Алгоритм изобретения

Альтшуллер Генрих Саулович

Диалектика изобретения

 

 

Шаг за шагом

Используя понятия об идеальной машине и технических противоречиях, можно существенно упорядочить процесс решения изобретательской задачи. Идеальная машина помогает определить направление поисков, а техническое противоречие, присущее данной задаче, указывает на препятствие, которое предстоит преодолеть. Однако противоречие подчас бывает довольно хитро спрятано в условиях задачи. К тому же обнаруженное противоречие не исчезает само по себе, приходится изыскивать способы его устранения. Далеко не всегда удается одним броском преодолеть путь от постановки задачи до ее решения. Нужна рациональная тактика, позволяющая шаг за шагом продвигаться к решению задачи. Такую тактику дает алгоритм решения изобретательских задач (АРИЗ).

В следующих главах, углубляя изучение, мы детально рассмотрим отдельные «узлы» алгоритма и на конкретных примерах покажем, как они работают, а пока дадим общий обзор АРИЗ.

Термин «алгоритм», вообще говоря, имеет довольно расплывчатые границы. В математике под алгоритмом подразумевается строго регламентированная совокупность и порядок операций, необходимых для решения той или иной задачи. Математическим алгоритмом являются, например, действия, которые надо последовательно совершить, чтобы извлечь квадратный корень из целого положительного числа. Такие алгоритмы характеризуются жесткостью: каждая операция определена совершенно точно и не зависит ни от изменения условий задачи, ни от личности человека, решающего задачу.

В широком смысле слова алгоритмом называют всякую программу планомерно направленных действий. Программа решения изобретательских задач названа алгоритмом именно в этом смысле.

АРИЗ обладает гибкостью: одна и та же задача может быть решена разными путями — в зависимости от того, кто и как ее решает. АРИЗ не игнорирует личность человека, который им пользуется. Напротив, АРИЗ стимулирует максимальное использование особенно сильных качеств данного изобретателя. Поэтому путь от задачи до решения может быть пройден по-разному, изобретатель совершает действия в зависимости от знаний, опыта, способностей. Алгоритм лишь избавляет от заведомо неверных шагов.

Более того, используя АРИЗ, разные изобретатели могут прийти к разным решениям одной и той же задачи. АРИЗ построен так, чтобы выводить данного изобретателя на наиболее сильные для него решения данной задачи.

Как и всякий инструмент, АРИЗ дает результаты, во многом зависящие от умения пользоваться им. Не следует думать, что, прочитав текст алгоритма, можно сразу решать любые задачи. Прочитав описание приемов самбо, не стоит сразу выходить на соревнования. Так и с АРИЗ: единоборство с задачей требует практических навыков. Мы будем вырабатывать эти навыки на учебных задачах.

* * *

Если схематически представить двадцатипятилетнюю работу по созданию и совершенствованию АРИЗ, получится довольно длинная цепочка: первый вариант — проверка на практике — корректировка — второй вариант — проверка на практике — корректировка — третий вариант — ...и т. д.

Уже АРИЗ-59 (т. е. алгоритм, опубликованный в 1959 году) успешно применялся рядом изобретателей. Затем появились АРИЗ-61, АРИЗ-64 и АРИЗ-65. В них был учтен опыт ряда семинаров, в ходе которых алгоритм использовался для решения самых разнообразных изобретательских задач. АРИЗ-64 и особенно АРИЗ-65 годились для решения многих задач, встречающихся в изобретательской практике. Тем временем совершенствование алгоритма продолжалось и в результате был разработан АРИЗ-68, изложенный в первом издании этой книги.

Мы рассмотрим два варианта алгоритма — АРИЗ-61 и АРИЗ-71. Это позволит читателю увидеть, в каком направлении идет развитие алгоритма и, следовательно, представить, каким примерно будет алгоритм через пять или десять лет.

АРИЗ-61 делит творческий процесс на три стадии:

аналитическая;

оперативная (устранение технического противоречия);

синтетическая (внесение дополнительных изменений).

Каждая стадия подразделяется на ряд последовательно осуществляемых шагов. Таким образом, одно сложное (и потому очень трудное) действие алгоритм разбивает на ряд частичных, более легких действий. Выглядит это так.

АРИЗ-61

1. Аналитическая стадия

Первый шаг. Поставить задачу.

Второй шаг. Представить себе идеальный конечный результат.

Третий шаг. Определить, что мешает достижению этого результата (т. е. найти противоречие).

Четвертый шаг. Определить, почему мешает (найти причину противоречия).

Пятый шаг. Определить, при каких условиях не мешало бы (т. е. найти условия, при которых противоречие снимается).

2. Оперативная стадия

Первый шаг. Проверка возможности изменений в самом объекте (т. е. в данной машине, данном технологическом процессе).

1. Изменение размеров.

2. Изменение формы.

3. Изменение материала.

4. Изменение температуры.

5. Изменение давления.

6. Изменение скорости.

7. Изменение окраски.

8. Изменение взаимного расположения частей.

9. Изменение режима работы частей с целью максимальной их нагрузки.

Второй шаг. Проверка возможности разделения объекта на независимые части.

1. Выделение «слабой» части.

2. Выделение «необходимой и достаточной» части.

3. Разделение объекта на одинаковые части.

Третий шаг. Проверка возможности изменений во внешней (для данного объекта) среде.

1. Изменение параметров среды.

2. Замена среды.

3. Разделение среды на несколько частичных сред.

4. Использование свойств внешней среды для выполнения полезных функций.

Четвертый шаг. Проверка возможности изменений в соседних (т. е. работающих совместно с данным) объектах.

1. Установление взаимосвязи между независимыми объектами, участвующими в выполнении одной работы.

2. Устранение одного объекта за счет передачи его функций другому объекту.

3. Увеличение числа объектов, одновременно действующих на ограниченной площади, за счет использования свободной обратной стороны этой площади.

Пятый шаг. Исследование прообразов из других отраслей техники (поставить вопрос: как данное противоречие устраняется в других отраслях техники?).

Шестой шаг. Возвращение (в случае непригодности всех рассмотренных приемов) к исходной задаче и расширение ее условий, т. е. переход к другой, более общей задаче.

3. Синтетическая стадия

Первый шаг. Внесение изменений в форму данного объекта (новой сущности машины должна соответствовать новая форма).

Второй шаг. Внесение изменений в другие объекты, связанные с данным.

Третий шаг. Внесение изменений в методы использования объекта.

Четвертый шаг. Проверка применимости найденного принципа изобретения к решению других технических задач.

* * *

В 1949 году Министерство угольной промышленности объявило всесоюзный открытый конкурс на создание холодильного костюма для горноспасателей, занимающихся спасением людей, оставшихся в шахтах при подземных пожарах. Задача была исключительно трудной, на первый взгляд вообще неразрешимой.

Проследим ход решения этой задачи с помощью АРИЗ-61.

Задача 4

Подземные пожары сопровождаются выделением ядовитого газа — окиси углерода, поэтому горноспасатели вынуждены применять кислородные аппараты. Работают эти аппараты по так называемой замкнутой схеме: кислород, хранящийся под давлением, постепенно подается в дыхательный мешок, а оттуда — в маску; выдыхаемые газы (они содержат много неиспользованного кислорода) очищаются в специальном патроне и снова идут в дыхательный мешок.

Такая система значительно экономичнее открытой (принятой, например, в аквалангах), при которой выдох производится наружу. И все же эта система далеко несовершенна. Кислородный аппарат довольно тяжел — он весит свыше 12 кг, а главное — он не защищает от высокой температуры. Между тем воздух в горящих горных выработках быстро нагревается до 100°C и выше.

При тяжелой физической работе организм человека выделяет тепла около 400 ккал в час. И отвести эти калории некуда — температура окружающей среды выше температуры тела. Не помогает и интенсивное выделение пота: при подземных пожарах влажность воздуха такова, что пот не испаряется, а стекает по телу. А тут еще извне идет мощный поток тепла — при температуре 100°C более 300 ккал в час. Таким образом, за два часа работы нужно отвести примерно 1400 ккал!

Главная трудность создания холодильного костюма заключается в том, что он должен мало весить — на горноспасателя можно нагрузить не более 28 кг, иначе он не сможет работать. Из этих 28 кг на долю кислородного аппарата приходится 12 кг, на долю инструментов — 7 кг. Остается всего 9 кг. Если бы даже весь аппарат состоял из холодильного вещества (а ведь и сама конструкция должна что-то весить!), то и в этом случае запас холодильной мощности был бы недостаточен для двухчасовой работы (этот срок указывался в условиях конкурса). Лед, сухой лед, фреон, сжиженные газы... Ни одно холодильное вещество не укладывается в жесткие весовые рамки.

Возьмем, например, лед. Это очень мощное холодильное вещество. Чтобы расплавить 1 кг льда, нужно затратить 80 ккал. А для нагревания образовавшейся воды до 35°C — еще 35 ккал. Таким образом, один килограмм льда дает возможность отвести от человека 115 ккал. А у нас этих калорий 1400, значит, потребуется 12 кг льда. Если учесть вес костюма и холодильного устройства (ведь холод надо распределять и регулировать!), получится, что нужен запас веса никак не меньше 15—20 кг.

Решение задачи 4

Логические операции Ход размышлений при решении задачи
Аналитическая стадия
Первый шаг
Поставить задачу в общем виде. Создать холодильный аппарат.
Второй шаг
Представить себе идеальный конечный результат. Максимальная холодильная мощность.
Третий шаг
Что этому мешает? Большой вес необходимого (запасаемого) холодильного вещества.
Четвертый шаг
Почему? Потому что вес аппарата ограничен. Из 28 кг допустимой для горноспасателя нагрузки на долю холодильного аппарата приходится только 9 кг.
Пятый шаг
При каких условиях не будет мешать? Если на долю холодильного аппарата будет приходиться не 9 кг, а больше — 15 или 20 кг.
Вывод: надо снизить вес кислородного аппарата и инструментов.
Оперативная стадия
Первый шаг
Проверить изменения в самом объекте, в частности возможность его разделения. «Самим объектом» теперь являются кислородный аппарат и инструменты, вес которых надо уменьшить. Путь этот чрезвычайно затруднителен, ибо инструменты и кислородный аппарат совершенствовались годами. Конструкторы боролись буквально за каждый грамм... Нет, здесь мы многого не добьемся...
Второй шаг
Проверить возможность изменения в среде. Внешняя среда — шахтный воздух. Конечно, если бы этот воздух был чист, можно было бы отказаться от кислородного аппарата. Но шахтный воздух во время пожара не очистишь.
Третий шаг
Проверить возможность изменения в соседних объектах. Соседним объектом для кислородного аппарата и инструментов является третья составная часть нагрузки на горноспасателя — искомый холодильный аппарат. Заставить его одновременно давать кислород? Для этого нужно взять в качестве холодильного вещества не лед, не сухой лед, а жидкий кислород. Черт побери, кажется, это возможно. Правда, жидкий кислород менее мощное холодильное вещество, чем, например, жидкий аммиак, но зато мы сможем взять его много, чуть ли не 15 кг!
Итог. Намечается идея: вместо двух аппаратов — кислородного и холодильного — иметь один. В этом аппарате будет использоваться жидкий кислород. Испарение и нагревание кислорода обеспечат охлаждающее действие; нагретый до нормальной температуры кислород пойдет на дыхание. Весить такой прибор может 12 + 9 = 21 кг.
Синтетическая стадия
Первый шаг
Придание новой формы. Новой сущностью нашего аппарата является работа на сжиженном кислороде. Кислорода много. А раньше в кислородном аппарате его было мало и приходилось для экономии применять круговой цикл — выдыхаемый кислород шел на очистку в патрон с известью и снова на дыхание. Теперь можно отказаться от сложного и громоздкого кругового цикла. Комплексный аппарат окажется проще и дешевле, чем каждый из соединяемых аппаратов!
Второй шаг
Изменения в других объектах. Единственный «другой объект» — инструменты. Дать и им дополнительную нагрузку? Вряд ли это возможно.
Третий шаг
Изменения в методе использования. Подумаем, чем будет отличаться наш аппарат в использовании. Кислород быстро испаряется... Значит, вес аппарата будет быстро уменьшаться: из 21 кг на кислород приходится 15 кг. К концу работы аппарат будет весить всего 6 кг. А утомляемость зависит от среднего веса. Значит, можно сначала основательно перегрузить аппарат, брать побольше кислорода.
Четвертый шаг
Применимость найденного принципа к решению других задач. Где можно применить совмещение двух совместно работающих аппаратов? Помнится, аналогичная задача была в сварочной технике, где применяют переносные бензобачки и кислородные аппараты.

Общий итог: комплексный холодильный аппарат на жидком кислороде, некруговая схема питания кислородом, начальная перегрузка для увеличения мощности.

Были разработаны (мною совместно с инженером Р. Шапиро) два варианта комплексного холодильно-дыхательного аппарата. Оба проекта получили на конкурсе высшие премии — первую и вторую. Основной принцип — объединение холодильного и дыхательного аппаратов — лег в основу современных газотеплозащитных костюмов, впервые в мире созданных в Советском Союзе.

«Аппарат для индивидуальной газотепловой защиты, — сказано в авторском свидетельстве № 111144, — состоящий из герметизированного комбинезона, шлема, соединительного кольца, дыхательного мешка, маски и размещенного в подкостюмном пространстве резервуара жидкого кислорода, отличающийся тем, что для устранения необходимости в специальных респираторах отработанный в холодильной системе газ используется для дыхания».

На рис. 6 видно, как устроен газотеплозащитный костюм. Жидкий кислород размещен в ранцевом резервуаре 1. Испаряясь, кислород поступает в инжектор 2, расположенный по оси сквозного канала 3. Вытекая из инжектора, кислород смешивается с теплым воздухом подкостюмного пространства и охлаждает его.

В резервуар может быть залито 15—16 кг жидкого кислорода; это обеспечивает 2000—2200 ккал теплоотвода. Начальный вес скафандра при этом составляет 20—22 кг. Если же повысить начальный вес до 30—35 кг, запас кислорода можно увеличить в полтора раза. В таком скафандре не страшно войти и в раскаленную печь...

Рис. 6. Газотеплозащитный костюм для горноспасателей, впервые созданный в Советском Союзе.

* * *

Познакомимся теперь с новым вариантом алгоритма.

АРИ3—71

Часть 1. Выбор задачи

1—1. Первый шаг. Определить конечную цель решения задачи.

а) Какова техническая цель решения задачи («Какую характеристику объекта надо изменить?»).

б) Какие характеристики объекта заведомо нельзя менять при решении задачи?

в) Какова экономическая цель решения задачи («Какие расходы снизятся, если задача будет решена?»).

г) Каковы (примерно) допустимые затраты?

д) Какой главный технико-экономический показатель надо улучшить?

1—2. Второй шаг. Проверить обходной путь. Допустим, задача принципиально нерешима; какую другую — более общую — задачу надо решить, чтобы получить требуемый конечный результат?

1—3. Третий шаг. Определить, решение какой задачи целесообразнее — первоначальной или обходной.

а) Сравнить первоначальную задачу с тенденциями развития данной отрасли техники.

б) Сравнить первоначальную задачу с тенденциями развития ведущей отрасли техники.

в) Сравнить обходную задачу с тенденциями развития данной отрасли техники.

г) Сравнить обходную задачу с тенденциями развития ведущей отрасли техники.

д) Сопоставить первоначальную задачу с обходной. Произвести выбор.

1—4. Четвертый шаг. Определить требуемые количественные показатели.

1—5. Пятый шаг. Внести в требуемые количественные показатели «поправку на время».

1—6. Шестой шаг. Уточнить требования, вызванные конкретными условиями, в которых предполагается реализация изобретения.

а) Учесть особенности внедрения. В частности, допускаемую степень сложности решения.

б) Учесть предполагаемые масштабы применения.

Часть 2. Уточнение условий задачи

2—1. Первый шаг. Уточнить задачу, используя патентную литературу.

а) Как (по патентным данным) решаются задачи, близкие к данной?

б) Как решаются задачи, похожие на данную, в ведущей отрасли техники?

в) Как решаются задачи, обратные данной?

2—2. Второй шаг. Применить оператор РВС.

а) Мысленно меняем размеры объекта от заданной величины до нуля (Р→0). Как теперь решается задача?

б) Мысленно меняем размеры объекта от заданной величины до бесконечности (Р→∞). Как теперь решается задача?

в) Мысленно меняем время процесса (или скорость движения объекта) от заданной величины до нуля (В→0). Как теперь решается задача?

г) Мысленно меняем время процесса (или скорость движения объекта) от заданной величины до бесконечности (В→∞). Как теперь решается задача?

д) Мысленно меняем стоимость (допустимые затраты) объекта или процесса от заданной величины до нуля (С→0). Как теперь решается задача?

е) Мысленно меняем стоимость (допустимые затраты) объекта или процесса от заданной величины до бесконечности (С→∞). Как теперь решается задача?

2—3. Третий шаг. Изложить условия задачи (не используя специальные термины и не указывая, что именно нужно придумать, найти, создать) в двух фразах по следующей форме:

а) Дана система из (указать элементы).

б) Элемент (указать) при условии (указать) дает нежелательный эффект (указать).

Пример. Дан трубопровод с задвижкой; по трубопроводу движется вода с частицами железной руды. Частицы руды при движении истирают задвижку.

2—4. Четвертый шаг. Переписать элементы из 2—За в виде следующей таблицы:

а) Элементы, которые можно менять, переделывать, переналаживать (в условиях данной задачи).
б) Элементы, которые трудно видоизменять (в условиях данной задачи).

Пример. Трубопровод и задвижка — «а»; вода и частицы руды — «б».

2—5. Пятый шаг. Выбрать из 2—4а такой элемент, который в наибольшей степени поддается изменениям, переделке, переналадке.

Примечания: а) Если все элементы в 2—4а равноценны по степени допускаемых изменений, начните выбор с неподвижного элемента (обычно его легче менять, чем подвижный). б) Если в 2—4а есть элемент, непосредственно связанный с нежелательным эффектом (обычно этот элемент указывают в 2—3б), выберите его в последнюю очередь, в) Если в системе есть только элементы 2—4б, возьмите в качестве элемента внешнюю среду.

Пример. Выбрать надо трубопровод, так как задвижка связана с нежелательным явлением (истирается).

Часть 3. Аналитическая стадия

3—1. Первый шаг. Составить формулировку ИКР (идеального конечного результата) по следующей форме:

а) Объект (взять элемент, выбранный в 2—5).

б) Что делает.

в) Как делает (на этот вопрос всегда следует ответить словами «сам», «сама», «само»).

г) Когда делает.

д) При каких обязательных условиях (ограничениях, требованиях и т. п.).

Пример. Трубопровод... меняет свое сечение... сам... когда надо регулировать поток... не истираясь.

3—2. Второй шаг. Сделать два рисунка: «Было» (до ИКР) и «Стало» (ИКР).

Примечания: а) Рисунки могут быть условные — лишь бы они отражали суть «Было» и «Стало», б) Рисунок «Стало» должен совпадать со словесной формулировкой ИКР.

Проверка. На рисунках должны быть все элементы, перечисленные в 2—За. Если при шаге 2—5 выбрана внешняя среда, ее надо указать на рисунке «Стало».

3—3. Третий шаг. На рисунке «Стало» найти элемент, указанный в 3—1а, и выделить ту его часть, которая не может совершить требуемого действия при требуемых условиях. Отметить эту часть (штриховкой, другим цветом, обводкой контуров и т. п.).

Пример. В рассматриваемой задаче такой частью будет внутренняя поверхность трубопровода.

3—4. Четвертый шаг. Почему эта часть сама не может осуществить требуемое действие?

Вспомогательные вопросы

а) Чего мы хотим от выделенной части объекта?

б) Что мешает выделенной части самой осуществить требуемое действие?

в) В чем несоответствие между «а» и «б»?

Пример: а) Внутренняя поверхность трубы должна сама менять сечение потока, б) Она неподвижна, не может оторваться от стенок трубы, в) Она должна быть неподвижной (как элемент жесткой трубы) и подвижной (как сжимающийся и разжимающийся элемент регулятора).

3—5. Пятый шаг. При каких условиях эта часть сможет осуществить требуемое действие (какими свойствами она должна обладать)?

Примечание. Не надо пока думать — осуществимо ли практически желательное свойство. Назовите это свойство, не беспокоясь о том, как оно будет достигнуто.

Пример. На внутренней поверхности трубы появляется какой-то слой вещества, тем самым внутренняя поверхность переносится ближе к оси трубы. При необходимости этот слой исчезает, и внутренняя поверхность отдаляется от оси трубы.

3—6. Шестой шаг. Что надо сделать, чтобы выделенная часть объекта приобрела свойства, отмеченные в 3—5?

Вспомогательные вопросы

а) Покажите на рисунке стрелками силы, которые должны быть приложены к выделенной части объекта, чтобы обеспечить желательные свойства.

б) Какими способами можно создать эти силы? (Вычеркнуть способы, нарушающие условия 3—1д.)

Пример. Наращивать на внутреннюю поверхность трубы частицы железной руды или воду (лед). Других веществ внутри трубопровода нет, этим и определяется выбор.

3—7. Седьмой шаг. Сформулировать способ, который может быть практически осуществлен. Если таких способов несколько, обозначьте их цифрами (самый перспективный — цифрой 1 и т. д.). Запишите выбранные способы.

Пример. Выполнить участок трубы из немагнитного материала и с помощью электромагнитного поля «наращивать» на внутреннюю поверхность частицы руды.

3—8. Восьмой шаг. Дать схему устройства для осуществления первого способа.

Вспомогательные вопросы

а) Каково агрегатное состояние рабочей части устройства?

б) Как меняется устройство в течение одного рабочего цикла?

в) Как меняется устройство после многих циклов?

(После решения задачи следует вернуться к шагу 3—1 и рассмотреть другие перечисленные в нем способы.)

Часть 4. Предварительная оценка найденной идеи

4—1. Первый шаг. Что улучшается и что ухудшается при использовании предлагаемого устройства или способа? Запишите, что достигается предложением и что при этом усложняется, удорожается и т. д.

4—2. Второй шаг. Можно ли видоизменением предлагаемого устройства или способа предотвратить это ухудшение? Нарисуйте схему видоизмененного устройства или способа.

4—3. Третий шаг. В чем теперь ухудшение (что усложняется, удорожается и т. д.)?

4—4. Четвертый шаг. Сопоставить выигрыш и проигрыш, а) Что больше? б) Почему?

Если выигрыш больше проигрыша (хотя бы и в перспективе), перейти к синтетической части АРИЗ.

Если проигрыш больше выигрыша, вернуться к шагу 3—1. Записать на том же листе ход повторного анализа и его результат.

4—5. Пятый шаг. Если теперь выигрыш больше, перейти к синтетической стадии АРИЗ. Если повторный анализ не дал новых результатов, вернуться к шагу 2—4, проверить таблицу. Взять в 2—5 другой элемент системы и заново провести анализ. Записать ход анализа на том Hie листе.

Если нет удовлетворительного решения после 4—5, перейти к следующей части АРИЗ.

Часть 5. Оперативная стадия

5—1. Первый шаг. В таблице устранения технических противоречий (см. приложение 1), выбрать в вертикальной колонке показатель, который надо улучшить по условиям задачи.

5—2. Второй шаг.

а) Как улучшить этот показатель, используя известные пути (если не считаться с проигрышем)?

б) Какой показатель недопустимо ухудшится, если использовать известные пути?

5—3. Третий шаг. Выбрать в горизонтальном ряду таблицы показатель, соответствующий 5—2б.

5—4. Четвертый шаг. Определить по таблице приемы устранения технического противоречия (т. е. найти клетку на пересечении строки, выбранной в 5—1, и ряда 5—2б).

5—5. Пятый шаг. Проверить применимость этих приемов (о приемах рассказано в следующих главах).

Если задача решена, вернуться к четвертой части АРИЗ, оценить найденную идею и перейти к шестой части АРИЗ. Если задача не решена, проделать следующие шаги пятой части.

5—6. Шестой шаг. Проверить возможность применения физических эффектов и явлений.

5—7. Седьмой шаг. Проверить возможные изменения во времени.

Вспомогательные вопросы

а) Нельзя ли устранить противоречие, «растянув» во времени происходящее по условиям задачи действие?

б) Нельзя ли устранить противоречие, «сжав» во времени происходящее по условиям задачи действие?

в) Нельзя ли устранить противоречие, выполнив требуемое действие заранее, до начала работы объекта?

г) Нельзя ли устранить противоречие, выполнив требуемое действие после того, как объект закончит работу?

д) Если по условиям задачи действие непрерывно — проверить возможность перехода к импульсному действию.

е) Если по условиям задачи действие периодично — проверить возможность перехода к непрерывному действию.

5—8. Восьмой шаг. Как решаются аналогичные задачи в природе?

Вспомогательные вопросы

а) Как решаются подобные задачи в неживой природе?

б) Как решались подобные задачи у вымерших или древних организмов?

в) Как решаются подобные задачи у современных организмов? Каковы в данном случае тенденции развития?

г) Какие поправки надо внести, учитывая особенности используемых техникой материалов?

5—9. Шестой шаг. Проверить возможные изменения в объектах, работающих совместно с данным.

Вспомогательные вопросы

а) В какую надсистему входит система, рассматриваемая в задаче?

б) Как решить данную задачу, если менять не систему, а надсистему?

Если задача не решена, вернуться к шагу 1—3. Если задача решена, вернуться к четвертой части АРИЗ, оценить найденную идею и перейти к шестой части АРИЗ.

Часть 6. Синтетическая стадия

6—1. Первый шаг. Определить, как должна быть изменена надсистема, в которую входит измененная система (данная по условиям задачи).

6—2. Второй шаг. Проверить, может ли измененная система применяться по-новому.

6—3. Третий шаг. Использовать найденную техническую идею (или идею, обратную найденной) при решении других технических задач.

* * *

Чем же АРИЗ-71 отличается от АРИЗ-61?

Прежде всего наличием двух стадий, «обрабатывающих» задачу (и отношение к ней изобретателя) до анализа. Это не только облегчает анализ, но и позволяет получить — на выходе аналитической стадии — более точные результаты. Новый алгоритм намного детальнее. Трудные шаги разделены в нем на «подшаги», чтобы повысить надежность решения.

Существенно изменена и оперативная стадия. Вместо отдельных приемов изобретателю предлагается система типовых приемов и таблица, показывающая, какие приемы наиболее перспективны для устранения данного противоречия.

Развитие алгоритма идет, таким образом, по двум направлениям:

полнее учитываются психологические факторы, и это делает алгоритм более гибким;

совершенствуется система поисков на всех стадиях творческого процесса, и это делает алгоритм точнее.

 

Сплав логики, интуиции и опыта

Пользуясь алгоритмом, изобретатель постепенно приближается к решению. Некоторые этапы этого пути почти нацело «логизированы», иногда логика отступает на второй план, и тогда алгоритм подталкивает в нужном направлении воображение изобретателя, создает условия для проявления интуиции. Есть и такие участки пути к решению, на которых алгоритм работает за счет обобщенного изобретательского опыта.

Две первые стадии творческого процесса изобретателя посвящены выбору задачи и уточнению ее условий. Первоначальная формулировка, в какой задача попадает изобретателю, почти всегда неточна или даже ошибочна. Например, изобретателю говорят: «Нужно найти способ осуществления такой-то операции». Но, возможно, выгоднее пойти в обход, устранив необходимость в этой операции! Очень часто обходные пути оказываются перспективнее прямых.

На первой стадии творческого процесса изобретатель определяет конечную цель решения, проверяет возможность использования обходных путей, уточняет условия задачи (прямой или обходной). Очень важен пятый шаг, при котором изобретатель умышленно несколько повышает требования, содержащиеся в условиях задачи. Допустим, по условиям задачи нужно обеспечить точность контроля порядка ± 0,5 микрона. Целесообразно самому ужесточить это требование и считать, что нужна точность ± 0,1 микрона. Ведь за время разработки и внедрения изобретения требования к точности могут повыситься.

Анкетный опрос изобретателей и непосредственное наблюдение за их творческим процессом показывают, что в большинстве случаев изобретатель пытается решать задачу, не разобравшись достаточно внимательно в ее условиях. После каждого неудачного наскока он возвращается к условиям задачи, уясняет какую-то одну их часть и сразу же совершает очередную пробу. Это повторяется многократно, и изобретатель нередко бросает попытки найти решение, так и не разобравшись в условиях задачи.

Алгоритм учитывает существование этой распространенной ошибки. Работая по алгоритму, изобретатель прежде всего основательно изучает задачу, шаг за шагом снимает с нее внешние, нехарактерные слои, выделяет то, что составляет ее существо.

Первая часть алгоритма представляет собой, таким образом, цепочку логических действий. Тут довольно отчетливо видна роль логики в творческом процессе.

Первоначальная формулировка задачи подобна глыбе угля: можно сколько угодно раз пытаться зажечь такую глыбу — огня не будет. Логика дробит глыбу; чем мельче уголь, тем легче его зажечь. На какой-то стадии дробления появляется даже возможность самовозгорания угля.

Вторая часть алгоритма внешне тоже похожа на серию логических действий. Изобретатель продолжает работать по четкой программе: задаются конкретные вопросы, требующие столь же конкретных ответов. Тем самым сохраняется приобретенная ранее организованность, направленность мышления. Но АРИЗ не программа для машины. Алгоритм рассчитан на человека, он должен учитывать особенности мышления, особенности человеческой психики.

В автобиографических записках Л. Инфельда рассказывается о задаче, которую П. Капица предложил Л. Ландау и Л. Инфельду: «...собаке привязали к хвосту металлическую сковородку. Когда собака бежит, сковородка стукается о мостовую. Вопрос: с какой скоростью должна бежать собака, чтобы не слышать стука сковородки? Мы с Ландау долго размышляли, какое тут возможно решение. Наконец Капица сжалился над нами и дал ответ, — разумеется, очень смешной...». Ответ и в самом деле неожиданный: скорость равна нулю.

Что же затрудняло решение столь простой задачи?

Условия задачи говорят о скорости, а скорость — в нашем представлении — твердо связана с движением. Решая задачу, мы невольно рассматриваем варианты, подразумевающие наличие движения. Конечно, каждому известно, что скорость может быть, в частности, равна нулю. Но это «нетипично», и инерция связанных со словом «скорость» представлений уводит мысль в сторону. Если задачу сформулировать без слова «скорость» («Как должна вести себя собака, чтобы не слышать...»), решение станет очевидным.

Объект, над которым думает изобретатель (машина, процесс, вещество), «задается» в определенных терминах. Каждый такой термин имеет традиционные, привычные границы. Между тем всякое изобретение связано с расширением этих границ. Когда мы, например, представляем себе спуск груза на парашюте, отчетливо рисуется расположенный сверху купол и подвешенный снизу груз. Но вот появляется изобретение, в котором все наоборот: груз расположен над куполом, опускающимся вершиной вниз. Привычный термин расширяется: теперь мы знаем, что парашюты могут быть «нормальные» и «обратные».

Исходная терминология сковывает воображение изобретателя. Семинары по методике изобретательства показали, что успешное решение задачи во многом определяется умением «расшатать» систему исходных представлений. Вторая часть алгоритма и представляет собой программу такого расшатывания.

Судя по данным анкетного опроса, часть опытных изобретателей сознательно не желает знакомиться с патентной литературой до решения задачи. Изучение патентов, утверждают эти изобретатели, «мешает свободно думать». Нельзя безоговорочно отмахнуться от такого рода соображений: в творческом процессе определенную роль играют и чисто индивидуальные особенности изобретателя. Во всяком случае, АРИЗ предусматривает такое использование патентной литературы, которое не сковывает, а стимулирует воображение (шаг 2—1).

Работая по алгоритму, изобретатель не ограничивается ознакомлением с патентами, непосредственно относящимиея к данной задаче. Он просматривает патенты на аналогичные, но более «тяжелые» изобретения. Скажем, если задача связана с уменьшением шума в строительной технике, есть смысл просмотреть патенты, относящиеся к борьбе с шумом в авиации. Целесообразно также ознакомиться с «обратными» изобретениями (усиление звука).

Процесс «расшатывания» исходных представлений продолжается с помощью оператора РВС (шаг 2—2). Психологическая инерция обусловлена не только терминами, в которых задается объект, но и привычным пространственно-временным представлением об объекте. Размеры объекта и продолжительность его действия либо прямо указаны в условиях задачи, либо подразумеваются сами собой. Достаточно сказать: «автомобиль» — и мы представляем машину определенного размера (не менее 1 м и не более 20 м). Достаточно сказать: «бурение нефтяной скважины» — и мы представляем процесс, идущий в течение определенного времени (месяцы, десятки месяцев).

Существует еще одно измерение, в котором мыслится объект — стоимость. Достаточно сказать: «телевизор» — и мы представляем прибор стоимостью в несколько сотен или несколько тысяч рублей.

Оператор РВС — серия мысленных экспериментов, помогающих преодолевать привычные представления об объекте. При использовании оператора РВС последовательно рассматривают изменение задачи в зависимости от изменения грех параметров: размеров (Р), времени (В), стоимости (С).

Рассмотрим, например, применение оператора РВС к простой задаче: «Найти способ регулирования сечения трубопровода, по которому движется пульпа» (см. табл. 1).

Оператор РВС не дает точного и однозначного ответа. Цель применения оператора РВС в том, чтобы получить серию идей, направленных «в сторону решения». Это помогает преодолевать психологические барьеры при дальнейшем анализе задачи.

Рассмотрим еще один пример. Допустим, решается задача о способе обнаружения неплотностей в агрегатах холодильников (см. табл. 2).

Таблица 1

Шаги Операции Изменение объекта (или процесса) Как решается измененная задача Принцип, использованный в решении
2—2а Р→0 d тр < 1 м Регулировать сечение, сдавливая стенки (они стали тонкими и гибкими). Деформация стенок.
2—2б Р→∞ d тр →1000 м Такой трубопровод подобен реке. Надо построить плотину или ждать естественного регулирования — замерзания, таяния. Плотина (это та же задвижка) будет истираться. Лучше — изменение агрегатного состояния потока.
2—2в В→0 Перекрывать надо за 0,001 сек Нужно нечто быстродействующее, например, электромагнитное поле Вместо механического рабочего органа (задвижка) — электромагнитный
2—2г В→∞ Перекрывать трубопровод надо за 100 дней. Механическая задвижка будет сильно истираться (с уменьшением сечения растет скорость потока). Надо как-то восстанавливать стертые части. Задвижка с нарастающими частями.
2—2д С→0 Стоимость перекрытия близка к нулю. Поток должен сам себя перекрывать. Саморегулирование.
2—2е С→∞ Стоимость перекрытия свыше 1 000 000 руб. Можно ввести в поток нечто дорогое, но легко поддающееся регулировке. Например, вместо воды использовать расплав металла. Регулировку вести электромагнитами. «Регулирующиеся добавки».

При мысленных экспериментах с задачей по опера-тору РВС ответы могут быть разными — это зависит от фантазии, знаний, опыта, словом, от индивидуальных качеств человека. Нельзя только заменять исходную задачу другой. Так, в последнем примере при ответе на 2—2е нельзя сказать: «Повысить качество изготовления холодильника» — хотя, конечно, разумнее предотвратить появление неплотностей, чем бороться с ними. Надо решать ту задачу, которая выбрана в первой части АРИЗ. Если выбрана задача обнаружения неплотностей — именно ее и надо исследовать.

Таблица 2

Шаги Операции Изменение объекта (или процесса) Как решается измененная задача Принцип, использованный в решении
2—2а Р→0 Длина змеевика меньше 1 мм Количество просочившейся жидкости мало. Надо сделать эту жидкость более «обнаруживаемой». Что-то добавить. Микродобавки, облегающие обнаружение.
2—2б Р→∞ Длина змеевика больше 100 км Обнаружение на расстоянии — локация, радиолокация, термолокация. Обычный осмотр (светолокация). Локация в обычных и инфракрасных лучах, радиолокация.
2—2в В→0 Обнаружить надо за 0,001 сек. Исключаются механические и химические способы. Остаются электромагнитные и оптические. Излучение электромагнитное или оптическое.
2—2г В→∞ Обнаруживать надо за 10 лет. Вытекающая жидкость будет реагировать с материалом змеевика. По изменению внешнего вида материала легко обнаружить место утечки. Материал змеевика — индикатор вытекающей жидкости.
2—2д C→0 Стоимость обнаружения близка к нулю. Просачивающаяся жидкость достаточно сильно сообщает о себе. Самообнаружение, самосигнализация.
2—2е С→∞ Стоимость обнаружения — миллион рублей. Добавлять в раствор нечто дорогое, но легко обнаруживаемое. Индикаторные добавки.

В некоторых задачах вместо «размеров» можно рассматривать другие количественные параметры. Например, в задаче: «Найти способ подачи в реактор 24 порошков по заданным графикам» — можно взять количество порошков (2—2а: один порошок, 2—2б: тысяча или десять тысяч порошков).

На преодоление психологической инерции рассчитан и следующий шаг (2—3). Возьмем, например, такую задачу: найти способ изготовления стеклянного куба (фильтра) с ровными капиллярными сквозными отверстиями (длина ребра куба — до 1 м, количество капилляров — несколько десятков на квадратный сантиметр). Условия задачи навязывают (притом неощутимо) определенное исходное представление: дан стеклянный куб, надо проделать в нем капилляры. При решении на рисунках появляются куб и круглые (это привычно) отверстия. В большинстве решений сохраняется это исходное представление: предлагают тем или иным способом делать отверстия в сплошной стеклянной заготовке (твердой или жидкой).

Изменим теперь формулировку задачи: «Найти способ изготовления воздушного куба со стеклянными продольными перегородками». Или: «Найти способ изготовления воздушного куба со многими тонкими стеклянными стержнями, «нитями». Стеклянный куб с дырками — это все равно что воздушный куб со стержнями, поскольку дырки тоже могут быть названы воздушными стержнями.

В силу чисто психологических причин мы видим «стеклянный куб с дырками», а не «воздушный куб со стеклянными стержнями», хотя это совершенно равноправные определения. Если задача дана во второй формулировке, она решается быстро и легко (куб можно собрать из стеклянных нитей).

В сущности, когда от «стеклянного куба с воздушными отверстиями» мы переходим к «воздушному кубу со стеклянными стержнями», привычное переводится в непривычное, то есть совершается операция, о которой говорит У. Гордон, автор синектики. Однако синектика не указывает способов превращения привычного в непривычное, она лишь призывает к подобным превращениям. В АРИЗ такая операция запрограммирована в шагах 2—2 (оператор РВС) и 2—3. Отвечая на вопросы шага 2—3, мы переходим от неправильной формулировки задачи к правильной, в которой нет акцента на одном элементе (стекле). Системный подход заставляет увидеть все элементы (а это в большинстве случаев непривычно).

Правильное выполнение шага 2—3 существенно облегчает решение задачи. При выполнении этого шага надо тщательно следить за тем, чтобы:

а) из формулировки задачи были убраны специальные термины;

б) были правильно перечислены все элементы, входящие в рассматриваемую систему.

Например, в формулировке «Дана система из стеклянного куба и капилляров» две ошибки: 1) слово «капилляр» лучше заменить словом «отверстие» и 2) «стеклянный куб» — это сплошной куб, а у нас то, что осталось от куба после того, как в нем проделали множество отверстий. Правильная формулировка: «Дана система из отверстий и стеклянных стенок между ними».

Разложив систему на элементы, надо выбрать тот, который необходимо изменить, чтобы решить задачу (шаги 2—4 и 2—5). Главный признак, по которому ведется выбор, — степень изменчивости, управляемости. Чем легче менять элемент (в условиях данной задачи), тем больше оснований взять этот элемент в качестве объекта для дальнейшего анализа. Здесь есть простое (хотя и не универсальное) эмпирическое правило: к 2—4а обычно относятся объекты технические, к 2—4б — природные. Многие изобретательские ошибки (ниже это будет показано на примерах) объясняются стремлением менять элементы, относящиеся к 2—4б.

Реализация первой и второй частей АРИЗ требует — для средней задачи — не более двух часов не считая, конечно, времени, необходимого на ознакомление с патентной литературой). Надо сказать, что ни один шаг не был включен в алгоритм без многократной практической проверки на семинарах. При этом в алгоритм вошли только такие шаги, которые существенно облегчали процесс решения. Есть немало приемов, подходов, методов, иногда оказывающихся полезными, но, в общем, не обязательных. Алгоритм, рассчитанный на человека, должен быть компактным: слишком долгий разбег не оставляет сил для прыжка, для взлета. И наоборот: когда каждый шаг ощутимо меняет исходную задачу и ясно видно, что задача «обрабатывается», тогда возникает уверенность — основа вдохновения. Два часа организованного мышления позволяют изобретателю «прочувствовать» суть задачи значительно глубже, чем недели и месяцы беспорядочных наскоков. Теперь изобретатель может уверенно переходить к выявлению технического противоречия, которое нужно устранить.

* * *

Американский математик Д. Пойа, много занимавшийся психологией творчества, рассказывает о таком эксперименте. Курицу ставят перед сеткой, за которой расположена пища. Курица не может достать пищу до тех пор, пока не обойдет сетку. «Задача, однако, оказывается удивительно трудной для курицы, которая будет суетливо бегать взад и вперед на своей стороне забора и может потерять много времени, прежде чем доберется до корма, если она вообще доберется до него. Впрочем, после долгой беготни ей это может удаться случайно».

Пойа не без иронии сопоставляет поведение курицы с поведением человека, бессистемно пытающегося решить творческую задачу. «Нет, даже курицу не следует винить за несообразительность. Ведь определенно трудно бывает, когда надо отвернуться от цели, уходить от нее, продолжать действовать, не видя постоянно цели впереди, сворачивать с прямого пути. Между затруднениями курицы и нашими имеется явная аналогия».

В качестве иллюстрации Пойа приводит простую задачу: как принести из реки ровно шесть литров воды, если для измерения ее имеется только два ведра — одно емкостью в четыре литра, а другое в девять литров?

Разумеется, переливать «на глазок» половину или треть ведра нельзя. Задача должна быть решена отмериванием двумя ведрами именно той емкости, которая указана.

На семинарах я предлагал эту задачу слушателям до того, как мы приступали к изучению методики поиска решения. Результаты никогда не расходились с выводами Пойа. Задачу пытались решать, без системы перебирая всевозможные варианты: «А если сделать так?..» Правильное решение появлялось после многочисленных «а если». Между тем задача решается чрезвычайно просто. Надо только знать метод подхода ко всем задачам, требующим «догадки».

Так обстоит дело и с изобретательскими задачами. Мышление изобретающего человека имеет характерную особенность: решая задачу, человек представляет себе усовершенствуемую машину и мысленно изменяет ее. Изобретатель как бы строит ряд мысленных моделей и экспериментирует с ними. При этом исходной моделью чаще всего берется та или иная уже существующая машина. Такая исходная модель имеет ограниченные возможности развития, сковывающие воображение. В этих условиях трудно прийти к принципиально новому решению.

Если же изобретатель начинает с определения идеального конечного результата, то в качестве исходной модели принимается идеальная схема — предельно упрощенная и улучшенная. Дальнейшие мысленные эксперименты не отягощаются грузом привычных конструктивных форм и сразу же получают наиболее перспективное направление: изобретатель стремится достичь наибольшего результата наименьшими средствами.

Рассмотрим задачу о двух ведрах.

Неудачи при решении методом «а если» связаны с попытками получить ответ, идя от начала к концу. Попробуем поступить наоборот: пойдем от конца к началу.

Нам нужно, чтобы в одном из ведер было шесть литров воды. Очевидно, это может быть только большое ведро. Итак, конечный результат состоит в том, чтобы большое ведро оказалось заполненным на шесть литров.

Для этого необходимо наполнить большое ведро (оно вмещает девять литров), а затем отлить из него три литра. Если бы второе ведро имело емкость не четыре литра, а три, задача была бы сразу решена. Но второе ведро — четырехлитровое. Чтобы оно стало трехлитровым, надо налить в него один литр воды, тогда оно «превратится» в трехлитровое, и появится возможность отлить из большего ведра три литра.

Таким образом, исходная задача свелась к другой, более легкой: отмерить с помощью двух имеющихся ведер один литр. Но это не представляет никаких трудностей, ибо 9 — (4 + 4) = 1.

Наполняем большое ведро и дважды отливаем, отмеривая маленьким ведром, по четыре литра. После этого в большом ведре останется один литр, который можно перелить в пустое маленькое ведро.

Теперь четырехлитровое ведро «превратилось» в трехлитровое, а это нам и нужно было. Еще раз наполняем большое ведро и отливаем из него в маленькое три литра. В большом ведре остается, как и требовалось для решения задачи, шесть литров воды.

Последовательно продвигаясь от конца к началу, мы решили задачу, не сделав ни одного бесполезного шага.

Правильно сформулировать идеальный конечный результат — значит, надежно выйти на верный путь решения задачи.

Некоторые изобретатели так и делают. Примечательно, что особенно большое значение этому приему придают те изобретатели, которые ничего не говорят в анкетах о выявлении присущего задаче технического противоречия. Вот, например, что пишет изобретатель Ю. Емельянов (Москва): «После постановки задачи пытаюсь представить идеальную конечную цель и затем думаю, как достичь этой цели. Особых принципов не замечал». Таким образом, «до» и «после» определения идеального конечного результата работа ведется стихийно; сознательно используется только один прием. Эго, конечно, не случайно. Хорошее владение одним приемом компенсирует «простои» других приемов.

Часть приемов, входящих в алгоритм решения изобретательских задач, порознь используется изобретателями. Чаще всего изобретатель применяет два или три хорошо освоенных приема. У наиболее методичных изобретателей «эксплуатируется» пять — семь приемов. Методика изобретательства (даже при первоначальном знакомстве) увеличивает творческий арсенал, включая в него десятки приемов, составляющих в совокупности рациональную систему решения задач.

* * *

Третья часть алгоритма начинается с определения идеального конечного результата. Казалось бы, нетрудно ответить на вопрос: «Что желательно получить в идеальном случае?» Однако практика обучения изобретательству показала, что отвлечься от ограничений и запретов, накладываемых реальными обстоятельствами, и представить себе действительно идеальный результат крайне трудно. Если, например, речь идет об устройстве для окраски внутренней поверхности труб, идеальный результат рисуется обычно в виде некоей достаточно компактной «автокисти», которая движется внутри трубы. Тут отчетливо видна привязанность к уже известным устройствам, предназначенным для окраски внешних поверхностей. Идеальный же результат следовало бы сформулировать иначе: «Краска сама поступает в трубу и сама равномерно покрывает ее внутреннюю поверхность». В дальнейшем может выясниться (чаще всего так и бывает), что краска не может сама осуществлять все то, что нам хотелось бы. Тогда какую-то часть идеальной схемы мы подкрепим конструкцией или техническим приемом, стремясь, однако, как можно меньше отступать от идеала.

Правильное определение идеального конечного результата чрезвычайно важно для всего творческого процесса. Поэтому на методических семинарах при решении учебных задач вопрос иногда ставился в такой форме: «Представьте себе, что у вас в руках волшебная палочка. Каким будет идеальный результат (решения данной задачи) , если использовать волшебную палочку?» От волшебной палочки не потребуешь, чтобы она создала, например, «устройство для нанесения краски». Палочка — сама «устройство». И ответ обычно бывал правильным («Пусть краска сама поступает в трубу...» и т. д.). Постепенно необходимость упоминать о волшебной палочке исчезает, и остается та формулировка вопроса, которая записана в алгоритме.

Существуют два правила, помогающие точнее определить идеальный конечный результат.

Правило первое: не следует загадывать заранее, возможно или невозможно достичь идеального результата.

Вспомним, например, задачу о подъемном устройстве для транспортных самолетов. Идеальным результатом в этой задаче было бы следующее: при погрузке на самолете появляется кран, затем в полете этот кран исчезает, а при разгрузке на другом аэродроме он появляется вновь. На первый взгляд это совершенно невозможно осуществить. Однако каждое изобретение, как уже говорилось, — путь через «невозможно». И в этой задаче «невозможно» означает лишь «невозможно известными способами». Изобретатель должен найти новый способ, и тогда невозможное станет возможным.

Кран, смонтированный на самолете, конечно, не способен исчезать. Но на время полета металлическая ферма крана может быть включена в силовую схему фюзеляжа. Кран станет (в полете) частью конструкции самолета, будет нести полезную нагрузку и исчезнет как груз. Вес крана компенсируется соответствующим уменьшением веса конструкции фюзеляжа.

Правило второе: не надо заранее думать о том, как и какими путями будет достигнут идеальный конечный результат.

Вспомните, как шел Д. Д. Максутов к идее менискового телескопа. Изобретателю надо было как-то прикрыть отверстие рефлектора, чтобы предохранить зеркало от загрязнения и повреждений. Максутов начал с определения идеального конечного результата: мысленно закрыл отверстие телескопа пластинкой из оптического стекла. В этот момент он не думал о том, как это будет конкретно осуществлено. Обстоятельство чрезвычайно показательное! Ведь создать школьный телескоп — значит создать телескоп дешевый, а пластинка из оптического стекла, казалось бы, заведомо преграждала путь в этом направлении: оптическое стекло дорого.

Нужна была большая смелость мысли, чтобы повернуться спиной к задаче. Но только так и удалось найти путь к удешевлению всей конструкции и снижению ее общей стоимости.

Рис. 7. Надо отчетливо представить себе каждую деталь, а затем упростить полученную схему.

При решении многих задач наилучший способ определить идеальный конечный результат состоит в том, чтобы просто перевести вопрос, содержащийся в задаче, в утвердительную форму. Взять хотя бы магнитную сборку подшипников. Вопрос, поставленный в задаче, таков, как при монтаже укреплять ролики на дорожках качения цапфы? Идеальный конечный результат можно сформулировать так: «Ролики сами собой держатся на своих местах» (или: «Внешняя среда сама держит ролики...»). Обратите внимание: на определение идеального результата не влияют соображения о том, возможно или невозможно, чтобы ролики держались «сами собой», и как именно это будет осуществлено.

Представьте себе два кинокадра. На одном изображена ситуация, породившая задачу. В данном случае на кинокадре должна быть показана цапфа с падающими роликами. Второй кинокадр — идеальный конечный результат. Ролики «сами» держатся на цапфе.

К такому зрительному представлению «в два кадра» легко привыкнуть. Вместе с тем оно избавляет от многих ошибок при определении идеального результата. Кинематограф приучил нас преодолевать невозможное: на экране все возможно — это специфика кино. Поэтому и целесообразно использовать имеющиеся у каждого «кинонавыки» для того, чтобы правильно сделать первый шаг аналитической стадии.

Решение задачи 1

На одном кинокадре должно быть тороидальное колечко без проволоки, а на другом — то же колечко, но уже с появившейся на нем проволочной обмоткой.

Как именно появилась обмотка — это пока не важно. Зато очень важно, как выглядит готовое изделие. Тут надо отчетливо представить себе каждую деталь, а затем упростить полученную схему.

Кольцо с намоткой можно показать на втором кадре в общем виде. Это неплохо, но можно сделать лучше: дать крупным планом одну часть кольца, зато в разрезе (рис. 7). Так намного яснее — к чему следует стремиться. Ведь тут прямо напрашивается третий кадр: упростим изображение, объединим слои изоляции. И четвертый кадр: уберем нижний общий слой изоляции (ферриты сами обладают свойствами изоляторов). А теперь пятый кадр: уберем верхний общий слой изоляции. Раз он общий, его всегда легко нанести.

У нас остается тороид со спиральным металлическим слоем. И задача коренным образом облегчается: получить металлический спиральный слой намного проще, чем наматывать изолированную проволоку...

* * *

Разумеется, нужен опыт, чтобы вот так идти от кадра к кадру. Но это и не обязательно. Шаг 3—2 предусматривает только два рисунка: «Было» и «Стало» (ИКР). Далее (шаг 3—3) на рисунке «Стало» выделяется та часть объекта, которая не может выполнить требуемого действия — и это в определенной мере заменяет дальнейшие рисунки.

Делая шаги 3—1 и 3—2, изобретатель смело отмеривает желаемое. Шаг 3—3 заставляет задать себе вопрос: а почему, собственно, желаемое невозможно?

Выясняется, что при попытке получить желаемое (используя для этого уже известные способы), возникает помеха — приходится расплачиваться дополнительным весом или увеличением объема, усложнением эксплуатации или увеличением стоимости машины, уменьшением производительности или недопустимым снижением надежности. Это и есть техническое противоречие, присущее данной задаче.

Каждая помеха обусловлена определенными причинами. Шаг 3—4 состоит в определении этих причин.

Причины помехи почти всегда лежат на виду, и найти их нетрудно, лишь в редких случаях эти причины неясны. Однако не следует сразу переходить к экспериментам. Дело в том, что для эффективного решения задачи далеко не всегда нужно детальное проникновение в физико-химическую суть помехи. Допустим, техническое противоречие обусловлено недостаточной прочностью материала. Понятно, что изучение этого материала может дать новые сведения, позволяющие устранить помеху. Но это путь исследовательский, а не изобретательский: здесь делается открытие (пусть небольшое), а не изобретение. Исследовательская же работа требует специального оборудования и значительного времени. Выгоднее идти изобретательским путем, пока его возможности не исчерпаны. Поэтому при определении непосредственных причин технического противоречия можно и нужно ограничиться самыми общими формулировками.

Вспомним задачу о магнитной сборке. Идеальный результат состоял в том, чтобы ролики «сами собой» держались на местах. Достижению этого результата мешало то, что ролики сами собой не держались и падали. Причина помехи очевидна: ролики сделаны из металла, цапфа тоже металлическая, а металл на металле сам собой не закрепляется. Большей детализации в определении причин помехи и не требуется.

Когда причина помехи найдена, можно сделать еще один шаг и определить, при каких условиях исчезнет помеха. Так, в задаче о магнитной сборке помеха исчезнет, когда металл «без ничего» будет держаться на металле. После такого преобразования задачи уже трудно не догадаться о намагничивании.

Рассмотрим в качестве примера задачу о гоночном автомобиле.

Решение задачи 3

2—3. Дана система из колеса и обтекателя. Сквозь обтекатель не видно положение колеса.

2—4.

а) Обтекатель.

б) Колесо. (К колесу автомашины предъявляется много требований, любое изменение может вступить в конфликт с этими требованиями. К обтекателю предъявляется только одно требование — сохранение определенной формы. Значит, обтекатель — в условиях данной задачи — менять легче.)

2—5. Обтекатель.

3—1. Обтекатель сам позволяет видеть колесо — без ухудшения аэродинамических качеств.

Задача простенькая, не выше второго уровня. Но сейчас нас интересует механизм решения — его удобнее рассматривать на таких простых задачах.

Решение напрашивается уже на шаге 2—3. А шаг 3—1 с предельной точностью выводит на решение. Обтекатель сам пропускает лучи: следовательно, исключены все варианты с зеркалами, светопроводами и т. п. Без ухудшения аэродинамических качеств: следовательно, форму и положение обтекателя менять нельзя, дырки в обтекателе тоже нельзя делать. Остается одно — сделать обтекатель прозрачным. Это позволит совместить несовместимое: будут улучшены аэродинамические качества автомобиля и в то же время гонщик сохранит возможность, как и раньше, наблюдать за колесами.

Сейчас, когда решение найдено, оно кажется очевидным. Действительно, такое решение могло появиться уже в сороковых годах. Здесь, видимо, сказалась инерция мышления. Когда задача возникла, не было материала для изготовления прозрачных обтекателей: ведь обычное стекло не годится — оно слишком хрупкое. Тогда и привыкли считать, что колесо можно прикрыть лишь металлическим обтекателем, а металл, как известно, непрозрачен. С течением времени условия изменились: появилась прозрачная и прочная пластмасса (органическое стекло), однако «сработала» инерция мышления — задача осталась нерешенной. Способствовало этому и то, что задача относилась только к гоночным автомобилям и потому не попадала в поле зрения конструкторов обычных автомобилей. Для обычного автомобиля едва ли нужны прозрачные обтекатели колес (они быстро загрязнятся и перестанут быть прозрачными — тут это решение непригодно). Но вообще сделать машину или часть машины прозрачной — один из сильных приемов решения изобретательских задач.

* * *

На рис. 8 показана схема работы по АРИЗ. Используя ИКР как ориентир, изобретатель сразу выходит в район сильных решений. Затем он шаг за шагом исследует техническое противоречие, содержащееся в задаче. Ясное представление о техническом противоречии и его, так сказать, внутренней механике позволяет в ряде случаев уже на этом этапе прийти к идее решения. Однако, как правило, идея — в первоначальном своем виде — еще сыровата. Ее надо «дотянуть», откорректировать, усилить ее преимущества и по возможности убрать недостатки. Это осуществляется в четвертой части АРИЗ.

Иногда недостатки идеи оказываются слишком серьезными, преимущества — сомнительными, а повторный анализ не дает ничего нового. Тогда следует перейти к пятой части АРИЗ.

Изобретательских задач — бесчисленное множество. Но содержащиеся в них технические противоречия довольно часто повторяются. А коль скоро существуют типичные противоречия, то должны существовать и типичные приемы их устранения. Действительно, статистическое исследование изобретений обнаруживает четыре десятка наиболее эффективных приемов устранения технических противоречий. Их использование (порознь или в том или ином сочетании) лежит в основе многих изобретений. Разумеется, тут нет и тени принижения творчества: в конце концов вся безграничная вселенная собрана из сотни элементов.

Составим теперь таблицу. В вертикальную колонку запишем показатели, которые желательно изменить (улучшить, увеличить, уменьшить и т. д.), в горизонтальную строку — показатели, которые недопустимо ухудшатся, если осуществить желаемое изменение обычными (уже известными) способами.

В приложении 1 приведена таблица, составленная в результате анализа 40 тысяч изобретений. С использования этой таблицы и начинается пятая часть алгоритма.

Допустим, мы хотим решить задачу о гоночной машине. Можно ли обычными средствами уменьшить потери энергии, вызываемые несовершенной аэродинамической формой колес? Да, можно: надо спрятать колеса под обтекаемый кузов. Но тогда гонщик не сможет следить за положением колес. Таким образом, мы имеем противоречие типа «потери энергии — условия наблюдения» (или наоборот: «условия наблюдения — потери энергии»).

Рис. 8. По АРИЗ решать задачу начинают с определения идеального конечного результата (ИКР). Это помогает сразу выйти в район сильных решений. Дальнейший поиск облегчается выявлением технического противоречия (ТП) и применением типовых приемов его устранения.

Обратимся теперь к таблице. В списке характеристик объекта есть «потери энергии» (строка 22), но нет «условий наблюдения». Возьмем вместо этого колонку 33— «удобство эксплуатации». На пересечении горизонтальной строки и вертикальной колонки получаем цифры 35, 32, 1. Это номера рекомендуемых приемов. Какие-то из них могут оказаться ключом к решению задачи.

Нам еще придется детально познакомиться со всеми приемами. Сейчас отметим лишь, что среди трех приемов, подсказанных таблицей, есть и такой: «Сделать объект прозрачным» (прием 32).

Если бы мы взяли противоречия типа «удобство работы и контроля — потери энергии» или «потери энергии — потери информации», то и в этих случаях среди рекомендуемых приемов было бы — «сделать объект прозрачным».

 

Инструменты изобретателя

Давайте детальнее познакомимся с таблицей типовых приемов и самими этими приемами.

Создание подобных таблиц — работа чрезвычайно трудоемкая. К сожалению, нельзя поступить так: подряд анализировать изобретения, отбирать наиболее часто встречающиеся решения и вписывать их в таблицу. Авторские свидетельства и патенты довольно часто выдаются на весьма тривиальные решения, и составленная на их основе таблица давала бы, как правило, слабые решения даже в том случае, если весь массив анализируемых изобретений содержит только сильные решения. Приемы, которые были оригинальными и сильными 5—10—20 лет назад, могут оказаться слабыми при решении новых задач.

Поэтому при составлении таблицы для каждой клеточки приходится определять авангардную отрасль техники, в которой данный тип противоречий устраняется наиболее сильными и перспективными приемами. Так, для противоречий типа «вес — продолжительность действия», «вес — скорость», «вес — прочность», «вес — надежность» и т. д. наиболее подходящие приемы содержатся в изобретениях по авиационной технике. Противоречия, связанные с необходимостью повышать точность, эффективнее всего устраняются приемами, присущими изобретениям в области оборудования для физических экспериментов.

Таблица, построенная на приемах, взятых из таких ведущих отраслей техники, будет помогать находить сильные решения для обычных изобретательских задач. Чтобы таблица годилась и для задач, возникающих в ведущих отраслях, она должна дополнительно вобрать в себя и новейшие приемы, которые еще только входят в изобретательскую практику. Эти приемы чаще встречаются не в тех «благополучных» изобретениях, на которые выданы авторские свидетельства, а в заявках, отклоненных из-за «неосуществимости», «нереальности».

АРИЗ-65 имел таблицу, составленную на основе анализа пяти тысяч изобретений, относящихся к сорока трем патентным классам. В АРИЗ-71 таблица значительно более подробна. При ее составлении проанализировано свыше сорока тысяч изобретений. Не все клетки таблицы заполнены, тем не менее она охватывает около полутора тысяч типов технических противоречий, указывая для каждого типа вероятные приемы решения.

Необходимо подчеркнуть, что приемы устранения технических противоречий, рекомендуемые таблицей, сформулированы в общем виде. Они подобны готовому платью: их надо подгонять, учитывая индивидуальные особенности задачи. Если, например, таблица рекомендует прием 1 («Дробление»), это лишь означает, что решение как-то связано с разделением объекта. Таблица отнюдь не избавляет изобретателя от необходимости думать, она лишь направляет мысль по наиболее перспективным путям.

Совместимо ли использование типовых приемов с творческим характером изобретательского процесса? Да, совместимо! Более того, все современные изобретатели пользуются типовыми приемами, порой и не подозревая об этом.

Попытки составления списков приемов предпринимались с начала XX века. Но списки эти не были достаточно полными, так как их составляли по случайным наблюдениям и разрозненным материалам. Для правильного составления и периодического обновления списков приемов необходимо систематически исследовать патентную информацию, анализировать десятки тысяч изобретений по большинству патентных классов. Сейчас эта работа ведется регулярно, и каждая модификация АРИЗ снабжает уточненным и дополненным перечнем приемов.

В творческой мастерской изобретателя приемы играют роль набора инструментов, и, чтобы пользоваться ими, нужны определенные навыки. В простейшем случае изобретатель, просматривая перечень приемов, ищет подсказку по аналогии. Это способ медленный и не очень эффективный. Иначе обстоит дело, когда решение задачи ведется по АРИЗ: таблица применения приемов указывает наиболее подходящее решение для данной задачи. На первых этапах освоения АРИЗ изобретатель применяет приемы подряд, на более поздних — по таблице. Однако во всех случаях надо знать типовые приемы и уметь их использовать.

Перечень типовых приемов — это своего рода настольный справочник изобретателя, но справочник особого рода: изобретатель должен рассматривать его как основу, которую необходимо самостоятельно пополнять по новым техническим и патентным публикациям.

* * *

Рассмотрим типовые приемы устранения технических противоречий.

1. Принцип дробления

а) Разделить объект на независимые части.

б) Выполнить объект разборным.

в) Увеличить степень дробления (измельчения) объекта.

Примеры. Патент США № 2859791. Пневматическая шина, состоящая из двенадцати независимых секций.

Разделение шины осуществляется, чтобы повысить надежность. Но это далеко не единственный повод для использования столь сильного приема. Дробление — одна из ведущих тенденций в развитии современной техники.

Еще несколько примеров.

Авторское свидетельство № 168195. Ковш одноковшового экскаватора со сплошной полукруглой режущей кромкой, отличающийся тем, что для обеспечения быстрой и удобной замены сплошной режущей кромки последняя выполнена из отдельных съемных секций.

Авторское свидетельство № 184219. Способ непрерывного разрушения горных пород зарядами ВВ, отличающийся тем, что с целью получения мелких фракций непрерывное разрушение поверхностного слоя производят микрозарядами.

2. Принцип вынесения

Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

Примеры. Авторское свидетельство № 153533. Устройство для защиты от рентгеновских лучей, отличающееся тем, что с целью защиты от ионизирующего излучения головы, плечевого пояса, позвоночника, спинного мозга и гонад пациента при флюорографии, например, грудной клетки оно снабжено защитными барьерами и вертикальным, соответствующим позвоночнику стержнем, изготовленным из материала, не пропускающего рентгеновские лучи.

Рис. 9. Принцип вынесения: раньше горноспасатель носил на спине ранец с холодильным устройством; теперь оно помещено в отдельном контейнере.

Целесообразность этой идеи очевидна.

Изобретение выделяет наиболее вредную часть потока и блокирует ее. Заявка подана в 1962 году, между тем это простое и нужное изобретение могло быть сделано значительно раньше.

Мы привыкаем рассматривать многие объекты как набор традиционных и неотъемлемых друг от друга частей. В набор вертолета, например, входят и баки с горючим. Действительно обычный вертолет вынужден возить горючее. Однако в тех случаях, когда вертолет курсирует по определенному маршруту, горючее можно оставить на земле. На электровертолете бензиновый двигатель заменен электромотором, а баков вообще нет.

В авторском свидетельстве № 257301 «бак» есть, но он отделен от человека (рис. 9).

Еще один пример. Столкновение самолетов с птицами вызывают иногда тяжелые катастрофы. В США запатентованы самые различные способы отпугивания птиц от аэродромов (механические чучела, распыление нафталина и т. д.). Наилучшим оказалось громкое воспроизведение крика перепуганных птиц, записанного на магнитофонную ленту.

Отделить птичий крик от птиц — решение, конечно, необычное, но характерное для принципа вынесения.

3. Принцип местного качества

а) Перейти от однородной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной.

б) Разные части объекта должны иметь разные функции.

в) Каждая часть объекта должна находиться в условиях, наиболее соответствующих ее работе.

Примеры. Авторское свидетельство № 256708. Способ подавления пыли в горных выработках, отличающийся тем, что с целью предотвращения распространения тумана по выработкам и сноса его с источника пылеобразования вентиляционным потоком подавление пыли производят одновременно тонкодиспергированной и грубодисперсной водой, причем вокруг конуса тонкодиспергированной воды создают пленку из грубодисперсной воды.

Авторское свидетельство № 280328. Способ сушки зерна риса, отличающийся тем, что с целью уменьшения образования трещиноватых зерен рис перед сушкой разделяют по крупности на фракции, которые сушат раздельно с дифференцированными режимами.

Принцип местного качества отчетливо отражается в историческом развитии многих машин: они постепенно дробились и для каждой части создавались наиболее благоприятные местные условия.

Первоначально паровой двигатель представлял собой цилиндр, выполнявший одновременно функции парового котла и конденсатора. Вода заливалась непосредственно в цилиндр. Огонь обогревал цилиндр, вода закипала, пар поднимал поршень, после чего жаровню с огнем убирали, а цилиндр поливали холодной водой. Пар конденсировался, и поршень под действием атмосферного давления шел вниз.

Позднее изобретатели догадались отделить паровой котел от цилиндра двигателя. Это позволило существенно сократить расход топлива.

Однако отработанный пар по-прежнему конденсировался в самом цилиндре, что вызывало огромные тепловые потери. Нужно было сделать следующий шаг — отделить от цилиндра конденсатор. Эту идею выдвинул и осуществил Джеймс Уатт. Вот что он рассказывает:

«После того как я всячески обдумывал вопрос, я пришел к твердому заключению: для того чтобы иметь совершенную паровую машину, необходимо, чтобы цилиндр всегда был так же горяч, как и входящий в него пар. Однако конденсация пара для образования вакуума должна происходить при температуре не выше 30 градусов...

Это было возле Глазго, я вышел на прогулку около полудня. Был прекрасный день. Я проходил мимо старой прачечной, думая о машине, и подошел к дому Герда, когда мне пришла в голову мысль, что пар ведь упругое тело и легко устремляется в пустоту. Если установить связь между цилиндром и резервуаром с разреженным воздухом, то пар устремится туда и цилиндр не надо будет охлаждать. Я не дошел еще до Гофхауза, как все дело было кончено в моем уме!»

4. Принцип асимметрии

Перейти от симметричной формы объекта к асимметричной.

Машины рождаются симметричными. Это их традиционная форма. Поэтому многие задачи, трудные по отношению к симметричным объектам, легко решаются нарушением симметрии.

Примеры. Тиски со смещенными губами. В отличие от обычных, они позволяют зажимать в вертикальном положении длинные заготовки.

Фары автомобиля должны работать в разных условиях: правая должна светить ярко и далеко, а левая — так, чтобы не слепить водителей встречных машин. Требования разные, а устанавливались фары всегда одинаково. Лишь несколько лет назад возникла идея несимметричной установки фар: левая освещает дорогу на расстоянии до 25 метров, а правая — значительно дальше.

Патент США № 3435875. Асимметричная пневматическая шина имеет одну боковину повышенной прочности и сопротивляемости ударам о бордюрный камень тротуара.

Рис. 10. Принцип асимметрии: электроды в дуговой печи сдвинуты в сторону, у загрузочного окна образовалось свободное пространство, что позволяет загружать шихту непрерывно.

Авторское свидетельство № 242325. Дуговая электропечь для плавки чугуна с боковой загрузкой твердой шихты, отличающаяся тем, что с целью создания непрерывности процесса плавления ее подина выполнена асимметрично вогнутой, расширенной к загрузочному окну (рис. 10).

5. Принцип объединения

а) Соединить однородные или предназначенные для смежных операций объекты.

б) Объединить во времени однородные или смежные операции.

Примеры. Авторское свидетельство № 235547. Рабочее оборудование роторного экскаватора, включающее ротор и стрелу, отличающееся тем, что с целью уменьшения усилия резания оно выполнено с устройством для разогрева мерзлого грунта, имеющим форсунки, смонтированные, например, на секторах по обоим торцам ротора (рис. 11).

Авторское свидетельство № 134155. Спасательное водолазное устройство для вывода на поверхность людей, оказавшихся в воздушных мешках отсеков затонувших судов, с применением шлем-масок, отличающееся тем, что с целью повышения эффективности спасательных операций, производимых водолазом, оно выполнено в виде одной или двух шлем-масок, снабженных шлангами и арматурой для присоединения к штуцерному крану, вмонтированному в водолазный скафандр, от которого производится регулирование подачи воздуха в шлем-маски (рис. 12).

Рис. 11. Принцип объединения: раньше приходилось останавливать роторный экскаватор, чтобы разогреть мерзлый грунт; теперь форсунки установлены непосредственно на роторе.

Рис. 12. Еще одно применение принципа объединения.

6. Принцип универсальности

Объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

Примеры. В Японии рассматривается возможность постройки танкера, оборудованного нефтеперегонной установкой. Смысл проекта — совмещение во времени процессов транспортировки и переработки нефти.

Авторское свидетельство № 160100. Способ транспортирования материала, например табачных листьев, к сушильным установкам с помощью водяного потока в гидротранспортере, отличающийся тем, что с целью одновременного осуществления промывки табачных листьев и фиксации их цвета используют воду, нагретую до 80—85°C.

Авторское свидетельство № 264466. Элемент памяти на тонкой цилиндрической пленке, нанесенной на диэлектрическую подложку, отличающийся тем, что с целью упрощения элемента сама пленка служит шиной записи-считывания.

7. Принцип «матрешки» [39]

а) Один объект размещен внутри другого объекта, который, в свою очередь, находится внутри третьего и т. д.

б) Один объект проходит сквозь полость в другом объекте.

Примеры. Авторское свидетельство № 186781. Ультразвуковой концентратор упругих колебаний, состоящий из скрепленных между собой полуволновых отрезков, отличающийся тем, что с целью уменьшения длины концентратора и увеличения его устойчивости полуволновые отрезки выполнены в виде полых конусов, вставленных один в другой (рис. 13).

Авторское свидетельство № 110596. Способ хранения и транспортировки разнородных по вязкости нефтепродуктов в корпусе плавучей емкости, отличающийся тем, что хранение их с целью уменьшения потерь тепла высоковязких нефтепродуктов производят в отсеках емкости, расположенных внутри отсеков, заполненных невязкими сортами нефтепродуктов.

Рис. 13. Принцип «матрешки»: компактный ультразвуковой концентратор; 1 и 2 — полые конусы.

Авторское свидетельство № 272705. Устройство для внесения удобрений в почву, включающее бункер и право- и левосторонние дозирующие шнеки, отличающееся тем, что с целью регулирования рабочей ширины захвата каждый дозирующий шнек выполнен из двух ввинченных одна в другую секций (рис. 14).

Рис. 14. Еще одна «матрешка»: ширину дозирующего шнека регулируют, ввинчивая одну секцию в другую.

8. Принцип антивеса

а) Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой.

б) Компенсировать вес объекта взаимодействием со средой (за счет аэро-, гидродинамических и других сил).

Примеры. Авторское свидетельство № 187700. Способ спуска в скважину и извлечения из нее стреляющей и взрывной аппаратуры, отличающийся тем, что с целью удешевления и упрощения прострелочных и взрывных работ спуск стреляющей и взрывной аппаратуры, производят свободно под действием собственного веса, а подъем к устью скважины — с помощью встроенного в корпус реактивного двигателя.

При создании сверхмощных турбогенераторов возникла сложная задача: как уменьшить давление ротора на подшипники. Решение нашли в том, что над турбогенератором установили сильный электромагнит, компенсирующий давление ротора на подшипники.

Иногда приходится решать обратную задачу: компенсировать недостаток веса. При создании и эксплуатации шахтных электровозов возникает явное техническое противоречие: для увеличения тяги нужно утяжелять электровоз, а для уменьшения его мертвого веса следует делать электровоз возможно более легким. Группа сотрудников Ленинградского горного института разработала и успешно применила простое устройство, позволяющее снять это техническое противоречие и в полтора раза увеличить производительность рудничных электровозов: в ведущих колесах монтируется мощный электромагнит; создается магнитное поле, охватывающее колеса и рельсы; сила сцепления резко возрастает, а вес электровоза может быть снижен.

9. Принцип предварительного напряжения

Заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям.

Примеры. Авторское свидетельство № 84355. Заготовку турбинного диска устанавливают на вращающийся поддон. Нагретая заготовка по мере охлаждения сжимается. Но центробежные силы (пока заготовка не потеряла пластичности) как бы отштамповывают заготовку. Когда же деталь остынет, в ней появятся сжимающие усилия.

На этом принципе основана вся технология предварительного напряжения железобетона: чтобы бетон лучше работал на растяжение, его предварительно укорачивают. Это едва ли не единственный случай, когда строительная техника использует более передовые методы, нежели машиностроение. Предварительно напряженные конструкции применяются в машиностроении еще очень редко, между тем использование этого приема могло бы дать колоссальные результаты.

Рис. 15. Принцип предварительного напряжения: трубы составного вала заранее скручены в направлении, противоположном рабочей деформации.

Как, например, сделать вал прочнее, не увеличивая его наружный диаметр? Решение этой задачи показано на рис. 15. Вал составлен из вставленных одна в другую труб, предварительно закрученных на определенные расчетом углы. Иными словами, вал предварительно получает деформацию, противоположную по знаку той деформации, какую он получает во время работы. Крутящий момент должен сначала снять эту предварительную деформацию, только после этого начнется деформация вала в «нормальном» направлении. Составной вал весит вдвое меньше равного ему по прочности обычного монолитного.

10. Принцип предварительного исполнения

а) Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).

б) Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на их доставку.

Примеры. Авторское свидетельство № 61056. Черенки многих плодово-ягодных и других культур, посаженные в почву, не укореняются вследствие недостатка питательных веществ в черенке. По данному изобретению предлагается создавать запас питательных веществ заранее, насыщая перед посадкой черенки в ванне с питательной смесью.

Авторское свидетельство № 162919. Способ снятия гипсовых повязок с помощью проволочной пилы, отличающийся тем, что с целью предупреждения травм и облегчения снятия повязки пилу помещают в предварительно смазанную подходящей смазкой трубку, выполненную, например, из полиэтилена, и заранее загипсовывают под повязку при ее наложении. Благодаря этому распиливать повязку можно от тела наружу — без опасения задеть тело.

Любопытный случай использования этого же принципа — окраска древесины до того, как дерево срубили: красители поступают под кору дерева и разносятся соками по всему стволу.

11. Принцип «заранее подложенной подушки»

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Примеры. Авторское свидетельство № 264626. Способ снижения токсического действия химических соединений с помощью присадок, отличающийся тем, что с целью уменьшения опасности отравления химическими веществами, а также продуктами их превращений в организме присадки добавляют непосредственно в исходные токсичные химические соединения при их изготовлении.

Авторское свидетельство № 297361. Способ предотвращения распространения лесного пожара посредством создания заградительных полос из растений, отличающийся тем, что с целью придания огнестойкости растениям, образующим заградительную полосу, в почву вносят биологические усваиваемые или химические элементы, тормозящие процесс их воспламенения.

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шины и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Принцип «заранее подложенной подушки» можно использовать не только для повышения надежности. Вот характерный пример. В связи с тем что в американских библиотеках часто пропадают книги, изобретатель Эмануэль Трикилис предложил прятать в переплеты кусочек намагниченного металла. При выдаче книги библиотекарь размагничивает этот металлический вкладыш, проталкивая книгу под специальной электрической спиралью. Если посетитель попытается уйти, взяв незарегистрированную книгу, то спрятанный в двери прибор среагирует на магнитный вкладыш в переплете.

Горноальпийская спасательная станция в Швейцарии применила аналогичный метод для быстрого обнаружения людей, попавших в снежную лавину. Теперь лыжник или житель местности, в которой часты лавины, носит небольшой магнит. При несчастном случае этот магнит помогает легко обнаружить пострадавшего с помощью искателя даже под трехметровым покровом снега.

12. Принцип эквипотенциальности

Изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

Примеры. Авторское свидетельство № 264679. Предложено устройство для перемещения пресс-форм в зоне пресса. Устройство выполнено в виде прикрепленной к столу пресса приставки с рольгангом.

Авторское свидетельство № 110661. Контейнеровоз, в котором груз не поднимается в кузов, а только приподнимается гидроприводом и устанавливается на опорную скобу. Такая машина работает без крана и перевозит значительно более высокие контейнеры.

13. Принцип «наоборот»

а) Вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать).

б) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную — движущейся.

в) Перевернуть объект «вверх ногами».

Примеры. Авторское свидетельство № 184649. Способ вибрационной очистки металлоизделий в абразивной среде, отличающийся тем, что с целью упрощения процесса очистки движения вибрации сообщают обрабатываемой детали.

Авторское свидетельство № 109942. Это изобретение решает важную проблему отливки крупногабаритных тонкостенных деталей. При отливке таких деталей желательно, чтобы металл поступал в форму сверху и затвердение шло снизу вверх. Но лить металл в форму («дождевой» способ) допустимо с высоты не более пятнадцати сантиметров, иначе металл сгорит или пропитается газами. А как быть, если форма имеет высоту два-три метра? Если подавать металл снизу, то первые порции его затвердеют, не успев подняться к верхней части формы.

Изобретатель решил эту задачу просто и изящно: металл идет по трубкам, опущенным ко дну литейной формы. По мере заполнения форма движется вниз, и, таким образом, каждая порция металла подается именно туда, где она должна застыть (рис. 16).

Литье всегда осуществлялось так, что двигался металл, а форма была неподвижной. Здесь все наоборот: движется форма, а залитый в нее металл остается неподвижным. Это позволило «совместить несовместимое»: плавность заполнения формы и затвердевание металла снизу вверх, как при литье «дождевым» способом.

Рис. 16. Принцип «наоборот»: в отличие от обычного способа заливки, движется форма, а поступающий в нее металл остается неподвижным.

14. Принцип сфероидальности

а) Перейти от прямолинейных частей объекта к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям.

б) Использовать ролики, шарики, спирали.

в) Перейти к вращательному движению, использовать центробежную силу.

Примеры. Патент ФРГ № 1085073. Устройство для вварки труб в трубную решетку, в котором электродами служат катящиеся шарики.

Авторское свидетельство № 262045. Исполнительный орган проходческого комбайна, включающий породоразрушающие электроды, отличающийся тем, что с целью повышения эффективности разрушения крепких горных пород породоразрушающие электроды выполнены в виде свободно вращающихся клиновых роликов, установленных на изолирующей оси.

Авторское свидетельство № 260874. Способ отделения нитей корда от резины, например, в каркасе изношенных покрышек, включающий выдержку покрышки в углеводородах, обработку ее высоконапорными струями жидкости, механическое расчесывание нитей и их обрезку, отличающийся тем, что с целью повышения производительности труда обработку полупокрышки ведут в процессе ее вращения со скоростью, ослабляющей связь между частицами резины.

15. Принцип динамичности

а) Характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы.

б) Разделить объект на части, способные перемещаться относительно друг друга.

Примеры. Авторское свидетельство № 317390. Ласта плавательная резиновая, отличающаяся тем, что с целью обеспечения регулирования жесткости ее рабочей лопасти для различных по скорости и длительности плавания режимов она имеет внутренние продольные полости, весь объем которых заполнен инертной несжимаемой жидкостью, статическое давление которой, по необходимости, изменяется на берегу или под водой.

Авторское свидетельство № 161247. Транспортное судно, корпус которого имеет цилиндрическую форму, отличающееся тем, что с целью уменьшения осадки судна при полной загрузке его корпус выполнен из двух раскрывающихся, шарнирно сочлененных полуцилиндров.

Патент СССР № 174748. Автомобиль с шарнирно соединенными секциями рамы, которые могут поворачиваться при помощи гидроцилиндров. Такой автомобиль обладает повышенной проходимостью.

Авторское свидетельство № 162580. Способ изготовления полых кабелей с каналами, образованными трубками, скрученными с токоведущими жилами, с предварительным заполнением трубок веществом, удаляемым из них после изготовления кабеля. Чтобы упростить технологию, в качестве заполняющего вещества применяют парафин, который после изготовления кабеля расплавляют и выливают из трубок.

16. Принцип частичного или избыточного решения

Если трудно получить 100% требуемого эффекта, надо получить «чуть меньше» или «чуть больше». Задача при этом может существенно упроститься.

Примеры. Авторское свидетельство № 181897. Способ борьбы с градом, основанный на кристаллизации с помощью реагента (например, йодистого серебра) градового облака, отличающийся тем, что с целью резкого сокращения расхода реагента и средств его доставки осуществляют кристаллизацию не всего облака, а крупнокапельной (локальной) его части.

Авторское свидетельство № 262333. Устройство для дозирования металлических порошков, содержащее бункер с дозатором, отличающееся тем, что с целью обеспечения равномерной подачи порошка к дозатору бункер снабжен внутренней приемной воронкой и каналом с электромагнитным насосом для подачи (с избытком) порошка к воронке (рис. 17).

Рис. 17. Принцип избыточного решения: чтобы подавать порошок по трубке 1 равномерно, его насыпают в воронку 2 с избытком; лишний порошок высыпается в бункер 3, а воронка всегда заполнена до краев.

17. Принцип перехода в другое измерение

а) Трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (то есть на плоскости). Соответственно, задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству трех измерений.

б) Многоэтажная компоновка объектов вместо одноэтажной.

в) Наклонить объект или положить его «набок».

г) Использовать обратную сторону данной площади.

д) Использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Примеры. Авторское свидетельство № 150938. Полупроводниковый диод отличающийся тем, что с целью увеличения мощности диода в нем применен профилированный электронно-дырочный переход и профилированный омический контакт без увеличения периметра полупроводниковой пластины. Переход от плоского контакта к объемному позволяет при прежних габаритах диода получить большую площадь пластины полупроводника и, следовательно, большую мощность, снимаемую с электронно-дырочного перехода.

Известный советский изобретатель Д. Киселев, долгое время работавший над совершенствованием долота для бурения нефтяных скважин, рассказывает в своей книге «Поиски конструктора»:

«В долоте также каждый подшипник обладает определенной грузоподъемностью, и если увеличить их число, дать меньшую нагрузку каждому, можно улучшить условия их работы, предотвратить износ. Именно по этому пути шла все время моя мысль в поисках различных схем размещения подшипников. Но мешали габариты долота, малое пространство, на котором я имел возможность располагать необходимое мне количество шариков и роликов. Теперь же я вдруг увидел решение, вот оно, рядом. На одном и том же участке поверхности можно разместить большее количество «элементов» подшипников в два яруса, как размещаются люди и вещи в купе пассажирских вагонов. Я даже рассмеялся: так просто было это решение, тщетно разыскиваемое много месяцев».

Авторское свидетельство № 180555. Способ механизации обмена вагонеток в горизонтальном проходческом забое, отличающийся тем, что с целью устранения подрыва кровли и устройства разъездов обмен груженых вагонеток на порожние производят посредством перенесения порожней вагонетки с возможным поворотом ее на угол в 90° над составом под погрузку.

Авторское свидетельство № 259449. Устройство для магнитографической дефектоскопии, отличающееся тем, что с целью повышения срока службы кольцевая магнитная лента выполнена с двусторонним магниточувствительным покрытием и изогнута в виде листа Мёбиуса.

Авторское свидетельство № 244783. Теплица для круглогодового выращивания овощных культур, отличающаяся тем, что с целью улучшения светового режима растений за счет использования солнечных лучей она снабжена вогнутым отражательным экраном, установленным поворотно с северной стороны теплицы.

18. Использование механических колебаний

а) Привести объект в колебательное движение.

б) Если такое движение уже совершается — увеличить его частоту (вплоть до ультразвуковой).

в) Использовать резонансную частоту.

г) Применить вместо механических вибраторов пьезовибраторы.

д) Использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Примеры. Авторское свидетельство № 220380. Способ вибродуговой наплавки и сварки деталей под слоем флюса с низкочастотными колебаниями электрода, отличающийся тем, что с целью повышения качества наплавленного металла на низкочастотные колебания электрода накладывают высокочастотные ультразвуковые колебания порядка, например, 20 кгц.

Авторское свидетельство № 307896. Способ безопилочного резания древесины при помощи изменяющего свои геометрические размеры режущего инструмента, отличающийся тем, что с целью снижения усилия внедрения инструмента в древесину резание осуществляют инструментом, частота пульсации которого близка к собственной частоте колебаний перерезаемой древесины.

Патент США № 3239283. Трение покоя резко снижает чувствительность тонких приборов, мешает стрелкам, маятникам и другим подвижным частям легко поворачиваться в подшипниках. Чтобы избежать этого, подшипники заставляют вибрировать, и элементы прибора все время совершают осциллирующие движения относительно друг друга. В качестве источника вибрации обычно используют электромотор. При этом кинематика прибора существенно усложняется, а вес увеличивается. Американские изобретатели Джон Броз и Вильям Лаубендорфер разработали конструкцию подшипника, в котором втулки выполняются из пьезоэлектрического материала, и с обеих сторон покрываются тонкой электропроводной фольгой. К фольге припаиваются электроды, по которым подводится переменный ток, создающий вибрацию.

Авторское свидетельство № 244272. Способ осаждения пыли с использованием магнитного поля, отличающийся тем, что... воздух подвергают одновременному воздействию акустического и магнитного полей.

19. Принцип периодического действия

а) Перейти от непрерывного действия к периодическому (импульсному).

б) Если действие уже осуществляется периодически — изменить периодичность.

в) Использовать паузы между импульсами для осуществления другого действия.

Примеры. Авторское свидетельство № 267772. Известен способ исследования процесса дуговой сварки с использованием дополнительного осветителя. Однако при дополнительном освещении наряду с улучшением видимости твердого и жидкого материала, находящегося в области дуги, ухудшается видимость плазменно-газовой фазы столба дуги (явное техническое противоречие!). Предложенный способ отличается тем, что яркость дополнительного осветителя периодически изменяют от нуля до величины, превышающей яркость дуги. Это позволяет совместить наблюдение как за самой дугой, так и за процессом плавления электрода и переноса металла.

Авторское свидетельство № 302622. Способ контроля исправности термопары путем подогрева ее и проверки наличия в цепи э. д. с., отличающийся тем, что с целью уменьшения времени контроля нагревают термопару периодическими импульсами тока, а в промежутки времени между импульсами проверяют наличие термо э. д. с.

20. Принцип непрерывности полезного действия

а) Вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой).

б) Устранить холостые и промежуточные ходы.

Примеры. Авторское свидетельство № 126440. Способ многоствольного бурения скважин двумя комплектами труб. При одновременном бурении двух-трех скважин применяются ротор с несколькими стволами, включаемыми в работу независимо друг от друга, и два комплекта бурильных труб, поочередно поднимаемых и опускаемых в скважины для смены отработанных долот. Операции по смене долот совмещаются во времени с автоматическим бурением в одной из скважин.

Авторское свидетельство № 268926. Способ транспортировки сахара-сырца на судах, отличающийся тем, что с целью снижения стоимости транспортировки путем утилизации свободных пробегов используют танкеры, которые после разгрузки от нефтепродуктов или других жидких грузов, очистки и обработки моющими средствами загружают сахаром-сырцом.

21. Принцип проскока

Вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

Примеры. Авторское свидетельство № 241484. Способ скоростного нагрева металлических заготовок в потоке газа, отличающийся тем, что с целью повышения производительности и уменьшения обезуглероживания газ подают со скоростью не менее 200 м/сек, при сохранении потока постоянным на всем протяжении его контакта с заготовками.

Авторское свидетельство № 112889. При разгрузке палубного лесовоза его накреняют с помощью судна-кренователя. Чтобы в воду свалился весь лес, приходится создавать большой крен лесовоза, а это опасно. Предлагаемый способ состоит в том, что лесовоз быстро («рывком») накреняют на небольшой угол. Возникает динамическая нагрузка, и лес разгружается при небольшом угле крена.

Патент ФРГ № 1134821. Устройство для разрезания тонкостенных пластмассовых труб большого диаметра. Особенность устройства — нож рассекает трубу так быстро, что она не успевает деформироваться.

22. Принцип «обратить вред в пользу»

а) Использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта.

б) Устранить вредный фактор за счет сложения с другим вредным фактором.

в) Усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

Примеры. Член-корреспондент Академии наук СССР П. Вологдин в статье «Путь ученого» («Ленинградский альманах», 1953, № 5) писал, что еще в двадцатых годах он задался целью применить токи высокой частоты для нагрева металла. Опыты показали, что металл нагревается лишь с поверхности. Ток высокой частоты никак не удавалось «загнать» в глубь заготовки, и опыты прекратили. Впоследствии Вологдин не раз сожалел, что не использовал этот «отрицательный эффект»: промышленность могла бы получить метод высокочастотной закалки стальных деталей на много лет раньше, чем он был предложен в действительности.

По-иному сложилась судьба другого выдающегося изобретения — электроискровой обработки металла.

Б. Р. Лазаренко и И. Н. Лазаренко работали над проблемой борьбы с электроэрозией металлов. Электрический ток «разъедал» металл в месте соприкосновения контактов реле, и с этим ничего не удавалось сделать. Были испробованы твердые и сверхтвердые сплавы — и все безрезультатно. Исследователи пытались помещать контакты в различные жидкости, но разрушение шло еще интенсивнее.

Однажды изобретатели поняли, что этот «отрицательный эффект» можно где-то применить с пользой, и вся работа пошла теперь в другом направлении. 3 апреля 1943 года изобретатели получили авторское свидетельство на электроискровой способ обработки металла.

Авторское свидетельство № 142511. На рис. 18, А показано подвижное соединение двух частей щековой дробилки. Подвижность достигается благодаря сферической форме чугунного наконечника. Шейка этого наконечника — самое слабое место конструкции, здесь обычно и происходит излом. Можно, конечно, принять меры для предотвращения излома. Ну а если мы заранее умышленно «сломаем» наконечник? Тогда он превратится в цилиндрическую втулку, которую уже невозможно сломать (рис. 18, Б).

Рис. 18. Принцип «обратить вред в пользу».

Авторское свидетельство № 152492. Для защиты подземных кабельных линий от повреждений, вызываемых образованием в грунте морозобойных трещин, заранее прорывают узкие прорези («трещины») в стороне от трассы кабеля (рис. 19).

Рис. 19. Искусственные «трещины» — прорези предохраняют кабельную линию от морозобойных трещин.

Сам по себе этот принцип прост: надо допустить то, что кажется недопустимым, — пусть случится! Но тут мысль изобретателя часто наталкивается на психологический барьер...

23. Принцип обратной связи

а) Ввести обратную связь.

б) Если обратная связь есть — изменить ее.

Примеры. Авторское свидетельство № 283997. Внутри градирни ветер образует циркуляционные зоны, что снижает глубину охлаждения воды. Чтобы повысить эффективность охлаждения, в секциях градирни устанавливают температурные датчики и по их сигналам автоматически изменяют количество подаваемой воды.

Авторское свидетельство № 167229. Способ автоматического запуска конвейера, отличающийся тем, что с целью экономии электроэнергии, потребляемой в момент запуска конвейерного двигателя, измеряют мощность, потребляемую двигателем конвейера во время работы, фиксируют ее в момент остановки конвейера и полученный сигнал, обратно пропорциональный весу материала на конвейере, подают на пусковой двигатель в момент запуска конвейера.

Авторское свидетельство № 239245. Способ автоматического регулирования процесса ректификации путем воздействия на расход орошения в колонну в зависимости от температуры и давления на выходе продукта, отличающийся тем, что с целью стабилизации содержания одного из компонентов в трехкомпонентной смеси дополнительно вводят коррекцию по удельному весу выходного продукта.

24. Принцип «посредника»

Использовать промежуточный объект-переносчик.

Примеры. Авторское свидетельство № 177436. Способ подвода электрического тока в жидкий металл, отличающийся тем, что с целью снижения электрических потерь ток к основному металлу подводят охлаждаемыми электродами через промежуточный жидкий металл, температура плавления которого ниже, а плотность и температура кипения выше, чем у основного металла.

Авторское свидетельство № 178005. Способ нанесения летучего ингибитора атмосферной коррозии на защищаемую поверхность, отличающийся тем, что с целью получения равномерного покрытия внутренних поверхностей сложных деталей через последние продувают нагретый воздух, насыщенный парами ингибитора.

25. Принцип самообслуживания

а) Объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции.

б) Использовать отходы (энергии, вещества).

Примеры. Авторское свидетельство № 261207. Дробеметный аппарат, корпус которого облицован изнутри износоустойчивыми плитами, отличающийся тем, что с целью повышения стойкости облицовки плиты выполнены в виде магнитов, удерживающих на своей поверхности защитный слой дроби. На стенках дробемета возникает, таким образом, постоянно обновляемый защитный слой дроби.

Авторское свидетельство № 307584. Способ сооружения каналов оросительных систем из сборных элементов, отличающийся тем, что с целью упрощения транспортировки изделий после монтажа начального участка канала его торцы закрывают временными диафрагмами, готовый участок канала затопляют водой и последующие элементы, также закрытые с торцов временными диафрагмами, сплавляют по этому участку канала.

Авторское свидетельство № 108625. Способ охлаждения полупроводников диодов, отличающийся тем, что с целью улучшения условий теплообмена применяется полупроводниковый термоэлемент, рабочим током которого является ток, проходящий через диод в прямом направлении.

26. Принцип копирования

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.

б) Заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии).

в) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым.

Примеры. Авторское свидетельство № 86560. Наглядное учебное пособие по геодезии, выполненное в виде написанного на плоскости художественного панно, отличающееся тем, что с целью последующей геодезической съемки с панно изображения местности оно выполнено по данным тахеометрической съемки и в характерных точках местности снабжено миниатюрными геодезическими рейками.

Иногда необходимо (для измерений или контроля) совместить два объекта, которые физически совместить невозможно. В этих случаях целесообразно применять оптические копии. Так была, например, решена задача пространственных измерений на рентгеновских снимках. Обычный рентгеновский снимок не позволяет определить, на каком расстоянии от поверхности тела находится очаг заболевания. Стереоскопические снимки дают объемное изображение, но и в этом случае измерения приходится вести на глаз: ведь внутри тела нет масштабной линейки! Нужно, таким образом, «совместить несовместимое»: тело человека, подвергнутого просвечиванию, и масштабную линейку.

Новосибирский изобретатель Ф. И. Аксенов решил эту задачу, применив метод оптического совмещения. По способу Ф. И. Аксенова стереоскопические рентгеновские снимки совмещаются со стереоскопическими же снимками решетчатого куба. Рассматривая в стереоскоп совмещенные снимки, врач видит «внутри» больного решетчатый куб, играющий роль пространственного масштаба.

Вообще, во многих случаях выгоднее оперировать не с объектами, а с их оптическими копиями. Например, канадская фирма «Крютер Палп» пользуется специальной фотоустановкой для обмера бревен, перевозимых на железнодорожных платформах. По данным фирмы, фотографический обмер балансов раз в 50—60 быстрее ручного, отклонение же результатов фотообмера от данных точного подсчета не превышает 1—2%.

Еще один интересный пример:

Авторское свидетельство № 180829 — новый способ контроля поверхности внутренних полостей сферических деталей. В деталь наливают малоотражающую жидкость и, последовательно меняя ее уровень, производят фотографирование на один и тот же кадр цветной пленки. На снимке получаются концентрические окружности. Сравнивая после увеличения (в проекционной системе) полученные этим способом линии с теоретическими линиями чертежа, с большой точностью определяют величину отклонения формы детали.

27. Дешевая недолговечность взамен дорогой долговечности

Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Примеры. Правила асептики требуют, чтобы кипячение шприца с иглами для инъекции продолжалось не менее 45 минут. Между тем во многих случаях бывает необходимо ввести лекарство как можно быстрее. Во Всесоюзном научно-исследовательском институте медицинских инструментов и оборудования создан шприц-тюбик для одноразового пользования. Это тонкостенный сосуд из пластмассы, на горловине которого укреплена стерильная игла, защищенная колпачком. Корпус шприца-тюбика в заводских условиях заполняется лекарственным препаратом и запаивается. Такой шприц можно привести в готовность буквально за считанные секунды — для этого достаточно лишь снять колпачок, прикрывающий иглу. Во время инъекции лекарство из тюбика выдавливается, после чего использованный шприц-тюбик выбрасывают.

Патент США № 3430629. Пеленка одноразового использования. Содержит наполнитель типа промокашки.

Существует много патентов такого типа: на одноразовые термометры, мусорные мешки, зубные щетки и т. д.

28. Замена механической схемы

а) Заменить механическую схему оптической, акустической или «запаховой».

б) Использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом.

в) Перейти от неподвижных полей к движущимся, от фиксированных — к меняющимся во времени, от неструктурных — к имеющим определенную структуру.

г) Использовать поля в сочетании с ферромагнитными частицами.

Примеры. Авторское свидетельство № 163559. Способ контроля износа породоразрушающего инструмента, например буровых долот, отличающийся тем, что с целью упрощения контроля в качестве сигнализации износа применяют монтируемые в теле долота ампулы с резко пахучими химическими веществами, например с этилмеркаптаном.

Авторское свидетельство № 154459. Неизнашиваемая винтовая пара (рис. 20). Винтовая пара состоит из винта 1, в резьбу которого уложена обмотка 2, и гайки 3 с обмоткой 4. Винт и гайка расположены с зазором между ними. Гайка 3 жестко связана с подвижным узлом станка или прибора. При прохождении тока по обмоткам 2 и 4 вокруг них создаются магнитные поля. Замыкание этих полей происходит соответственно через гайку и винт, причем магнитный поток достигает максимальной величины при совмещении витков винта и гайки.

Рис. 20. В этой винтовой паре гайка движется без трения, за счет взаимодействия электромагнитных полей.

При вращении винта магнитный поток между сместившимися один относительно другого витками обмоток винта и гайки искривляется и, как следствие, возникает усилие, стремящееся восстановить первоначальное взаимное расположение витков. Это усилие и будет вызывать поступательное перемещение гайки с подвижным узлом.

Наличие зазора между винтом и гайкой позволяет значительно продлить срок службы винтовой пары, сделать их практически неизнашиваемыми.

«На одном заводе делали сверхъювелирную по тонкости работу: шлифовали стенки отверстия диаметром в полмиллиметра.

Для такой операции изготовили миниатюрный шлифовальник диаметром в две десятых миллиметра, обсыпанный алмазной пылью.

Инструментик этот вращала пневматическая турбина со скоростью 1000 оборотов в секунду! Кроме того, шлифовальник двигался по контуру отверстия, обходя его каждую минуту 150 раз. Рабочий был не в силах проникнуть взглядом в зону обработки, не мог уловить момент, когда крохотный инструмент касался детали. Рабочий то затягивал процесс обработки, то кончал его слишком рано, в обоих случаях детали шли в брак.

Собирались уже конструировать уникальный станок-автомат. Но изобретательская мысль нашла простой выход: деталь изолировали от станка, присоединили к ней один полюс электробатарейки, а другой полюс подвели к станку. В цепь включили усилитель и громкоговоритель. Теперь, как только инструмент касался детали, громкоговоритель «вскрикивал». Кричащий станок издавал звуки, по которым можно было судить и о том, когда началась шлифовка, и о том, как она проходит, — тональность звука менялась».

Авторское свидетельство № 261372. Способ проведения процессов, например каталитических, в системах с движущимся катализатором, отличающийся тем, что с целью расширения области применения создают движущееся магнитное поле и применяют катализатор с ферромагнитными свойствами.

Авторское свидетельство № 144500. Способ интенсификации теплообмена в трубчатых элементах поверхностных теплообменников... отличающийся тем, что с целью повышения коэффициента теплоотдачи в поток теплоносителя вводят ферромагнитные частицы, перемещающиеся под действием вращающегося магнитного поля преимущественно у стенок теплообменника, для разрушения и турбулизации пограничного слоя.

Французский патент № 1499276. После обработки деталей в галтовочных барабанах или вибрационных установках детали нужно отделить от абразивных зерен. Если детали крупные, это сделать нетрудно, если они ферромагнитные, их можно выловить на магнитных сепараторах. Но если детали не обладают магнитными свойствами, а по размерам не отличаются от абразивных зернышек? По данному изобретению задача решается тем, что абразиву придают магнитные свойства. Это можно сделать спрессовыванием или спеканием смеси абразивных зерен и магнитных частиц — стружек, крупинок и т. п., а также внедрением их в поры абразивов.

29. Использование пневмоконструкций и гидроконструкций

Вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

Примеры. Авторское свидетельство № 243809. Цель изобретения — улучшение тяги и увеличение высоты рассеивания отводимых газов. Это достигается тем, что корпус трубы (рис. 21) образован конической спиралью 1, полые витки которой имеют сопла 2 и соединены с полыми опорами 3, свободные концы которых, в свою очередь, присоединены к компрессору 4.

Рис. 21. Вместо массивной дымовой трубы — ажурное сооружение: полая спираль, имеющая на витках сопла, через которые подается сжатый воздух, образующий «стенку».

При включении компрессора 4 воздух, поднимаясь под давлением по опорам 3, попадает в спиральные витки корпуса и, вырываясь из сопел 2, создает воздушную «стенку».

Авторское свидетельство № 312630. Способ окраски крупногабаритных изделий распылением с удалением паров растворителя и окрасочного тумана через вентиляционную засасывающую систему, отличающийся тем, что с целью уменьшения производственных площадей вокруг окрашиваемого изделия создают восходящую на высоту, превышающую высоту изделия, воздушную завесу, верхние концы которой завихряют посредством напольной вентиляционной засасывающей системы.

Изобретение это преодолевает такое же техническое противоречие, что и в предыдущем случае. Поэтому похожи и решения: пневмостенка вместо жесткой трубообразной ограды.

Авторское свидетельство № 264675. Опора для сферического резервуара, включающая основание, отличающаяся тем, что с целью снижения напряжений в оболочке резервуара основание опоры выполнено в виде заполненного жидкостью сосуда с вогнутой крышкой из эластичного материала, принимающей форму опираемой на нее оболочки резервуара.

А вот двойник этого изобретения — авторское свидетельство № 243177. Устройство для передачи усилий от опоры копра на фундамент, отличающееся тем, что с целью обеспечения равномерности передачи давления на фундамент оно выполнено в виде плоского замкнутого сосуда, заполненного жидкостью.

Интересно, сколько еще авторских свидетельств будет выдано на применение одного и того же типового приема: если А должно давить на Б равномерно, положи между А и Б жидкостную подушку...

30. Использование гибких оболочек и тонких пленок.

а) Вместо объемных конструкций использовать гибкие оболочки и тонкие пленки.

б) Изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Примеры. Чтобы уменьшить потери влаги, испаряющейся через листья деревьев, американские исследователи опрыскивают их полиэтиленовым «дождем». На листьях создается тончайшая пластмассовая пленка. Растение, укрытое пластмассовым одеялом, развивается нормально благодаря тому, что полиэтилен значительно лучше пропускает кислород и углекислый газ, чем пары воды.

Авторское свидетельство № 312826. Способ экстракции в системе жидкость — жидкость, отличающийся тем, что с целью интенсификации процесса массообмена струю одной фазы подают через слой газа на поверхность другой фазы, перемещаемой пленкой по твердой поверхности.

31. Применение пористых материалов

а) Выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. п.).

б) Если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Машины всегда строились из плотных (непроницаемых) материалов. Инерция мышления приводит к тому, что задачи, легко решаемые при использовании пористых материалов, зачастую пытаются решить введением специальных устройств и систем, сохраняя все элементы конструкции непроницаемыми. Между тем высокоорганизованной машине присуща проницаемость — примером может служить любой живой организм, начиная с клетки и кончая человеком.

Внутреннее перемещение вещества — одна из важных функций многих машин. «Грубая» машина осуществляет эту функцию с помощью труб, насосов и т. п., «тонкая» машина — с помощью пористых материалов и молекулярных сил.

Примеры. Авторское свидетельство № 262092. Способ защиты внутренних поверхностей стенок емкости от отложений твердых или вязких частиц из находящегося в емкости продукта, отличающийся тем, что с целью повышения эффективности защиты и снижения энергозатрат внутрь емкости, изготовленной из пористого материала, подают через ее стенки не образующую отложений жидкость под давлением, превосходящим давление внутри емкости.

Авторское свидетельство № 283264. Способ внесения добавок в жидкий металл с помощью огнеупорных материалов, отличающийся тем, что с целью улучшения режима внесения добавок в металл погружают пористый огнеупор, предварительно пропитанный материалом добавки.

Авторское свидетельство № 187135. Система испарительного охлаждения электрических машин, отличающаяся тем, что с целью исключения необходимости подвода охлаждающего агента к машине активные части и отдельные конструктивные элементы ее выполнены из пористых металлов, например пористых порошковых сталей, пропитанных жидким охлаждающим агентом, который при работе машины испаряется и таким образом обеспечивает кратковременное, интенсивное и равномерное ее охлаждение.

32. Принцип изменения окраски

а) Изменить окраску объекта или внешней среды.

б) Изменить степень прозрачности объекта или внешней среды.

в) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки.

г) Если такие добавки уже применяются, использовать меченые атомы.

Примеры. В кузнечных и литейных цехах, на металлургических заводах, всюду, где необходимо защитить рабочих от действия жары, применяются водяные завесы. Такие завесы отлично защищают рабочих от невидимых тепловых (инфракрасных) лучей, однако слепяще-яркие лучи от расплавленного металла беспрепятственно проходят сквозь тонкую жидкую пленку. Чтобы защитить рабочих и от них, сотрудники польского Института охраны труда предложили окрашивать воду, из которой создается водяная завеса, — оставаясь прозрачной, она полностью задерживает тепловые лучи и в нужной степени ослабляет силу видимого излучения.

Авторское свидетельство № 165645. В фиксирующий раствор вводят краситель, который обратимо абсорбируется фотографическим слоем и не закрашивает подложку-бумагу или целлулоид. Краситель при последующей промывке водой должен удаляться из слоя. Скорость вымывания красителя из фотографического слоя примерно равна скорости вымывания тиосульфата натрия или несколько меньше ее. Обесцвечивание фотографического изображения свидетельствует о полноте промывки слоя от остатков солей, при помощи которых производилось фиксирование фотографического материала.

33. Принцип однородности

Объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Примеры. Патент ФРГ № 957599. Литейный желоб для обработки расплавленного металла звуком или ультразвуком с помощью звукоизлучателя, помещенного в расплавленный металл, отличающийся тем, что находящаяся в соприкосновении с расплавленным металлом часть звукоизлучателя выполнена из того же металла, что и обрабатываемый металл, или одного из его легирующих компонентов и частично расплавляется этим расплавленным металлом, а остальная часть звукоизлучателя принудительно охлаждается и остается прочной.

Авторское свидетельство № 234800. Способ смазывания охлаждаемого подшипника скольжения, отличающийся тем, что с целью улучшения смазывания при повышенных температурах в качестве смазывающего вещества берут тот же материал, что и материал вкладыша подшипника.

Авторское свидетельство № 180340. Способ очистки газов от пыли, содержащей расплавленные частицы, отличающийся тем, что с целью повышения эффективности процесса исходные газы барботируют в среде, образованной при слиянии этих же частиц в расплав.

Авторское свидетельство № 259298. Способ сварки металлов, при котором свариваемые кромки устанавливают с зазором и подают в него присадочный материал с последующим нагревом свариваемых кромок, отличающийся тем, что с целью улучшения сварки в качестве присадочного материала используют летучие соединения тех же металлов, что и свариваемые.

34. Принцип отброса и регенерации частей

а) Выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. п.) или видоизменена непосредственно в ходе работы.

б) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Примеры. Патент США № 3174550. При аварийной посадке самолета бензин вспенивают с помощью специальных химических веществ, переводя в негорючее состояние.

Патент США № 3160950. Чтобы при резком старте ракеты не пострадали чувствительные приборы, их погружают в пенопласт, который, выполнив роль амортизатора, быстро испаряется в космосе.

Нетрудно заметить, что этот принцип — дальнейшее развитие принципа динамизации: объект изменяется в процессе действия, но изменяется сильнее. Самолет с меняющейся в полете геометрией крыла — это принцип динамизации. Ракета, отбрасывающая отработанные ступени, — принцип отброса.

А вот изобретения-близнецы:

Авторское свидетельство № 222322. Способ изготовления винтовых микропружин, отличающийся тем, что с целью повышения производительности оправку выполняют из эластичного материала и удаляют путем погружения ее вместе с пружиной в состав, растворяющий эластичный материал.

Авторское свидетельство № 235979. Способ изготовления резиновых шаров-разделителей, отличающийся тем, что с целью придания шару необходимых размеров ядро формуют из смеси измельченного мела с водой с последующей просушкой и разрушением твердого ядра после вулканизации жидкостью, вводимой с помощью иглы.

Авторское свидетельство № 159783. Способ производства полых профилей, отличающийся тем, что с целью получения разнообразных по размерам и форме профилей на сортовых станах прокатке подвергают сварные пакеты, наполненные огнеупорным материалом, например магнезитовым порошком, с последующим удалением наполнителя.

Можно привести сотни подобных изобретений. Трудно представить, сколько времени потеряли изобретатели на поиски, каждый раз отыскивая идею «с нуля». А ведь здесь один типовой прием: изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т. д.

Антипод принципа отброса — принцип регенерации.

Авторское свидетельство № 182492. Способ компенсации износа непрофилированного электрода-инструмента при электроэрозионной обработке токопроводящих материалов, отличающийся тем, что с целью увеличения срока службы электрода-инструмента на его рабочую поверхность в процессе обработки непрерывно напыляют слой металла.

Авторское свидетельство № 212672. При гидротранспортировании кислых гидросмесей с абразивными материалами внутренние стенки трубопроводов быстро изнашиваются. Защита их футеровкой сложна, трудоемка, ведет к увеличению наружного диаметра труб. Описываемый способ защиты труб предусматривает образование на внутренних стенках трубы защитного слоя (гарниссажа). Для этого в транспортируемую гидросмесь периодически вводят известковый раствор. Таким образом, внутренние стенки трубопроводов всегда защищены от износа, а сечение трубопровода уменьшается незначительно, так как гарниссаж изнашивается под действием абразивной кислой смеси.

35. Изменение физико-химических параметров объекта

а) Изменить агрегатное состояние объекта.

б) Изменить концентрацию или консистенцию.

в) Изменить степень гибкости.

г) Изменить температуру.

Примеры. Авторское свидетельство № 265068. Способ проведения массообменных процессов в системе газ — вязкая жидкость, отличающийся тем, что с целью интенсификации процесса вязкую жидкость перед подачей в аппарат предварительно газируют.

Авторское свидетельство № 222781. Дозатор сыпучих материалов, например минеральных удобрений и ядохимикатов, выполненный в виде шнека, заключенного в кожух с выходным отверстием, отличающийся тем, что с целью возможности регулирования шага винтовая поверхность шнека выполнена из эластичного материала с пружинной, спиралью на внутренней и наружной сторонах (рис. 22).

Рис. 22. В дозаторе сыпучих материалов шнек выполнен из эластичного материала с пружинной спиралью; это позволяет регулировать шаг шнека.

36. Применение фазовых переходов

Использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

Примеры. Авторское свидетельство № 190855. Способ изготовления ребристых труб, заключающийся в раздаче заглушенных труб водой, подаваемой под давлением, отличающийся тем, что с целью удешевления и ускорения процесса изготовления поданную под давлением воду замораживают.

Может возникнуть вопрос: чем прием № 36 отличается от приемов № 35-а (изменение агрегатного состояния) и № 15 (принцип динамичности)? Прием № 35-а заключается в том, что вместо агрегатного состояния А объект используют в агрегатном состоянии Б и именно за счет особенностей состояния Б получают нужный результат.

Суть приема № 15 в том, что мы пользуемся то свойствами, присущими состоянию А, то свойствами, присущими состоянию Б.

При использовании приема № 36 задача решается за счет явлений, связанных с переходом от А к Б или обратно. Если, например, мы наполним трубу не водой, а льдом, ничего с трубой не произойдет. Требуемый эффект достигается за счет увеличения объема воды при замерзании.

Авторское свидетельство № 225851. Способ охлаждения различных объектов с помощью циркулирующего по замкнутому контуру жидкого теплоносителя, отличающийся тем, что с целью уменьшения количества циркулирующего теплоносителя и снижения энергетических затрат часть теплоносителя переводят в твердую фазу и охлаждение ведут полученной смесью.

«Фазовые переходы» — понятие более широкое, чем «изменение агрегатного состояния». К фазовым переходам, в частности, относятся и изменения кристаллической структуры вещества. Так, олово может существовать в виде белого олова (плотность 7,31) и серого олова (плотность 5,75). Переход — при 18°C — сопровождается резким увеличением объема (значительно большим, чем при замерзании воды; поэтому и усилия здесь могут быть получены намного большие).

Полиморфизм (кристаллизация в нескольких формах) присущ многим веществам. Явления, сопровождающие полиморфные переходы, могут быть использованы при решении самых различных изобретательских задач. Например, в патенте США № 3156974 используются полиморфные трансформации висмута и церия.

37. Применение термического расширения

а) Использовать термическое расширение (или сжатие) материалов.

б) Если термическое расширение уже используется, применить несколько материалов с разными коэффициентами термического расширения.

Примеры. Авторское свидетельство № 309758. Способ волочения труб на подвижной оправке при пониженных температурах, отличающийся тем, что с целью создания зазора между трубой и оправкой после волочения для извлечения последней из трубы без обкатки, в охлажденную трубу перед волочением вводят предварительно подогретую, например, до температуры 50—100°C оправку, извлечение которой после деформации производят после выравнивания температур трубы и оправки.

Авторское свидетельство № 312642. Заготовка для горячего прессования многослойных изделий, выполненных в виде концентрично расположенных втулок, изготовленных из различных материалов, отличающаяся тем, что с целью получения многослойных изделий с напряженными слоями каждая втулка изготовлена из материала, имеющего температурный коэффициент линейного расширения выше температурного коэффициента линейного расширения материала втулки, расположенной внутри нее.

Смысл приема — в переходе от «грубого» движения на макроуровне к «тонкому» движению на молекулярном уровне. С помощью термического расширения можно создавать большие усилия и давления. Термическое расширение позволяет очень точно «дозировать» движение объекта.

Авторское свидетельство № 242127. Устройство для микроперемещения рабочего объекта, например, кристаллодержателя с затравкой, отличающееся тем, что с целью обеспечения максимальной плавности оно содержит два стержня, подвергаемых электронагреву и охлаждению по заданной программе, находящихся в закрепленных на суппортах термостатируемых камерах и поочередно перемещающих объект в нужном направлении.

38. Применение сильных окислителей

а) Заменить обычный воздух обогащенным.

б) Заменить обогащенный воздух кислородом.

в) Воздействовать на воздух или кислород ионизирующими излучениями.

г) Использовать озонированный кислород.

д) Заменить озонированный (или ионизированный) кислород озоном.

Основная цель этой цепи приемов — повысить интенсивность процессов. В качестве примеров можно назвать способ спекания и обжига дисперсного материала с применением интенсификации процесса горения путем продувки воздухом, обогащенным кислородом; плазменнодуговую резку нержавеющих сталей, при которой в качестве режущего газа берут чистый кислород; интенсификацию процесса агломерации руд путем ионизации окислителя и газообразного топлива перед подачей в слой шихты и т. д.

39. Применение инертной среды

а) Заменить обычную среду инертной.

б) Вести процесс в вакууме.

Этот прием можно считать антиподом предыдущего.

40. Применение композиционных материалов

Перейти от однородных материалов к композиционным.

Пример. Патент США № 3553820. Легкие прочные тугоплавкие изделия выполнены на основе алюминия и упрочнены множеством покрытых танталом волокон углерода. Такие изделия характеризуются высоким модулем упругости и используются в качестве материалов для конструирования кораблей воздушного и морского флотов.

Авторское свидетельство № 147225. Способ записи, при котором используют чернила, содержащие мелкие магнитные частицы. В отличие от обычных, магнитные чернила управляются магнитным полем.

Композиционные материалы — составные материалы, которые обладают свойствами, не присущими их частям. Например, пористые материалы, о которых шла речь в приеме № 31, представляют собой композицию из твердого вещества и воздуха; ни твердое вещество, ни воздух порознь не обладают теми свойствами, которые есть у пористых веществ.

Композиционные материалы изобретены природой и широко ею используются. Так, древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но легко изгибаются. Лигнин связывает их в единое целое и сообщает материалу жесткость.

Интересный композиционный материал представляет сочетание легкоплавкого вещества (например, сплава Вуда) с волокнами тугоплавкого материала (например, стали). Такой материал легко плавится, а застыв, обладает высокой прочностью. Постепенно происходит взаимная диффузия частиц припоя и волокон, в результате чего образуется сплав с высокой температурой плавления.

Другой композиционный материал — взвесь частиц кремния в масле — способен твердеть в электрическом поле.

* * *

В статье Э. Долота и И. Клямкина «Обыкновенные эдисоны» приведено любопытное высказывание актера Московского театра сатиры Лепко. Штампы, говорил Лепко, вовсе не помеха в творчестве, наоборот, это рабочее орудие артиста. Весь вопрос в том, насколько широк набор этих штампов. Слабый актер — три или четыре штампа, про него говорят, что он в каждой роли повторяет себя. Сильный, талантливый актер — пятьдесят штампов, сто, может быть...

Знание типовых приемов, этих «штампов» изобретательства, резко повышает эффективность творчества. Возьмем, например, конкретную задачу. Нужно, чтобы при стрельбе дробью заряд не разлетался в стороны, а шел узким конусом. Обычный путь повышения кучности боя — увеличение длины ствола. Но тут очевидное техническое противоречие: выиграешь в форме конуса разлета дроби, проиграешь в длине ствола. Как быть?

Если трудно догадаться сразу, давайте уберем термины «ствол» и «дробь». Какие-то частицы движутся по трубе, и пока стенки направляют движение частиц — все в порядке. Но трубу нельзя сделать слишком длинной, как же направлять полет частиц?

В этой задаче такое же техническое противоречие, как и при сооружении дымовых труб. Следовательно, здесь можно применить тот же прием (№ 29), что и в авторском свидетельстве № 243809: использовать вместо «твердой» конструкции пневмоконструкцию. Пусть частицы движутся в газовых «стенках». Именно так решена эта задача по японскому патенту № 44—20959. В коротком стволе имеются газовыпускные отверстия. На ствол надет кожух, обрез которого совпадает с обрезом ствола. При выстреле пороховые газы выходят в кольцевой канал между стволом и кожухом и выбрасываются в виде кольца, которое охватывает дробовой заряд.

Еще одна задача: как изготовлять волочением трубки из нихрома с толщиной стенок около 0,01 мм при допуске в 0,003 мм? Для изобретателя, незнакомого с типовыми приемами, это задача примерно третьего уровня. Если же изобретатель овладел типовыми приемами, задача покажется ему очень легкой — никак не выше первого уровня. Прием № 34: «Изготавливай объект А на оправке Б, которую можно удалить растворением, испарением, плавлением, химической реакцией и т. д.». И вот авторское свидетельство № 182661: «Способ изготовления тонкостенных трубок из нихрома, отличающийся тем, что... волочение... осуществляют на деформируемом алюминиевом стержне, удаляемом после обработки вытравливанием щелочью».

Современный изобретатель должен хорошо знать типовые приемы устранения технических противоречий. Без этого немыслима научная организация творческого процесса.

 

Как работает алгоритм

Изучение АРИЗ-71 мы еще продолжим в следующих главах, а пока проследим действие алгоритма на конкретной задаче.

Задача 5

Ледокол продвигается во льдах по принципу клина. Поэтому скорость продвижения и толщина доступных преодолению льдов зависят в основном от мощности энергетических установок ледокола. Путь развития ледоколов — это увеличение мощности их двигателей. У современного лайнера на 1 т водоизмещения приходится 0,5 л. с.; у ледоколов это отношение в 6 раз больше. До 70% длины корпуса ледокола занято двигательными установками, топливными емкостями (танками) и различными обслуживающими системами. Ледокол буквально заполнен «двигательной частью», охлаждение двигателей — сложная проблема.

«Периодическое нарушение работы охлаждающей системы в тяжелых ледовых условиях наблюдается на всех ледоколах, и эффективное решение этой проблемы пока не найдено. Например, из опыта американских ледоколов известно, что в ряде случаев не прочность льда, а прекращение подачи охлаждающей забортной воды ограничивает продвижение судна» (Юдовин Б. С. Энергетические установки ледоколов. М., «Судостроение», 1967, стр. 182).

«Двигательная часть» современных ледоколов настолько гипертрофирована, что на судне не остается места для размещения сколько-нибудь значительного количества грузов. Поэтому за ледоколом идет караван из трех-четырех транспортных судов. «Начало и продолжительность навигации в Арктике и в замерзающих портах определяет ледовая обстановка. Ведь принцип действия ледокола, стоит ли на нем паровая машина, как сто лет назад, или новейший атомный реактор, почти не изменился. С разбега вползает он на преградившее путь ледяное поле и своим весом ломает его. Снова разбег, и снова несколько метров вперед. Надсадно ревут двигатели, скрежещет лед об обшивку. На почтительном расстоянии сзади стоит караван обычных судов, ждет, когда ледокол проложит путь. Но льды становятся толще и толще. Полтора, два, два с половиной метра! Ледокол застревает. Механики пускают машины «враздрай» — в разные стороны. Судно начинает «мотать носом», пытаясь освободиться от ледяного плена. Насосы перекачивают сотни тонн воды из носовых цистерн в кормовые, из левых цистерн — в правые. Ледокол качается с носа на корму, переваливается с боку на бок, разжимая, как клин, льдины... Дорога за ледоколом слишком тяжела для обычных судов. С трудом увертываются они от плавающих ледяных глыб, грозящих распороть им бока. Пространство перед причалами, а иногда и вся акватория порта превращаются в сплошную массу битого льда. Каждый день ледоколы добавляют новые порции. В результате лед смерзается, и вскоре толщина его становится в 2—3 раза больше первоначальной. Теперь уж и сам ледокол не в силах одолеть эту преграду. Такие случаи неоднократно наблюдали в Архангельском, в Ленинградском портах. Короче говоря, мечта капитанов — иметь ледокол, способный преодолевать льды любой толщины и, главное, оставляющий за собой не ледяное крошево, а чистый канал» (Муслин Е. Пушки и лед. «Знание — сила», 1968, №5).

Известны различные способы облегчения продвижения сквозь льды. Издавна, например, применяется разрушение льда с помощью взрывчатых веществ. Недостатки этого способа — большой расход ВВ, низкая производительность, крайняя неэкономичность.

На небольших речных ледоколах устанавливают вибрационные установки. «Многотонные чугунные диски закрепляют на валах специальных машин, которые намертво привинчивают к носовой палубе. Едва только эта машина заработает, ледокол начинает трясти и раскачивать, его нос ходит ходуном, так что не только находиться там — со стороны глядеть страшно! Кажется, что вот-вот виброустройство вырвет «с мясом». Судно бьется о лед, словно в лихорадке, — лед в конце концов не выдерживает ударов, поддается» (Каневский 3. Ледовая пахота. «Знание — сила», 1969, № 8).

Применение ВВ, вибрация — все это не дает существенного эффекта.

Нужно придумать способ, обеспечивающий быстрое продвижение ледоколов во льдах толщиною до 3 м. Способ должен быть экономичен и осуществим при современном уровне техники.

Сейчас мы не будем уточнять задачу — это входит в процесс решения по АРИЗ, введем лишь некоторые обязательные ограничения.

1. По условиям задачи транспортировку грузов по морю нельзя заменять; переброска их авиацией или железнодорожным транспортом отвергается.

2. Нельзя заменять корабль подводной лодкой. Подводные лодки имеют очень большую осадку в надводном положении. В Англии, например, спроектирован подводный танкер с осадкой в 18 м, его придется загружать и разгружать в открытом море.

Решать задачу надо применительно к кораблю водоизмещением в 5—20 тыс. т. Корабль должен иметь в свободной воде нормальную скорость (т. е. 18—20 узлов).

Решение задачи 5

Часть 1

1—1. а) Надо увеличить скорость движения каравана судов и ледокола во льдах.

б) Нельзя увеличивать мощность двигателей ледокола — эта возможность исчерпана.

в) Надо снизить стоимость транспортировки грузов в ледовых условиях.

г) Затраты должны быть ниже, чем при использовании лучших современных ледоколов.

д) Цель — снизить стоимость одного тонно-километра транспортировки груза.

1—2. Обходный путь — отказаться от ледокола. Ледокол — машина для изготовления канала во льдах. Если транспортные суда научатся ходить во льдах без канала, отпадет необходимость в ледоколе.

1—3. Итак, с ледоколом или самостоятельно?

а, в) В водном транспорте отчетливо проявляется тенденция к «само» (например, от буксируемых барж — к самоходным баржам).

б, г) Тенденция к «само» наблюдается и в сельхозмашиностроении (различные самоходные установки вместо прицепов), и в авиации (поэтому не были осуществлены многочисленные проекты прицепных пассажирских планеропоездов).

д) Обходная задача представляется значительно более трудной, в некотором смысле даже нереальной, дикой: мы хотим, чтобы транспортное судно шло во льдах быстрее ледокола... Но анализ свидетельствует в пользу обходной задачи. Выбираем ее.

1—4. Примем требуемую скорость во льдах равной 6 узлам (втрое больше, чем у существующих ледоколов), толщину льда — 3 м.

1—5. Поправка на время: скорость — 8 узлов, толщина льдов — до 3,5 м (практически это предельная величина).

1—6. То, что нам предстоит придумать, должно надежно работать в полярных условиях. Отсюда требование: как можно меньше подвижных механизмов и выступающих деталей (они смерзаются, ломаются льдами и т. п.).

Часть 2

2—1. а) Анализ патентной информации сразу выявляет чрезвычайно интересный факт: нет изобретений, относящихся к выбранному нами обходному пути. Свыше ста лет развитие ледоколов идет в рамках исходной схемы. Даже наиболее оригинальные изобретения последних лет не выходят за пределы этой схемы. Изобретатели из Ленинградского НИИ Арктики и Антарктики предложили разрушать лед системой фрез или импульсными водометами. В американском патенте № 3130701 предлагается заводить носовую часть ледокола под лед и взламывать лед снизу: опускание носовой части производится затоплением особых цистерн, а подъем — опорожнением этих цистерн и одновременной подачей воздуха в надувную емкость, расположенную под днищем ледокола. По патенту ФРГ № 1175103 предлагается в носовой части корабля устанавливать десятки бивней — «направленных вперед, изогнутых и спускающихся под лед стальных клиновидных плоскостей».

Совсем свежее предложение предусматривает, что «исполнительный орган выполнен в виде расположенных вдоль корпуса, регулируемых по высоте резцов, а в задней части корпуса шарнирно установлена стрела, на конце которой закреплена удаляющая разрушенный лед плита». Это уже не корабль, а специализированный агрегат по изготовлению канала во льдах...

Много авторских свидетельств и патентов выдано на различные устройства для удаления битого льда из-под днища ледокола и очистки канала. Предложено даже специальное ледоочистительное судно, оборудованное установками, направляющими лед под ледяное поле. Система «ледокол — караван» очень далека от идеальной машины: ледокол «возит самого себя», а тут добавится еще одно судно — только для обслуживания канала. Это явно отдаляет исходную схему от идеальной машины.

Патентный анализ, таким образом, подтверждает, что прямой путь ведет в тупик излишней специализации. Мы правильно сделали, отдав предпочтение обходному пути.

б) Мы решаем задачу о продвижении сквозь плотную среду; ведущая отрасль техники в данном случае — горная техника (проходка шахт, штреков, выемка угля, руды и т. п.). Лед — горная порода; посмотрим, как движутся машины в более плотных горных породах.

Здесь уже давно применяют водометы, гидромониторы. Идут эксперименты с различными электрофизическими способами разрушения угля, руды, камня. Используют нагревание токами высокой частоты, контактный электропробой, электрогидравлический эффект и т. п. К сожалению, применить какой-либо из этих методов в нашей задаче невозможно: слишком велик объем льда, который надо разрушать в единицу времени, чтобы обеспечить требуемую скорость движения судна.

в) Обратная задача — не разрушать, а укреплять лед. Решение — армирование льда. Такое решение явно не годится, а чтобы использовать его «с обратным знаком», нужно добавлять в лед что-то, уменьшающее его прочность. Но и этот путь не годится: потребуется слишком большой расход вещества-разрыхлителя.

2—2. Применим оператор РВС. Будем считать объектом корабль, а основным размером — его ширину (от длины мало что зависит).

а) Ширина корабля стремится к нулю. Допустим, она равна 1 мм. Корабль-лезвие?

б) Начнем теперь увеличивать ширину: 10 м, 100 м, 1000 м, 10 000 м... Бее труднее и труднее двигать сквозь лед такую громаду. Положить корабль на бок?

в) Скорость движения корабля близка к нулю. В этом случае можно просто потихоньку растапливать лед. Расход топлива тоже будет стремиться к нулю.

г) Скорость повысилась до 50 узлов, 100 узлов... Корабль должен мчаться, как судно на подводных крыльях. Любой способ разрушения льда не годится — потребуется слишком большая мощность. Нужно придумать нечто, что позволит идти сквозь лед, не расходуя энергии. Как?

д) Допустимые расходы стремятся к нулю. Снова тот же вывод: не разрушать лед (за это всегда надо платить).

е) Если допустимы неограниченные расходы, задача легко решается: применить лазеры, пусть они пробивают дорогу сквозь лед.

2—3. Изложим задачу в двух фразах, убрав такие термины, как «ледокол», «ледорез» или «ледолом» (они заранее привязывают нас к какой-то технологии разрушения льда).

Итак, задача: «Дана система из корабля и льда. Корабль не может идти с большой скоростью сквозь лед». (Можно, вообще говоря, убрать и термин «корабль», но он достаточно широк и вряд ли сильно стеснит воображение.)

2—4. Корабль — технический объект, его можно изменять как угодно. Лед — природный объект, изменять его крайне трудно. Следовательно, надо корабль отнести к «а», лед — к «б».

2—5. Объектом для дальнейшего анализа будет корабль.

Вывод неожиданный: традиционные попытки решения задачи связаны с изменением льда: его ломают, режут, взрывают... Корабль кажется неизменным, мы привыкли к его определенной форме, а лед кажется легко изменяемым. На самом деле все наоборот. Чтобы расплавить один кубометр льда — все равно, чем: архисовременным лазером или простым огнем, — нужно затратить 80 000 ккал тепла (без учета потерь). Большое количество энергии нужно и для того, чтобы тем или иным способом искрошить кубометр льда. Куда проще разрушать не лед, а корабль! Ведь корабль можно сделать легкоразрушаемым — это зависит от нас...

Рис. 23. К задаче 5, шаг 3—2. «Было» — корабль дошел до льда и остановился; «Стало» — тот же корабль каким-то образом движется сквозь лед.

Мы пришли к весьма дикому выводу. Кто-то, может быть, уже подходил к этой мысли — и останавливался перед психологическим барьером.

Часть 3

3—1. Сформулируем идеальный конечный результат (ИКР): корабль сам идет сквозь лед с большой скоростью и с нормальным (как на чистой воде) расходом энергии.

3—2. На рис. 23: «Было» — корабль дошел до льда и остановился; «Стало» — тот же корабль каким-то образом движется сквозь лед.

3—3. Не может выполнить требуемого действия участок АБ носовой части корабля, упирающийся в лед. Можно ответить и по-другому: не может выполнить требуемого действия объем корпуса между АБ и ВГ.

3—4. а) Мы хотим, чтобы эта часть не упиралась в лед.

б) Она жесткая, твердая, сплошная — поэтому она и упирается.

в) Эта часть нужна для сохранения целостности корпуса и не нужна, чтобы не упираться в лед.

3—5. Поскольку эта часть нужна, придется сохранить ее. А поскольку она нам мешает, придется уменьшить ее до минимума.

3—6. Размеры этой части определяются толщиной льда и шириной корабля. Уменьшить толщину льда мы не можем. Остается уменьшать ширину корабля. Нам не надо, чтобы корабль был вообще плоским (рис. 24, а). Мы рассматриваем изменения той части корпуса, которая совпадает со слоем льда. Пусть эта часть будет плоской (24,6).

Рис. 24. Чем уже полоса разрушаемого льда, тем меньше расход энергии.

3—7 и 3—8. Получается неустойчивая форма. Чтобы корабль был устойчивым и плоским, нужны две плоскости, соединяющие верхнюю и нижнюю части корпуса (рис. 24, в).

Часть 4

4—1. Общая ширина стенок-лезвий в 20—25 раз меньше обычной ширины ледокола. Следовательно, можно рассчитывать на существенное уменьшение расхода энергии при движении во льдах. Конструкция корабля в целом упрощается (вследствие резкого снижения мощности двигателей). Усложняется решение второстепенных вопросов, например, передвижения людей между верхней и нижней частями при плавании во льдах.

4—2. Такого рода трудности могут быть сняты, если нижняя часть будет только грузовой. Например, танкерной.

4—3. Теперь в идее решения нет недостатков, при условии, что наш корабль будет хорошо двигаться и в чистой воде. Интересно отметить, что в обычном кораблестроении за последние годы тоже наметилась тенденция поднять верхнюю часть корабля над волнами, а нижнюю часть (с двигателями) опустить вниз.

4—4. Современные ледоколы полностью исчерпали возможности своего развития: нельзя поставить на ледокол более мощные двигатели, чем те, какие уже стоят. Новая схема, по которой нужно разрушать как можно меньше льда, имеет только преимущества. Хотя нельзя не учитывать и некоторые моральные стороны перехода к новой схеме: психологическую инерцию, приверженность специалистов к привычному принципу «ломай побольше» (корпусом ледокола, фрезами, водометами и т. п.).

Часть 5

Хотя идея решения и найдена, обратимся ради контроля к таблице устранения технических противоречий.

5—1. Нам надо увеличить скорость (строка 9). Или производительность (строка 39), если рассматривать корабль как машину для транспортировки груза.

5—2. Известный путь увеличения скорости (производительности) движения во льдах — увеличение мощности двигателей.

5—3. Выбираем колонку 21.

5—4. Противоречие типа 9—21, приемы: 19, 35, 38, 2. Противоречие типа 39—21, приемы: 35, 20, 10.

5—5. Прием 35(a) — изменение агрегатного состояния объекта — соответствует найденному решению.

Мы могли бы и сразу — без анализа — обратиться к таблице. Но в этом случае ответ был бы неожиданным: «Сделать корабль жидким или газообразным». После шага 3—3, даже если у нас и нет идеи решения, мы знаем часть объекта, к которой надо приложить прием, подсказанный таблицей. Нет необходимости делать корабль жидким или газообразным, достаточно изменить агрегатное состояние той его части, которая находится на уровне льда.

Часть 6

6—1. Раньше корабль входил в систему «ледокол — транспортные суда, следующие за ним». Коль скоро наше транспортное судно само движется во льдах, отпадает надобность в ледоколе. Можно рассуждать по-другому: ледокол, освобожденный от излишних двигательных установок, сам может возить груз.

6—2. Поскольку разрушение льда ведется теперь узкими лезвиями, можно использовать такие приемы разрушения льда, которые раньше были неэкономичными, например, различные электрофизические способы.

6—3. Смысл найденной идеи: не идти напролом по всему фронту, а продвигаться узкими лезвиями. Вероятно, эта идея может быть применена в технике земляных работ, где почти всегда идут напролом...

 

Несколько учебных задач

Задачу о ледоколе мы решили «в обход»: на первой же стадии решения цель была изменена. Возьмем теперь задачу о дождевателе и рассмотрим такой случай, когда цель не меняется.

Чтобы не было соблазна идти обходными путями, начнем с шага 2—3, а все предшествующие шаги заменим краткой патентной информацией.

Решение задачи 2

Основная тенденция в развитии самоходных дождевальных агрегатов — увеличивать длину крыльев. Чтобы несколько уменьшить консольную нагрузку на крылья, их снабжают опорными тележками с колесами. Так, например, устроен агрегат по патенту ФРГ № 1068940 (рис. 25, а). В английском патенте № 778716 крылья выполнены в виде шпренгельных (принцип дробления!) ферм (рис. 25, б). К сожалению, опорные тележки не избавляют от необходимости делать крылья жесткими и, следовательно, тяжелыми. Не случайно патент АРЕ № 2698 предусматривает самоходные опорные тележки. Круг, таким образом, замыкается: конструкция вновь усложняется.

Попробуем найти лучшее решение.

2—3. Дана система, состоящая из тележки, крыльев и расположенных на них распылителей воды. Увеличение длины крыльев сильно утяжеляет систему.

2—4. В принципе можно менять все элементы тележку, крылья и распылители. Но если мы решаем прямую задачу (увеличение размаха крыльев), тележка и распылители должны остаться неизменными. Поэтому

а) — крылья.

б) — тележка и распылители.

Рис. 25. Основная тенденция развития самоходных дождевальных агрегатов — увеличение длины крыльев: а — агрегат по патенту ФРГ № 1068940; б — в английском патенте № 778716 крылья сделаны в виде шпренгельных шарнирных ферм.

2—5. Крылья.

3—1. Крылья при поливе сами держатся над полем (при размахе в 200—300 м).

3—2. См. рис. 26.

3—3. Не выполняют требуемого действия «лишние» участки крыльев АБ и ВГ.

3—4. а) Нам надо, чтобы АБ и ВГ сами держались над землей.

б) Мешает вес этих частей.

в) Части АБ и ВГ должны что-то весить (это части конструкции) и в то же время веса у них не должно быть.

3—5. Части АБ и ВГ будут держаться над землей, если мы предельно уменьшим их вес (как в задаче о ледоколе предельно уменьшали ширину взаимодействующей со льдом части) или как-то уравновесим крылья.

3—6. Облегчение крыльев — путь, ведущий к надувным конструкциям. Этот путь рассмотрен в условиях задачи. Остается уравновешивание: к частям АБ и ВГ надо приложить силы, равные по величине силе веса этих частей и противоположные по направлению. Силы могут быть аэродинамические (у нас крылья), гидродинамические и т. д.

Рис. 26. К задаче 2, шаг 3—2: крылья сами себя держат гидрореактивной силой подаваемой в распылители воды.

3—7. Аэродинамические силы в данном случае малы.

Чтобы крылья сами себя держали, целесообразно использовать гидрореактивную силу подаваемой в распылители воды.

Напор воды в гидросистеме (23 м на концах крыльев) достаточен для самоподдержания леек. Расчет показывает, что легкая гидросистема может сама себя поддерживать и передвигать. Но даже если гидрореактивной силы было бы недостаточно, следовало хотя бы частично облегчить крылья. Пусть в нерабочем положении эти легкие крылья будут опущены вниз. При поливе гидрореактивная сила поднимет концы крыльев.

* * *

Алгоритм не избавляет изобретателя от необходимости думать. Одна и та же задача может быть решена на разных уровнях — в зависимости от индивидуальных качеств изобретателя. Проследим это на примере.

Задача 6

При горных работах раньше производили последовательные взрывы десяти зарядов в течение двух минут. Оператор успевал замыкать контакты цепи с электродетонаторами вручную. Но при новой организации горных работ необходимо за 0,6 сек. последовательно включить 40 контактов, причем промежутки между взрывами неравны и каждый раз меняются. Например, взрыв № 2 должен следовать через 0,01 сек. после взрыва № 1; взрыв № 3 — через 0,02 сек. после взрыва № 2 и т. д. В другой раз взрыв № 2 должен произойти через 0,03 сек. после взрыва № 1 и т. д. График включения желательно выдержать с точностью до 0,001 сек.

Нужен предельно простой, надежный и точный способ включения.

Решение задачи 6

3—3. Дана система из 40 пар проводов (контактов) и 40 «замыкалок» (или одной подвижной «замыкалки»). Трудно замыкать контакты по графику.

(Электродетонаторы не входят в рассматриваемую систему. Надо замыкать контакты, а куда идет ток — безразлично.)

2—4. а) «Замыкалка». б) Контакты.

(В условиях данной задачи контакты — это просто концы проводов, которые надо замкнуть. Менять провода мы не можем: все равно будет что-то, проводящее ток А вот «замыкалку» можно менять как угодно. Если мы отнесем к «б» оба элемента — контакты и «замыкалку», — объектом станет внешняя среда. На шаге 3—3 выделится часть этой среды то, что находится между контактами. И дальнейшее решение совпадет с тем случаем, когда выбрана «замыкалка».)

2—5. «Замыкалка».

3—1. «Замыкалка» сама соединяет контакты точно по графику.

3—2. См. рис. 27.

3—3. Не может осуществлять требуемого действия подвижная часть «замыкалки».

3—4. а) Нам надо, чтобы «замыкалка» сама передвигалась по графику.

б) «Замыкалка» не может передвигаться без применения каких-то сил.

в) Для передвижения «замыкалки» нужны силы, а мы хотим, чтобы «замыкалка» двигалась сама, т. е. без наших усилий.

3—5. «Замыкалка» будет двигаться сама, если в ней самой появятся силы.

3—6. Если силы появляются сами — это естественные силы.

3—7. Простейший случай движения под действием естественных сил — падение. «Замыкалка» должна двигаться под действием силы тяжести. Это обеспечит движение по определенному закону, т. е. по графику.

3—8. В трубке создан вакуум. Падает груз и замыкает контакты. Переналаживание легко осуществляется, если в трубке много контактов и можно подключаться к тем, которые нужны.

Рис. 27. К задаче 6, шаг 3—2 «замыкалка» должна двигаться сама, без участия человека

Сопоставим это с решением по авторскому свидетельству № 189597: «Устройство для установления заданных промежутков времени, отличающееся тем, что с целью повышения точности измерений при записи сейсмограммы оно выполнено в виде стержня с расположенным на нем грузом, замыкающим во время падения контакты, соединенные с электродетонаторами».

Такие ответы учебных задач, защищенные авторскими свидетельствами и отражающие современный уровень творческой мысли в данной области, мы будем называть контрольными ответами.

Смысл изучения АРИЗ, конечно, не в том, чтобы научиться находить контрольный ответ. Решить учебную изобретательскую задачу — значит, дать ответ, не очень отличный от контрольного (на первых этапах обучения), сходный с ним или превосходящий его (на завершающих этапах обучения)

Задачу 6 можно было решить чисто конструкторским путем (например, используя цепи с линиями задержки), но при этом не удалось бы совместить предельную простоту с требуемой точностью. Контрольный ответ соответствует второму уровню перебрав несколько десятков вариантов, к нему можно было прийти и без АРИЗ.

Попробуем теперь усложнить задачу. Это даст нам возможность в большей мере использовать АРИЗ.

Задача 7

Возьмем в качестве прототипа ответ 3—8 на задачу 6. Имеется стеклянная трубка с вакуумом; падает металлический шарик, замыкает введенные в трубку контакты. Недостаток прототипа — нет свободного падения «замыкалки»: шарик все-таки касается контактов и, следовательно, притормаживается.

Как быть?

Если взять 40 трубок разной длины, мы избавимся от трения (контакты будут только на дне), но усложним прибор. Заменить контакты микрокатушками, а шарик — магнитом? Останется трение магнита о силовые линии тока в катушках. К тому же схема сильно усложнится введением усилителя. Ввести световое замыкание? Плохо. Мы снова усложняем схему...

Прибор должен остаться простым, а точность его по сравнению с прототипом должна быть повышена. Задача учебная, поэтому менять ее нельзя; надо обязательно сохранить исходную схему (контакты и падающая «замыкалка»).

Решение задачи 7

2—3. Дана система из вакуумной трубки, контактов и «замыкалки». При падении «замыкалка» трется о контакты.

2—4. а) «Замыкалка», контакты,

б) Трубка.

(Сейчас, когда мы рассматриваем трение «замыкалки» о контакты, оба эти элемента в равной мере могут быть отнесены к «а». Трубку тоже можно менять, но в меньшей степени; у трубки своя функция — держать вакуум.)

2—5. «Замыкалка».

(Можно взять контакты, можно взять «замыкалку-контакты» — в данном случае это безразлично, так как все равно придется рассматривать взаимодействие трущихся частей.)

3—1. «Замыкалка» при падении сама замыкает контакты без трения.

Для замыкания нужно соприкосновение, т. е. трение. ИКР говорит: пусть трение будет без трения! Дикая идея, не так ли?

Здесь возникает сильный психологический барьер, и дальнейший ход решения во многом зависит от индивидуальных качеств изобретателя, прежде всего — от смелости и организованности мышления. Нужно уметь не останавливаться перед барьером, не отступать, не уходить в сторону.

3—2. Итак, шарик должен проходить сквозь контакты без трения! Тут может появиться идея жидкого шарика. Но это решение не годится: жидкость будет испаряться, исчезнет вакуум, нарушится свободное падение.

3—3. Не может выполнить требуемого действия наиболее широкая часть шарика. Его, так сказать, антиталия...

3—4. а) Нам надо, чтобы шарик двигался без трения, т. е. не касаясь контактов.

б) Для замыкания антиталия должна плотно прикасаться к контактам.

в) Для «а» нужно, чтобы шарик двигался; для «б» — чтобы он не двигался...

3—5. Значит, шарик должен одновременно двигаться и не двигаться.

Раньше было «трение без трения», теперь «движение без движения»... Подобно тому как перед рассветом усиливается темнота, так и перед выходом к новой идее мысль наталкивается на препятствия, кажущиеся особенно трудными. Мы будем называть это явление предрассветным эффектом. Помните, Максутов подошел к мысли, что приходится усложнять конструкцию. Раньше он останавливался на этом месте (темнота сгущалась, дальше не хотелось думать!). Но в поезде Максутов решил «пофантазировать»: допустил возможность усложнения конструкции и продолжал размышление. И вот оказалось, что усложнение — кажущееся.

3—6. Придется разделить шарик. Пусть одна часть, а именно антиталия, дойдя до контакта, останавливается, а другая часть шарика (все остальное) — продолжает свободное падение.

3—7, 3—8. Сделаем «замыкалку» составной (рис. 28). Верхнее кольцо, дойдя до первой пары контактов, остановится и замкнет первую цепь. Остальная часть «замыкалки» будет при этом продолжать свободное падение: остановка верхнего кольца не отразится на нижних кольцах, так как при свободном падении верхнее кольцо не давит на нижние кольца. Исключено и сдвижение колец в сторону — нет сил, способных вызвать это сдвижение.

Вторая пара контактов выдвинута к оси трубки больше, чем первая пара. На второй паре контактов задерживается второе кольцо, а оставшаяся часть «замыкалки» снова продолжает падение и т. д.

Рис. 28. Каждая пара контактов задержит только «Свое» кольцо.

Прикинем теперь, как будет устроена трубка. Предположим, длина трубки — 3 м (это вполне допустимо по аналогии с прототипом). Первый метр оставим нерабочим: «замыкалка» там только разгоняется. Следующие два метра «замыкалка» в свободном падении пройдет за 0,2 сек. Среднее расстояние между контактами на этом участке: 200 см ÷ 40 = 5 см. Ясно, что число контактов можно существенно увеличить. Подключая цепи к тем или иным контактам, мы сможем реализовать разные графики включения. Средняя скорость движения «замыкалки» 1 м за 0,1 сек. Значит, 0,001 сек. соответствует точность установки контактов в 1 см. А контакты можно легко установить с точностью, в десять раз большей. При диаметре трубки в 80 мм среднее сдвижение контактов к оси трубки — 2 мм. «Перезарядка» прибора достигается его переворачиванием. Одновременное сбрасывание всех колец — освобождением нижнего кольца, на котором свободно лежат все остальные кольца.

Итак, мы все-таки получили трение без трения! Найденный принцип значительно шире конкретной задачи. В сущности, мы нашли способ опорного движения без трения об опоры... Решить задачу на таком уровне без АРИЗ — путем перебора вариантов — очень нелегко. Вы можете убедиться в этом, предложив задачу 7 своим друзьям. Помните, что при этом нельзя менять задачу: должна быть усовершенствована исходная схема (с падающим грузом, замыкающим контакты). И еще: условия задачи надо не пересказывать, а давать в письменном виде. Пусть решающий ознакомится с контрольным ответом по задаче 6, а затем прочитает условия задачи 7.

Разобрав несколько задач, которые мы привели, читатель может сделать вывод, что для АРИЗ характерно стремление получить требуемый эффект при минимальных затратах. В задаче 5 мы стремились к тому, чтобы как можно меньше разрушать лед: разрушенный лед сам по себе никому не нужен, это только «плата» за грубый, несовершенный способ движения. В задаче 2 крылья дождевателя держались «сами по себе». В задаче 7 трение было снято простым разделением «замыкалки».

Для обычного инженерного мышления типично другое: готовность «платить» за полученный эффект. «Нужно опустить эту тяжелую трубу на откос, — думает инженер. — Прекрасно. Смонтируем кран, он опустит трубу». Кран — это и есть плата за реализацию действия, требуемого задачей.

Изобретатель думает иначе: «Нужно опустить эту трубу. Ну, что же, надо делать так, чтобы труба как-то сама легла на откос».

Мы привыкли расплачиваться за решение технических задач металлом машин, сложностью электроники и щедрым расходом энергии. АРИЗ вырабатывает привычку платить иной валютой — творческой мыслью. Задача может кричать: «Я совсем простая, меня легко решить, используя известные механизмы!» Но изобретатель все равно должен стремиться найти решение, не требующее машин, механизмов, устройств. Конечно, что-то, в конце концов, придется использовать. Но это «что-то» должно быть обязательно новым и более эффективным.

Посмотрим на конкретной задаче, как это происходит.

Задача 8

В лаборатории намечено провести серию испытаний системы фильтров (например, для двигателей внутреннего сгорания). В ходе испытаний в фильтры вместе с поступающим туда воздухом надо подавать песок, пыль, частицы глины и прочие сыпучие добавки. Для каждого испытания имеется график подачи добавок. Иногда надо подавать только одну какую-нибудь добавку, например, только песок, а нередко требуется одновременно подавать до 24 видов добавок. Каждая добавка подается в свое время по заранее составленному графику, поэтому смешивать добавки и подавать усредненную смесь нельзя. Вес каждой добавки от 0,01 кг до 0,03 кг. Время подачи 10 сек. Потом установку разбирают и исследуют.

Нужно предложить способ подачи сыпучих добавок. Основные требования: простота, точность, легкость переналадки (предполагается проверить сотни разных сочетаний добавок).

* * *

Эта задача была предложена слушателям, только что принятым в Азербайджанский общественный институт изобретательского творчества. Время на решение не ограничивалось, большинство справилось с задачей за ½—2 часа. Все слушатели — 90 человек — подошли к задаче с позиций обычного конструирования: подача порошков осуществлялась различными дозаторами. В нескольких предложениях автоматизация дозировки достигалась использованием ЭВМ!

Вот одно из решений: «К агрегату подведены 24 трубы. Перед каждой трубой вращается приспособление в виде сита. Число дырок в сите соответствует числу точек кривой для данного порошка. Диаметры дырок подобраны так, чтобы в агрегат в одну секунду могло проходить определенное количество порошка. Скорость вращения сит такова, что каждую секунду к трубам подается новое отверстие нужного диаметра». Итак, 24 дозатора — каждый с набором ежесекундно меняющихся диафрагм! Машина громоздкая, не очень надежная (отверстия в диафрагмах и трубки могут забиться) и трудно поддающаяся переналадке.

Через полтора месяца та же задача была вновь предложена слушателям. На этот раз времени на решение потребовалось вдвое меньше — и половина слушателей вышла на уровень контрольного ответа.

Решение задачи 8

Применим оператор РВС.

2—2а. Увеличим количество добавок в 100 раз. Теперь потребуются 2400 дозаторов. Получается слишком громоздкая установка. Дозатор должен быть один и притом самый простой. Но из этого простого дозатора должны независимо идти 2400 порошков...

2—2б. Если добавка одна, можно поставить обычный дозатор.

2—2в. Чем меньше время подачи, тем хуже будет работать дозатор. Если вместо 30 сек. в нашем распоряжении всего 0,03 сек., мы просто не успеем отдозировать порошки. Вывод: дозировку надо осуществлять заранее. Главный выигрыш в том, что заранее мы можем дозировать порошки любым способом и без спешки, следовательно, очень точно. Если у нас есть заранее отдозированные порошки (например, разложенные по секундным порциям), то дозаторы не нужны: из двух требуемых действий — отдозировать порошки и подать — остается только второе действие.

2—2г. Допустим, время подачи порошков растянуто до года. Порошки подаются медленно — крупинка за крупинкой. В этом случае тоже есть смысл отдозировать их заранее, скажем, по недельным порциям.

2—2д. Если допустимая стоимость устройства близка к нулю, устройства нет или почти нет. Собственно, дозатор нам не нужен: мы можем любым — самым дешевым способом отдозировать порошки заранее. Значит, надо как-то избавиться и от подающего устройства.

2—2е. Если расходы на устройство могут быть высокими, попробуем изменить природный элемент системы — порошки. Соединим — хотя бы с помощью клея — каждую крупинку порошка с крупинкой ферромагнитного материала. Теперь подачей порошков очень легко управлять. Правда, неясно, как в нужный момент отделять крупинки порошка от крупинок металла.

Что же нам дал оператор РВС? Одну безусловно подходящую идею — дозировать порошки заранее. И одну дикую, но заманчивую идею: крупинки металла несут и сбрасывают частицы порошка.

Продолжим решение.

2—3. Дана система из фильтров и 24 добавок. Добавки трудно подавать в фильтры по графикам.

2—4. а) —

б) Фильтры, порошки.

Менять фильтры нельзя — мы их исследуем. Порошки тоже нельзя менять — нарушатся условия эксперимента.

2—5. Внешняя среда.

3—1. Внешняя среда сама подает порошки по заданным графикам просто и точно.

В этой формулировке, в сущности, указаны два действия — дозировать («по заданным графикам») и подавать. Но шаг 2—2 уже дал идею предварительной дозировки. Поэтому мы можем уточнить ИКР:

3—1. Внешняя среда сама подает заранее отдозированные порошки просто и точно.

3—2. Будем для простоты рассматривать один порошок, помня, что потом решение надо распространить на 24 порошка. Итак, мы имеем заранее отдозированный порошок (рис. 29); сейчас внешняя среда не подает порошок, а нам надо, чтобы она сама подавала его в воронку.

3—3. Не может выполнить требуемого действия часть внешней среды от того места, где лежат отдозированные порошки, до воронки.

Рис. 29. К задаче 8, шаг 3—2: заранее отдозированный порошок подается при помощи ленты.

3—4. а) Нам надо, чтобы эта часть внешней среды сама несла порошок.

б) Нетрудно сделать эту часть среды из ленты. На ленту можно положить предварительно отдозированный порошок. Но куда денется лента над воронкой?

в) Несовместимость (притом не очень страшная — это уже видно) состоит в том, что лента должна быть и ленты не должно быть. Правда, требования эти относятся к разным моментам времени: пока лента несет порошок, она должна быть; когда порошок донесен, должна исчезнуть. Нечто подобное (с частицами ферромагнитного материала) у нас получилось и на шаге 2—2е.

3—5. Итак, лента должна исчезнуть над воронкой.

3—6. Либо надо уничтожить ленту, либо отвести ее в сторону.

3—7. Можно загнуть ленту: пусть возвращается назад. Получится что-то вроде ленточного транспортера. 24 транспортера? А если их 240? Плохо! Транспортер хорош, когда надо долго подавать материалы. А мы весь порошок расположили заранее — нам не нужна высвободившаяся лента транспортера.

Остается первый вариант — уничтожить ленту над воронкой. Это ближе к идеальной машине: часть машины, выполнившая свою работу, должна исчезнуть.

3—8. Куда и как будет исчезать лента? Можно отбрасывать ленту, но это, видимо, потребует применения какого-то механизма. Идеальнее, чтобы лента исчезала сама: таяла, испарялась и т. д.

4—1. Мы выиграли в точности (заранее тщательно дозируем), в простоте конструкции (набор исчезающих лент). Но вводится операция предварительной раскладки порошка на ленту.

4—2. Нетрудно нанести порошок на ленту равномерно: покроем ленту клеем, посыплем порошком, приклеим один слой. Однако нам нужна лента, несущая порошок в виде графика. Положить клей в те места, где по графику должен быть порошок? Проще вырезать график из ленты, имеющей одинаковую ширину. Вещество ленты должно легко резаться, легко покрываться клеем, легко исчезать. Обыкновенная бумага. А лучше — беззольная бумага.

4—3. Теперь трудно найти недостатки. Изготовить запас равномерно покрытых порошками листов несложно. Вырезать из этих листов нужные графики — совсем просто. Равномерно подавать один или несколько (сложенных в пачку) листов можно с помощью самых простых устройств. Сжигание беззольной бумаги над воронкой тоже не вызывает затруднений.

4—4. Мы нашли настолько простой способ, что его легко реализовать и испытать. Выигрыш отчетливо виден.

Контрольный ответ: «Способ непрерывного дозирования сыпучих материалов по весу в единице объема, например абразива, при ускоренных износных испытаниях двигателя внутреннего сгорания, отличающийся тем, что с целью повышения точности, абразив предварительно наносят равномерным слоем на поверхность гибкой ленты из легковоспламеняющегося вещества, подают ее с заданной скоростью в зону нагрева и сжигают, а абразив отводят к испытуемому объекту» (авторское свидетельство №305363).

* * *

Разумеется, практически записи решений несколько короче. Вот, например, решение В. Митрофанова, студента 5-го курса Азербайджанского института нефти и химии:

«2—3. Дана система: агрегат и добавки.

2—4.

а) —

б) Агрегат, добавки.

2—5. Внешняя среда.

3—1. Внешняя среда вводит добавки вовремя и как вам нравится.

3—2. (На рисунке «Было» показаны хаотические потоки добавок, на рисунке «Стало» — упорядоченные.)

3—3. (Выделены участки — там, где насыпаются добавки.)

3—4. Внешняя среда не взвешивает, не знает времени и т. д.

3—5. Если бы ей не надо было знать ничего. Если заранее как-то все сделать».

Отсюда В. Митрофанов сразу пришел к ответу, совпадающему с контрольным. На решение было затрачено всего 20 минут.

Инженер Р. Султанов получил тот же ответ, но несколько иным путем:

3—4. Внешняя среда не может захватить нужные количества порошков и подавать в строго определенное время.

3—5. Если внешняя среда обладала бы каким-то средством транспортировки (например, подавала бы 1 контейнер в секунду), в которое заранее насыпано нужное количество порошков. Контейнер — название условное. Допустим, оболочка, лента. После доставки лента исчезает».

Формулировки ответов на вопросы АРИЗ сохраняют индивидуальность. Но для всех сильных решений (на уровне или выше контрольного ответа) характерен общий стиль мышления:

направленность мысли, отсутствие беспорядочных скачков, суетливых метаний;

постоянная ориентировка на ИКР, стремление получить результат, расплатившись предельно-минимальным устройством;

умение легко преодолевать психологические барьеры (термин «контейнер» тянул к идее использования пакетиков, но Р. Султанов тут же отметил: контейнер — название условное. Потому что оболочка или лента — тоже контейнеры...);

хорошее владение основными приемами устранения технических противоречий, когда малейшая подсказка анализа воспринимается как ясное указание применить тот или иной прием (были использованы приемы предварительного исполнения, отброса ненужных частей, динамизации объекта).

* * *

Теперь я приведу несколько задач для самостоятельного решения. Это учебные задачи: в их условиях содержатся все сведения, необходимые для решения. Каких-либо отраслевых знаний не требуется. Кроме того, поскольку задачи учебные, достаточно лишь в самом общем виде найти принцип решения.

Не ищите решение перебором вариантов. Пытаясь отгадывать (по знакомому методу «а если сделать так...»), вы лишь бесполезно затратите время. Если удастся правильно угадать ответ, ваше творческое мастерство от этого не повысится. Даже самые простые задачи надо решать по системе, это нужно для тренировки изобретательских навыков.

Решайте задачу так, как будто оценка ставится не за полученный ответ, а только за ход решения. Считайте, что самое важное — четко выстроить лесенку ответов на вопросы. Эта лесенка должна обладать двумя свойствами: первое — цельность, отсутствие логических разрывов; второе — наличие какого-то неожиданного поворота. Вспомните решение задачи 7: уже в ИКР мы пришли к выводу, что нужно получить трение без трения. Здравый смысл уводил в сторону, но мы стали последовательно искать трение без трения и движение без движения...

Задача 9

Воздух, подаваемый в аквариум, позволяет в сравнительно небольшом объеме воды содержать много рыбешек. Поэтому давно возникла мысль использовать аналогичный прием для интенсификации рыбоводства в озерах, прудах и т. п. Беда, однако, в том, что способ этот неэкономичен: лишь небольшая часть воздуха успевает раствориться в воде, основная же его масса возвращается в атмосферу. Для комнатного аквариума это не так страшно — маленький моторчик справляется с делом. Но в озерах иные масштабы; потребовалось бы возле каждого озера строить мощную компрессорную установку, прокладывать разветвленную систему труб и т. д.

Нужен иной способ — несложный, экономичный и, конечно, безвредный для рыб. Поэтому, в частности, не надо использовать реактивы, выделяющие кислород.

Задача совсем простая. Попробуйте ее решить сразу (без анализа) по таблице типовых приемов.

Задача 10

При полировке оптических стекол используют дерево и ткани, а в последние годы — смолы и пластмассы. В зону соприкосновения стекла и инструмента подается водная взвесь полировального порошка.

Однако этот традиционный способ далек от совершенства. Полировку приходится вести на низких скоростях, так как смолы, ткани, дерево и пластмассы с увеличением числа оборотов сильно разогреваются и теряют необходимые качества.

Как повысить скорость обработки?

Вероятно, вы сразу подумаете о подаче охлаждающей жидкости: пусть вместо водной взвеси будет взвесь полировального порошка в какой-нибудь охлаждающей жидкости. Такой способ известен, он дает не очень хорошие результаты. Представьте себе полировальник в виде небольшой подушки, которая быстро вращается, плотно прижимаясь к стеклу. Как подавать охлаждающую жидкость? Сбоку? Но ведь тепло выделяется под подушкой — там, где в данный момент прижат полировальник. Устроить сквозные каналы в полировальнике? Тут мы наталкиваемся на противоречие: чем больше в полировальнике каналов, тем равномернее будет подача жидкости, но тем хуже будет работать сам полировальник, ибо он будет состоять в основном из дырок... Словом, дырчатый полировальник — не самая удачная идея.

Это тоже очень простая задача. Решите ее, используя таблицу типовых приемов.

Задача 11

Для испытания материалов на длительную прочность в условиях высоких температур и агрессивных сред используют прочные камеры — сейфы. К образцу материала прикрепляют груз, после чего заполняют камеру агрессивным веществом, герметично закрывают и включают систему обогрева (тепловые элементы размещены в стенках камеры). Вес груза — от 0,02 кг до 2 кг.

Основная трудность при таких испытаниях связана с определением момента разрыва образца. Правда, здесь не требуется особой точности. Достаточно, если момент обрыва будет зафиксирован с точностью до нескольких секунд, так как испытания ведутся иногда в течение многих дней. Сложность в другом: трудно обеспечить надежность сигнальных устройств, размещенных внутри камеры в сильно агрессивной среде. Нужно, чтобы момент обрыва определялся снаружи. Аппаратура, улавливающая шум падения груза, не годится — она слишком сложна и ненадежна.

Примем для определенности, что камера имеет размеры 0,4 × 0,3 м × 0,3 м, а толщина стальных стенок — около 10 мм. Итак, нужен предельно простой и надежный способ регистрации момента разрыва образца. Помните: не должно быть ни одного сквозного отверстия в стенках камеры!

Начните анализ задачи с шага 2—3.

Задача 12

Имеется пневматический конвейер. Он представляет собой наклонную трубку, по дну которой снизу вверх — под действием потока воздуха — перемещаются (катятся) мелкие штучные грузы. В нашем случае — помидоры. Трубка идет с этажа на этаж, в нескольких местах меняет направление (для наглядности можно считать, что труба расположена вдоль обычной лестницы). Недостаток системы: помидоры налетают друг на друга, ударяются, портятся.

Нужен способ пневматической транспортировки, при котором грузы будут двигаться по заданной программе с абсолютной надежностью: на определенном расстоянии друг от друга и в определенном темпе. Отказываться от пневматической системы транспортировки крайне нежелательно: потребуется новое оборудование, а его у нас нет.

Начните решение задачи с шага 2—3.

Задача 13

В электронных схемах высокой частоты применяют так называемые линии задержки. Они служат для сдвига выходного сигнала по времени. Линии задержки представляют собой слоистую конструкцию — слои материала с низким и высоким омическими сопротивлениями чередуются. Такими парами могут быть, например, стекло и сталь, сплав Вуда и медь. Толщина слоев составляет 0,1—0,01 мм, точность изготовления требуется высокая.

Известные способы изготовления (прессование, прокатка) малопроизводительны, дороги, дают много брака. Из некоторых пар вообще не удается получить слоистую конструкцию: материалы, составляющие пару, обычно резко отличаются по температуре плавления (стекло — до 800°, сталь — 1500°, сплав Вуда — 70°, медь — 1083°); на тонкую пластину из сплава Вуда наложить раскаленную медную пластину, сплав Вуда просто растает.

Нужен принципиально новый способ изготовления слоистых конструкций.

Эта задача сложнее двух предыдущих: барьеры на пути к ее решению весьма высокие. Начните решение с шага 2—2.

Задача 14

Трубопровод далеко не всегда удается загрузить каким-либо одним нефтепродуктом. Поэтому была предложена последовательная транспортировка, при которой разные нефтепродукты передаются по одному трубопроводу друг за другом, так сказать, встык. Способ этот в принципе имеет большое преимущество: вместо нескольких параллельных трубопроводов можно построить один. Но широкого распространения последовательная перекачка пока не получила.

Причина в том, что при перекачке одного горючего вслед за другим в зоне их соприкосновения неизбежно происходит смешивание. В связи с этим возникают сложные технические проблемы. Как, например, точно установить, когда кончается чистый бензин и начинается смесь его с дизельным топливом? А где кончается эта смесь и начинается последующий чистый продукт? Как своевременно отделить смесь от чистых продуктов и избежать загрязнения топлива, ранее поступившего в резервуары конечного пункта перекачки?

До 1960 года почти на всех магистральных нефтепроводах применялся ручной способ контроля: во время очередного цикла перекачки лаборанты контрольных пунктов в любую погоду, днем и ночью часами просиживали в сырых колодцах трубопровода, производя многочисленные анализы. Делалось это кустарно: прямо из трубопровода брали пробу, наливали ее в колбу и по уровню плавающего в ней поплавка определяли плотность нефтепродукта. Но разность плотности светлых горючих весьма незначительна, и «ловить» таким путем границы смешения было почти невозможно. В результате за каждый цикл перекачки только по одному трубопроводу среднего диаметра (500 мм) вместе со смесью уходило в брак от 800 до 1200 тонн чистых продуктов.

Рис. 30. Как уменьшить потери нефтепродуктов, передаваемых по одному трубопроводу?

Было внесено несколько предложений. Например, предложили прибор «нефтеденсиметр», который определял сортность нефтепродуктов по их плотности тоже на основе поплавка, но установленного в горловине трубопровода. Предлагалось также осуществлять контроль гамма-плотномером. Этот прибор действует при помощи гамма-излучений радиоактивных изотопов, устанавливая качество горючего опять-таки по его плотности. Есть ультразвуковые установки, измеряющие скорость распространения звука в жидкости.

Посмотрите на рис. 30. По трубопроводу встык движутся два разных нефтепродукта А к Б. На стыке образуется смесь А + Б. Если бы удалось точно фиксировать границы I и II, то потери не превышали бы объема смеси. Но из-за неточности контроля приходится начинать отделение смеси раньше (линии III), а заканчивать позже (линия IV), чем это теоретически возможно. Совершенствуя методы контроля, приближают линию III к I и линию IV к II. Потери при этом уменьшаются, но смесь А + Б образуется по-прежнему. Целесообразнее обходной путь: вообще избежать образование смеси А + Б, использовав какой-то разделитель между А и Б.

Рис. 31. Разделители — с манжетными и дисковыми уплотнителями.

Известны разделители (рис. 31) с манжетными, дисковыми и щеточными уплотнителями. Однако эти «ершики» имеют принципиальные недостатки: смесеобразование не предотвращается — нефтепродукты просачиваются через зазоры между стенками трубы и уплотнителями; «ершики» застревают в трубопроводах, а кое-где вообще не могут пройти. На трассе (через определенные расстояния) стоят промежуточные насосные пункты. Понятно, что пройти через насосы твердый разделитель не может.

Расположить вдоль трубопровода гибкую перегородку? Дорого, сложно, ненадежно...

Были предложены жидкие разделители: вода, лигроин, На первый взгляд это удачное решение: чтобы не происходило смешивания, достаточно взять жидкий разделитель в небольшом количестве — полтора процента от объема трубопровода. Но беда в том, что и вода, и лигроин, и любой другой жидкий разделитель в процессе транспортировки смешиваются с нефтепродуктами. Конечно, не жалко выбросить отработавшую в качестве разделителя воду, но как отделить ее от нефтепродуктов?

Итак, твердые и жидкие разделители имеют серьезные недостатки. Газообразные вообще не подходят: газ поднимается в верхнюю часть трубопровода и перестает играть роль разделителя.

Проведите анализ задачи с шага 2—3.

 

«Запатентовано» в Палеозое.

Общее количество патентов на изобретения, выданных во всем мире, составляет около 13 миллионов. Предположим, что одно описание можно прочитать за 5 минут. Тогда на ознакомление с мировым патентным фондом потребуется около 125 лет.

Есть, однако, еще один «патентный фонд», в котором изобретений так много, что ознакомиться с ними человечеству не удалось за все время существования. Это патентный фонд природы.

Человек издавна пользовался идеями, «запатентованными» природой. Количество изобретений, имеющих прямые прообразы в природе, вероятно, измеряется десятками тысяч. И все же пока освоена ничтожная часть «изобретений» природы, лишь те, которые лежали на виду.

Еще недавно господствовало мнение, будто одни и те же задачи в технике и в природе решаются разными путями. Действительно, технические решения чаще всего не похожи на решения природные. То, что в природе достигается тихо и как-то незаметно, в технике нередко связано с использованием огромных температур и давлений, с колоссальным расходом энергии, словом, с «большими потенциалами». Эти «большие потенциалы» выглядят куда более внушительными, чём едва заметные приспособления каких-то букашек.

Считалось азбучной истиной, что копирование природы лежит в стороне от главной линии развития техники. Поэтому изобретатели, решая новые технические задачи, обычно даже не делали попыток использовать ответы, уже полученные природой.

Какой же путь предпочтительнее — традиционно-технический или тот, по которому развивались «живые машины»?

Сравним, например, крыло самолета и крыло птицы. Крыло современного самолета — одно из наивысших достижений техники. Но ни один самолет не может соперничать с птицами по количеству поднимаемого груза на единицу затрачиваемой мощности. Если бы крылья современных самолетов были машущими, они поднимали бы 120—130 кг груза на 1 л. с., развиваемую двигателями. А пока крылья наиболее совершенных машин способны поднять лишь вдесятеро меньший удельный груз.

Особенно велико превосходство природы в конструировании «контрольно-измерительных приборов». Кузнечик располагает слуховой аппаратурой, улавливающей колебания, амплитуда которых равна половине диаметра атома водорода! Не удивительно, что именно приборостроители первыми пришли к выводу о необходимости планомерно изучать и переносить в свою практику принципы, используемые природой. Так возникла бионика — наука, решающая инженерные проблемы приемами, заимствованными у природы.

Вначале бионика занималась лишь моделированием органов чувств. Сейчас круг решаемых ею проблем значительно расширился: бионика берется за задачи, относящиеся к самым различным отраслям техники. Общим является лишь метод решения — использование прообразов природы.

В сущности, восьмой шаг оперативной стадии АРИЗ можно было бы сформулировать так: надо подойти к решению изобретательской задачи с позиций бионики. Теоретически здесь все просто — изобретатель заимствует готовое решение. Практически же, прежде чем позаимствовать, надо найти подходящий природный прообраз. И тут оказывается, что при всей теоретической бесспорности этого приема практически он может быть использован лишь в редчайших случаях.

На семинарах по методике изобретательства были решены сотни учебных и производственных задач, но ни разу в качестве подсказки не использовались природные прообразы! Правда, после решения задачи нередко удавалось «подобрать» для найденной идеи природный аналог. Это укрепляло уверенность в том, что решение правильное, но не больше.

В чем же дело?

Казалось бы, появление бионики должно было сразу дать каскад ошеломляющих изобретений во всех отраслях техники. Но отдача бионики пока заметна лишь в кибернетике. Здесь бионика стала надежным компасом исследователя. В других отраслях техники живые прототипы используются не чаще, чем в те времена, когда вместо нового слова «бионика» употреблялось выражение «копирование природных прообразов».

Достаточно прочесть несколько книг и статей по бионике, чтобы обнаружить один и тот же весьма скромный набор примеров: ультразвуковая локация у летучих мышей; жужжальца-гироскопы у мух; китообразная форма судов; кожа дельфина, снижающая сопротивление воды при движении; искусственное «ухо медузы», предупреждающее о приближении шторма...

И вот что характерно: сначала, как правило, делается изобретение, а потом отыскивается его живой прототип. Так, например, принцип метода снижения сопротивления был предложен Крамером еще в 1938 году, а лишь в 1955 году тот же Крамер обнаружил, что дельфины «применили его идею»...

Представьте себе патентную библиотеку, в которой миллиарды самых различных патентов расставлены по полкам в неизвестном для вас порядке. Именно такой видит «патентную библиотеку» природы изобретатель, работающий над решением новой технической задачи.

Надежной методики выбора живых прототипов пока нет. Поэтому в большинстве случаев изобретателю оказывается проще самому найти решение, чем отыскать подходящий патент природы.

И все-таки оперативная стадия АРИЗ включает бионический шаг. Есть два подхода, облегчающие ориентировку в гигантском патентном фонде природы!

1. Нужно искать прототипы среди древних животных: старые патенты природы проще и в то же время достаточно эффективны.

2. Нужно рассматривать общие тенденции в развитии патентов Природы. Найти готовое решение очень трудно, но почти всегда можно выявить тенденции развития природных аналогов.

Поговорим об этом подробнее.

В Древней Греции было создано великолепное по тем временам изобретение: тараны, которыми разбивали ворота осажденной крепости, стали делать с торцами в виде бараньих лбов. Такие торцы, как свидетельствуют историки, отлично воспринимали ударную нагрузку...

Неведомые древнегреческие бионики, создавая таран с бараньим лбом, вероятно, рассуждали так: «Нужно, чтобы бревно не расщеплялось и не сплющивалось при ударе. Где нам приходилось видеть что-нибудь подобное? На пастбищах! Бараны сталкиваются лбами — и ничего! Отличный прототип, лучше не придумаешь...»

По этому методу до сих пор осуществляется выбор живых прототипов: стараются отыскать возможно более совершенный «оригинал». Допустим, биолог укажет инженеру достаточно совершенный живой прототип. Хорошо? Нет. Ибо такие прототипы, как правило, сложны. Детально разобраться в их устройстве очень трудно, а построить копию порой просто невозможно.

Именно так обстоит дело с попытками скопировать кожу дельфина. В этом патенте природы и сегодня многое остается загадочным. Постепенно выясняется, что дельфин обладает тонкой и сложной системой кожного демпфирования. Нервные окончания в каждой точке кожного покрова улавливают изменение давления и передают соответствующие сигналы в центральную нервную систему, которая регулирует демпфирующую работу кожи. Практически невозможно и невыгодно копировать столь сложный прототип.

Выбирая наиболее совершенные природные прототипы, мы пользуемся последними томами патентной библиотеки природы. Не приходится удивляться, что многое оказывается непонятно: ведь мы читаем с конца!

Между тем для решения подавляющего большинства задач совсем не обязательно использовать совершенные, но слишком сложные прообразы. Гораздо перспективнее брать в качестве прообразов сравнительно менее совершенные, но зато более простые «патенты» — древних животных, изучаемых палеонтологией.

Палеобионический метод прежде всего намного расширяет «патентный фонд» природы. Среди ныне существующих животных нет, например, таких больших, какими были бронтозавры и индрикотерии. Но главное преимущество палеобионики в том, что она предлагает изобретателю значительно более простые (и потому легче воспроизводимые) прототипы.

Можно привести такой пример. Изобретатель А. М. Игнатьев, отдыхая на даче, однажды забавлялся с котенком. Котенок царапнул Игнатьева. Изобретатель задумался: а почему, собственно, когти кошки, клюв дятла, зубы белки и зайца постоянно остры? Игнатьев пришел к выводу, что самозатачивание происходит благодаря многослойной конструкции зубов. Твердые стержневые слои окружены более мягкими слоями. Во время работы твердые слои испытывают большую нагрузку, мягкие слои — меньшую, и первоначальный угол заострения не меняется. Этот принцип Игнатьев воплотил в самозатачивающихся резцах.

Изобретатель (и это очень типично!) искал наиболее совершенные прототипы. Поэтому использованный нм «патент» природы оказался сложным и самозатачивающиеся режущие инструменты нашли ограниченное применение.

Прообразы, использованные Игнатьевым, совершенно никудышные грызуны по сравнению с некоторыми динозаврами. Крупные динозавры весили десятки тонн и жили до 150—200 лет; нетрудно представить, какое количество пищи перемалывали они в течение жизни...

Особенно интересны зубы зауролофов — своего рода «копытных» динозавров. У зауролофа каждый зубной ряд состоял из трех зубов, сидевших друг над другом. Тройных буровых коронок пока нет, но уже проводятся испытания двойных коронок (их называют коронками с опережающим лезвием). Скорость бурения с помощью таких коронок повышается в полтора-два раза.

Другая особенность принадлежащего зауролофам «патента» в том, что режущие органы непрерывно растут, сменяя друг друга. Принцип этот чрезвычайно интересен. До сих пор усилия изобретателей, совершенствующих буровой инструмент, шли по привычному технике пути: «Зубья долота иступились, давайте поскорее вытащим долото и сменим его». Существуют сотни изобретений на тему «поскорее вытащить долото». С точки зрения бионики надо идти другим путем: делать зубья более износоустойчивыми, самозатачивающимися. Зауролоф подсказывает еще более интересное решение. Пусть зубья будут расположены в несколько рядов. Каждый ряд опирается на мягкую основу. Когда зубья первого ряда износятся, вращение долота за несколько оборотов разрушит мягкую основу. Долото осядет, в соприкосновение с грунтом вступит второй ряд зубьев («вырастут новые зубы»).

Недавно советским изобретателям Ю. Буштедту, А. Атякину, Л. Лачияну, Н. Литвинову выдано авторское свидетельство № 161008 на двухъярусную буровую коронку. Формула этого изобретения очень точно повторяет древний «патент» ящеров: «Двухъярусная буровая коронка, состоящая из корпуса и двух ярусов резцов, отличающаяся тем, что, с целью предохранения резцов верхнего яруса от разрушения при вводе их в работу, под временную опору резцов нижнего яруса подослана амортизирующая подушка из мягкого материала».

Современные животные по размерам значительно уступают динозаврам. Они не так прожорливы и обходятся одним комплектом зубов (иногда растущих в течение всей жизни). И только исполины-слоны имеют сменные зубы «запатентованные» когда-то зауролофами...

Мечехвоста сейчас можно встретить лишь на восточном побережье Северной Америки и Азии. Это животное было современником не только динозавров, но и ближайших своих «родственников» — трилобитов, вымерших еще в палеозойскую эру. Несмотря на постоянно менявшиеся условия жизни, мечехвост за 200 миллионов лет почти не претерпел изменений и дожил до наших дней.

Особый интерес представляют глаза мечехвоста. У него два больших сложных глаза, расположенных по бокам панциря, и два маленьких глаза спереди. Каждый глаз состоит как бы из множества отдельных линз. Глаза мечехвоста очень чувствительны, и это обстоятельство долгое время было загадкой для ученых, поскольку животное ведет ночной образ жизни и большую часть времени проводит зарывшись в песок.

Длительное изучение глаза мечехвоста привело американского ученого Хартлайна к интересному открытию. Оказалось, что клетки зрительных нервов животного соединены перекрестно. Когда одна клетка стимулируется, другая тормозится. Таким образом, на сетчатке глаза получается четкое, контрастное изображение. Это открытие привело к созданию телевизионной системы с чрезвычайно контрастным изображением, что имеет огромное значение, например, при передаче фотографий с других планет на Землю.

Дальнейшее изучение дало возможность установить, что глаз животного улавливает ультрафиолетовые и инфракрасные лучи, невидимые для человека. Кроме того, американский ученый Уотерман обнаружил, что мечехвост воспринимает поляризованный свет, благодаря чему животное может ориентироваться, когда не видно солнца и звезд. Поиски продолжаются, и не исключено, что глаз мечехвоста послужит прототипом для нескольких сложных электронных приборов.

Древние животные, как правило, уступают современным в развитии головного мозга и нервной системы. В остальном они достаточно совершенны и могут служить прообразами для техники, Более того, в ряде случаев вымершие животные «по всем показателям» превосходят своих выродившихся потомков. Исчезли такие животные не потому, что были хуже устроены, — они вымерли из-за изменений климата и рельефа, а в некоторых случаях были истреблены человеком.

Надо сказать, что сами понятия «совершенный» и «несовершенный» весьма условны. То, что несовершенно с точки зрения природы, зачастую оказывается совершенным с точки зрения техники. Крылья летающих ящеров-птерозавров были несовершенны по сравнению с крылом птицы, ибо малейшее повреждение кожной перепонки препятствовало полету. Но у современной техники иной ассортимент материалов. С этими материалами целесообразнее копировать не птичьи крылья, работа которых в деталях до сих пор не поддается разгадке, а гладкие крылья таких отличных летунов, как вымерший рамфоринх или живущая и ныне, обладающая древней родословной стрекоза.

Многие из вымерших животных хорошо изучены. Зубы динозавров, например, есть почти в каждом естественноисторическом музее. Изобретатели, решающие задачи, связанные с переработкой вещества (дробление, резание и т. п.), могли бы обнаружить много интересных идей, «запатентованных» природой десятки миллионов лет назад.

Вот авторское свидетельство № 189353: «Ковш экскаватора..., отличающийся тем, что с целью улучшения внедрения ковша в грунт в средней части полукруглой режущей кромки смонтированы прилегающие друг к другу зубья, центральная пара которых выдвинута по отношению к остальным». Нетрудно заметить тут знакомую нам идею опережающего лезвия в сочетании со старым-престарым природным «патентом» на выдвинутую пару зубов (резцы, клыки, бивни).

Палеобионический метод отнюдь не возбраняет использовать в качестве прототипов и современных животных. Надо лишь выбирать наиболее древние прототипы.

Бионика давала ощутимые результаты именно тогда, когда в качестве прообразов бессознательно использовались реликтовые или, во всяком случае, очень древние животные. Так, одна из давших практические результаты работ — прибор, воспроизводящий «инфраухо» медузы. А медузы — древнейшие животные, они плавали еще в кембрийских морях.

Судостроители, копировавшие кита, в сущности, обязаны своим успехом невольному применению палеобионики: задолго до появления китов такую же форму тела имели ихтиозавры — стеноптеригий и эвринозавр. Ретинотрон (прибор, способный «замечать» только движущиеся предметы) считается имитацией глаза лягушки. Однако приоритет на это изобретение принадлежит тираннозавру.

Еще один пример, когда древние животные решают сложную задачу простыми способами, — антифляттерные приспособления стрекозы. Приспособления эти очень просты: на концах передней кромки крыльев имеется хитиновое утолщение — птеростигма, гасящая вредные колебания крыла. Инженеры самостоятельно пришли к той же идее. Достаточно было запаять в крыло (в том месте, где у стрекозы находится птеростигма) свинцовую гирю, как опасность флаттера исчезла.

И вот что интересно: самые молодые и быстрокрылые «модели» стрекоз не имеют птеростигмы. Если бы мы выбрали наиболее совершенные прототипы, «патент» на птеростигму так и остался бы незамеченным, ведь птеростигма есть только у таких «устаревших конструкций», как сетчатокрылые и верблюдки.

Вообще, рассматривая живые прототипы в их историческом развитии, можно обнаружить, что один «патент» природы часто заменяется другим.

Древние жуки-плавунцы имели каплевидную обтекаемую форму. Но их потомки отказались от этой (традиционной для техники) формы. Туловища современных плавунцов, узкие в передней части, сзади расширяются.

Вероятно, это очень эффективная форма. Опытами установлено, что удаление двух крохотных выступов в расширенной части туловища плавунца повышает сопротивление движению на 122%. Парадокс: площадь поперечного сечения «фюзеляжа» уменьшается, а сопротивление возрастает!

Особенно полезен палеобионический подход в тех случаях, когда приходится решать изобретательские задачи, связанные с малоизученными процессами. Здесь природные прототипы могут стать главными ориентирами. Это подтверждает, например, история изобретения антикавитациониых покрытий гидротехнических сооружений.

Кавитационное разрушение бетона плотин — явление, еще недостаточно исследованное. Многочисленные способы защиты, предлагавшиеся различными изобретателями, оказывались либо слишком дорогими, либо слишком ненадежными. Удачное решение задачи нашел Виталий Ильич Сахаров. Вот, как об этом рассказано в очерке, посвященном его изобретению:

«Однажды на берегу Черного моря Виталий Ильич заметил, что камни и валуны, покрытые водорослями или мхами, от ударов волн практически не разрушаются. Голые камни, лежащие совсем рядом, были испещрены бороздами и ямками. Нежный мох уберегал камень от разрушения. Отсюда был один шаг до технического воплощения идеи, уже осуществленной в природе».

Авторское свидетельство № 279443, полученное В. И. Сахаровым, действительно точно воспроизводит древний «патент» природы: «Кавитационностойкое покрытие поверхностей, например, бетонных и железобетонных гидротехнических сооружений, включающее защитный слой, отличающееся тем, что, с целью предотвращения непосредственного контакта кавитационных ударов с телом сооружения и образования прослойки неподвижной воды, защитный слой выполнен со свободно выступающими одним концом отдельными упругими стержнями, волокнами или пластинками».

От подсказки природы до технического осуществления идеи один шаг... Почему же этот шаг был сделан с таким опозданием? Неужели нужно было вплотную столкнуться с готовым решением, чтобы увидеть его? Бетон — искусственный камень. Значит, достаточно задать вопрос: «Как защищаются от кавитации естественные камни?» — чтобы прийти к правильному ответу. Старые камни, заросшие мхом, потому и «доживают» до старости, что мох защищает их от разрушения. К этому выводу можно было прийти и вдали от Черного моря…

Рис. 32. Эволюция конструкций в природе и в технике: а — так развивалось надкрылье жука; б — так совершенствовалась конструкция перекрытий зданий.

Восьмой шаг оперативной стадии АРИЗ рекомендует изобретателю не только отыскать древний прототип, но и определить направление развития природных конструкций. Нужно определить, зачем и как перестраивала природа тот или иной прототип. Палеонтолог А. Г. Пономаренко привел в письме ко мне интересный пример такого анализа (рис. 32, а).

«При создании надкрылья жука, — пишет А. Г. Пономаренко, — перед природой стояла задача разработать легкое, прочное и негибкое покрытие. Вот этапы этой разработки: 1) тонкая пластинка, армированная неправильно расположенными продольными трубками; 2) трубки вытягиваются вдоль надкрылья; 3) число трубок уменьшается, а сами они превращаются в ребра жесткости; 4) ребра жесткости делаются шире в верхней части; 5) верхние части ребер сливаются, получается рамная конструкция с вертикальными полыми колонками. Конструкция легкая и весьма прочная».

На рис. 32, б показано развитие перекрытий здания. Нетрудно заметить, как много общего в развитии двух конструкций — природной и инженерной. Совпадение, конечно, не случайное: цели одинаковые (легкость, прочность), поэтому и решения сходны.

В АРИЗ-71 бионическому методу отведена относительно скромная роль. Но бионика быстро развивается. Увеличивается количество опубликованных работ, постепенно расшифровываются «патенты» природы, нащупываются общие принципы, лежащие в основе решения природой ее изобретательских задач.

В ближайшие годы появится возможность значительно усовершенствовать и развить эту часть алгоритма. Тогда алгоритм пополнится весьма эффективной таблицей, показывающей, как то или иное противоречие устраняется по «патентам» природы.

 

Ломая старую форму

Изобретение не самоцель, оно нужно для решения той или иной практической задачи. Из двух изобретений, дающих одинаковый технический результат, вообще говоря, предпочтительнее то, которое развивает уже известную модель, опирается на уже отработанную технологию. Такое изобретение легче внедрить, оно дает больший экономический эффект.

Как же в таком случае происходит нередкий в наше время переход к «совсем новым», оригинальным машинам?

Иногда такие машины создаются на основе новых научных открытий, но значительно чаще они возникают из старых, подобно тому, как бабочка возникает из совсем непохожей на нее куколки.

Обозначим исходную модель машины символом A 1 . Она состоит из отдельных частей, например двигателя, трансмиссии, органов управления, рабочих органов. Каждая часть имеет несколько узлов (так, трансмиссия автомашины, например, включает сцепление, коробку передач, карданный вал и т. д.), каждый узел состоит из деталей.

Изобретение может относиться к деталям, узлам или частям машины. Полученный при этом эффект отнюдь не определяется тем, на каком уровне сделано изобретение. В результате частичных изобретений машина постепенно совершенствуется, что символически можно изобразить таким рядом: А 1 , А 2 , А 3 , A 4 ... А n . Наконец появляется изобретение Аn+1, которое хотя и относится (как все предыдущие) к одной детали (узлу, части) машины, но вызывает необходимость (или открывает возможность) существенно изменить все другие части. Аn+1 оказывается равным и открывает новый ряд: Б 1 , Б 2 , Б 3 ... Б n .

Обычно новая техническая идея относится к какой-то одной части исходного объекта. Но это частичное изменение нередко создает возможность (а порой и вызывает необходимость) соответственно изменить другие части объекта, работающие совместно с измененной частью. Более того, появляется возможность изменить и методы использования всего объекта. Происходит своего рода цепная реакция: первоначальное частичное изменение влечет за собой цепочку других изменений. В результате слабая вначале идея крепнет, становится более сильной.

Изобретатель приступает к этой (синтетической) стадии творческой работы после того, как найдена техническая идея, решающая поставленную задачу. В большинстве случаев идея сначала бывает «частичной» — модель А4 переходит в А5. Однако переход к А5 создает возможность сделать еще один или несколько очевидных шагов: изменить одну часть (например, сделать легче, компактнее) или по-новому расположить. Приложив усилия, чтобы прийти от А4 к А5, изобретатель как бы получает право на относительно легкий переход от А5 к А6 или А7. В некоторых случаях можно даже сразу перейти от А5 к Б1.

К сожалению, найденная идея чаще всего используется далеко не в той мере, в какой это возможно и следовало бы сделать. Изобретатель совершает лишь переход от Аn к Аn+1 и на этом останавливается. Между тем новая модель машины Аn+1 уже созрела для существенных изменений: кокон может превратиться в бабочку, но остается коконом из-за инерции изобретательского мышления.

На рис. 33 изображен первый мотороллер, созданный в 1920 году. Нетрудно заметить, что это обычный детский самокат, на котором установлен двигатель. Самокаты тоже появились не сразу. Применяя нашу символику, это ряд моделей А 1 , А 2 , А 3 ... А n . Когда на самокат поставили двигатель, модель Аn превратилась в Аn+1. Однако, самокат остался самокатом: другие его части (и, следовательно, машина в целом) не претерпели изменений.

Конечно, самокат с двигателем лучше обыкновенного. Но возможности частичной идеи были использованы очень слабо. Обратите внимание, например, на высоко расположенное седло. Раньше такое расположение седла вызывалось необходимостью: человек, выполнявший обязанности двигателя, должен был стоять — это его рабочая поза. Затем совершился переход от Аn к Аn+1: на самокат поставили двигатель внутреннего сгорания. Для чего теперь нужно высокое седло? Ведь водителю нет необходимости стоять, он может сидеть. А опустить седло — значит уменьшить высоту центра тяжести, сделать машину более устойчивой и лучше управляемой. Это, в свою очередь, даст возможность использовать более мощный двигатель, для которого, собственно, уже освободилось место под сиденьем водителя (ноги «ушли» вперед, под сиденьем образовалось свободное пространство). Стоящего во весь рост человека не прикроешь обтекателем — получится нечто слишком громоздкое.

Другое дело, если водитель сидит: можно поставить обтекаемые щитки, которые значительно уменьшат сопротивление движению.

Так изобретение, меняющее одну часть машины (двигатель), приводит к каскаду изменений в других частях и, следовательно, во всей машине. Впрочем, вместо «приводит» правильнее сказать «могло привести». На практике судьба мотороллера сложилась иначе.

Частичное изобретение (замена двигателя) так и осталось частичным: Аn превратилось в Аn+1, и только. В более поздних моделях седло постепенно опускалось, а двигатель постепенно перемещался под седло, к тому свободному пространству, которое словно специально для него предназначалось. Одна из таких промежуточных моделей показана на рис. 33, Б. Двигатель уже «ушел» с переднего колеса, но еще не «пришел» к заднему. Водитель почти сидит на двигателе, а под креслом остается свободное пространство...

Рис. 33. Путь совершенствования мотороллера

А — модель 1920 г., Б — промежуточная модель, В — машина современного вида.

Около трех десятилетий мотороллер был только диковинной забавой. В самом деле, если все равно приходится сидеть верхом на двигателе, то зачем нужен мотороллер, когда существуют мотоциклы?.. Но вот двигатель, завершив путешествие, ушел под седло мотороллера. Машина приобрела современный вид (рис. 33, В) и новые качества, которых нет у мотоцикла. Оказалось возможным полностью закрыть мотор. Освободилось очень удобное, прикрытое щитками место для ног водителя. Машина стала устойчивой, комфортабельной. На ней можно ездить даже в белой одежде. И мотороллер начал успешно (особенно, в городах) конкурировать с мотоциклом.

История мотороллера — не исключение. В подавляющем большинстве случаев изобретатели, решив задачу и внеся в объект то или иное частичное изменение, воздерживаются от других изменений, казалось бы очевидных и закономерных. Так, первые автомобили были сделаны из обычных колясок: выпрягли лошадей и «впрягли» мотор, У некоторых конструкций в передней части был даже расположен макет торса лошади!

Первый мотоцикл был велосипедом обычной для своего времени конструкции. Единственное отличие состояло в том, что на педали жал не человек, а двигатель внутреннего сгорания.

На рис. 34 изображено одно из новейших изобретений — машина для шовной сварки эластичного пластиката. Ультрасовременная (и прогрессивная!) идея использования токов высокой частоты для сварки пластмассовых изделий облечена в допотопную конструктивную форму. Пока пластмассовые детали изделий соединялись нитками, годилась обычная швейная машина. Но вот рабочий орган машины кардинально изменен — вместо иглы и нитки появился ролик, на который подаются токи высокой частоты. Здесь, пользуясь нашей символикой, надо говорить не о переходе от Аn к Аn+1, а о стремительном рывке от ряда А к ряду Б и даже В. Однако стремительного рывка не последовало — была создана типичная «автолошадь».

Рис. 34. Ультрасовременная идея облечена в архаическую конструктивную форму.

Традиционная компоновка швейной машины была обусловлена тем, что функции двигателя выполнял человек. Правой рукой он крутил вал машины, а левой регулировал подачу ткани под иглу. При ножном приводе эта компоновка тоже была целесообразна. Однако в машине, изображенной на рис. 34, шов образуется под действием токов высокой частоты, почему же теперь человек должен сидеть так, как он сидел, работая в качестве двигателя?!

Если электроаппаратуру спрятать под машину, вся установка станет значительно компактнее, ее можно будет прикрыть одним кожухом. А сидеть удобнее слева, в непосредственной близости к рабочему органу машины, — с этой стороны и должен находиться человек, обслуживающий сварочную машину для пластмассовых изделий.

* * *

Синтетическая стадия своеобразна. В отличие от предыдущих она, вообще говоря, не обязательна. Новая техническая идея, решающая изобретательскую задачу, возникает до синтетической стадии. А когда идея найдена, можно сразу переходить к ее конструкторской разработке. В большинстве случаев так именно и поступают. В результате изобретение остается частичным, хотя могло бы стать первым звеном в длинной цепочке других изобретений.

Рис. 35. Приставка-обтекатель.

Был, например, предложен способ толкать буксиром не одну баржу, а две, поставленные борт о борт. Однако при этом между носовыми оконечностями барж получалась широкая впадина, тормозящая движение состава. Казалось бы, сам собой напрашивался следующий шаг: надо прикрыть впадину приставкой, которая обеспечит обтекаемость (рис. 35). Однако эта идея (авторское свидетельство № 288575) появилась совсем недавно.

Своеобразие синтетической стадии в том, что ее шаги независимы друг от друга и просты, главное — не забыть их сделать. Но это опять-таки своеобразная простота. Предположим, что новая техническая идея привела от машины A3 к А4. Тогда в результате синтетической стадии почти каждый изобретатель может прийти от А4 к А5. Дальнейшее же продвижение всецело зависит от объема знаний (теоретических или приобретенных в процессе производственного опыта).

* * *

Взяв прототипом объект Аn, изобретатель может поставить две разные задачи. Можно сформулировать задачу так: «Перейти от Аn к Аn+1 или даже, развив найденную идею, к Аn+2». А можно поставить задачу иначе: «Минуя весь ряд от Аn+1 до Аn+m, сразу выйти к Б1».

Иногда спрашивают: что лучше — совершенствовать имеющуюся машину (способ) или искать нечто совершенно новое? С таким же успехом можно допытываться: что лучше — стрелять на пять метров или на пятьсот километров?..

Все зависит от конкретных условий, и прежде всего от целей, которые ставит перед собой изобретатель или коллектив, решающий изобретательскую задачу. Если нужно, чтобы задача была решена как можно быстрее, то целесообразнее совершенствовать прототип. ИКР в этом случае формулируется так: «То, что есть, минус недостатки» или «То, что есть, плюс некоторое улучшение». При такой тактике задача решается сравнительно быстро (чаще всего на третьем уровне), а внедрение изобретения не вызывает особых трудностей. Если же нужно получить качественно новый эффект, целесообразнее сразу отказаться от прототипа, навязываемого условием задачи. Прототипом должна быть идеальная машина (идеальный способ). В таких случаях объектом в ИКР часто бывает «внешняя среда»: «Внешняя среда сама обеспечивает то-то и то-то». Слова «внешняя среда» помогают оторваться от старого, негодного прототипа и понять — что должна делать новая машина (новый способ), как она должна работать.

Действуя подобным образом, можно прийти к идее четвертого-пятого уровней. Но и внедрение изобретения потребует в этом случае значительно большего времени. Приходится «с нуля» разрабатывать конструкцию, многократно испытывать и переделывать ее, преодолевать недоверие и сомнения тех, кто привык оставаться в рамках совершенствования старого прототипа.

Оба пути хороши — в зависимости от конкретных обстоятельств. Но если вслед за Аn должно идти не Аn+1, а Б1, то никакие попытки совершенствовать прототип (то есть изобретать, оставаясь в рамках А и не переходя к ряду Б) не дадут положительного результата.

Историки техники и патентоведы подметили, что, когда прототип молод, он быстро и легко изменяется: за короткое время появляется много изобретений, направленных на его улучшение. Наблюдается своего рода «патентный пик». На этой основе некоторые исследователи предлагали прогнозировать перспективы развития технических объектов: чем круче поднимается кривая выдачи патентов и авторских свидетельств, тем перспективнее рассматриваемый технический объект. К сожалению, когда ряд А1, А2... подходит к Б, тоже возникает «патентный пик». Изобретатели напряженно работают, число изобретений быстро растет, но результаты почти неощутимы.

Сейчас такой «патентный пик» наблюдается, например, в цементной промышленности. Современная цементная печь — гигантская вращающаяся труба (длина до 250 м, диаметр до 7 м). Вдоль трубы медленно передвигается поток сырья, а над ним несутся раскаленные газы. Даже неспециалист может представить, насколько трудно передать тепло от газа к сырью: ведь газ соприкасается только с поверхностью сырьевого потока. Чтобы улучшить условия теплопередачи (от этого зависит производительность печи), давно было предложено навешивать внутри печи цепные завесы. Металлические цепи помогают переносу тепла от газа к сырью. После этого изобретения наступила пауза, тянувшаяся десятки лет. Если хотели улучшить теплопередачу, просто увеличивали количество цепей. В современной печи общий вес цепей свыше 100 тонн. И вот возник «патентный пик»: появился поток изобретений на тему «повесим цепи не так, а так»... «Цепная завеса выполнена с дополнительными цепями, закрепленными на основных цепях и свободно висящими между ними» (авторское свидетельство № 226453). «Концы цепей прикреплены к гибкому элементу, выполненному, например, из цепи» (260484). «Цепи другим концом прикреплены к корпусу печи» (310095). Цепи громоздятся на цепи, как когда-то, до изобретения парохода, паруса громоздились на паруса...

Чем больше цепей будет в печи — тем большую долю тепла газов можно использовать. Но чем больше цепей — тем выше сопротивление движению газов. Чтобы газу было удобнее двигаться, цепей не должно быть вообще. А чтобы теплу удобнее было переходить от газа к сырью, все пространство печи должно быть заполнено цепями. Четко выраженное техническое противоречие! И если поток однотипных изобретений не справляется с противоречием, это верный признак, что возможности развития объекта (цепных завес) исчерпаны.

Для изобретателя (а тем более для коллектива, решающего технические задачи на уровне изобретений) чрезвычайно важно иметь представление о логике развития технических объектов. Это необходимо для прогнозирования новых технических задач, для выбора между прямым и обходным путями решения, для правильного анализа задачи и успешной разработки найденной идеи.

Технических объектов много, и они очень разнородны.

Но есть нечто общее, присущее всем техническим объектам: все они являются системами. При системном подходе технические объекты рассматриваются как целостные организмы, подчиняющиеся общим законам развития. Карманный фонарик, двигатель, тепловоз, химический завод, речной транспорт — все это примеры технических систем. Внешне они нисколько не похожи друг на друга. Их объединяет то, что они системы, т. е. нечто большее, чем арифметическая сумма составных частей. Поясню аналогией. Молекула воды — система, а не арифметическая сумма двух атомов водорода и одного атома кислорода. Человек — система, а не простая сумма скелета, мышц, сердца и т. д. Точно так же любая машина — система, целостный организм, а не сумма частей.

Всякая техническая система — будь то швейная машина, шахта или сеть железных дорог — развивается в определенной последовательности. В приложении 2 дана общая схема развития технических систем. Давайте разберемся в ней.

История любой технической системы начинается с того, что... системы еще нет. Это первый — досистемный — уровень. Изобретатели понемногу совершенствуют отдельные элементы А, Б, В, хотя путем объединения элементов в систему можно получить новый эффект. Вот типичный пример. Чтобы сохранить корм, заготовленный на зиму для скота, нужно поддерживать определенную температуру. В корме выделяется тепло, приходится вентилировать и охлаждать кормохранилища; в этом направлении много лет работали изобретатели в разных странах. Есть патенты на сложные (и не очень надежные) системы поддержания заданного режима. А тем временем другие изобретатели создавали системы утепления и обогрева коровников, свинарников и т. д. Наконец, в авторском свидетельстве № 251801 появилась идея создания системы: «Сельскохозяйственная ферма, включающая помещение для содержания животных и башенные хранилища кормов, отличающаяся тем, что, с целью использования биотермического тепла кормохранилищ для улучшения микроклимата помещения при содержании животных, хранилища выполнены в виде линейного блока башен, встроенного в стену помещения для содержания животных». Система «кормохранилище и помещение для животных» обладает новым качеством: нет необходимости охлаждать корм и нагревать помещение.

Когда система создана, она кажется естественной, очевидной. Но разглядеть будущую систему в разрозненных еще элементах — дело не такое простое. Здесь особенно нужно умение видеть проблему под углом зрения основных идей АРИЗ — я называю это аризным мышлением. Об одном таком случае рассказал изобретатель М. Шарапов в газете «Магнитогорский металл» за 26 апреля 1969 г.

Для удаления золы и шлака, рассказывает М. Шарапов, на комбинате применялся гидротранспорт. При проектировании предполагалось, что трубы будут изнашиваться из-за трения. Для увеличения срока службы линии было решено через определенное время поворачивать трубы, а транспортируемый шлак предварительно измельчать на дробилках. Трубы, однако, не изнашивались, а, наоборот, зарастали. Возникла задача как удалять твердую корку, образующуюся на стенках внутри труб? Ее отбивали — это была весьма трудоемкая работа. Корку пытались сдирать, пропуская по трубам воду с коксом. Ручного труда при этом не было, но на время прочистки трубы процесс приходилось останавливать.

Зная методику решения изобретательских задач, Михаил Иванович Шарапов подошел к задаче иначе. ИКР очевиден труба должна очищаться сама. Очевидно и другое: если борьба с вредным фактором оказывается безуспешной, целесообразно выбить клин клином, т. е. устранить вредный фактор за счет сложения с другим вредным фактором. В самой трубе нет «другого вредного фактора». Следовательно, надо объединить трубу с чем-то, создать такую систему, в которой «минус на минус даст плюс». Самое простое — найти трубы, которые не зарастают, а изнашиваются. Износ плюс зарастание дадут то, что требуется, — самоочистку. Найти изнашиваемые трубы оказалось легко: это были трубы для гидроудаления угольных отходов. Они изнашивались настолько сильно, что решено было вовсе отказаться от гидротранспорта и возить угольные отходы на автомашинах...

Две линии труб шли рядом. Но одни специалисты боролись с зарастанием труб, используемых для удаления золы и шлака, и интересовались только этим. А другие специалисты боролись с износом труб, предназначенных для удаления угольных отходов, и тоже видели только свои трубы.

Шарапов предложил (авторские свидетельства № 212672 и № 239752) пропускать гидросмеси поочередно. Сначала щелочная вода, несущая золу и шлак, создает на стенках трубы корку — защитный слой гарниссажа. Потом этот слой (а не металл трубы!) сдирается кислой водой, несущей угольные отходы. И в трубе снова создают слой гарниссажа... Можно транспортировать один вид материала, достаточно периодически менять щелочную воду на подкисленную, чередовать нарастание корки и ее сдирание. Это изобретение сейчас успешно применяется на ряде предприятий.

Итак, запомним: если число попыток усовершенствовать объект быстро растет, но вместо улучшения одно противоречие заменяется другим, надо объединить объект с другими объектами в новую техническую систему.

Такой переход не всегда удается сразу, нередко из отдельных элементов сначала получается неустойчивая переходная система. На схеме (приложение 2) формулы таких систем условно взяты в круглые скобки, а формулы устойчивых систем — в квадратные скобки.

Примером систем, переходных от первого уровня ко второму, могут служить неоднократно строившиеся в XIX веке подводные лодки с паровыми двигателями. Изобретателям казалось само собой разумеющимся, что надо применять самый совершенный двигатель. А таким двигателем тогда была паровая машина... Подбор элемента для включения в систему надо основывать не на совершенстве вообще (т. е. не на совокупности показателей), а на совершенстве главного для данной системы показателя. В подводной лодке таким показателем был запас энергии для подводного хода. В паровом котле не удавалось запасти сколько-нибудь значительное количество пара и, следовательно, энергии. Несовершенный еще электродвигатель с тяжелыми батареями оказывался — по этому единственному показателю — более сильным. Система «подводная лодка и паровой двигатель» была неустойчивой; долгая жизнь ждала другую систему — «подводная лодка и электромотор с батареями».

Иногда недостающий элемент системы может быть заменен человеком. Первые самоходные экипажи имели паровые двигатели, и это делало их тяжелыми, громоздкими, неработоспособными. Устойчивой системой второго уровня оказался велосипед, в котором вес двигателя был равен нулю...

История техники знает множество неустойчивых систем, возникавших при переходе от второго уровня к третьему: весельный пароход, шагающий паровоз, оптический телеграф с машущими рычагами... Пытаясь заменить человека машиной (то есть перевести систему на третий уровень), изобретатели и по сей день нередко задерживаются на переходе 2—3: машина копирует действия человека, и это обусловлено не возможностями развития системы, а просто-напросто психологической инерцией. Порой такие изобретения по-своему изящны. Их общая беда — отсутствие существенных резервов для развития. Если прототипом оказывается такая система, почти всегда целесообразно не совершенствовать ее, а искать новый принцип действия.

Третий и четвертый уровни — наиболее типичные для современной техники. Молодые системы третьего уровня универсальны, зрелые — специализированы (уровень 31), старые — излишне специализированы. Узкая специализация — верный признак необходимости перехода на новый уровень, коренной перестройки всей системы.

Можно привести любопытный пример из стекольного производства. При изготовлении листового стекла раскаленная стеклянная лента поступает на валковый конвейер. Продвигаясь по этому конвейеру, она принимает требуемую форму и постепенно охлаждается. Понятно, что качество поверхности стекла зависит при этом от расстояния между валками. Если это расстояние велико, стеклянная лента будет прогибаться, станет волнистой. Чтобы получить гладкую поверхность, нужны валки возможно меньшего диаметра, тесно придвинутые друг к другу. Но такой конвейер будет сложным по устройству и капризным в эксплуатации. Мы снова встречаемся с четко выраженным техническим противоречием. Долгое время пытались обойти это противоречие, создавая специализированные линии для разных сортов стекла (есть сорта, которые не обязательно должны быть идеально плоскими) и оснащая заводы машинами, полирующими стекло после застывания. А потом было найдено поистине революционное решение.

Начнем мысленно уменьшать диаметр валка: сантиметр, миллиметр, сотая доля миллиметра... Насколько же сложным должен быть конвейер с валками в сотую долю миллиметра! Вот вам психологический барьер: сотая доля миллиметра — страшно даже подумать, микрон или десятая доля микрона — совсем невообразимо... А если диаметр валка еще меньше? С молекулу или атом? Изготовить конвейер с валками диаметром в микрон практически невозможно. Но если диаметр валков соизмерим с диаметром атомов — все просто, потому что атомы не надо изготовлять. Пусть стекло катится по атомам, как по шарикам. Вместо конвейера — ванна расплавленного олова. Стеклянная лента движется по ровному слою атомов. И не надо строить конвейер, не надо регулировать и ремонтировать валки. Жидкий металл не только идеальный конвейер, но и послушный инструмент: с помощью электромагнитов поверхности металла (следовательно, и поверхности стекла) можно придать любую форму. Прекрасное изобретение! Оно сразу же породило «патентный пик». Уже выданы сотни патентов и авторских свидетельств на всевозможные стеклообрабатывающие ванны.

Поднявшись на четвертый уровень, технические системы бурно растут, и в какой-то момент их рост впервые приводит к конфликту с внешней средой.

С древнейших времен техника формировалась, основываясь на том, что ей предоставляла природа. На нашей планете много воды и воздуха, поэтому техника наша насквозь «водная» и «воздушная»: вода и воздух были и остаются главнейшими технологическими инструментами. На нашей планете много кислорода — и техника наша «окислительная»: окислительные процессы были и остаются основой энергетики. На нашей планете много простора — и техника использовала и все еще использует открытые схемы: внешняя среда дает технической системе вещество и энергию, а техническая система выбрасывает во внешнюю среду отходы вещества и энергии, которые перерабатываются, уничтожаются внешней средой.

Природа была Универсальным Очистным Блоком, автоматически подсоединяемым к любой новой технической системе. Универсальный Очистный Блок обладал огромной, казалось, безграничной избыточной мощностью... И вот сейчас, когда все большее число технических систем приближается к потолку четвертого уровня, Универсальный Очистный Блок начинает работать на пределе, в износном режиме.

Конфликт между техникой и природой затрагивает глубочайшие, изначальные основы технической цивилизации. Чтобы преодолеть этот конфликт, нужно перейти от «водной» и «воздушной» техники к «безводной» и «безвоздушной», от «кислородной» — к «бескислородной», от открытых технических систем — к закрытым. Этот переход неизбежен еще и потому, что человек вышел в космос, и если бы даже техника на Земле прекрасно уживалась с природой, космические условия все равно потребовали бы технических систем, рассчитанных на внеземные условия. Основу будущей техники составят закрытые системы. Их «закрытость» будет достигнута не за счет присоединения фильтров к уже имеющимся системам, а коренным изменением основ технологии. Здесь лежат не тронутые еще пласты изобретательских тем. Здесь скрыты проблемы, решение которых потребует великих изобретений.