БЕЗ РАЗРЯДОВ

Дорога к искусственному солнцу отнюдь не прямая, отнюдь не гладкая. Это скорее лабиринт, где нелегко отыскать верное направление, где часто попадаются провалы и тупики. Неудивительно поэтому, что поход искателей «звездной спички» разворачивается широким фронтом. Опыты с электрическими разрядами в плазме, о которых вы читали до сих пор, занимают лишь отдельный участок этого фронта.

При электрических разрядах плазма с неудержимой стремительностью движется и разогревается «на ходу». Именно движение плазменного ручья порождает те магнитные объятия, которые сдерживают поток частиц и сжимают его, повышая температуру. В бешено мчащемся потоке плазмы частицы как бы держатся друг за друга, и он сам себя укутывает в «пеленки» магнитного поля. Однако пеленки эти получаются довольно-таки жиденькими. Правда, кроме собственных магнитных сил, в разрядных камерах на плазму действуют и дополнительные поля, наложенные извне, — все эти «резинки» и «рессоры», о которых вы читали выше. Но они не играют основной роли в удержании и нагреве плазмы, а служат, по выражению Л. А. Арцимовича, всего лишь «лекарством» для борьбы с неустойчивостями.

В 1953 году советский физик Г. И. Будкер (ныне член-корреспондент Академии наук СССР) задумал освободить рыхлую, развалившуюся плазму от необходимости одеваться «на бегу» в самодельные слабенькие магнитные «пеленки». Ученый предложил попробовать задержать электрически заряженные частицы плазмы, устроив для них прочную и теплую магнитную постель. После этого можно без излишней торопливости, спокойно и мягко каким-либо способом извне воздействовать на плазму, с тем чтобы вызвать уже совсем спокойное ее термоядерное «горение».

Отметим сперва, что физики хорошо научились заранее заготавливать плазму. Для этого служат всякого рода плазменные источники, где плазма образуется с помощью газовых разрядов или, скажем, взрывов тонких проволочек, а затем «выплевывается» более или менее плотными струями или сгустками.

Есть высокочастотные генераторы, которые выбрасывают в пустоту баранки плазмы, будто завзятый курильщик— колечки табачного дыма. Дымовое колечко тут же расплывается в воздухе. А плазменная баранка, двигаясь в магнитном поле, быстро стягивается в довольно плотный комок. Заряженные частицы в нем стремительно несутся к центру, навстречу друг другу. Энергия столкновений частиц получается примерно такой же, как при нагреве до 20 миллионов градусов. Правда, время существования этого подобия сверхвысокой температуры ничтожно мало.

Плазменные «заготовки» физики умеют также сильно ускорять, «подгоняя» их электромагнитным полем. Скорость комков плазмы может быть доведена до сотен километров в секунду. И если резко затормозить, «схватить» такой быстро летящий сгусток, то энергия его движения перейдет в тепло.

Как же поймать плазму?

Воду горного потока можно замедлить и накопить, если выкопать в каком-то месте русла котлован. Подобный метод годится и для ручья плазмы. Только «котлован» здесь придется построить из... магнитного поля.

В МАГНИТНОЙ ЛОВУШКЕ

Когда электрически заряженная частица влетает в магнитное поле, она начинает двигаться не прямо, а по дуге окружности. Такое поле не замедляет и не ускоряет частицу, а лишь искривляет ее путь. «Завернув» в магнитном поле, частица затем вылетает из него и преспокойно продолжает свой прямой путь. Выходит, магнитное поле не захватывает частицу, а лишь отталкивает ее в сторону.

Теперь вообразите, что после того как частица попала в магнитное поле, мы притормозим ее полет. Энергия движения частицы уменьшится. Поле станет круче заворачивать ее, заставляя описывать спиральную траекторию. Спиральным сделается путь частицы и в том случае, если после влета ее в магнитное поле мы усилим это поле. Наконец, тот же эффект получается, когда заряженные частицы, попавшие в магнитное поле, каким-либо способом разбиваются на осколки. Как более легкие, осколки будут двигаться с меньшей энергией и тоже начнут описывать спиральные траектории.

В однородном магнитном поле с прямыми силовыми линиями пойманные таким образом частицы задержатся ненадолго. Двигаясь по путям, похожим на винтовые линии, они не соберутся в сгусток и быстро выберутся наружу. Значит, для захвата плазмы прямое поле не подходит.

Как же поступить?

Надо искривить поле.

Представьте себе, что с помощью обмоток, по которым течет постоянный ток, мы возбудили цилиндрическое магнитное поле, резко усиленное на концах. Структура его силовых линий напоминает волокна луковицы.

Получилось то, что физики называют «магнитной ловушкой». Это и есть «котлован» для накопления плазмы. Области же усиленного поля принято именовать «пробками».

Вот в таком «сосуде» захваченную плазму ненадолго задержать и собрать в сгусток уже удастся. Плененные частицы станут плясать в ней, отражаясь от стенок и пробок. Из упорядоченного движение частиц сделается хаотическим. Температура сгустка поднимется. Правда, через пробки плазма все-таки будет «вытекать» наружу. Но тем не менее ее можно даже успеть дополнительно нагреть. Каким способом?

Если усилить поле ловушки и протолкнуть внутрь одну из пробок, то плазма сожмется и нагреется, будто воздух под поршнем велосипедного насоса. Можно и растрясти плазму высокочастотным электромагнитным полем. Это тоже разогреет ее.

„ О Г Р А “

О поимке и разогреве плазмы путем раздробления (диссоциации) ее частиц в магнитной ловушке стоит сказать немного подробнее. Для этого способа годятся ионы молекул водорода, каждый из которых представляет собой пару связанных атомов (лишенных электрона). Молекулярные ионы надо сначала сильно разогнать в специальном ускорителе, а затем впрыснуть в ловушку. Там они будут сталкиваться с частицами холодной плазмы, заранее созданной в ловушке, с нейтральными атомами, друг с другом. И, когда из-за столкновений молекулярные ионы развалятся на части, оказавшись в магнитном плену, когда энергичное движение ускоренного потока частиц преобразуется в их беспорядочную толчею, температура плазмы поднимется поистине сказочно высоко. Как показывают расчеты, таким способом плазму можно раскалить до сотен миллионов, даже до миллиарда градусов!

Справедливости ради заметим, что здесь миллиард градусов — не так уж много. Его еле хватит на возбуждение самоподдерживающегося ядерного синтеза в смеси тяжелого водорода со сверхтяжелым. Чистый тяжелый водород в ловушке и при такой температуре не «загорится». Оказывается, из-за ухода частиц через пробки температура поджога незатухающей термоядерной реакции в магнитной ловушке гораздо выше, чем в надежно запертой плазме. Значит, надо стремиться крепче «закупорить» ловушку, что и пытаются сделать физики. Упомянем и о другой особенности подобных устройств: чем крупнее ловушка, тем легче в ней разваливаются и захватываются в магнитный плен впрыснутые молекулярные ионы. Отсюда вывод: размеры ловушки должны быть возможно большими.

Самая крупная из магнитных ловушек Института атомной энергии Академии наук получила имя «Огра». Построена она под научным руководством лауреата Ленинской премии И. Н, Головина. Макет этого замечательного инженерного сооружения вызвал законное восхищение ученых, собравшихся в сентябре 1958 года в Женеве.

«Огра» — широкая стальная труба (внутренним диаметром 1,4 метра), вокруг которой устроены, обмотки магнитной ловушки.

Расстояние между пробками ловушки может быть доведено до 12 метров. Для впрыскивания в камеру ускоренных ионов молекул водорода устроен особый инжектор. Перед экспериментом в камере создается глубочайший вакуум—давление меньше миллиардной доли атмосферного. Для этого служит система специальных насосов. Об огромном «аппетите» установки говорит хотя бы то, что одна обмотка ее потребляет до четырех тысяч киловатт электроэнергии! Целая энергоподстанция обслуживает этот громадный физический прибор.

Сооружение «Огры», в котором участвовало содружество многих коллективов ученых и инженеров, завершено летом 1958 года. Сообщалось, что после наладки установка будет использована для широких экспериментов, направленных все к той же великой дели — к поискам методов возбуждения мирных термоядерных реакций.

Работа предстоит колоссальная. Еще до постройки «Огры» теоретики предсказали немало «подводных камней» на пути грядущих исследований. Но трудности не пугают физиков, твердо уверенных в конечной победе. Настало время, когда движение вперед в проблеме искусственного солнца возможно лишь с помощью мощнейших экспериментальных средств, на основе опытов фантастической сложности и точности.

Другой дороги нет.

«Не делая этого, — пишет И. В. Курчатов, — мы напоминали бы того софиста, который утверждал, что не войдет в воду, пока не научится плавать».

НА БЛИЖАЙШИХ ПОДСТУПАХ

Несмотря на немалые успехи в борьбе науки за искусственное солнце, физики еще предпочитают говорить, что исследования проблемы пока находятся в стадии разведки. Но если это и разведка, то, безусловно, очень глубокая. Искатели «звездной спички» уже близки к разгадке тайны устойчивости плазмы, к долгожданным вершинам сверхвысоких температур, которые без взрывов воспламенят термоядерный синтез в мирных реакторах электростанций, заводов, кораблей. Залогом грядущих успехов служит хотя бы то, что чем дальше продвигаются исследования, тем больше появляется новых идей, новых направлений экспериментальной работы.

Есть опасение, например, что в обычной магнитной ловушке плазма окажется не слишком устойчивой из-за выпуклостей на ее поверхности. Целые комки плазмы, отделяясь от выпуклостей, могут вываливаться наружу. Чтобы избежать таких неустойчивостей, можно надеяться уложить плазму как бы на магнитные «подушки»— удержать ее системой магнитных полей, которые всюду сделают поверхность плазменного скопления вогнутой.

Стремясь укрепить, утрамбовать и разогреть плазму, физики предложили и другое — строить камеры в форме полого кольца, свернутого на манер восьмерки. Плазма в них укрепляется как бы скрученным в жгут магнитным полем и под напором магнитного же «насоса» может быть сильно раскалена. Такая идея на Второй женевской конференции была обо-снована учеными США. Американский физик Л. Спитцер построил на ее основе экспериментальную камеру под названием «Стеллерейтор».

В докладе Л. А. Арцимовича на той же конференции упоминалась еще одна возможность: создать внутри замкнутой овальной камеры гофрированное магнитное поле — в форме трубки противогаза. Подобное поле может быть возбуждено электрическим током в катушке, навитой по поверхности камеры не сплошным слоем, а отдельными секциями с попеременно противоположным направлением витков. Поток плазмы в этом устройстве как бы все время сжимается, фокусируется. Таким образом, должен предотвращаться «дрейф» плазменных частиц к стенкам камеры.

Все эти системы, однако, еще не вполне удовлетворяют физиков. Заряженные частицы все же могут «удирать» из них к стенкам камеры, как и через пробки обычной магнитной ловушки. Ученые же мечтают создать идеальную ловушку — такую, чтобы из нее не сумела уйти ни одна частица. Собрать плазму в эластичный магнитный мешок и крепко-накрепко завязать его — вот куда направлена мысль исследователей. И путь к такой идеальной ловушке уже нащупан: надежно «заткнуть» отверстия в магнитной ловушке способно, как показали первые опыты, сочетание постоянных магнитных полей с высокочастотными.

Правда, создание полей такого рода требует больших затрат энергии. Но пути к поискам выхода не закрыты. Очень уж заманчиво добиться того, чтобы плазма висела в реакторе, ни на что вещественное не опираясь, ни к чему не прикасаясь — будто легендарный гроб Магомета. Издалека, «по радио», к ней будет подаваться высокочастотное поле, которое, может быть, не только запрет плазму, но и нагреет ее.

В наших мечтах получается нечто схожее с редчайшим явлением природы — шаровой молнией. Удивительные особенности ее поведения, вероятно, знакомы читателю. Об этом рассказывается во многих популярных книгах и статьях. Физическая сущность этого необычного грозового разряда поныне во многом загадочна для науки. Но в какой-то мере ее, быть может, законно уподобить плазменному разряду в «закупоренной» магнитной ловушке. Недаром, по мнению ряда ученых, в шаровой молнии главную роль играют именно высокочастотные электромагнитные поля.

От грозового облака вниз низвергаются мощные радиоволны. Некоторая доля их отражается от земной поверхности. Отраженные радиоволны складываются с падающими, образуя в определенных местах «пучности» — как бы сгустки электромагнитного поля. В этих местах может происходить разряд — ионизация, сильный разогрев и яркое свечение газа. Словом, шаровая молния — это видимый и осязаемый «узелок» плазмы на незримых электромагнитных полях.

Кто знает, возможно, и наше рукотворное солнце будет подожжено более или менее точным подобием шаровой молнии, созданной искусственным способом.

ПРОГНОЗЫ СРОКОВ

Летом 1955 года, на открытии Первой международной женевской конференции по мирному использованию атомной энергии, ее председатель индийский физик Хоми Баба заявил: «Я беру на себя смелость предсказать, что освобождение энергии синтеза контролируемым способом будет осуществлено в ближайшие два десятилетия». Многим ученым — участникам конференции — предвидение индийского физика показалось чересчур смелым. Любопытно, что в числе наиболее закоренелых скептиков оказался и Джон Кокрофт — тот самый, что возглавляет теперь исследования на «Зэте». Говорят, Баба и Кокрофт серьезно поспорили на эту тему и даже заключили пари. Но прошло меньше трех лет, и Кокрофт сделал собственное предположение о минимальном сроке достижения заветной цели. Какой же период он назвал? Десятилетний!

На Второй международной женевской конференции Баба, верный своему первоначальному предсказанию, назвал семнадцатилетний период (так как с 1955 года прошло 3 года). Вообще, на этой конференции уже почти не нашлось скептиков, не веривших в более или менее скорое решение проблемы мирного термоядерного синтеза. Исключение составлял, разве, лишь американский «отец водородной бомбы» Э. Теллер. Он пропагандировал сомнительную и опасную идею промышленного освоения водородных взрывов— идею, направленную, по существу, к оправданию продолжения вредоносных испытаний водородных бомб. Овладение же управляемым термоядерным синтезом Теллер отодвинул к началу XXI века.

Вряд ли стоит гадать о точных сроках окончательного успеха. И. В. Курчатов, выступая на XXI съезде партии, не счел возможным делать такие предсказания. Ясно лишь, что, хотя впереди еще огромные трудности, торжественное открытие первенца мирной термоядерной энергетики не за горами. За это говорит благотворный дух международного научного сотрудничества в решении великой проблемы управляемого термоядерного синтеза, дух, который наметился еще после памятного выступления И. В. Курчатова в Харуэлле, затем развивался и ярко проявился на Второй женевской конференции.

Разумеется, замечательную роль сыграло бы здесь полное прекращение тягостной «холодной войны».

Во всяком случае, термоядерный реактор будет создан. С этим не спорит никто.

И уже сегодня мы можем кое-что сказать о земном образе искусственного солнца, сотворенного всепобеждающим человеческим трудом.

Мы должны несколько разочаровать романтиков, которые, читая эту книгу, может быть, ожидали в конце концов описания какого-то подобия настоящему Солнцу — скажем, гигантского термоядерного огня, зажженного на искусственном спутнике Земли.

Проблема решится куда проще, будничнее.

Очевидно, то будет скромная обликом электростанция, может быть похожая внешне на прославленную АЭС под Москвой, которая летом 1954 года открыла эру ядерной энергетики.

К ТЕРМОЯДЕРНЫМ ЭЛЕКТРОСТАНЦИЯМ

Заглянем в завтра. На берегу небольшой реки воздвигнуто здание, мало похожее на обычную электростанцию. Никаких дымовых труб, подъездных рельсовых путей с платформами угля и шлака. Топливо черпается прямо из реки. Или, может быть, запас тяжелого водорода и лития (из которого прямо в термоядерном реакторе добывается сверхтяжелый водород) в количествах, гораздо меньших, чем уран для атомной электростанции, раз в год привозят сюда на небольшом грузовике.

В центре здания станции — термоядерный реактор. Через смотровые окна или телевизионные установки можно наблюдать его горячую зону — большое облако разогретой до звездных температур голубоватой плазмы. Это и есть, собственно, искусственное солнце.

Плазма висит в незримом мешке магнитного поля и периодически разогревается. Повышениями температуры вызываются вспышки цепного термоядерного синтеза.

Если топливом служит смесь дейтерия с тритием, то размер активной зоны не так уж велик—что-то около метра. И кубометр «горящей» плазмы дает миллион киловатт энергии!

Очень ли обилен окажется поток излучения реактора? Нет, несмотря на сверхвысокую температуру, он не будет катастрофически огромным. Ведь плотность плазмы ничтожна, и поэтому прозрачность ее весьма высока.

Значит, и излучает она не слишком сильно—примерно так же, как твердое тело, раскаленное до 5000 градусов.

5000 градусов — это почти температура атмосферы Солнца. Тем не менее светиться активная зона реактора будет довольно слабо. Лучистый поток изольется главным образом в форме невидимых ультрафиолетовых и рентгеновских лучей, которые не успеют «постареть», как «стареют» лучи в недрах Солнца, не успеют «раздробиться» в фотоны видимого света.

Термоядерный «котел» послужит также источником нейтронов. И эти частицы не пропадут. Они, как мы уже говорили, найдут применение для расширенного воспроизводства трития. А лучистое богатство тем или иным способом будет преобразовываться в электрический ток (через посредство теплоносителей, тепловых котлов и турбин, либо с помощью полупроводниковых батарей).

Однако есть надежда обойтись без теплоносителей, турбин и фотоэлементов.

Весьма заманчив другой метод отвода освобождающейся энергии — простой и вместе с тем удивительно красивый физически. Его возможности указал в 1954 году упоминавшийся уже нами Г. И. Будкер. Речь идет о прямом превращении энергии термоядерного синтеза в электрический ток. Вот суть этого метода.

ПЛАЗМА В РОЛИ ГЕНЕРАТОРА

Атомные ядра изотопов водорода, набравшие в звездном жаре плазмы колоссальные скорости хаотического движения, будут сталкиваться друг с другом и сливаться, освобождая дотоле спавшую в них гигантскую энергию. Получившая волю энергия синтеза в значительной доле (в дейтерии — две трети всей выделяющейся энергии) передастся самим же атомным ядрам. И они станут двигаться еще быстрее. Но ведь частицы эти — электрически заряжены. А движение электрических зарядов, как вы знаете, обязательно порождает магнитное поле. Значит, возникновение мощной самоподдерживающейся термоядерной реакции повлечет за собой появление столь же мощной вспышки магнитного поля.

Представим себе теперь, что плазма в реакторе удерживается внешним магнитным полем. Вот мы усилили поле, сжали плазму, тем самым возбудив в ней цепную термоядерную реакцию. Энергия синтеза освобождается мощным потоком термоядерного магнитного поля, которое сметает прочь внешнее поле и вырывается наружу. При этом плазма расширяется, охлаждается, и цепная термоядерная реакция в ней затухает. Но мы вновь сжимаем плазму внешним полем, снова вызываем цепной процесс синтеза и рожденную им могучую вспышку внутреннего магнитного поля. Такие импульсы повторяются очень часто. И в такт с ними реактор выбрасывает магнитное поле, созданное термоядерным синтезом. Преодолевая давление внешней магнитной ловушки, оно будет периодически вылетать из реактора.

«Поймать» это поле — значит уловить термоядерную энергию. Но как это сделать?

Вокруг реактора надо устроить проволочные обмотки.

Вспышки магнитного поля, пересекая их, наведут в них пульсирующий электрический ток — по тому же самому закону, по которому действует любой современный электрогенератор.

Кстати сказать, генерирующая обмотка реактора, возможно, будет той самой, которая создает магнитное поле, сжимающее плазму. Тогда вспышка термоядерного синтеза станет сначала работать против сил внешнего поля магнитной ловушки, как бы «выгоняя» из обмотки ток, создающий внешнее поле. А потом в «завоеванной» обмотке термоядерное поле наведет свой ток — гораздо более сильный, чем тот, что создавал сжимающее поле, и направленный в противоположную сторону.

Получится нечто вроде молотка, бьющего по пороховому пистону. Слегка ударив молотком по пистону, мы ощутим резкий толчок назад — работу газов взорвавшегося пороха. Точно так же, слегка ударяя по плазме током обмотки реактора, мы получим в ответ мощный удар тока обратного направления. Еще ближе будет сравнение с дизельным двигателем: термоядерное горючее воспламеняется под давлением невидимого магнитного поршня, а потом отбрасывает этот поршень, заставляя его наводить мощный ток в обмотках.

Все это должно происходить достаточно быстро и, конечно, автоматически.

Наше искусственное солнце обещает производить электричество без всяких промежуточных превращений энергии. Никаких турбин, котлов, генераторов. Что может быть удобнее!

И, наконец, еще одно замечательное достоинство термоядерных электростанций — чистота, отсутствие радиоактивных отходов. Генерируя энергию, плазма не будет испускать никаких радиоактивных частиц, кроме нейтронов, которые тут же найдут полезное использование. Это преимущество особенно видно при сравнении с обычной атомной энергетикой — на уране и плутонии. Ведь проблема удаления радиоактивных отходов — ядерных осколков, образующихся в урановых и плутониевых реакторах, — с каждым годом приобретает все большую остроту. Подсчитано, что если бы все энергетические потребности такой страны, как США, удовлетворялись бы урановыми реакторами, то встала бы задача удалять ежегодно такое же количество радиоактивного яда, какое образуется при взрыве 200 тысяч атомных бомб! А к началу XXI века ежегодно накапливающаяся масса его сделалась бы эквивалентна той, что возникает при взрыве 8 миллионов атомных бомб.

Конечно, задача удаления радиоактивных отходов атомных электростанций не относится к числу неразрешимых. Но она очень и очень трудна. В термоядерной же энергетике этой проблемы нет.

ВОДА — ГОРЮЧЕЕ

Наши потомки не будут жечь дрова, торф, уголь, нефть. Неиссякаемое изобилие энергии они получат от изотопов водорода. Первое время термоядерные электростанции будут работать на смеси дейтерия с тритием. Литий — исходный материал для приготовления сверхтяжелого водорода — становится, таким образом, важнейшим энергетическим сырьем. И его немало в земной коре.

Однако нет сомнения, что физики будут стремиться осуществить управляемый термоядерный процесс и без трития, хотя бы потому, что запасы лития не безграничны.

Зато тяжелого водорода у нас хоть отбавляй — в обыкновенной воде. И извлечь его оттуда нетрудно. Вода при этом, кстати сказать, совсем не пострадает. Ведь на каждые 6000 атомов легкого водорода приходится всего один атом дейтерия. Даже сейчас дейтерий получают в количествах, которые при термоядерном синтезе могли бы дать ежегодно столько же энергии, сколько вырабатывает вся мировая энергетика.

Правда, термоядерный реактор на чистом тяжелом водороде будет более громоздким (критический объем горючего и, следовательно, активная зона реактора будет довольно велика). Поэтому на транспортных средствах — кораблях, самолетах, локомотивах — дейтериевые термоядерные реакторы вряд ли найдут применение.

Зато термоядерные электростанции на тяжелом водороде наверняка займут главенствующее положение в энергетике грядущих веков. Трудно привыкнуть к мысли, что это будут электростанции, для работы которых понадобится только вода. Одна вода — и больше ничего, причем в совершенно ничтожных количествах. Станции эти станут извлекать из воды поистине сказочную силу.

В библии говорится, что некогда сын божий превратил несколько кувшинов воды в вино. А ныне человек, дотронувшись до воды знанием, превращает ее в нечто куда более ценное, чем вино. Ведь тяжелый водород, взятый из двух стаканов воды, даст в термоядерном реакторе столько же тепла и электрического тока, сколько 200 литров сожженного бензина!

Люди получают в свое распоряжение неистребимо огромную залежь топлива — Мировой океан. И энергии в нем заключено столько же, сколько способно было бы дать обычное сжигание пятисот мировых океанов бензина, таких же огромных, как водяные.

Воды в Мировом океане 1400 миллионов миллиардов тонн. В ней содержится 25 тысяч миллиардов тонн дейтерия— примерно по 10 тысяч тонн на каждого человека.

И так как преобразование грамма дейтерия в гелий сопровождается освобождением 100 тысяч киловатт-часов энергии, то на долю любого члена человеческого общества тяжелая вода океанов отводит миллион миллиардов киловатт-часов. Возьмите от этого количества всего половину, допустив, что остальное будет трудно добыть, и вы получите на свою долю столько энергии, сколько в наше время за пятнадцать лет (по нынешнему уровню) вырабатывается на земном шаре всеми его электростанциями, всеми водяными, ветряными и тепловыми двигателями, всеми домнами, печами и печурками, всеми паровозами, тепловозами, автомобилями, тракторами, кораблями, всеми мускульными усилиями лошадей, быков, слонов и других тягловых животных, наконец всей физической работой человеческого населения нашей планеты. Пятнадцать лет энергетических усилий общества! И все это на вашу долю!

Даже при тысячекратном увеличении потребления энергии дейтерия хватит человечеству на многие миллионы лет.

Вот что такое промышленный ядерный синтез.

НАШЕ БУДУЩЕЕ

Окинем мысленным взором Землю завтрашнего дня, планету наших потомков.

На континентах и островах вырастут тысячи термоядерных электростанций. Связанные высоковольтной системой, они будут работать в едином ритме, не боясь перегрузок и аварий, вливая живительный сок энергии в каждый уголок Земли.

Невиданное развитие получат все отрасли промышленности. Любые химические элементы люди, располагая изобилием энергии, будут вырабатывать из простой земли, из камней, из песка. Для добычи полезных материалов не понадобится искать их богатых месторождений.. Человек станет до предела использовать щедрые дары земных недр.

Невиданные материалы появятся в распоряжении людей.

Прогресс науки поможет создать из них умные машины и устройства, которые полностью вытеснят физический труд и в индустрии и в сельском хозяйстве. Даже мелкие работы наши потомки отдадут механизмам.

Тысячекратно умноженная трудовая сила создаст сказочное богатство товаров народного потребления и продуктов питания. Сельскому хозяйству не будут уже страшны капризы погоды. Орошенным полям не повредит никакая засуха, а осушенным болотам — дожди.

Обилие энергии неузнаваемо изменит быт людей, еще выше поднимет их культуру. Обогрев жилищ и заводов, охлаждение и увлажнение комнатного воздуха — все это возьмет на себя электричество. Быть может, дело дойдет до отопления улиц, а то и целых городов.

По воздуху помчатся стремительные термоядерные самолеты. Воду океанов будут бороздить гигантские термоядерные суда, которым никогда не нужно будет запасаться углем, нефтью, ураном. К далеким планетам помчатся термоядерные космические корабли. Уже сегодня инженеры задумываются над проектами этих не родившихся еще машин.

На Земле завтрашнего дня недолго просуществует слово «пустыня». Могучие термоядерные насосы заставят опресненную морскую воду течь по просторам Сахары, Гоби, Каракумов. И оживут мертвые пески, покроются веселыми нивами, зелеными садами и парками.

Переменится и самый облик планеты.

Сколько замечательных проектов переустройства морских течений создал изобретательный человеческий ум! Для осуществления их нужно только одно—энергия.

Можно не сомневаться, что, овладев звездной силой, человечество осуществит, например, дерзновенную идею советских инженеров, создавших проект обогрева северного и восточного побережий Советского Союза.

Сейчас холодные струи Северного Ледовитого океана устремляются к восточным берегам нашей страны через узкий Берингов пролив, разделяющий материки Евразии и Северной Америки. Этот пролив предложено перекрыть исполинской плотиной-мостом. Тогда берега Камчатки и Приморья спасутся от дыхания северной стужи и обретут обычные климатические условия своих широт. Ведь Камчатка и Британские острова одинаково удалены от экватора, а Владивосток находится на широте Ниццы. Все дальневосточное побережье станет краем чудесного мягкого климата.

Мало того: через плотину в Беринговом проливе предлагается перекачивать воду из Тихого океана в Северный Ледовитый.

Термоядерные электростанции, размещенные в этой 85-километровой плотине и питающиеся дейтерием воды, заставят работать гигантские насосы, которые создадут в арктических льдах искусственную теплую реку. Она «отопит» северные районы страны, оживит тундру, глухую тайгу.

И это только один из величественных проектов преобразования планеты.

Кто знает — может быть, долгими полярными ночами над просторами Заполярья, согретыми дыханием теплых течений, засияют и мощнейшие электрические «фонари», питающиеся энергией термоядерных электростанций.

А какой неслыханный урожай полезных растений может дать нетронутая целина морского дна, если осветить его сиянием гигантских фонарей и научиться возделывать как пашню!

Прирученная человеком энергия солнечного синтеза отнимет у полярных и пустынных районов Земли былую суровость. Все края ее — от полюса до полюса — станут для людей приветливым домом. И еще шире разольется по планете торжествующий труд, в новые дали устремятся мечты титана мысли и воли — человека.

1. ХОЛОДНОЕ СОЛНЦЕ

Обгоняя сказки. Предсказание. Подтверждение. Развенчанная сенсация.

2. ВЕЩЕСТВА-АНТИПОДЫ

Плюс—мину . Запрещенный переход. Энергия, которая «скачет». Что такое вакуум. Удар в пустоту. Молоток и наковальня. Дырка в незримом. Антивещество. Вражда непримиримая. Физический остов природы . Сюрпризы Космоса. На звездах к звездам. Царица мира .