1. Молния — электричество.

В мае 1752 года недалеко от Парижа был установлен странного вида высокий шест. Шест был деревянный, но заканчивался железным стержнем, укрепленным в стеклянной оправе. От стержня вниз тянулась металлическая проволока. И вот 10 мая, когда в этом месте проходила грозовая туча, люди, возившиеся около шеста, получили из проволоки электрическую искру, как бы извлеченную из грозовой тучи. А месяц спустя в Северной Америке довольно пожилой уже человек, по имени Вениамин Франклин, несмотря на совсем не подходящую погоду (была гроза), занимался… запусканием змея. Змей был тоже не совсем обыкновенный. Он был снабжен железным острием, а пеньковая веревка, на которой его запустили, была привязана к ключу, придерживаемому шелковым платком. Когда веревка намокла от дождя, то Франклин, приближая к ключу руку, получал из него явственно видимые электрические искры.

Не для забавы запускал змей Вениамин Франклин. В его время уже знали, что при трении некоторых тел друг о друга (например какой-нибудь смолы или серы о шерсть или стекла о кожу) получается электричество. В его время строили и электрические машины, в которых электричество добывалось именно трением. С таки-

ми машинами производили много различных опытов… Но Франклина занимала мысль:

А не электрическими ли искрами являются те гигантские молнии, которые бороздят во время грозы небо? Не заряжаются ли тучи электричеством подобным же путем, как заряжаются наши электрические машины, и не получаем ли мы при разряде последних ту же молнию, только в маленьких размерах?

Описанные опыты с шестом (проделанные тоже для проверки мысли, именно Франклина) и опыты со змеем, впоследствии неоднократно проверенные и в других странах, показали, что Франклин был прав.

Та грозная молния, которая издавна пугала человека, которая и теперь еще заставляет испуганно креститься темных женщин в глухих деревнях, оказалась электрического происхождения. И значит, изучая электричество и используя плоды этого изучения для своих нужд, человек заставляет служить себе те же силы, которые производят и молнию, — одно из самых величественных проявлений природного электричества.

Открытие этого факта позволило прежде всего обезвредить молнию. Высокие металлические, заостренные сверху шесты, зарытые нижним концом глубоко в землю — громоотводы — как бы притягивают к себе молнию, отводят ее в землю и тем самым предохраняют соседние с ними предметы от удара молнии. Громоотвод, благодаря которому современные города нс боятся молнии, был также изобретен Франклином.

2. Как люди дошли до электрического двигателя.

Давно было известно, что куски одной железной руды, так называемого магнитного железняка, притягивают к

себе железо. Это свойство назвали магнетизмом. Если потереть таким куском стальной стержень, то и он становится магнитом, т.-е. начинает притягивать к себе железные предметы. Намагниченными стальными стрелками уже несколько сот лет тому назад стали пользоваться для устройства компаса — прибора, применяемого для определения направления. Такая стрелка обладает свойством всегда поворачиваться одним концом на север, другим на юг.

В 1820 году датский ученый, физик, но имени Эрштедт, случайно на лекции заметил, что электрический ток отклонял в сторону находившуюся вблизи магнитную стрелку. Это наблюдение заинтересовало его и он начал изучать действие электричества на магнитную стрелку. Изучали это и другие ученые. И вот оказалось, что не только ток действует на магнит, но и магнит действует на ток: неподвижный сильный магнит отклоняет подвижную проволочную спираль, по которой идет ток.

Мало того. Если вокруг железного стержня обмотать спиралью проволоку и пропустить по ней электрический ток, то стержень становится магнитом, пока по проволоке идет ток. Такой прибор получил название электромагнита.

На рисунке 30 изображен приборчик, с помощью которого легко можно видеть действие электромагнита. Вокруг изогнутого железного стержня намотано витками несколько слоев проволоки (QP) но которой можно пропускать электрический ток. Под электромагнитом находится чашка с гирями, прикрепленная к железной пластинке bа. Когда по обмотке электромагнита пропускают ток, то стержень намагничивается, притягивает к себе пластинку bа, а вместе с ней и чашку с гирями. Пока по обмотке идет ток, электромагнит удерживает чашку на весу, несмотря на положенные на нее тяжелые гири. Как только ток прекратится, гири отрывают чашку и она падает, — электромагнит уже не в силах удержать ее.

Электромагниты различного устройства получили в технике самое широкое применение. Ими пользуются, например, в подъемных кранах для поднимания тяжелых железных, стальных или чугунных предметов, для закрепления стальных предметов при шлифовке, для временного электромагнитного сцепления работающих валов и т. п. Электромагнит найдете вы в электрическом звонке, телефоне, телеграфном аппарате…

Рассмотрим для примера, как действует он в электрическом звонке, изображенном на рисунке 31.

Электромагнит расположен внутри звонка. Электрический ток идет через проволоку т в обмотки электромагнита, оттуда в пружинку, к которой прикреплен железный стержень а с шариком Р. Через этот стержень ток идет в пружинку с и уходит дальше по проволоке. Как только через электромагнит пойдет ток, он сейчас же намагнитится и притянет к себе стержень а. Прикрепленный к последнему молоточек Р ударит в чашку звонка Т. Но при этом стержень отойдет от пружинки с,— значит, прервется проход для тока, и ток поэтому прекратится.

Как только прекратится ток, электромагнит "размагнитится", т.-е. перестанет притягивать к себе стержень а, который оттянется к пружинке с. Коснувшись пружинки, стержень снова замкнет ток, — электромагнит

намагнитится, притянет стержень, молоточек ударит в чашку, — и так далее. Звонок будет непрерывно звонить, пока через него пропускают ток.

Электромагнит очень удобен в обращении. Простым замыканием и размыканием тока мы можем управлять им по своему желанию, находясь от него на любом расстоянии. Он гораздо сильнее простого стального магнита. Но особенно широкое техническое применение получил он благодаря работам упоминавшегося уже в этой книжке ученого физика — Михаила Фарадея.

В то время уже хорошо знали, что если к заряженному электричеством предмету поднести другой предмет, то в последнем тоже появляется электричество через "влияние" первого предмета. Знали также, как мы видели, что электричество вызывает в железе магнитные свойства. Фарадей и думал, нельзя ли, наоборот, с помощью магнетизма получить электричество. Он располагал проволку, концы которой были соединены с чувствительным к току прибором ,— гальваноскопом, вблизи сильного магнита. Сколько, однако, ни бился Фарадей, никакого постоянного тока в проволоке ему таким способом обнаружить не удалось. Но зато ему удалось заметить другое очень важное обстоятельство.

Постоянного тока в проволоке не было. Но в тот момент, когда Фарадей двигал сильный магнит внутри проволочной спирали, в проволоке появлялся ток. Шел этот ток только во время движения магнита. То же самое получалось, если около неподвижного магнита двигалась проволока, концы которой были соединены с гальваноскопом.

Удалось Фарадею получить такие токи, когда он, вместо магнита, брал вторую проволоку, по которой шел ток. В то время когда он замыкал или размыкал ток во второй проволоке, в расположенной вблизи первой на короткое время появлялся ток.

Это были те самые опыты, которые Фарадей показывал министру и из которых развилась вся современная электротехника. Опыты Фарадея послужили исходным пунктом дли развития современного электродвигателя. Но, конечно, они нашли себе практическое применение не сразу. Понадобились труды многих ученых физиков и техников для того, чтобы электродвигатель мог появиться.

Современная динамомашина (так называется машина, вырабатывающая электрический ток) состоит из следующих главных частей (рис. 32):

1) электромагнита М, вокруг которого намотана проволока. Когда по этой проволоке идет ток, то электромагнит намагничивается;

2) якоря Л, состоящего из большого числа катушек изолированной (т.-е. покрытой не пропускающей электричества обмоткой) медной проволоки, которые надеты на железное кольцо. Кольцо помещается между концами (полюсами) электромагнита;

3) коллектора K, состоящего из ряда изолированных друг от друга медных пластинок. К этим пластинкам присоединяются свободные концы проволок от катушек якоря. Коллектор и якорь сидят на общем валу;

4) щеток, которые при вращении коллектора скользят по нему. Щетки делаются из металлических или угольных

пластинок, закрепленных в общей оправе, и соединяются с отходящими от динамомашины проводами.

Как же действует такая динамомашина?

Ее якорь приводится в быстрое вращение с помощью передачи от паровой машины, водяной турбины или какого-либо другого двигателя. Электромагнит устроен так, что в это время он сильно намагничивается. Так как катушки якоря быстро двигаются между его полюсами,

то в проволоке катушек возбуждается сильный электрический ток. Он идет из катушек в пластинки коллектора, из них — в скользящие щетки, а из щеток — во внешние провода. Таким образом, пока якорь вращается, во внешних проводах (если они, конечно, не разомкнуты) все время идет ток.

Динамомашины бывают разного устройства и служат для различных целей. Но мы не будем здесь останавливаться на подробностях, а перейдем к собственно электродвигателю, т.-е. машине, превращающей электрическую энергию в энергию движения.

В 1807 году в городе Париже, столице Франции, устраивалась всемирная выставка. Устанавливались на ней, между прочим, и изобретенные незадолго до этого динамомашины. Когда одну из них соединили с передаточным валом от паровой машины и она начала работать, вдруг завертелся якорь и одной из остальных динамомашин, которые с передаточным валом соединены еще не были. И эту вторую машину никак нельзя было ни остановить, ни затормозить, пока работала первая. Удивленные монтеры начали расследовать это обстоятельство и выяснили в конце концов следующее.

Провода, шедшие от первой машины, случайно оказались соединенными с проводами второй машины. Когда передаточный вал завертел якорь первой машины, то вырабатывавшийся в ней электрический ток пошел в обмотки якоря второй машины. Якорь второй машины благодаря этому тоже завертелся. К ее валу можно было присоединить передаточный ремень и с помощью последнего привести в движение любую машину.

Таким образом была открыта возможность превращения динамомашины в электродвигатель. Современные электродвигатели устраиваются несколько иначе, чем динамомашины, но, в сущности говоря, электродвигатель — это та же динамомашина, только действующая как раз наоборот:

динамомашина превращает энергию движения в электрическую, а электродвигатель превращает электрическую энергию в энергию движения.

3. Что делает для нас электричество.

Если бы мы вздумали подробно описывать все практические применения электричества, то для этого не хватило бы и десяти таких книжек, как наша. Поэтому придется ограничиться упоминанием лишь самого главного и рассмотрением только некоторых примеров.

Если вам придется когда-нибудь попасть на фабрику, работающую электричеством, то вы сразу заметите, что она даже по внешнему виду отличается от фабрики, обслуживаемой паровыми машинами. Вы не увидите на ней сложной системы передаточных валов и ремней, загромождающей помещение и представляющей большую опасность для рабочих. Здесь около машин и станков стоят электродвигатели, которые приводятся в движение от динамомашин центральной станции, общей для всего предприятия; иногда же эта станция находится далеко от предприятия. Провода к электродвигателям идут где-нибудь скрыто под полом или вдоль стен здания и никому не мешают. Каждый мотор может быть пущен в ход или остановлен в любой момент, независимо от других. Энергия расходуется только в то время, пока работает мотор: нет потерь на холостой ход, обычных при передачах от паровой машины.

Чистота, экономия, удобство, безопасность — вот характерныечерты фабричного производства, оборудованного электродвигателями. И кроме того оно для своего обслуживания требует гораздо меньше людей, чем обычно.

Современная электрическая станция мощностью в 100000 лошадиных сил требует для своего обслуживания всего около 100 рабочих.

Благодаря применению электричества значительно удешевились многие отрасли промышленности, а некоторые только и могли возникнуть после того, как люди научились пользоваться электричеством. Приведем примеры.

Кто теперь не пользуется алюминиевой посудой,— по своей цене она доступна всем.

Алюминий добывается из особой белой глины. Семьдесят лет тому назад приготовление его обходилось настолько дорого, что килограмм алюминия стоил около 300 рублей. Это был драгоценный металл. Теперь алюминий добывают с помощью электрического тока и цена его упала благодаря этому в несколько сот раз.

С помощью электричества в заводской практике можно достигнуть такого жара, которого не удается достигнуть никакими другими способами. Для этого применяются электрические печи. Одна из таких простых печей показана на рисунке 33. Она выложена из огнеупорного материала (известкового кирпича). Верхнюю часть ее можно снимать и опять накладывать. С боков внутрь печи входят, как показано на рисунке, два длинных угольных стержня, но которым пропускается сильный электрический ток. Когда по ним идет ток, то между концами обоих несколько отодвинутых друг от друга стержней вспыхивает та яркая вольтова дуга, которую можно видеть в больших уличных электрических фонарях. При этом развивается такой сильный жар, при котором плавятся многие тугоплавкие вещества.

Под углями в печи устанавливается огнеупорный сосуд из графита, куда помещается то вещество, которое надо расплавить. После плавки верхняя часть печи снимается и сосуд опоражнивается. В более усовершенствованных печах имеются приспособления, позволяющие просто выпускать из печи наружу расплавленное вещество.

С помощью электрических печей готовятся, например, разные важные для техники сплавы: очень твердая и прочная хромовая сталь, применяющаяся для артиллерийских снарядов и выделки брони военных судов, ванадиевая сталь, употребляющаяся для выделки инструментов, не теряющих своей твердости и прочности при разогревании, вольфрамовая сталь и другие сплавы.

Широкое применение находит электричество при получении многих чистых металлов, например меди, олова, свинца, цинка. Для этого нечистые металлы растворяют в кислотах и потом в особых аппаратах пропускают через такие растворы электрический ток. При прохождении тока металл осаждается в очень чистом виде.

С помощью электричества можно серебрить, золотить, никелировать разные металлические вещи. Делается это так. Для золочения, например, помещают металлическую вещь в раствор такого вещества, которое содержит золото. Электрический ток от внешнего провода идет в металлическую вещь, а потом через раствор в другой провод. Во время прохождения тока из раствора выделяется золото и очень тонким, но в то же время прочным слоем осаждается на подвергающемся золочению предмете.

Скажем еще об одной важной отрасли промышленности, которая стала возможной благодаря электричеству.

Для повышения урожая истощенную посевами землю необходимо удобрять искусственными удобрениями. Одним из таких необходимых для роста растений удобрений является селитра. До недавнего времени для удобрения, а также и других целей (например для приготовления взрывчатых веществ) шла исключительно природная селитра. Добывалась она, главным образом, в Америке, в государстве Чили. Однако залежи природной селитры начали быстро истощаться, надо было подумать об их замене. Такую замену позволило найти электричество.

Если пропускать сильные электрические искры через воздух, то из воздуха начинают образовываться едкие бурые пары. Пары эти распускаются в воде, при чем получается азотная кислота. Растворяя в ней известь можно получить так называемую кальциевую селитру, которая является прекрасным удобрением, заменяющим природную селитру. Этот способ и применяется теперь для заводского производства селитры из воздуха с помощью электричества. Так как воздуха на земле сколько угодно, то теперь уже, благодаря физике, бояться истощения природных залежей селитры не приходится.

Немногие приведенные примеры применения электричества показывают, какое важное значение оно имеет для нас. Но применение электричества этим не ограничивается.

Вы живете в большом городе, и место вашей работы находится далеко от дома. К вашим услугам электрический трамвай (рис. 34), который быстро доставит вас на место. Где-то далеко на центральной станции работают динамомашины. Вырабатываемый ими ток разбегается по сети проводов во все стороны. По одному из проводов, которого касается металлическая дуга трамвайного вагона, он подходит к трамваю. Вагоновожатый повернул ручку, ток пошел в скрытый под кузовом трамвая электромотор и завертел его якорь. Якорь, соединенный с трамвайной осью, передал ей свое вращение, колеса завертелись, и трамвай поехал. В любой момент поворотом ручки вагоновожатый останавливает вагон. Трамвайный моторный вагон иногда идет один, иногда тянет с собой еще прицепной вагон.

Теперь пробуютприменить электрический двигатель и на железных дорогах. Здесь "электровоз" должен уже тянуть не один вагон, а целый поезд. Значит, его мотор должен быть гораздо сильнее трамвайного. Электровозы уже строятся и применяются (рис. 35). Ток к ним или идет по проводам, или вырабатывается внутри самого электровоза.

Зашло солнце и на улицах города становится темно. Мгновенно всюду вспыхивают яркие электрические Фонари и лампочки. В больших фонарях электрический ток дает свет, проскакивая между концами двух угольных стержней. В электрической лампочке (рис. 36) он проходит по тонкой угольной или металлической нити, раскаляя ее до яркого свечения. Чтобы нить не сгорела, воздух из лампочек выкачан.

А какое это удобство, если у вас в комнате проведено электрическое освещение! Поворот выключателя — и комната залита ярким светом. Чисто, нет копоти, не портится воздух, как при керосиновой лампе, безопасно в пожарном отношении…

Многое можно было бы еще сказать о тех удобствах, которые доставляет электричество жителю города. Но оно же может играть большую роль и в деревне.

4. Электричество в сельском хозяйстве.

Тяжел труд крестьянина, особенно в летнюю "страдную" пору. Приходится напряженно работать с раннего утра и до позднего вечера, чтобы получить от земли то, что нужно для годового пропитания семьи и поддержания хозяйства? Скудно вознаграждается этот тяжелый труд! Но почему?

Потому что крестьянин до сих пор еще работает с самыми несовершенными орудиями, потому что эти орудия требуют огромной затраты силы как с его стороны, так и со стороны его верного друга — "сивки". Но как бы крестьянин ни старался и как бы ни тянулась из последних сил его сивка, больше чем они могут дать — они не дадут. А потому, несмотря на напряженную работу, земля все-таки вспахана и проборонована плохо, посев произведен неэкономно, при жатве, обмолоте и так далее потеряно много зерна… А сколько сил и труда теряется на такие работы, как, например, пилка дров, сбивание масла, различные мелкие кустарные промыслы! Во всех этих работах большой подмогой могло бы быть электричество.

Современная техника уже разработала ряд машин и аппаратов для сельского хозяйства, работающих с помощью электричества. В передовых хозяйствах культурных стран они начинают находить все большее и большее применение. Электричество может облегчить труд крестьянина и увеличить его производительность при самых различных работах.

Для вспашки земли можно применять электрические плуги. Самодвижущийся электрический плуг приводится в движение находящимся на нем электродвигателем мощностью от 3 до 20 лошадиных сил и свободно управляется одним человеком. За рабочий день он вспахивает 2 — 5 десятин, на что при пользовании конным плугом понадобится от четырех до десяти дней. Само собой разумеется, что и вспашка при электрическом плуге будет лучше, ровнее и глубже. Кроме того электродвигатель плуга может быть приспособлен и для других работ в сельском хозяйстве.

Для вспашки больших участков земли применяют электрические тележки. Две таких тележки с электродвигателями устанавливаются на противоположных сторонах поля. Между тележками ходит плуг, который прикреплен к ним стальными канатами. Каждая тележка попеременно тянет плуг в свою сторону, который, таким образом, ходит поперек поля и вспахивает его. Для пахоты требуется всего 3 — 4 рабочих. Один управляет плугом, двое — электродвигателями на тележках и, в случае нужды, работает еще один вспомогательный. За рабочий день при таком оборудовании можно вспахать около 10 десятин, т.-е. в 20 раз больше, чем при конной тяге.

Электрический мотор можно также приспособить и для молотьбы. Для этой цели имеются маленькие переносные моторы, укрепленные на салазках или двухколесной тележке, а также и более солидные. Мотор в 3-4 лошадиных силы обмолачивает около 160 килограммов (10 пудов) зерна в час. Этот же мотор можно применить для очистки зерна, пилки дров и других работ.

Совсем небольшие моторы, примерно в ј лошадиной силы, применяются для отделения сливок от молока. Для этого молоко наливается в сепаратор. При вращении этого прибора с помощью мотора сыворотка располагается ближе к стенкам, а сливки — к середине. В соответствующих местах устроены трубки, по которым сыворотка и сливки сливаются в отдельные сосуды. С помощью того же прибора полученные сливки сбиваются в маслобойке на масло. На рисунке 37 изображены сепаратор и маслобойка, работающие с помощью электродвигателя.

При самых разнообразных работах электричество может быть ценным помощником крестьянина. Его можно приспособить для мельницы, водоснабжения, осушения болот и так далее, вплоть до доения коров и… высиживания цыплят. На рис. 38 изображена "электрическая наседка", которая высиживает куда больше цыплят, чем какая-нибудь хохлатка. Достаточно положить в аппарат свежие яйца и пустить по проводам электрический ток, чтобы через положенный срок получить штук СО цыплят. Электричество поддерживает в нем все время как раз ту температуру, которая нужна для правильного развития из яйца цыпленка.

Многое мог бы сделать электродвигатель в деревне. Он облегчил бы каторжный труд крестьянина в страдную пору, он позволил бы организовать кооперативную обработку на месте сырых продуктов (например молока, льна, конопли и подсолнуха, кожи и т. и.), что было бы для него гораздо выгоднее; электричество залило бы крестьянскую избу ярким светом… В Америке, Германии, Франции и целом ряде других стран электродвигатель завоевывает себе почетное место в деревне. Начинает проникать он уже и в наши деревни. Надо надеяться, что недалеко то время, когда наш крестьянин также привыкнет к пользованию услугами электричества, как и житель большого города.

5. Электричество в домашнем быту.

Есть еще одна область нашей повседневной жизни, в которой электричество могло бы иметь очень большое значение. Мы говорим о работе домашней хозяйки.

Сколько различных работ приходится выполнять хозяйке даже в небольшой семье. Надо приготовить обед и ужин, постирать и погладить белье, кое-что пошить и починить и так далее. Вся эта малозаметная на первый взгляд работа отнимает, однако, у хозяйки целый день и часто не оставляет ей свободного времени для того, чтобы пойти на собрание, в клуб, в театр, почитать что– нибудь… Домашние заботы и хлопоты до сих пор еще не позволяют у нас большинству женщин, особенно в деревне, принимать сколько-нибудь заметное участие в строительстве новой светлой жизни на социалистических началах.

Конечно, полностью освободиться от тяжелого ярма домашнего хозяйства женщина сможет только тогда, когда ее семья будет иметь возможность получить вкусный обед в общественной столовой, расположенной где– нибудь недалеко от дома, когда белье постирают в общественной прачечной, и притом так, что оно не будет расползаться после нескольких стирок, когда она сможет получить для детей готовое белье и платье, а не шить их дома… Все это будет возможно только при коммунистическом строе. Но пока этого у пас еще нет, да и вряд ли удастся полностью наладить дело в особенно близком будущем. Пока, в силу целого ряда условий, многим домашним хозяйкам приходится еще готовить обед, стирать белье и заниматься мелкой пошивкой дома. Вот тут-то и могло бы сослужить большую службу электричество.

На кухне приходится рубить мясо, чистить картофель, резать, размешивать, растирать разные припасы, чистить, мыть и полоскать посуду… Для всех этих операций существуют уже теперь различные приборы, вроде мясорубки, машины для чистки ножей, машины для мытья посуды… Но все эти приборы приводятся обычно в движение руками, что требует затраты больших усилий и времени. А между тем можно было бы легко приспособить на кухне маленький электрический моторчик, который приводил бы в движение ту или другую из этих машин, смотря но надобности. Пара проводов, проведенных от него

в комнату, позволила бы приладить к нему и швейную машину.

Сколько приходится возиться с кухонной плитой: надо наколоть дров, растопить; от плиты пышет, нередко идет дым и чад, масса тепла пропадает даром. А как удобен электрический очаг (рис. 39 и 40). Внутри него находится ряд палочек из такого материала, который плохо проводит электричество. К концам их подходят провода. Когда через прибор пропускается электрический ток, то палочки нагреваются, нагревают плиту, а через последнюю и поставленную на нее посуду. Степень нагревания можно регулировать помещенным впереди переключателем. Чисто, удобно, нет ни чада, ни копоти. Бывают и целые электрические кухни (рис. 41), у которых иногда имеются электрические часы. Если нужно, положим, чтобы кушанье варилось только 20 минут,

надо только соответствующим образом установить эти часы. По прошествии положенного времени они сами собой остановят ток, и варка окончится.

Как неприятна часто возня с самоваром или утюгом! Да не только неприятна, а иногда и опасна для здоровья, так как плохо прогоревшие угли могут дать в комнате угар. Ничего подобного не может быть при пользовании электрическим чайником, утюгом или кастрюлей. Соединил их шнуры со штепселем от электрического тока — и через короткое время можно пить чай или гладить. Устройство таких приборов понятно из рисунка 42, изображающего электрическую кастрюлю, как бы разрезанную пополам. Из него видно, что в дне такой кастрюли имеется лента из плохо проводящего электричество материала, к концам которой подходят провода. При пропускании тока дно нагревается и передает свое тепло находящейся в кастрюле жидкости.

Электричество можно применить и для варки пищи, и для кипячения воды, и для обогревания помещения, и для глажения белья, и для шитья… Все это существенно облегчило бы работу домашней хозяйки и на много сократило бы ее продолжительность. Но почему

же оно так мало применяется у нас для этих целей даже там, где электрическая проводка существует давно и к пользованию электрическим освещением привыкли уже как к чему-то обыденному? Да просто потому, что описанные выше электрические приборы у нас еще дороги, да и электрическая энергия обходится не очень дешево. Это мешает широкому пользованию электричеством в домашнем быту. Но совсем иначе обстоит дело на этот счет в таких странах, где электрическая энергия обходится дешево. В Норвегии, в Швейцарии, Германии, Англии и особенно в Америке все большая и большая часть работы домашней хозяйки перекладывается на электричество. Электричество оказывается там самой аккуратной, добросовестной и надежной домашней прислугой, на которую вполне можно положиться. Но и у нас дело со временем изменится.

У нас в СССР по завету Владимира Ильича Ленина еще при его жизни предпринят целый ряд работ, которые идут и в настоящее время. Эти работы имеют целью "электрификацию" нашей страны, которая среди ряда других важных достижений принесет и желанное облегчение домашней хозяйке.

6. Электрификация.

Многим из читателей этой книжки приходилось, вероятно, хотя одним ухом слышать об электрификации. После всего сказанного здесь об электричестве нам легче будет разобраться в том, для чего необходима в СССР электрификация.

Раньше мы рассмотрели целый ряд природных источников энергии — черный уголь, белый уголь, синий уголь и другие. Как их удобнее и выгоднее всего использовать?

Большие запасы хорошего каменного угля находятся у нас, например, в Донецком бассейне или в Кузнецком бассейне (в Сибири). А большинство наших фабрик и заводов, работающих на каменном угле, расположены в Московском, Ленинградском, Иваново-Вознесенском районах. Каменный угол!» приходится, значит, подвозить к ним издалека. Перевозка загружает транспорт, стоит недешево, не мало угля при этом теряется. А между тем, например, в Московском районе имеется тоже каменный уголь, но только плохого качества, перевозка которого на далекие расстояния совсем не окупается. В этом же районе, да и в других есть большие залежи торфа. Этот сорт топлива для перевозки почти непригоден, а потому и находил себе очень ограниченное применение. На местах добывания хороших сортов каменного угля остается много угольной мелочи, которая пропадает даром.

Мы видим таким образом, что из различных сортов черного угля использовались только самые лучшие и ценные сорта. Если вспомнить, что запасов угля не так уж много, то станет ясной вся расточительность подобного использования. Надо во что бы то ни стало научиться извлекать пользу и из малоценных сортов. Вот тут-то на помощь и приходит электричество.

В настоящее время научились передавать электричество с выгодой на расстояния до 300—400 и более километров. Вместо того, чтобы везти на такое расстояние топливо, выгоднее построить на месте добычи топлива электрическую станцию и вырабатываемый ее динамо– машинами электрический ток подавать по проводам в любую сторону, где в нем есть нужда. Туг с пользой пойдут в дело и бурый уголь, и торф, и угольная мелочь.

Мало того. Предположим, что вокруг района добычи хорошего угля в расстоянии до нескольких сот километров разбросан в разных местах ряд предприятий, работающих на угле. Предположим, что и перевозка угля до предприятий обходится совсем недорого. И оказывается, однако, что если построить в центре общую для всех предприятий электрическую станцию, то будет тратиться топлива при той же работе в три и даже в четыре раза меньше, чем при отдельных двигателях в каждом предприятии. Большую экономию дает электричество и при добывании нефти. При старых способах добычи на каждые 100 килограмм надо было затратить 25—30 кг на сжигание в котлах и мелких двигателях, приводящих в движение машины. При электрификации добывания на каждые 100 кг добытой нефти нужно израсходовать только уже 8 кг нефти. Значит, электричество во всех случаях позволяет очень выгодно и экономно использовать труд "черного слуги". Но и не только его.

Возьмем для примера энергию движущейся воды. Таких мест, где использовать эту энергию можно сравнительно удобно, немного. Нельзя же в самом деле перетащить целый ряд самых разнородных предприятий к водопаду или к реке! Совсем другое дело, если превратить энергию движущейся воды в электричество: тогда можно обслужить целый район на несколько сот километров в окружности.

В электричество очень удобно превращать самые различные виды энергии, а затем и "транспортировать" их в таком виде на далекие расстояния. По прибытии на место потребления электричество опять может быть превращено, смотря по надобности, в тепло, в свет, в движение… Л кроме того обращение с ним представляет целый ряд других удобств, о которых нам уже пришлось упомянуть: оно тратится только во время работы, послушно легкому движению руки управляющего им человека, не требует громоздких приспособлений, на много повышает производительность труда… Ясно поэтому, насколько важно электрифицировать наше народное хозяйство— нашу промышленность, сельское хозяйство, транспорт, домашний быт. Это даст нам огромную экономию в использовании природных запасов энергии, во много раз повысит производительность нашего труда, значительно облегчит его, позволит создать целый ряд богатств, которые удовлетворят все наши потребности. Электрификация позволит производить в деревне первоначальную обработку сельскохозяйственного сырья и тем самым займет избыточные рабочие руки, которым наша городская промышленность не может еще предоставить работы.

Огромное значение электрификации в деле нашего строительства полностью учтено Советской властью. Без электрификации нам нельзя строить жизнь на новых коммунистических началах. Владимир Ильич Ленин это очень хорошо выразил такими словами:

"Коммунизм — это есть Советская власть плюс электрификация всей страны".

Что же удалось сделать в этом отношении до настоящего времени в СССР и как предполагается вести работы в будущем?

В 1920 году правительством был разработан план электрификации страны, который был утвержден VIII Съездом Советов. По этому плану было предположено в течение 10 — 15 ближайших лет построить в разных местах 30 новых районных электрических станций, общей мощностью около 2 миллионов лошадиных сил. План начал приводиться в исполнение. Мощность станций, построенных в 1922 году, составляла около 13 тысяч лош. сил, в 1923 г.— 16 тысяч лот. сил., в 1924 г.— 21 тыс. лош. сил, в 1925 г.— 80 тыс. лош. сил. Текущий 1926 год даст станции общей мощностью в 190 тысяч лошадиных сил, а 1927 г.— 370 тысяч лошадиных сил. Всего, значит, за первые шесть лет строительства страна получит станции общей мощностью около 700 тысяч лошадиных сил. Как видно из приведенных цифр, из года в год это строительство расширяется. Если рост его будет таким же порядком развиваться и дальше, то намеченная первоочередная программа в 2 милл. лош. сил будет выполнена к 1932 году, то-есть в течение десяти лет.

Посмотрим, как организуется работа некоторых из построенных и строящихся станций.

В 130 километрах от Москвы на Шатурском торфяном болоте построена Шатурская электрическая станция. Работает она на торфе. Мощность—около 60 тысяч лошадиных сил. Большая часть электрической энергии передается в Москву, часть же идет для обслуживания расположенных в окрестностях фабрик, сел и деревень. Залежи торфа в окрестностях станции определяются примерно в 70 миллионов тонн, которых будет достаточно для работы станции в продолжение 100 лет.

На правом берегу реки Оки в 120 километрах от Москвы построена Каширская станция, работающая на малоценном подмосковном угле. Мощность ее пока около 15 тысяч лошадиных сил, но в дальнейшем ее предположено довести до 40 тысяч. Обслуживает она главным образом Москву. Кроме того энергия будет подана в города Серпухов, Коломну, по дороге электричеством снабжается также большой сельскохозяйственный район с 4 деревнями.

На берегу реки Невы построена станция "Красный Октябрь", которая снабжает энергией Ленинград и прилегающие к нему промышленные районы. Работает эта станция на местном торфе; мощность ее предположено довести до 55 тысяч лошадиных сил.

В Донецком каменноугольном бассейне строится Штеровская станция мощностью около 25 тысяч лошадиных сил. Работать она будет на угольной мелочи и служить для снабжения электрической энергией мест разработки антрацита — лучшего сорта каменного угля.

Примером электрических станций, работающих силой движущейся воды, может служить Волховская станция. Она расположена на реке Волхове, вытекающей из озера Ильменя. На расстоянии около 200 километров от ее истоков на реке находятся Петропавловские пороги, за которыми сейчас же и построена станция, Падающая вода приводит в движение водяные турбины (8 турбин, мощностью каждая в 10 000 лош. сил), которые передают его машинам, вырабатывающим электрический ток. Мощность станции — 80 тысяч лошадиных сил. Энергия передается в Ленинград, находящийся от станции в 120 километрах.

На знаменитых Днепровских порогах около города Александровой предположена к постройке станция, которая будет величайшей в Европе. Ее мощность будет доходить до 650 тысяч лошадиных сил. Предназначается она для обслуживания южного горнопромышленного и металлургического района.

Кроме таких крупных районных станций у нас строится и целый ряд мелких станций местного назначения. Общая мощность таких станций, пущенных вход в 1925 г., достигает 50 тысяч лошадиных сил, а в 1926 году их построено и предположено построить на 225 тысяч лошадиных сил.

Принимаются меры у нас и для электрификации транспорта. Те участки железных дорог, которые, с одной стороны, находятся далеко от источников угля и нефти, а с другой — сильно нагружены в смысле перевозок, выгодно перевести на электрическую тягу. При электрификации таких участков существенно понижаются расходы на перевозку по ним. Ведь электровоз не должен таскать с собой топливо и воду, он не потребляет бесполезно энергию во время стоянок и имеет целый ряд других преимуществ. В ближайшие годы предположено электрифицировать пригородные участки Казанской, Нижегородской. Белорусской, Курской и Северных дорог Московского узла, некоторые участки Ленинградского узла, Мииераловодскую линию Северо-Кавказских дорог и перевальный участок Закавказских дорог.

В деле электрификации мы еще на много отстали от других более развитых в промышленном отношении стран. Так, например, в Америке мощность электрических станций общего пользования в 1925 году доходила уже до 18 миллионов лошадиных сил. А мощность мелких фабрично-заводских станций составляла больше 12 милл. лошадиных сил (у нас мощность последних несколько больше миллиона лошадиных сил). Там, в связи с тяжелыми последствиями мировой войны, была проделана большая техническая работа в смысле использования энергии движущейся воды и малоценных сортов топлива с помощью электрификации. Но все-таки мы уже сделали первые успешные шаги, и шаги не так чтобы уж очень маленькие. Можно надеяться, что при дальнейшем укреплении нашего народного хозяйства работы по электрификации развернутся еще шире, захватят большие районы и тем самым позволят поднять промышленность и сельское хозяйство на небывалую еще у нас высоту.

Хозяевами нашей страны являются сами трудящиеся. Это даст нам возможность заставить служить себе с помощью физики силы природы гораздо лучше, чем это можно сделать в капиталистических странах. Но и там цветные слуги во что бы то ни стало должны перейти в распоряжение трудящихся. Почему, — об этом мы поговорим в следующей главе.