Решающий шаг к миру. Водородная бомба с атомным обжатием РДС-37

Андрюшин Игорь Алексеевич

Илькаев Радий Иванович

Чернышев Александр Константинович

ПРИЛОЖЕНИЯ

 

 

1. ОБ ЭКСПЕРИМЕНТЕ «GEORGE»

Испытание «George» было произведено 9 мая 1951 г. на атолле Эниветок. Устройство размещалось на высоте 200 футов (61 м) на испытательной башне. Энерговыделение взрыва составило 225 кт. Целью эксперимента было осуществление зажигания термоядерной реакции.

Испытательное устройство «Cylinder» состояло из ядра, содержащего высокообогащенный уран, которое обжималось под действием уникальной цилиндрической имплозивной системы. Считается, что это устройство впервые использовало систему внешнего нейтронного инициирования /4/.

Устройство представляло собой цилиндр длиной около 8 футов (~2,4м) и диаметром около 2 футов (~0,6м) с осесимметричным отверстием. Отверстие, сжатое до узкого канала под действием имплозии, передавало излучение в небольшой объем из окиси бериллия, содержавший несколько граммов жидкой смеси дейтерия и трития. Излучение не только нагревало термоядерный модуль до температуры, необходимой для зажигания, но и создавало давление в окружающей окиси бериллия, которое приводило к сжатию термоядерного горючего, усиливая его горение. Излучение распространялось впереди фронта ударной волны, создаваемой ядерным взрывом, обеспечивая необходимое время для осуществления термоядерного процесса до его нарушения продуктами ядерного взрыва.

Термоядерная часть устройства была разработана Э. Теллером, а устройство «Cylinder» разработано, вероятно, на основе предложений г. Гамова.

Термоядерное горение регистрировалось через измерения рентгеновского излучения, испускаемого термоядерной плазмой. Аппаратура регистрации была защищена от действия рентгеновского и гамма-излучения ядерного заряда и размещалась достаточно далеко от устройства, обеспечивая измерения и передачу данных в процессе горения термоядерного горючего. Эта часть эксперимента выполнялась под руководством X. Браднера и г. Йорка. Измерения рентгеновского излучения были основаны на процессе флюоресценции серии К-пороговых фильтров, размещенных на базе, определяемой испытательной башней. Рентгеновское излучение от термоядерного модуля достигало регистраторов по вакуумным каналам, находившимся внутри трубы, выполненной из свинца, диаметром 4 фута (~ 1,2 м), массой 235 т, которая обеспечивала защиту от внешнего рентгеновского и гамма-излучения.

 

2. ОБ ЭКСПЕРИМЕНТЕ «MIKE»

Испытание «Mike» было проведено 1 ноября 1952 г. на атолле Эниветок. Устройство представляло собой первичный заряд ТХ-5, ранее неоднократно испытанный, и термоядерный цилиндрический модуль «Sausage» с жидким дейтерием, находящиеся в корпусе, внутри которого осуществлялся перенос рентгеновского излучения от первичного заряда к термоядерному модулю /4/.

Стальной корпус устройства был облицован слоем свинца, к которому прикреплялся слой полиэтилена толщиной несколько сантиметров. Этот слой пластика создавал давление плазмы в течение имплозии.

«Sausage» состоял из тройного стального сосуда. Внутренний сосуд содержал жидкий дейтерий. Между его стенками и средним сосудом находился вакуум, препятствующий теплопередаче. Между средним и внешним сосудами также находился вакуум и защитный экран из меди, охлаждаемый жидким азотом.

Вдоль оси дюара, заполненного жидким дейтерием, размещался плутониевый стержень, который действовал в качестве инициатора для зажигания термоядерного горючего. Инициатор был бустированным ядерным устройством, так как внутри него имелась полость, содержавшая небольшое количество смеси дейтерия и трития (также жидкой).

Внешний корпус устройства был выполнен из стали и имел очень большую толщину (около 1 фута) для того, чтобы обеспечить максимальное удержание давления, создаваемого рентгеновским излучением. Его внутренний диаметр составлял при этом около 60 дюймов (~ 1,5 м). Очень широкий канал для передачи излучения вдоль термоядерного модуля обеспечивал минимизацию температурного градиента и делал менее вероятными непредвиденные потери. Значительный объем устройства был связан также с низкой плотностью жидкого дейтерия и необходимостью системы термического охлаждения.

Первичный источник ТХ-5 был опытным вариантом имплозивной системы, которую приняли на вооружение как заряд Мк-5. Заряд ТХ-5 использовал различные виды центральных частей, что позволяло обеспечивать различные уровни энерговыделения. Максимальное известное энерговыделение этого заряда составляло 47 кг и было реализовано в испытании «Easy» 20 апреля 1951 г. Меньшая масса этого заряда, по сравнению с другими, позволяла увеличить температуру, улучшить выход рентгеновского излучения из первичного источника и тем самым повысить эффективность процесса радиационной имплозии. Если в опыте «Mike» использовалась та же конфигурация ТХ-5, что и в опыте «Easy», то отношение энерговыделения термоядерного модуля к энерговыделению первичного источника в опыте «Mike» составило 200:1.

Для устройства «Mike» рассматривались три вида термоядерного горючего: жидкий дейтерий, дейтерид аммония (ND3) и дейтерид лития. Причины, по которым выбор был сделан в пользу жидкого дейтерия, определялись двумя факторами: большей простотой физики для анализа проблемы и интенсивным изучением в течение предыдущих десяти лет термоядерного топлива на основе чистого дейтерия. Желательность использования дейтерида Li-6 в качестве термоядерного горючего была известна, но к ноябрю 1952 г. отсутствовала возможность производства его достаточного количества.

Двухступенчатый заряд США, построенный по схеме Теллера—Улама /16/.

Энерговыделение за счет реакций деления составило в испытании «Mike» ~ 77%. Общее энерговыделение за счет термоядерных реакций составило в эксперименте 2,4 Мт, что соответствует полному выгоранию 41,6 кг дейтерия в случае определяющего вклада DD- и DT-peакций. Общее энерговыделение за счет реакции деления соответствует полному выгоранию 465 кг урана.

Первые масштабные расчетные вычисления для устройства «Mike» были начаты в LANL в марте 1952 г. на компьютере MANIAC. Исследования работы испытательного термоядерного устройства разбивались на последовательные стадии:

• взрыв первичного ядерного заряда;

• перенос рентгеновского излучения в устройстве;

• радиационная имплозия модуля с дейтериевым топливом и инициатором;

• термоядерное горение дейтериевого топлива;

• процесс деления природного урана в оболочке, окружающей термоядерное горючее.

В течение 6 месяцев основные усилия разработчиков были направлены на определение степени сжатия термоядерного узла. Расчеты показывали, что для получения необходимого уровня термоядерного горения требуется высокая степень сжатия. Вместе с тем, независимо от результатов испытаний, ожидалось, что будет получена важная информация о переносе рентгеновского излучения от первичного заряда к обжимаемому термоядерному модулю. Также должны были быть получены данные о характеристиках деления больших количеств U-238.

В это время рассматривались два различных подхода к отработке термоядерных зарядов. Простейший подход предполагал испытание системы в целом и получение результатов этого испытания. Второй подход предусматривал испытания отдельных подсистем, входящих в состав устройства. Первый подход, будучи более сложным и рискованным, приводил к непосредственному достижению цели, но не показывал достаточно ясно, почему устройство работает или отказывает. Испытания подсистем аргументировались тем, что, хотя это был более длительный подход, он являлся более информативным и соответствующим научной методологии. В опыте «Mike» был реализован первый подход.

 

3. О СОСТОЯНИИ РАБОТ ПО РДС-БТ К НАЧАЛУ 1951 г.

(из материалов НТС ПГУ, февраль 1951 г.)

«Проведенные в 1950 г. работы выявили значительно большую, чем предполагалось, сложность теоретического рассмотрения процесса в «трубе». Выявились новые физические факторы: передача части энергии реакции электронам в процессе замедления первичных продуктов реакции; большой пробег и заметная вероятность реакции дейтронов, получивших энергию при ударе 14-МэВ нейтрона; ведущая роль переноса энергии быстрыми частицами (14-МэВ нейтронами и протонами), что может привести к распространению реакции без образования ударной волны в дейтерии.

Расчеты возможности режима, которые Ландау закончит к 01.07.1951, будут носить приближенный характер; может оказаться, что результаты расчетов не дадут возможность сделать определенный вывод о возможности или невозможности сжигания чистого дейтерия.

Конструкторская проработка показала большие технические трудности, связанные с осуществлением реальной конструкции изделия (применение водородных температур, создание прочной конструкции с чрезвычайно тонкими стенками).

Возможность осуществления конструкции в значительной мере зависит от результатов расчетов, которые должны установить максимальную допустимую толщину стенки и другие физические требования к конструкции.

Теоретические расчеты основываются на экспериментальных данных, причем используются, в основном, данные, опубликованные в открытой иностранной печати. Для определения некоторых недостающих величин,

проверки и уточнения опубликованных данных необходимо проведение экспериментальных работ.

В соответствии с прилагаемой тематической программой необходимо исследовать, в частности, вторичные процессы (T+D, He3+D) в области больших энергий и пробеги образующихся при этих процессах быстрых протонов и нейтронов.

Для полного решения вопроса о создании РДС-6т требуется, наряду с установлением условий распространения реакции по дейтерию, найти способ инициирования реакции в дейтерии с помощью взрыва изделия с тяжелым веществом и промежуточного детонатора из смеси дейтерия с тритием.

При нерешенном вопросе о существовании режима, постановка исследований по инициированию, так же, как и конструкторская работа по «трубе», связана с определенным техническим риском вследствие того, что определенный отрицательный ответ по режиму обесценит проделанную работу. Совет считает целесообразным пойти на такой технический риск, так как при благоприятном решении вопроса о режиме заблаговременное исследование инициирования сократит сроки создания РДС-6т. При неопределенном результате теоретических расчетов по режиму и необходимости экспериментального решения вопроса также понадобится разработка инициирования. Расчеты инициирования должны дать ориентировочную оценку потребного количества тяжелого горючего и трития.

Имея ввиду принципиальную возможность, при благоприятном результате, использования в РДС-6т природного изотопа дейтерия, значительно усилить работу по созданию РДС-6т.

В связи с большим значением проблемы применения дейтерия Совет считает необходимым усилить работу по созданию РДС-6т и для этого предлагает следующее <…>:»

Из решения НТС ПГУ по научно-техническим вопросам разработки РДС-6т:

«1. Одобрить план теоретических работ КБ-11 по «трубе».

2. Одобрить тематический перечень работ по ядерным измерениям, необходимым для РДС-6т.

Предложить КБ-11 (ответственный — Ю.Б.Харитон, при участии Ландау, Мещерякова и Зельдовича) уточнить очередность, сроки и необходимую точность измерений по отдельным работам и представить к 31.03.1951 план ядерных работ по проблеме РДС-6т.

5. Считать необходимым создать вторую группу физиков-теоретиков, поручив ей разработку теории РДС-6т параллельно группе Ландау. Во главе группы считать необходимым поставить Фока и Колмогорова, в качестве эксперта-консультанта привлечь Амбарцумяна.

6. Созвать в конце февраля заседание Совета с докладом Ландау с привлечением Блохинцева, Боголюбова, Владимирского, Померанчука, Христиановича. Предложить Ландау представить доклад в письменном виде к 15.02.1951».

 

4. ИЗ ПРОГРАММЫ ЯДЕРНО-ФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ ДЛЯ СОЗДАНИЯ ПЕРВЫХ ТЕРМОЯДЕРНЫХ ЗАРЯДОВ

Ниже приведены направления ряда ядерно-физических исследований, связанных с разработкой РДС-6т.

1. Определение эффективных сечений реакции D2+D2 в интервале энергий от 30 кэВ до 1 МэВ.

Исполнители: ГТЛАН СССР — Мещеряков М. г., Давиденко В. А., Кучер А. М.

2. Определение эффективных сечений реакций He3+D2 и H3+D2 в интервале энергий от 30 кэВ до 1,6 МэВ.

Исполнители: УФТИ — Вальтер А. К., Ключарев П.А., Гуменюк.

3. Измерение эффективных сечений реакций Н3+Н3 и Не3+Н3 в интервале энергий от 30 кэВ до 1,6 МэВ.

Исполнители: УФТИ — Вальтер А. К., Ключарев П. А.

4. Определение эффективных сечений реакций D2+D2 и He3+D2 в интервале энергий от 1 МэВ до 3 МэВ.

Исполнители: Институт физических проблем АН СССР — Александров А.П. и Гохберг Б. М.

5. Изучение диффузии нейтронов с энергией 2,5 и 14 МэВ в жидком дейтерии.

Исполнители: Институт физических проблем АН СССР — Александров А.П. и Гохберг Б. М.

6. Измерение эффективных сечений реакции D2+D2 и углового распределения продуктов этой реакции в интервале энергий 1-10 МэВ.

Исполнители: Ленинградский физико-технический институт АН СССР — Комар А.П. и Алхазов Д. Г.

7. Исследование рассеяния дейтронов в дейтерии в интервале энергий от 1 до 10 МэВ.

Исполнители: Ленинградский физико-технический институт АН СССР — Комар А.П. и Алхазов Д. Г.

8. Определение эффективных сечений реакции He3+D2 и измерение углового распределения продуктов этой реакции в интервале энергий от 1 до 5 МэВ.

Исполнители: Институт химической физики — Семенов Н. Н., Кондратьев В.Н. и Ковальский А. А., Лаборатория измерительных приборов — Неменов Л.М. и Чубаков А. А.

9. Определение эффективных сечений реакции He3+D2 и измерение углового распределения продуктов этой реакции в интервале энергий от 0,8 до 5 МэВ.

Исполнители: Институт химической физики — Семенов Н. Н., Кондратьев В.Н. и Ковальский А. А., Лаборатория измерительных приборов — Неменов Л.М. и Чубаков А. А.

10. Исследование рассеяния протонов с энергией от 1 до 8 МэВ в дейтерии.

Исполнители: Институт химической физики — Семенов Н. Н., Кондратьев В.Н. и Ковальский А. А., Лаборатория измерительных приборов — Неменов Л.М. и Чубаков А. А.

11. Исследование рассеяния дейтронов в Н3 и Не3 в энергетическом интервале 1-5 МэВ.

Исполнители: Институт химической физики — Семенов Н. Н., Кондратьев В.Н. и Ковальский А. А., Лаборатория измерительных приборов — Неменов Л.М. и Чубаков А. А.

* * * 

Ниже приведены направления ряда ядерно-физических исследований, связанных с разработкой РДС-6с.

1. Уточнение сечения реакции D+T в области энергий от 30 до 200 кэВ. Необходимая точность измерений ± 10%. Работа должна проводиться в ФИАНе (И.М. Франк, Барит, Балабанов) и в УФТИ (Вальтер, Ключарев). Окончание работы — 31.12.1951.

2. Изучение распределения нейтронов, числа делений и числа захватов в системах из U238, Li7, Li6 и D. Работа должна проводиться в КБ-11 (Зысин), в ФИАНе (Франк, Барит, Грошев, Балабанов). Окончание работы-31.12.1951.

3. Измерение сечения захвата нейтронов Li6 и Li7 в интервале энергий от 50 до 200 кэВ. Необходимая точность измерения — 30%. Работа должна проводиться в УФТИ (Вальтер, Таранов). Окончание работы — 01.05.1951.

4. Измерение сечения захвата нейтронов U238 в интервале энергий от 50 до 200 кэВ. Необходимая точность измерения — 20%. Работа будет проводиться совместно УФТИ (Вальтер, Таранов) и КБ-11 (Флеров, Дмитриев, Замятнин). Окончание работы — 01.07.1951.

7. Изучение эффективности 14-МэВ нейтронов при прохождении их через слои Li7D и Li6D. Опыты с Li7D должны быть закончены к 01.03.1951.

Опыты с Li6D будут закончены через месяц после получения необходимых количеств материала. Работа будет проводиться в КБ-11 Флеровым и Зысиным.

8. Изучение изменения спектра 14-МэВ нейтронов при прохождении их через слои различной толщины из Li7D, Li6D и U238. Работа будет проводиться в КБ-11 (Замятнин, Израилев, Сафина) и в ЛИПАНе (Лазуков, Березин). Окончание работы — 01.08.1951.

9. Определение сечения деления U238 в области энергий от 1 до 14 МэВ с точностью 20%. Работа будет проводиться при помощи циклотрона ЛИПАНа. Исполнители — Неменов, Калинин, Флеров, Кутиков, Березин.

Работа будет закончена через два месяца после вывода пучка дейтронов из циклотрона на расстояние 8 м.

10. Изучение расщепления Li7 и Li6 под действием 14-МэВ нейтронов. Работа будет проводиться в ЛИПАНе Соколовым Ю.Л. и Флеровым. Срок окончания работы-01.07.1951.

11. Определение сечения расщепления Li6 нейтронами с энергией от 1 до 14 МэВ с точностью ± 20. Работа будет проводиться в ЛИПАНе Неменовым, Калининым, Соколовым, Кутиковым, Березиным.

Работа будет закончена через 3 месяца после вывода пучка дейтронов из циклотрона на расстояние 8 метров.

12. Подбор радиоактивных индикаторов для 14-МэВ нейтронов. ИХФ и РИАН — Старик, Кондратьев, Нейман, Тальрозе. Окончание работы — 31.12.1951.

13. Измерение транспортного сечения 2-, 5- и 14-МэВ нейтронов в Li6 — Кондратьев, Бубен. Окончание работы-01.04.1951.

14. Изучение захвата нейтронов U238n Th232 в области энергий от 5 до 100 кэВ с точностью 30%. УФТИ — Вальтер, Таранов. Окончание работы — 01.07.1951.

15. Измерение сечения деления U233, U235, U239 нейтронами энергий от 5 до 100 кэВ с точностью 30%. УФТИ — Вальтер, Таранов; ТТЛ — Мещеряков, Сиксин. Окончание работы — 01.07.1951.

16. Изучение деления U239 и Th233 тепловыми нейтронами. Исполнители и срок окончания могут быть определены после проведения ряда обсуждений.

17. Подготовительные работы для изучения деления U239 быстрыми нейтронами в КБ-11 (Флеров, Дмитриев). Окончание работы — 31.12.1951.

 

5. СССР НАЧИНАЕТ КОНТРОЛИРОВАТЬ ЯДЕРНЫЕ ИСПЫТАНИЯ США

В письме Ю. Б.Харитона в адрес Л.П. Берия от 16 июня 1950 г., по-видимому, впервые ставится вопрос о разработке акустической аппаратуры для регистрации мощных взрывов, «которые будут где-либо производиться». Аппаратура была сконструирована в 1951 г. специалистами ИХФ /24/.

Первые исследования по проблеме контроля за ядерными взрывами в СССР начались в 1951 г. Взрыв «Mike» на атолле Эниветок был зарегистрирован сейсмическими станциями СССР.

На основании предложения 1952 г. А.Д.Сахарова и Д.А. Франк-Каменецкого в Лаборатории № 2 АН под руководством И.К. Кикоина были начаты работы по созданию методов регистрации радиоактивных продуктов взрыва.

Под руководством И.В.Курчатова в 1952-1954гг. разрабатывались радиохимические методы выделения радиоактивных продуктов взрыва из воздушных фильтров, планшетных проб и проб почвы; создавались высокочувствительные установки для измерения спектров излучений.

Так как США заранее объявили о проведении мощных взрывов на атоллах Эниветок и Бикини в Тихом океане, в СССР проводились широкомасштабные работы по их регистрации различными методами на территории СССР, КНР.

В район испытаний было командировано более 50 кораблей различного класса, которые расположились вне границ объявленной США запретной зоны.

Как показал Н.М. Эмануэль, эта работа оказалась чрезвычайно полезной для оценки количества делящегося материала в бомбе американского взрыва 1 марта 1954 г. на Бикини (опыт «Bravo») /1, с. 386/ (из открытой печати было уже известно, что мощность «Bravo» — 14 Мт, а мощность взрыва «Mike» — 5 Мт/1, с. 387/).

Основной вывод: «В водородной бомбе, взорванной 1 марта 1954 года на Бикини, содержалось большое количество делящегося материала, превышающее величину атомного заряда, необходимую для инициирования термоядерной реакции» /1, с. 391/.

Руководством Министерства обороны 4 марта 1954 г. принято решение о создании в ГРУ Генерального штаба Службы специального контроля за испытаниями ядерного оружия за рубежом.

В итоге серия ядерных взрывов США в Тихом океане с 18 февраля по 13 марта 1954 г. зарегистрирована акустическими, аэрозольными и сейсмическими средствами.

Письмо Ю.Б. Харитона и Я.Б. Зельдовича В.А. Малышеву с предложениями о проведении физических измерений при предстоящих испытаниях американской водородной бомбы на Бикини

12 января 1954 г.

«В связи с предстоящим весной подрывом водородной бомбы на Бикини представляется весьма важным, наряду с радиохимическими измерениями, попытаться получить данные о моменте взрыва, его мощности посредством акустических измерений.

Желательно, чтобы соответствующая работа была включена в план ЛИП АН (т. Кикоин И. К.). При этом, в связи со сложностью вопросов распространения звука в атмосфере на большие расстояния, желательно привлечь лучших советских акустиков: тт. Андреева Н.Н., Бреховских, Константинова Б.П. и Седова Л.И.

Следовало бы рассмотреть возможность использования для наблюдений, наряду с ближайшими базами на земле, также и судов китобойной флотилии или других судов».

Документы по аэрозольному методу