Решающий шаг к миру. Водородная бомба с атомным обжатием РДС-37

Андрюшин Игорь Алексеевич

Илькаев Радий Иванович

Чернышев Александр Константинович

3. ПЕРВЫЕ ЭТАПЫ ТЕРМОЯДЕРНОЙ ПРОГРАММЫ США

 

 

ДЕЙТЕРИЕВАЯ СВЕРХБОМБА «SUPER»

Начало термоядерных исследований в США относят к лету 1942 г., когда в Беркли при обсуждении планов Лос-Аламосской лаборатории Э. Теллер представил первые сообщения, ставшие основой проекта дейтериевой сверхбомбы «Классический супер» /1/.

Идеи создания этой водородной бомбы основывались на предположениях:

в цилиндре с жидким дейтерием возможен режим устойчивой термоядерной детонации в отсутствии термодинамического равновесия излучения с веществом;

инициирование термоядерной детонации может быть осуществлено нейтронами, производимыми ядерным взрывом первичного атомного заряда (с использованием в цилиндре промежуточного отсека с жидкой смесью дейтерия и трития).

Материалы анализа разведданных о принципе радиационной имплозии (40%-ная чистота — вероятно, это опечатка) и схематический чертеж двухступенчатой водородной бомбы Фукса— фон Неймана (рассекречены СВР в 1992 г, и опубликованы в ВИЕТ).  

Работы по этому проекту продолжались по существу до 1950 г., когда в США стала очевидной невозможность реализации этой схемы водородной бомбы.

В процессе работ по «классическому суперу» было сделано новое изобретение, оказавшееся изобретением исключительного значения. Клаус Фукс при участии Джона фон Неймана предложил использовать в «классическом супере» новую систему инициирования. Эта система включала в себя дополнительный вторичный узел из жидкой DT-смеси, которая нагревалась, сжималась и, в результате, зажигалась энергией излучения первичной атомной бомбы /1, 2/.

Для этой цели рассматривалось применение первичной атомной бомбы пушечного типа, усиленной по схеме Д. фон Неймана. Было предложено вынести DT-смесь из урана-235 в прогреваемый излучением отражатель из окиси бериллия. Фукс рассчитывал, что в таких условиях DT-смесь будет подвергаться нагреву и ионизационной имплозии, так что будут обеспечены условия ее термоядерного зажигания. Для удержания излучения в объеме отражателя Фукс предложил окружить систему непрозрачным для излучения кожухом. Поскольку ионизационное сжатие DT-смеси в рассматриваемой системе должно происходить в результате переноса излучения из активной зоны атомного заряда в расположенную вне ее зону размещения термоядерного горючего и вызываться этим излучением, то оно является радиационной имплозией. Конфигурация Фукса—фон Неймана — первая физическая схема, использующая принцип радиационной имплозии, которая стала прообразом будущей конфигурации Теллера—Улама.

Документы по схеме Фукса—фон Неймана были переданы К. Фуксом в СССР в 1948 г. Материалы содержали общие конструктивные данные, схематический чертеж, данные о мощности, расчеты физических процессов с таблицами и графиками (всего 17 листов).

 

«СЛОЙКА» ЭДВАРДА ТЕЛЛЕРА «ALARM CLOCK»

В связи с трудностями в обосновании проекта «Super» в сентябре 1946 г. Э. Теллер предложил альтернативу, которую он назвал «Alarm Clock», — слоеную термоядерную бомбу, обжимаемую взрывчаткой. Хотя «Alarm Clock» был термоядерным устройством, в нем только небольшая часть энерговыделения получалась в термоядерных реакциях. Подобно проекту «Booster», термоядерные реакции в «Alarm Clock», в основном, усиливали процесс деления /1/.

Джон фон Нейман

(1903-1957),

выдающийся ученый XX столетия, американский математик венгерского происхождения, один из создателей архитектуры ЭВМ и теории игр, соавтор метода Монте-Карло, участник разработки первых ядерных и термоядерных зарядов США

Станислав (Стен) Улам

(1909-1984),

американский математик польского происхождения, соавтор метода Монте-Карло, участник разработки первых термоядерных зарядов США  

В устройстве «Alarm Clock» использовали ядро, состоящее из последовательных слоев делящихся материалов и термоядерного топлива. «Alarm Clock» pacсматривалось как система, которая может дать большое энерговыделение при использовании относительно дешевых материалов. Это был новый подход, который предполагал, что термоядерная бомба может быть создана в пределах существовавших возможностей лаборатории в Лос-Аламосе, хотя путь практической реализации этой идеи не был вполне ясен.

Этому устройству мог потребоваться в 2-3 раза более мощный инициирующий взрыв, чем давало устройство «Fat Man», то есть 40-60 кт. Теоретические работы по «Alarm Clock» продолжались от момента появления идеи в 1946 г. до конца 1947 г.; в течение этого времени его схема неоднократно изменялась.

Первый полный отчет по «Alarm Clock» был выпущен в ноябре 1946 г. Эдвардом Теллером и Робертом Рихтмайером. Он содержал обоснование возможности принципа «Alarm Clock», а также оценки эффективности и особенностей работы. Специальное исследование рассматривало процессы, которые происходят при детонации ядерного устройства. Перед тем, как могла быть создана термоядерная бомба, необходимо было продвинуться в развитии ядерных «триггеров» и лучше понять процесс ядерного взрыва.

В декабре 1946 г. был предложен эксперимент для проверки особенностей процесса термоядерного горения в условиях «Alarm Clock» в сочетании с ядерным взрывом умеренной мощности.

Клаус Фукс

(1911-1988),

английский и немецкий физик, ведущий специалист атомного и термоядерного проектов Великобритании и США, крупный специалист в области ядерных реакторов

В апреле 1947 г. лаборатория в Лос-Аламосе предложила целую серию экспериментов для исследования термоядерных процессов. При этом отмечалось, что необходимо привлечь внимание к возможности проверки некоторых принципов, так как они могут быть важными для термоядерных систем, таких, как «Alarm Clock». Отмечалось, что возможности чисто теоретического исследования этих принципов недостаточны и дают неопределенную картину из-за большой сложности явлений, поэтому реальная проверка принципов в условиях, соответствующих взрыву бомбы, в высшей степени желательна. При испытании высокая температура, создаваемая ядерным взрывом, вызывает термоядерные реакции. В такой системе энергия, производимая термоядерными реакциями, может быть невелика, но 14-МэВ-ные нейтроны, производимые в DT-реакции, легко детектировать, и наработка трития в устройстве может быть определена, если в системе первоначально использовался только дейтерий.

Успех такого эксперимента зависел прежде всего от достижения в дейтерии высоких температур, в контексте чего важное значение имеет перенос излучения. Рассматривалась серия из трех экспериментов: «А», «В» и «С». В испытании «В» в термоядерном топливе использовался только дейтерий; в испытании «С» использовался как дейтерий, так и тритий. В обоих испытаниях термоядерное топливо должно было хорошо обжиматься. Испытание «С» планировалось существенно менее чувствительным, чем испытание «В», и сравнение выходов 14-МэВ-ных нейтронов в них дало бы информацию о достигнутых температурах. Испытание «А» (без термоядерных процессов) было необходимо для контроля. Расчеты проводились для ядра из 8-фазы плутония, что позволило увеличить временную постоянную а (скорость размножения нейтронов).

Отметим следующее, так как «Alarm Clock» рассматривалась в качестве термоядерного оружия, то в ней требовалось получение большого энерговыделения — мегатонного класса, что создавало значительные трудности с обеспечением необходимой имплозии и уровнем энерговыделения инициирующего ядерного заряда.

В сентябре 1947 г. Теллер предложил использовать в качестве термоядерного горючего «Alarm Clock» дейтерид лития-6, что должно было повысить эффективность термоядерного горения. Использование дейтерида лития сильно упрощало проблему, связанную с производством трития, которое ограничивало в то время возможности развития термоядерного оружия. Однако оно требовало использования обогащенного по изотопу Li-6 материала и не решало проблем зажигания. Теллер отмечал существенную зависимость будущих успехов в создании термоядерного оружия от развития компьютеров и достижения лучшего понимания распространения ударных волн в массе термоядерного горючего.

С сентября 1947 г. работы по «Alarm Clock» стали существенно сокращаться, хотя проводились и в дальнейшем. Компьютерные расчеты первоначальной конфигурации «Alarm Clock» были завершены в 1953-1954 гг. и показали, что устройство с энерговыделением в этом виде было бы неработоспособно. Наиболее успешные расчеты того времени указывали на то, что для получения энерговыделения в 10 Мт количество ВВ в устройстве должно было составлять от 40 т до 100 т.

Следует отметить, что в США многие ученые выступали против разработки термоядерного оружия, то есть против работ по проблеме «Супер».

Энрико Ферми (1901-1954),

выдающийся ученый XX столетия, американский физик итальянского происхождения, участник разработки первых ядерных и термоядерных зарядов США, разработчик первого ядерного реактора в мире (1942), лауреат Нобелевской премии (1938)

Эдвард Теллер (1908-2003),

американский физик венгерского происхождения, участник разработки ядерных и термоядерных зарядов США  

30 октября 1949 г. под председательством Р. Оппенгеймера собралась Комиссия по атомной энергии, которая в своем заключительном отчете высказалась против разработки «Супер» /3/. Документ подписали известные ученые и политики: Оппенгеймер, Ферми, Раби, Конант.

«Мы считаем, что супербомбу делать нельзя ни в коем случае. Человечеству, пока не изменится нынешняя ситуация в мире, жить будет гораздо лучше без демонстрации осуществимости такого рода оружия…

В решении не продолжать разработку супербомбы мы видим уникальную возможность, позволяющую ввести ряд ограничений на тотальность войны и тем самым уменьшить опасения и увеличить надежды человечества» /3/.

 

КОНФИГУРАЦИЯ ТЕЛЛЕРА-УЛАМА

Следующий принципиальный этап в термоядерной программе США относится к марту 1951 г. 9 марта С. Улам и Э. Теллер выпустили совместный отчет «О гетерокаталитической детонации 1: гидродинамические линзы и радиационные зеркала», LAMS-1225, в котором они изложили новую концепцию конструирования термоядерного оружия. Рожденная единением идей С. Улама и Э. Теллера (явившихся развитием их же собственных ранних идей и идей Э. Ферми, Э. Конопинского, Д. фон Неймана и К. Фукса) новая схема сверхбомбы получила название «конфигурация Теллера—Улама».

Спустя несколько недель, Теллер предложил еще одно усовершенствование водородной бомбы — «использовать в термоядерном топливе в качестве инициатора атомную бомбу» /3/.

Как отмечал в своих мемуарах Эдвард Теллер, обоснование и выбор конкретной конструкции «Mike» были сделаны, в основном, в течение нескольких месяцев летом и осенью 1951 г. молодым специалистом из Лос-Аламоса Диком Гарвином (Dick Garwin) на основе анализа численных расчетов, выполненных на ЭВМ группой математиков из Лос-Аламоса.

Одновременно с этим велась подготовка к испытанию, в котором по существу проверялась конфигурация Фукса—фон Неймана. 9 мая 1951 г. было успешно проведено испытание «George» /4/. Мощность взрыва составила 225 кг Т.Э. «Самый большой из проведенных к этому времени делительных взрывов обеспечил зажигание маленького термоядерного пламени — первого из когда-либо вспыхнувших на Земле». Испытание подтвердило теоретические представления о возможности горения DT-смеси, часть которой находилась вне делящегося материала первичной атомной бомбы. Явившись одним из основных истоков открытия конфигурации Теллера—Улама, опыт «George» свою главную роль сыграл еще до осуществления (в Приложении 1 настоящей книги приведена более подробная информация об этом уникальном эксперименте).

О росте внимания к созданию термоядерных зарядов говорит то, что в июне 1951 г. в Принстоне состоялась конференция по проблемам сверхбомбы, которая признала необходимость производства дейтерида лития-6.

В сентябре 1951 г. в Лос-Аламосе было принято решение о разработке термоядерного устройства на новом принципе (радиационная имплозия, конфигурация Теллера—Улама) для полномасштабного испытания «Mike», намеченного на 1 ноября 1952 г. В качестве термоядерного горючего был выбран жидкий дейтерий. Устройство «Mike» состояло из массивного стального цилиндра, в котором находился первичный заряд на принципе имплозии и огромный стальной «термос», содержащий несколько сотен литров жидкого дейтерия внутри массивной оболочки из природного урана, который представлял собой термоядерный модуль/4/.

Перед испытанием энерговыделение «Mike» оценивалось на уровне 1-10 Мт с вероятным значением в 5 Мт, но не исключалась возможность энерговыделения в 50-90 Мт. Основная неопределенность в прогнозе энерговыделения была связана с неясностью в эффективности термоядерного горения и в эффективности деления урановой оболочки (уран-238) термоядерными нейтронами. Эффективность термоядерного горения была связана с новой и сложной физикой, которая в то время не могла быть точно рассчитана. Эффективность деления урановой оболочки в большой степени зависела от сжатия термоядерного модуля, которое определялось со значительной погрешностью. Некоторые особенности устройства «Mike» приведены в Приложении 2.

Успешное испытание «Mike» привело к следующему решающему шагу — отработке в 1954 г. мощных термоядерных зарядов в серии «Castle», о которых говорилось выше. Следует отметить, что несмотря на гигантские ресурсы энергии, по сравнению с химическими ВВ, сам по себе принцип радиационной имплозии (конфигурация Теллера—Улама) не гарантировал успеха.

Значения прогнозов энерговыделения мощных термоядерных зарядов в серии «Castle», сделанных специалистами США до проведения натурных экспериментов, приведены в таблице на с. 30. Подчеркнем, что вычислительные возможности, которыми обладали ядерные лаборатории США, существенно превосходили вычислительные возможности нашей страны в период разработки РДС-37.

* Все испытания были проведены Лос-Аламосской лабораторией, кроме «Кооп», первого неудачного испытания Ливерморской лаборатории.

Двухступенчатый заряд США мощностью 10,4 Мт, испытанный 1 ноября 1952 г. /5/