НЕОБХОДИМА ОСТОРОЖНОСТЬ
История обуздания реакций синтеза совсем не похожа на путь освоения процессов деления атомных ядер. Расщепление ядер урана сначала было осуществлено в простейшем реакторе, и лишь потом появилась атомная бомба. Синтез гелия, наоборот, начался на Земле чудовищным водородным взрывом. И только после этого усилия исследователей сосредоточились на поисках реактора для управляемого процесса ядерного синтеза.
Сначала в термоядерной бомбе на плазму научились обрушивать гигантский удар атомного взрыва. И она отвечала катастрофой водородного взрыва. Потом в лабораторных условиях в прямых разрядных трубках испробовали молниеносный электрический удар по плазме, влекущий за собой такое же быстрое ее магнитное сжатие и разогрев. Итоги этих опытов, как мы видели, тоже не слишком обнадежили разведчиков мирного термоядерного синтеза. И здесь плазма оказалась взрывоопасна.
Иное дело, если бы удалось «вежливо» разогреть ее. Тогда она столь же спокойно выделила бы энергию синтеза своих атомных ядер. Не мгновенный удар, а сравнительно медленный напор — вот к чему надо стремиться. Конечно, скорость подъема температуры должна все же быть достаточно большой, чтобы выполнялось знакомое нам уже условие обгона нагревом нарастающего излучения энергии раскаленной плазмой. Но в сильно разреженном виде плазма почти прозрачна и излучает сравнительно мало энергии. Такую плазму можно сжать и довести до гигантских температур сравнительно медленно, не нарушая равновесия между ее газовым давлением и внешним сжатием.
Осторожный, «вежливый» не приводящий ни к каким взрывам режим разогрева плазмы, как показали теоретические изыскания, возможен. Но прямые разрядные трубки для этого не годятся. Вся беда — в электродах, подводящих ток. В прямой трубке заряженные частицы, едва возникнув, мчатся к электродам и выбывают из игры. Потому-то там и коротка жизнь плазмы.
Есть еще одна помеха развитию высокой температуры при разряде в прямых трубках. Мы помним, что тепловую энергию там помогает сберечь «шуба» собственного магнитного поля. Однако эта шуба оставляет в ручье плазмы уязвимые места: ведь шнур огражден от холода лишь с боков. Хоть стенок трубки он не касается, но до электродов дотрагивается. И при медленных, «вежливых» разрядах контакт с холодными электродами грозит отсосать из плазмы значительную долю ее столь трудно добытого звездного жара. «Жаропонижающим» служат тяжелые атомы материала электродов.
Во время разряда они врываются в плазму из электродов, будто струя пены из огнетушителя в пылающий костер. Словом, электроды весьма нежелательны. Они гасят жар плазмы, неминуемо остужают ее.
Где же выход?
ВИТОК ИЗ ПЛАЗМЫ
А что, если попытаться осуществить плазменный разряд, не прибегая к услугам электродов? Пусть, например, плазма вихрем несется по кольцу и не натыкается ни на какие электроды! Ведь это сразу увеличило бы ее жизнь. Разряд получился бы куда долговечнее, нарастание тока можно было бы сделать гораздо плавнее, удар по плазме смягчился бы. Вместе с тем кольцевой безэлектродный разряд укутал бы плазму в магнитное одеяло «с головой и ногами», избавил ее от вредного леденящего балласта тяжелых ядер, вылетающих из электродов.
Как видите, кольцевой разряд — дело заманчивое.
Но как его осуществить?
Непосвященному кажется, что проводники, подводящие к плазме ток, совершенно необходимы. Но физики и здесь нашли остроумный выход.
Кому не известно простейшее электротехническое устройство — трансформатор. Его можно увидеть в любом радиоприемнике. Назначение трансформатора—преобразовывать переменный ток: из тока высокого напряжения получать ток низкого напряжения и наоборот. Достигается это просто. На железный сердечник помещены две изолированные друг от друга обмотки: первичная, на которую подается преобразуемый ток, и вторичная, откуда снимается ток преобразованный. Переменный ток первичной обмотки создает переменное магнитное поле и железном сердечнике. А оно, в свою очередь, наводит переменный ток во вторичную обмотку, намотанную на тот же сердечник. Вот и все. Причем обратите внимание: вторичная обмотка не имеет никакого контакта с первичной. А для возбуждения кольцевого плазменного разряда как раз и требуется освободиться от контактов.
Словом, у физиков возникла идея: устроить «звездную спичку» в виде трансформатора. На железный сердечник решили намотать обычную проволочную первичную обмотку, с тем чтобы роль вторичной обмотки передать... плазме.
Час от часу не легче!
Попробуй-ка намотай на что-нибудь разреженный газ, да еще раскаленный до звездных температур! Но суть дела не так уж сложна.
Вторичная обмотка должна состоять из одного-единственного «газового витка».
Представьте себе замкнутую круглую трубу в форме баранки. На языке геометрии подобное тело именуется тором. Баранка эта окружает железный сердечник с первичной обмоткой. Можно обойтись и без сердечника— лишь бы тор охватывался первичной обмоткой. А внутри камеры находится сильно разреженный газ — тот самый, в котором должен происходить кольцевой плазменный разряд.
На этом принципе действуют так называемые тороидальные камеры — разрядные устройства, на которые сейчас возлагают большие надежды ученые, штурмующие проблему управляемого термоядерного синтеза.
„ РЕЗИНКИ“
Мы рассказали лишь о принципе устройства тороидальных разрядных камер. На самом деле они много-сложнее. Особых приспособлений требует, например, борьба за устойчивость плазменного потока, забота о том, чтобы частицы плазмы, двигаясь, поменьше виляли в стороны, придерживались предписанного им кольцевого пути и не «дрейфовали» к стенкам этой камеры-баранки.
Ведь и в прямой разрядной трубке плазменный ручей оказался, как вы помните, весьма нестойким. Он слишком быстро разрушался. Его губили молниеносно раздувающиеся пузырьки, ничтожные уменьшения его толщины, коленца и т. д. В тороидальных же камерах, где разряд обязан существовать гораздо дольше, чем в прямых трубках, все эти дефекты шнура плазмы должны быть особенно опасны.
Как избавиться от них?
На этот раз физики уподобились... портным.
Они решили «прошить» шнур плазмы укрепляющими нитями, или, лучше сказать, «резинками».
Это звучит не слишком правдоподобно. Что за нити? Какие резинки? Ведь плазма раскалена до колоссальной температуры! Однако «прошить» ее все же удается. Роль «резинок» можно поручить дополнительному внешнему магнитному полю, направленному вдоль плазменного тока. Создать такое поле нетрудно. Достаточно намотать на разрядную трубку проволочную катушку и пропустить через нее постоянный ток. Вы помните, что еще в первых экспериментах с прямыми трубками продольное поле увеличивало жизнь плазменного ручья. Почему же?
Магнитное поле, «продернутое» вдоль шнура плазмы, как бы натягивает его, придает ему упругость и эластичность. Теперь мелкие неоднородности шнур будет выправлять сам. Нечто похожее происходит с мягкой текстильной тесьмой, если продернуть через нее настоящие резинки.
Вот в какой-то мере мы застраховались от губительного действия мелких неоднородностей ручейка плазмы.
Иной режим получается при очень сильном внешнем продольном поле. Тогда плазма не стягивается в шнур при разряде, а равномерно заполняет камеру. Разогреваться плазма будет не под действием пинч-эффекта, а просто из-за своего сопротивления току — подобно спирали в электрической плитке. Однако такой разряд может быть достаточно устойчивым и горячим лишь, если поток плазмы надежно отодвинут от стенок камеры. Возможно ли это?
“РЕССОРЫ"
Изоляция от стенок разрядной камеры требует особых забот как при сильном, так и при слабом дополнительном укрепляющем поле. И тонкий плазменный шнур может, оставаясь однородным по толщине, вдруг равномерно расшириться или изогнуться змейкой и дотронуться своим нежным раскаленным тельцем до ледяной стенки. Тогда он мгновенно остынет, и разряд прекратится.
Любопытно, что стенка при этом почти не пострадает. Несмотря на миллионоградусный жар плазменного ручейка, тепловой энергии в нем сосредоточено мало. Поэтому получается, что не столько стенка разогревается от шнура, сколько, наоборот, шнур остывает от стенки.
Но и от таких аварий нашлось средство.
Поиски привели к неожиданному и удивительно простому предложению. Оказалось, что можно заставить саму стенку отталкивать приблизившийся шнур плазменного разряда, сжимать его. И требуется для этого лишь одно: переменить материал трубки. Делать ее следует не из стекла или фарфора, а из толстого слоя металла. Почему?
Металл — это своего рода тормоз для магнитного поля.
Проникая в металл, магнитные силы возбуждают в нем вихревые движения электронов. Это ведет к рождению в металле собственных магнитных полей. Но «ответное» магнитное поле металла направлено всегда против поля-«пришельца», которое благодаря этому проходит через металл с трудом, преодолевая сопротивление, задерживаясь. К примеру, через десять сантиметров меди магнитное поле проходит за целую секунду.
Явление это известно давно и широко используется в электротехнике. На нем основан, в частности, бытовой электросчетчик. Там задержанный магнитный поток заставляет двигаться металлический диск. И это же явление может спасти шнур плазмы от прикосновений к металлической стенке разрядной трубки. Ведь плазменный ручеек окружен магнитным полем. Приближаясь к металлу, оно как бы вязнет, задерживается. Торможение поля влечет за собой торможение шнура. Словом, магнитное поле здесь действует как рессора, которая мешает шнуру удариться о металлическую стенку трубки и сдавливает, укрепляет поток плазмы.
КОЛЬЦЕВОЙ РАЗРЯД
Вот нам и стали понятны основные черты тороидальных разрядных установок.
Камера-баранка, размещенная каким-либо способом внутри первичной обмотки, которую можно соединить с батареей конденсаторов, накапливающих электрический заряд для импульса, должна быть освобождена от воздуха, а затем наполнена сильно разреженным термоядерным горючим.
Снаружи тор обвивают дополнительной обмоткой. Пропуская по ней постоянный ток, удается создать магнитное поле, предназначенное для выправления мелких неоднородностей и искривлений в шнуре плазмы. Известно нам и средство, оберегающее плазменный ручеек от губительных прикосновений к стенкам: тор надо выполнить из металла (часто его делают из металлических колец с неметаллическими промежутками, чтобы вся баранка в целом была электрическим изолятором и чтобы без помех пропускать извне внутрь трубы магнитное поле).
Все готово к эксперименту.
На первичную обмотку от батареи конденсаторов подается электрический импульс очень высокого напряжения. Как и в любом трансформаторе, этот импульс наводит сильный ток во вторичной обмотке — в «витке» газа, заключенного в тор.
Конечно, наведенный ток с большой охотой побежал бы по металлической проволоке. Но выбора у него нет. Волей-неволей приходится пробивать себе путь в газе.
В первое мгновение это нелегко. Газ — хороший изолятор. Поэтому перед разрядом его полезно сделать хоть немного электропроводным. Для этого газ в торе каким-либо способом ионизируют — предварительно отрывают от небольшой части его атомов электроны. Из нейтральных атомы тогда делаются электрически заряженными. Это облегчает развитие в торе разряда.
Ток нарастает, ибо электрически заряженные частицы сразу же подхватываются наведенным полем. Ионизируется все большее количество атомов. Возникает плазма. А она проводит ток не только не хуже, но гораздо лучше, чем металл. Разряд в такой «стерильной», свободной от примесей плазме, ни на что не натыкающейся в стремительном вихре, да еще со всех сторон укутанной в магнитное поле, должен длиться значительно дольше, чем в прямых трубках, и, если верить предсказаниям теории, может сопровождаться весьма большим подъемом температуры.
КАМЕРЫ-БАРАНКИ
Опыты в тороидальных камерах советские физики ведут уже давно. Еще в 1953 году молодой теоретик В. Д. Шафранов разработал теорию устойчивости разрядов в подобных аппаратах. И они строились нашими исследователями в разных вариантах.
Примером разрядной камеры, устроенной в виде баранки, может служить крупная тороидальная установка Института атомной энергии — воздушный (без железного сердечника) трансформатор, первичная обмотка которого (20 витков толстой медной шины) навита прямо на камеру-баранку с внутренним диаметром трубы в полметра и средним диаметром тора метр с четвертью. Советские физики докладывали об этой установке на Второй женевской конференции осенью 1958 года. Более внушительные размеры имеет тороидальная установка «Зэта» в Харуэлле (Англия). Она была изготовлена под руководством знаменитого физика Джона Кокрофта и вступила в строй в 1957 году. Это — трансформатор с двумя железными сердечниками, которые охватывают тор на манер звеньев цепи. Первичная обмотка сделана на сердечниках. Наконец, еще большие размеры, чем «Ззта», имеет советская камера «Альфа», также с железными сердечниками. Диаметр ее трубы—1,5 метра, а средний радиус тора — 3 метра.
Жизнь плазмы в современных тороидальных камерах длится несколько тысячных долей секунды — вместо миллионных долей секунды, как в прямых трубках. Разряд получается в тысячи раз долговечнее! Это, бесспорно, немалый успех.
Однако программа, рисовавшаяся в умах теоретиков, опытами еще далеко не выполнена. Очень высоких температур в тороидальных установках возбудить пока не удалось. Мешает многое. Металлические стенки камер, дополнительное укрепляющее поле хоть и помогли разряду, но не дали возможности решить задачу до конца. Физики еще не научились запускать кольцевой вихрь плазмы вполне устойчиво.
Что ж, не мудрено. Плазма не велосипедное колесо.
Но если дальше вести такое сравнение (как это сделал в одном, из своих выступлений Л. А. Арцимович), то придется согласиться, что человек, впервые увидевший велосипед, едва ли признает его устойчивым экипажем. Поучившись же, любой из нас становится отличным велосипедистом. Видимо, и физики сумеют в конце концов создавать устойчивое движение плазменных «колес».
МЕДИЦИНА И АСТРОФИЗИКА
К больному приглашен врач. С чего он начинает? С того, что узнает симптомы болезни: осматривает человека, измеряет температуру, кровяное давление и т. д. Физики, желающие «вылечить» плазму, сделать разряды устойчивыми и долговечными, поступают примерно так же: определяют температуру плазмы, стараются отыскать «симптомы» ее «заболеваний».
Очень неприятно, когда врачу, чтобы поставить диагноз, приходится вторгаться внутрь организма больного, Гораздо проще все узнать по внешним признакам и со слов заболевшего. Физик, изучающий плазму, тоже не любит теперь бесцеремонно врезаться в ее нежное тело всякого рода зондами и датчиками. Куда удобнее и надежнее судить о состоянии плазмы по испускаемым ею излучениям.
Но таким способом давно пользуются астрофизики — исследователи Солнца, звезд, далеких галактик (вы ведь помните: именно солнечный луч выдал ученым бесчисленные секреты нашего светила).
Неудивительно, что в диагностике плазмы (отрасль физики, получившая свое имя от чисто медицинского и всем известного термина «диагноз») лучшими считаются астрофизические способы исследования. Изучая плазму, ученые подошли даже к созданию новой научной дисциплины, название которой звучит парадоксально: «экспериментальная астрофизика».
Да, раз уж речь идет об изготовлении искусственных небесных светил, то и изучать их приходится по-астрономически.
В наши дни диагностика плазмы и экспериментальная астрофизика делают еще только первые шаги. Уверенно устанавливать температуру плазмы, выявлять симптомы плазменных недугов, разыскивать их глубинные причины пока очень трудно. Это особенно отчетливо проявилось при экспериментах с тороидальными камерами.
Например, измерение температуры разряда было необычайно сложной задачей для экспериментаторов, работавших на «Зэте». Обычный спектральный метод, по которому физики узнали, как нагрета атмосфера Солнца, оказался негодным, ибо раскаленная дейтериевая плазма почти не светилась. Ведь свет испускают атомы, а в дейтериевой плазме они были вдребезги разбиты.
Решили пойти обходным путем.
В дейтерий добавляли малые примеси более тяжелых атомов (кислорода, азота). Они хоть и разбивались в разряде, но не полностью и поэтому оставались способными испускать свет. По тонким же особенностям спектров излучения таких наполовину разрушенных атомов можно пытаться судить о скоростях их движения. А отсюда уже следовали заключения о температуре плазмы.
Эту методику измерения температуры многие физики признали чересчур сложной, недостаточно разработанной и потому не слишком надеждой. Измеряться могла не только температура, но и просто скорость разогнанных, как в ускорителе, сгусточков плазмы. Недаром первоначальную, оценку температуры разряда в «Зэте» (5 миллионов градусов) впоследствии подвергли сомнению сами же английские ученые. В действительности там развивается не более миллиона градусов (а вернее всего, еще гораздо меньше).
С ошибкой в измерении температуры был связан и другой просчет английских экспериментаторов. Нейтроны, выделявшиеся при разрядах, они поначалу приписали термоядерным реакциям. Но потом новые опыты разубедили их в этом.
Вообще желание скорее приблизиться к манящим вершинам звездных температур подчас толкает физиков на поспешность в заключениях. Один из американских институтов заявил о достижении в простенькой настольной тороидальной камере температуры в 6 миллионов градусов. Мало кто верит этому. Однако стремление обогнать время не вызывает этих усмешек. Оно вносит теплоту, милый человеческий задор во всемирное соревнование искателей «звездной спички». Уж очень она нужна людям! Недаром наука так торопится.
ПИТАНИЕ ТРУБОК
Курс на рекорды звездного нагрева плазмы, взятый современной экспериментальной физикой, заставляет искать новые и новые пути совершенствования разрядных устройств.
Камеры становятся все крупнее, улучшается система откачки из них воздуха и очистка термоядерного горючего. Физики всеми силами стараются спасти плазму от тяжелых атомов, попадающих в нее из стенок камеры.
Одно из направлений — подъем мощности электрического импульса, вызывающего плазменный разряд. Немалый эффект сулит здесь, в частности, увеличение емкости конденсаторных батарей, накапливающих электричество для импульса. Благодаря появлению новых диэлектрических материалов — титанатов бария, открытых советским ученым Б. М. Вулом, — удается значительно уменьшить размеры конденсаторов, повышая одновременно их емкость.
Но не следует забывать, что конденсатор—лишь копилка энергии. Собранное электричество практически мгновенно «вытекает» из нее. На новую зарядку конденсаторной батареи уходит время. А пока конденсаторы заряжаются, разрядная установка бездействует.
Гораздо лучше питать разрядные камеры непосредственно от мощного источника электрического тока. И такая возможность существует.
В Австралийском национальном университете взамен конденсаторов разрядная установка оснащается большим униполярным генератором. Что это такое?
Всем известна обыкновенная динамо-машина, где электрический ток рождается в проволочной обмотке якоря, вращающегося между неподвижными полосами магнита. Так вырабатывают ток достаточно высокого напряжения, но не слишком большой силы, ибо сильные токи в тонкой проволоке обмотки протекать не могут. Укорачивая обмотку якоря динамо-машины и делая ее более толстой, вы добьетесь увеличения силы тока. А если вместо обмотки якоря применить просто сплошной металлический диск? Тогда и получится униполярный генератор. Соединив центр вращающегося диска с краем, мы снимем максимальный ток.
Униполярный генератор Австралийского университета выглядит весьма солидно. Четыре его диска, сделанные из малоуглеродистой стали, весят по 19 тонн каждый. Они вращаются между полосами громадного магнита со скоростью 900 оборотов в минуту. Ток достигает миллиона ампер. Никакими твердыми контактами — щетками — снять его с дисков невозможно. Для этого приходится применять струи расплавленного металла натрия или сплава натрия с калием. Конструкторы генератора полагают, что каждый мощный импульс будет длиться не менее полусекунды. Это в тысячи раз дольше, чем в тороидальных установках, и в миллионы раз дольше, чем в прямых разрядных трубках, питаемых от батарей конденсаторов.
Немало мер «оздоровления» и укрепления плазменных разрядов изучают сейчас физики. И они твердо надеются на успех. Речь идет о конкретных путях подъема температуры этим способом до 15, даже до 25 миллионов градусов. Многое, очень многое, правда, еще предстоит проверить на опыте.
Однако всегда ли необходимы сами разряды?