Понятия «болезнь» и «здоровье» тесно связаны друг с другом. Казалось бы, чего проще: крепкое здоровье – значит, мало болезней, и наоборот. Однако их взаимосвязь гораздо сложнее. Измерить здоровье и болезнь трудно, границу между ними провести практически невозможно. Я не хочу вдаваться в излишние подробности, но все же придется остановиться на нескольких подходах к этому вопросу: болезнь – здоровье.

Во-первых, болезнь субъективная и объективная не одно и то же. Во-вторых, можно трактовать болезнь в понятиях биохимии, физиологии, психологии, социологии. Все трактовки важны.

Начнем с психологии, с субъективного. Болезнь – это понижение уровня «приятного», связанное с тягостными ощущениями тела или со страхом перед болями и смертью. Ощущения от здорового сильного тела (мышечная радость, как говорил И. Павлов) у здорового человека редки. Он давно адаптировался к ним. Здоровье вспоминается как счастье, только когда его уже нет.

Но существует и адаптация к неприятным ощущениям, особенно если человек чем-нибудь увлечен. И наоборот: может быть масса тягостных ощущений у мнительного субъекта, которые принимают форму болезней. Поэтому психологические, субъективные критерии болезни ненадежны. Интенсивность жалоб не всегда соответствует тяжести заболевания, это знают все врачи. Сигналы от всех рецепторов тела поступают в кору мозга. Если возбудимость ее клеток повышена и они натренированы постоянным вниманием, то и нормальные импульсы будут восприниматься ими как чрезмерные.

Сколько видишь людей, ушедших в болезнь! Они носят ее как драгоценность, как оправдание всех своих неудач в жизни, как основание требовать жалости и снисхождения у окружающих. Врачу нельзя пренебрегать жалобами пациента, но не следует только по ним строить гипотезу о болезни. Однако не нужно и забывать, что в конечном итоге врачи должны освободить человека именно от психологии болезни. Если нельзя избавить его от телесных страданий, то надо попытаться вылечить их душевные последствия.

Вопросы болезни и здоровья приходится изучать на разных уровнях: биохимии клеток, физиологии отдельных органов и целостного организма.

Начнем с молекулярного уровня. На молекулярную биологию с надеждой смотрит вся медицина.

Клетка – это сложнейшая система. Она отделена от внешней среды оболочкой из структурных белков и липидов и имеет множество пор, по которым циркулируют токи жидкостей, содержащие различные простые и сложные молекулы. По ним осуществляются как вещественно-энергетические, так и информационные связи. Оболочка – это совсем не пассивная полунепроницаемая мембрана, а сложная структура с управляемыми «из центра» порами, избирательно пропускающими и даже активно захватывающими вещества извне.

Рассмотрим до предела упрощенную схему клетки (рис. 1). Вверху изображены «органы управления» – ДНК, состоящая из генов, и рибосомы; ниже – «рабочие элементы», тоже условно поделенные на «специфические» и «обеспечивающие» структуры, которые выполняют соответствующие функции. Толстыми стрелками с надписями обозначены внешние «входы» и «выходы», тонкими – прямые и обратные связи между элементами.

Деятельность клетки сводится к многочисленным биохимическим реакциям, каждая из которых обеспечивается своим белком-ферментом. Белки синтезируются, «печатаются» в рибосомах по матрицам – образцам РНК, которые получаются копированием одного гена с ДНК. Ген – это участок ДНК, несущий информацию об одной полипептидной цепи, иными словами, об одном белке. Таким образом, в ДНК содержится набор «моделей» для всех белков ДНК клетки, в том числе и ферментов.

Клетки разных тканей одного организма отличаются набором ферментов и других белков. Например, только в эритроцитах образуется гемоглобин, только в клетках гипофиза синтезируются белки гормонов роста и т. п. Но все эти разные клетки произошли от одной оплодотворенной яйцеклетки – в результате множества делений, следующих одно за другим. Следовательно, во всех клетках имеется одинаковый набор молекул ДНК и закодированы все «инструкции»: как развиваться плоду, как вырасти взрослому, как должен действовать каждый вид клеток в процессе жизни человека. Однако в каждой клетке реализуется только часть генетической информации. Специализация клетки определяется теми генами, с которых информация была прочтена и реализована в виде белков. Кроме того, даже специфичные для данной клетки белки не образуются в ней все одновременно. В разное время в зависимости от нужд клетки в ней синтезируются разные белки. Например, для деления клетки нужны одни белки, для захвата пищи – другие, для переваривания ее – третьи и т. д. «Неработающие» гены блокируются. Они «включаются» по сигналам, идущим от «рабочих» элементов (см. стрелку «запрос на синтез» на рис. 1).

Рис. 1. Схема клетки

«Главная» деятельность клетки, служащая нуждам целого организма, осуществляется ее «специфическими» рабочими элементами. Объем или количество функции, например, сила сокращения мышечного волокна, определяется тремя факторами: интенсивностью внешнего раздражителя, массой «наработанного» ранее фермента и наличием энергии, поставляемой «обеспечивающими» структурами (см. рис. 1). «Обеспечивающие» элементы работают под воздействием «специфических»: производят по их запросам энергию в виде активных фосфорсодержащих молекул АТФ из глюкозы, аминокислот и жирных кислот, получаемых из крови.

Биохимики установили интересный факт: все живые белки закономерно распадаются на простые молекулы с постоянной скоростью. Величина ее определяется как «период полураспада». Для белка сердечной мышцы он равен примерно 30 дням. Это значит, что из 200 граммов белка через 30 дней останется только 100, еще через 30 дней – 50 и так далее, если за это время не синтезируются новые молекулы.

Новый белок «нарабатывается» в рибосомах по моделям, снятым с гена в ответ на запросы «рабочих» элементов. Чем напряженнее работает каждая молекула белка-фермента и чем больше этих молекул, то есть чем больше масса белка в «рабочем» элементе, тем выше запрос, тем больше синтезируется новых молекул белка. Так осуществляется баланс белка: одни молекулы распадаются в количествах тем больших, чем больше масса, а на их место синтезируются другие – в количествах, зависящих от интенсивности функции и от уже имеющейся массы.

Важно понять два типа процессов, протекающих в клетке, а соответственно и в организме, который состоит, как известно, из множества клеток. Первый – тренировка. Если внешний раздражитель сильный, он заставляет функционировать все молекулы «рабочих» элементов с максимальным напряжением, от них идет максимальный «запрос на синтез», и рибосомы так же максимально синтезируют новый белок, используя информацию ДНК. «Старый» белок при этом продолжает распадаться с постоянной скоростью. В результате при большой нагрузке синтез обгоняет распад, и масса белка возрастает (гипертрофия). Соответственно возрастает и мощность функции. Самый простой пример – тренировка тяжелоатлета: чем больше нагрузка, тем больше возрастает мышечная масса и соответственно увеличивается поднимаемый им вес.

Второй процесс – детренированность. Предположим, внешний раздражитель резко ослабляется, соответственно падает функция и уменьшается «запрос на синтез» новых молекул. В то же время наработанная ранее при большой функции масса белка продолжает распадаться с прежней скоростью. Распад обгоняет синтез, суммарная масса белка уменьшается (атрофия), и соответственно уменьшается возможность функции. Тяжелоатлет бросил тренироваться, мышцы у него растаяли, и он уже не может поднять даже половину того веса, который раньше поднимал легко.

Эти механизмы тренировки и детренированности белковых рабочих структур универсальны для всех клеток: мышечных, нервных или железистых – и для всех их функций. В частности, именно детренированность определяет развитие многих болезней, поскольку орган не в состоянии справиться с возросшей нагрузкой.

Клетка живет по своим программам, заданным в ее генах. Она очень напоминает современный большой завод, управляемый хорошим компьютером с гибкими программами, обеспечивающими выполнение плана при всех трудностях. Если условия среды становятся для клетки неблагоприятными, то функции ее постепенно ослабляются, и, наконец, замирает сама ее жизнь.

Чем, в конце концов, определяется функция клеток, органов, организма? Генами и тренировкой. Наиболее устойчивые и значительные изменения характеристик происходят в период роста и формирования органов, преходящие – при изменении функции в зрелом возрасте.

Уровень тренированности определяет границы внешних воздействий и собственного напряжения, за которыми кончается норма и начинается патология. Наследственность тоже важна: для сильного типа нужны меньшие раздражители, чтобы натренироваться, для слабого – большие. Соответственно, при одинаковых раздражителях слабый менее натренирован и легче заболевает, чем сильный.

В организме взрослого человека «присутствует» вся история его тренировки в период роста. К сожалению, не все дефекты детства можно исправить в зрелом возрасте. Особенно это относится к тем частям организма, которые не только растут, но и формируются после рождения.

На схеме (рис. 2) показаны характеристики функциональной структуры клетки при разных уровнях тренированности. Кривые отражают изменение «специфической» («главной» для целого организма) функции клетки в зависимости от силы внешнего раздражителя.

Над верхней кривой для самой тренированной клетки обозначены три режима: нормальный, форсированный и патологический. Что это такое? Названия говорят сами за себя. Нормальный режим обеспечивает среднюю интенсивность деятельности клетки, он устойчив и не ограничен во времени. Все химические реакции хорошо сбалансированы и не напряжены. На кривых ясно видна линейная зависимость между силой раздражителя и возрастанием функции.

Форсированный режим временно обеспечивает повышенную функцию ценой снижения КПД и расходования запасов энергии. В сложном организме он вызывается действием особых веществ – активаторов, чаще всего гормонов. Длительность его ограничена резервами энергии. Патологический режим – это уже болезнь, и об этом особый разговор.

В чем выражается здоровье клетки? Это выполнение программ жизни: питание, рост, специфические функции, размножение. «Уровень здоровья» – это интенсивность проявлений жизни в нормальных условиях среды, которая определяется тренированностью структур клетки. Есть и другое определение: «Количество здоровья – это пределы изменений внешних условий, в которых еще продолжается жизнь».

Рис. 2. Характеристики функциональной структуры клетки при различных уровнях тренированности

Количество здоровья можно выразить в понятии «резервные мощности». Оно хотя и не биологического происхождения, но всем понятно: например, при движении по ровной дороге с нормальной скоростью от мотора автомобиля требуется 15 лошадиных сил, а максимальная его мощность – 75 сил. Следовательно, есть пятикратный резерв мощности, который можно использовать для движения в гору... То же самое в клетке или органе. Нижняя точка «а» на оси ординат – это величина функции, которую организм в состоянии покоя требует от клетки. Для детренированной клетки – это почти предел нормального режима, чтобы получать больше, нужно переходить на форсированный режим. Для среднетренированной клетки есть трехкратный резерв, а при высокой тренированности – шестикратный. На оси абсцисс треугольником отмечена точка «б1». Для детренированной клетки – это предельная величина силы раздражителя, при усилении раздражений наступает патологический режим. При высокой тренированности раздражитель такой силы является нормальным.

Тренировка наиболее эффективна, когда величина функции приближается к границе форсированного режима. Эта точка отмечена на средней кривой.

Схема показывает, какое значение имеет тренировка для повышения «резервных мощностей». Сильный внешний раздражитель детренированную клетку (или орган, или целый организм) вводит в патологический режим, то есть уже в болезнь, а для тренированной – это нормальная интенсивная работа.

По идее, клетка не должна «болеть», пока она нормально снабжается энергетическими и строительными материалами, пока периодически получает извне раздражители, дающие ей хорошую тренировку, и пока ее «органы управления», то есть ДНК, в порядке.

Даже если клетка «заболела», то при создании ей нормальных условий спустя некоторое время она обновит свои структуры и выздоровеет. Если только гены в порядке. Специалисты по молекулярной генетике считают, что гены повреждаются редко. Подумайте, как это хорошо!

И, тем не менее, болезней полно, и все они первично проявляются в клетках.

Какую клетку сложного организма можно считать больной?

Ту, которая не выдает достаточной функции в ответ на нормальное раздражение. Чтобы не залезать в дебри сложной науки, я лишь перечислю возможные причины патологии клетки.

Детренированность. Если клетка не получала больших нагрузок, она детренируется и на нормальный раздражитель дает пониженную функцию.

Плохое снабжение. В крови недостаточно энергетических или строительных материалов: молекул глюкозы, жирных кислот, аминокислот, витаминов, микроэлементов, кислорода. Это бывает, например, когда между кровью и клеткой возникает барьер из межклеточных структур – продуктов соединительной ткани или нарушается циркуляция крови по капиллярам (так называемая микроциркуляция).

Встречается и прямое отравление клеток микробными токсинами или другими ядовитыми веществами, которые тормозят действие ферментов. Аналогично могут действовать продукты распада, если они не удаляются из-за нарушения кровообращения («шлаки»).

Наконец, возможны прямые повреждения генов – из-за радиации, из-за отравлений, из-за внедрения новых участков ДНК, привнесенных вирусами или возникших в результате мутаций. Это самая тяжелая патология, так как вследствие нее нарушаются «чертежи», по которым изготовляются ферменты.