденной крепости, стали делать с торцами в виде

бараньих лбов. Такие торцы, как свидетельствуют историки, отлично воспринимали ударную нагрузку…

Неведомые древнегреческие бионики, создавая таран с бараньим лбом, вероятно, рассуждали так: «Нужно, чтобы бревно не расщеплялось и не сплющивалось при ударе. Где нам приходилось видеть что-нибудь подобное? На пастбищах! Бараны сталкиваются лбами - и ничего! Отличный прототип, лучше не придумаешь…»

По этому методу до сих пор осуществляется выбор живых прототипов: стараются отыскать возможно более совершенный «оригинал». Допустим, биолог укажет инженеру достаточно совершенный живой прототип. Хорошо? Нет. Ибо такие прототипы, как правило, сложны. Детально разобраться в их устройстве очень трудно, а построить копию порой просто невозможно.

Именно так обстоит дело с попытками скопировать кожу дельфина. В этом патенте природы и сегодня многое остается загадочным. Постепенно выясняется, что дельфин обладает тонкой и сложной системой кожного демпфирования. Нервные окончания в каждой точке кожного покрова улавливают изменение давления и передают соответствующие сигналы в центральную нервную систему, которая регулирует демпфирующую работу кожи. Практически невозможно и невыгодно копировать столь сложный прототип.

Выбирая наиболее совершенные природные прототипы, мы пользуемся последними томами патентной библиотеки природы. Не приходится удивляться, что многое оказывается непонятно: ведь мы читаем с конца!

Между тем для решения подавляющего большинства задач совсем не обязательно использовать совершенные, но слишком сложные прообразы. Гораздо перспективнее брать в качестве прообразов сравнительно менее совершенные, но зато более простые «патенты» - древних животных, изучаемых палеонтологией.

Палеобионический метод прежде всего намного расширяет «патентный фонд» природы. Среди ныне существующих животных нет, например, таких больших, какими были бронтозавры и индрикотерии. Но главное преимущество палеобионики в том, что она предлагает изобретателю значительно более Простые (и потому легче воспроизводимые) прототипы.

Можно привести такой пример. Изобретатель А. М. Игнатьев, отдыхая на даче, однажды забавлялся с котенком. Котенок царапнул Игнатьева. Изобретатель задумался: а почему, собственно, когти кошки, клюв дятла, зубы белки и зайца постоянно остры? Игнатьев пришел к выводу, что самозатачивание происходит благодаря многослойной конструкции зубов. Твердые стержневые слои окружены более мягкими слоями. Во время работы твердые слои испытывают большую нагрузку, мягкие слои - меньшую, и первоначальный угол заострения не меняется. Этот принцип Игнатьев воплотил в самозатачивающихся резцах.

Изобретатель (и это очень типично!) искал наиболее совершенные прототипы. Поэтому использованный им «патент» природы оказался сложным и самозатачивающиеся режущие инструменты нашли ограниченное применение.

Прообразы, использованные Игнатьевым, совершенно никудышные грызуны по сравнению с некоторыми динозаврами. Крупные динозавры весили десятки тонн и жили до 150-200 лет; нетрудно представить, какое количество пищи перемалывали они в течение жизни…

Особенно интересны зубы зауролофов - своего рода «.копытных» динозавров. У зауролофа каждый зубной ряд состоял из трех зубов, сидевших друг над другом. Тройных буровых коронок пока нет, но уже проводятся испытания двойных коронок (их называют коронками с опережающим лезвием). Скорость бурения с помощью таких коронок повышается в полтора-два раза.

Другая особенность принадлежащего зауролофам «патента» в том, что режущие органы непрерывно растут, сменяя друг друга. Принцип этот чрезвычайно интересен. До сих пор усилия изобретателей, совершенствующих буровой инструмент, шли по привычному технике пути: «Зубья долота иступились, давайте поскорее вытащим долото и сменим его». Существуют сотни изобретений на тему «поскорее вытащить долото». С точки зрения бионики надо идти другим путем: делать зубья более износоустойчивыми, самозатачивающимися. Зауролоф подсказывает еще более интересное решение. Пусть зубья будут расположены в несколько рядов. Каждый ряд опирается на мягкую основу. Когда зубья первого ряда износятся, вращение долота за несколько оборотов разрушит мягкую основу. Долото осядет, в соприкосновение с

грунтом вступит второй ряд зубьев («вырастут новые зубы»).

Недавно советским изобретателям Ю. Буштедту, А. Атякину, Л. Лачияну, Н. Литвинову выдано авторское свидетельство № 161008 на двухъярусную буровую коронку. Формула этого изобретения очень точно повторяет древний «патент» ящеров: «Двухъярусная буровая коронка, состоящая из корпуса и двух ярусов резцов, отличающаяся тем, что, с целью предохранения резцов верхнего яруса от разрушения при вводе их в работу, под временную опору резцов нижнего яруса подослана амортизирующая подушка из мягкого материала».

Современные животные по размерам значительно уступают динозаврам. Они не так прожорливы и обходятся одним комплектом зубов (иногда растущих в течение всей жизни). И только исполины-слоны имеют сменные зубы «запатентованные» когда-то зауролофами…

Мечехвоста сейчас можно встретить лишь на восточном побережье Северной Америки и Азии. Это животное было современником не только динозавров, но и ближайших своих «родственников» - трилобитов, вымерших еще в палеозойскую эру. Несмотря на постоянно менявшиеся условия жизни, мечехвост за 200 миллионов лет почти не претерпел изменений и дожил до наших дней.

Особый интерес представляют глаза мечехвоста. У него два больших сложных глаза, расположенных по бокам панциря, и два маленьких глаза спереди. Каждый глаз состоит как бы из множества отдельных линз. Глаза мечехвоста очень чувствительны, и это обстоятельство долгое время было загадкой для ученых, поскольку животное ведет ночной образ жизни и большую часть времени проводит зарывшись в песок.

Длительное изучение глаза мечехвоста привело американского ученого Хартлайна к интересному открытию. Оказалось, что клетки зрительных нервов животного соединены перекрестно. Когда одна клетка стимулируется, другая тормозится. Таким образом, на сетчатке глаза получается четкое, контрастное изображение. Это открытие привело к созданию телевизионной системы с чрезвычайно контрастным изображением, что имеет огромное значение, например, при передаче фотографий с других планет на Землю.

Дальнейшее изучение дало возможность установить,

что глаз животного улавливает ультрафиолетовые и инфракрасные лучи, невидимые для человека. Кроме того, американский ученый Уотерман обнаружил, что мечехвост воспринимает поляризованный свет, благодаря чему животное может ориентироваться, когда не видно солнца и звезд. Поиски продолжаются, и не исключено, что глаз мечехвоста послужит прототипом для нескольких сложных электронных приборов.

Древние животные, как правило, уступают современным в развитии головного мозга и нервной системы. В остальном они достаточно совершенны и могут служить прообразами для техники» Более того, в ряде случаев вымершие животные «по всем показателям» превосходят своих выродившихся потомков. Исчезли такие животные не потому, что были хуже устроены,- они вымерли из-за изменений климата и рельефа, а в некоторых случаях были истреблены человеком.

Надо сказать, что сами понятия «совершенный» и «несовершенный» весьма условны. То, что несовершенно с точки зрения природы, зачастую оказывается совершенным с точки зрения техники. Крылья летающих ящеров-птерозавров были несовершенны по сравнению с крылом птицы, ибо малейшее повреждение кожной перепонки препятствовало полету. Но у современной техники иной ассортимент материалов. С этими материалами целесообразнее копировать не птичьи крылья, работа которых в деталях до сих пор не поддается разгадке, а гладкие крылья таких отличных летунов, как вымерший рамфоринх или живущая и ныне, обладающая древней родословной стрекоза.

Многие из вымерших животных хорошо изучены. Зубы динозавров, например, есть почти в каждом естествен-ноисторическом музее. Изобретатели, решающие задачи, связанные с переработкой вещества (дробление, резание и т. п.), могли бы обнаружить много интересных идей, «запатентованных» природой десятки миллионов лет назад.

Вот авторское свидетельство № 189353: «Ковш экскаватора…, отличающийся тем, что с целью улучшения внедрения ковша в грунт в средней части полукруглой режущей кромки смонтированы прилегающие друг к другу зубья, центральная пара которых выдвинута по отношению к остальным». Нетрудно заметить тутзнако-

мую нам идею опережающего лезвия в сочетании со старым-престарым природным «патентом» на выдвинутую пару зубов (резцы, клыки, бивни).

Палеобионический метод отнюдь не возбраняет использовать в качестве прототипов и современных животных. Надо лишь выбирать наиболее древние прототипы.

Бионика давала ощутимые результаты именно тогда, когда в качестве прообразов бессознательно использовались реликтовые или, во всяком случае, очень древние животные. Так, одна из давших практические результаты работ - прибор, воспроизводящий «инфраухо» медузы. А медузы - древнейшие животные, они плавали еще в кембрийских морях.

Судостроители, копировавшие кита, в сущности, обязаны своим успехом невольному применению палеобио-ники: задолго до появления китов такую же форму тела имели ихтиозавры - стеноптеригий и звринозавр. Рети-нотрон (прибор, способный «замечать» только движущиеся предметы) считается имитацией глаза лягушки. Однако приоритет на это изобретение принадлежит тираннозавру.

Еще один пример, когда древние животные решают сложную задачу простыми способами,- антифляттерные приспособления стрекозы. Приспособления эти очень просты: на концах передней кромки крыльев имеется хитиновое утолщение - птеростигма, гасящая вредные колебания крыла. Инженеры самостоятельно пришли к той же идее. Достаточно было запаять в крыло (в том месте, где у стрекозы находится птеростигма) свинцовую гирю, как опасность фляттера исчезла.

И вот что интересно: самые молодые и быстрокрылые «модели» стрекоз не имеют птеростигмы. Если бы мы выбрали наиболее совершенные прототипы, «патент» на птеростигму так и остался бы незамеченным, ведь птеростигма есть только у таких «устаревших конструкций», как сетчатокрылые и верблюдки.

Вообще, рассматривая живые прототипы в их историческом развитии, можно обнаружить, что один «патент» природы часто заменяется другим.

Древние жуки-плавунцы имели каплевидную обтекаемую форму. Но их потомки отказались от этой (традиционной для техники) формы. Туловища современных плавунцов, узкие в передней части, сзади расширяются.

Вероятно, это очень эффективная форма. Опытами установлено, что удаление двух крохотных выступов в расширенной части туловища плавунца повышает сопротивление движению на 122%. Парадокс: площадь поперечного сечения «фюзеляжа» уменьшается, а сопротивление возрастает!

Особенно полезен палеобионический подход в тех случаях, когда приходится решать изобретательские задачи, связанные с малоизученными процессами. Здесь природные прототипы могут стать главными ориентирами. Это подтверждает, например, история изобретения антикавитациониых покрытий гидротехнических сооружений.

Кавитационное разрушение бетона плотин - явление, еще недостаточно исследованное. Многочисленные способы защиты, предлагавшиеся различными изобретателями, оказывались либо слишком дорогими, либо слишком ненадежными. Удачное решение задачи нашел Виталий Ильич Сахаров. Вот, как об этом рассказано в очерке, посвященном его изобретению:

«Однажды на берегу Черного моря Виталий Ильич заметил, что камни и валуны, покрытые водорослями или мхами, от ударов волн практически не разрушаются. Голые камни, лежащие совсем рядом, были испещрены бороздами и ямками. Нежный мох уберегал камень от разрушения. Отсюда был один шаг до технического воплощения идеи, уже осуществленной в природе» *.

Авторское свидетельство № 279443, полученное В. И. Сахаровым, действительно точно воспроизводит древний «патент» природы: «Кавитационностойкое покрытие поверхностей, например, бетонных и железобетонных гидротехнических сооружений, включающее защитный слой, отличающееся тем, что, с целью предотвращения • непосредственного контакта кавитационных ударов с телом сооружения и образования прослойки неподвижной воды, защитный слой выполнен со свободно выступающими одним концом отдельными упругими стержнями, волокнами или пластинками».

От подсказки природы до технического осуществления идеи-*-один шаг… Почему же этот шаг был сделан с таким опозданием? Неужели нужно было вплотную столкнуться с готовым решением, чтобы увидеть его? Бетон - искусственный камень. Значит, достаточно задать вопрос: «Как защищаются от кавитации естественные камни?» - чтобы прийти к правильному ответу. Старые камни, заросшие мхом, потому и «доживают» до старости, что мох защищает их от разрушения. К этому выводу можно было прийти и вдали от Черного моря…

Рис. 32. Эволюция конструкций в природе и в технике: а - так развивалось надкрылье жука; б - так совершенствовалась конструкция перекрытий зданий.

Восьмой шаг оперативной стадии АРИЗ рекомендует изобретателю не только отыскать древний прототип, но и определить направление развития природных конструкций. Нужно определить, зачем и как перестраивала природа тот или иной прототип. Палеонтолог А. Г. Понома-ренко привел в письме ко мне интересный пример такого анализа (рис. 32, а).

«При создании надкрылья жука,- пишет А. Г. Поно-маренко,- перед природой стояла задача разработать легкое, прочное и негибкое покрытие. Вот этапы этой разработки: 1) тонкая пластинка, армированная неправильно расположенными продольными трубками; 2) трубки вытягиваются вдоль надкрылья; 3) число трубок уменьшается, а сами они превращаются в ребра жесткости; 4) ребра жесткости делаются шире в верхней части; 5) верхние части ребер сливаются, получается рамная конструкция с вертикальными полыми колонками. Конструкция легкая и весьма прочная».

На рис. 32, б показано развитие перекрытий здания. Нетрудно заметить, как много общего в развитии двух конструкций - природной и инженерной. Совпадение, конечно, не случайное: цели одинаковые (легкость, прочность), поэтому и решения сходны.

В АРИЗ-71 бионическому методу отведена относительно скромная роль. Но бионика быстро развивается. Увеличивается количество опубликованных работ, постепенно расшифровываются «патенты» природы, нащупы-ваются общие принципы, лежащие в основе решения природой ее изобретательских задач.

В ближайшие годы появится возможность значительно усовершенствовать и развить эту часть алгоритма. Тогда алгоритм пополнится весьма эффективной таблицей, показывающей, как то или иное противоречие устраняется по «патентам» природы.