ВНИМАНИЕ ПРАВНУКАМ

Юные читатели, попробуйте-ка на минуту представить себя дедушками и бабушками, даже прадедушками и прабабушками. Сколько у вас окажется внуков и правнуков!

По прогнозам специалистов, к 2000 году население земного шара увеличится по крайней мере в полтора раза— на 1 200 000 000 человек, а вероятнее всего, и того больше.

Долг современного человечества — не только оградить семью своих многочисленных потомков от радиоактивной угрозы, но и помочь им в труде и жизни. Такова давняя и благотворная традиция: старшие помогают младшим.

Конечно, наши внуки и правнуки сами будут «не маленькие». Трудно даже представить себе, до каких высот поднимут они технику. Однако никакая машина не сможет действовать, не расходуя энергии. А ее источники наши потомки получат от нас.

Чем богаче будет насыщена мирной, созидательной техникой жизнь будущих поколений, тем больше им потребуется энергии. В странах социализма к 2009 году выработка и расход энергии должны увеличиться, в 100 раз!

Между тем запасы старых, традиционных энергетических источников на Земле уже начали истощаться. Например, нефти, если ее сжигать столь же расточительно, как мы это делаем сейчас, хватит, по ориентировочным данным, лет на 100. А ведь нефть — не только горючее. Куда больше пользы она приносит, если используется как химическое сырье. Недаром еще Менделеев воевал против бездумного сжигания «черного золота», говоря, что «топить можно и ассигнациями» (бумажными деньгами).

Ну, а как дела с углем? Его в земных недрах раз в сто больше, чем нефти. Но этого количества хватит лет на 100—200 всего-навсего. К тому же и уголь становится в наши дни важным химическим сырьем.

То же можно сказать о горючих газах, торфе, сланцах, дровах.

 Чего только не делают сейчас чудодеи-химики из органического топлива! Лекарства, легчайшие и прочные, как металл, пластмассы, роскошные ткани.

Словом, органическое топливо надо беречь. Настанет время, когда сжигать его будет очень жалко.

Разумеется, это вовсе не значит, что мы и наши потомки обязаны, нарядившись в искусственные шелка, стучать зубами от холода в нетопленной и неосвещенной квартире. Сегодня можно без опасений развивать тепловую электроэнергетику, наращивать темпы энергетического освоения ископаемого горючего. Для завтрашнего дня наука видит много путей получения энергии, минуя органическое топливо.

Забота о будущем растущего человеческого рода заставляет обратить на эти пути особое внимание.

И человек не откладывает дела в долгий ящик.

Всюду, где возможно, строятся гидроэлектростанции. В нашей стране одни лишь сибирские реки Енисей и Ангара способны ежегодно давать столько дешевой электроэнергии, сколько в 1955 году выработали все электростанции Советского Союза.

Предстоит заставить прилежнее работать на человека ветер, приливы и отливы, морской прибой. Почти нетронутые гигантские клады тепла хранят для человека земные недра. Уже создаются электростанции, где движущей силой служит перепад температур воды на поверхности и в глубине моря.

ЛОВЛЯ ЛУЧЕЙ

Исследования последних лет открыли богатые перспективы «ловли» солнечных лучей. В особых фотоэлементах, изготовленных из полупроводниковых материалов, солнечный свет превращается в электрический ток. Когда такие приборы удастся делать дешево и в больших количествах, человечество сможет использовать непосредственно и в широчайших масштабах неуловимый солнечный свет. А ведь он в течение нескольких дней приносит на Землю столько энергии, сколько спрятано ее во всех запасах органического топлива нашей планеты.

Труды ученых-химиков наметили недавно еще один — пожалуй, самый выгодный — путь освоения лучистых солнечных богатств: накопление световой энергии в особых, искусственно приготовленных веществах. Становится возможным стопроцентное использование лучей Солнца для химического синтеза органических соединений — топлива, промышленного и даже пищевого сырья. Природа ведет подобную работу — фотосинтез — в зеленом листе растения. Но в естественных условиях она совершается весьма неэкономно и медленно. А наука уверенно идет к тому, чтобы осуществлять фотосинтез неизмеримо быстрее, экономичнее и не прибегая к услугам растений.

Кстати сказать, полупроводниковые ловушки света и искусственный фотосинтез венчают завершающей победой давнюю борьбу людей за солнечные дары.

Первобытный человек, осмелившийся после лесного пожара схватить тлеющую головню и разжечь от нее первый костер, заставил служить себе луч Солнца, поработавший некогда на постройке органических молекул древесины.

Затерявшиеся в веках первооткрыватели угля и нефти раздобыли людям солнечные «консервы», изготовленные сотни миллионов лет назад, чтобы мы сегодня питали ими бесчисленные котельные, топки паровозов, теплоэлектроцентрали.

Создатели ветряных и водяных мельниц, гидростанций и ветроэнергетических установок тоже, по существу, выдумали солнечные машины. Ведь именно Солнце рождает ветер и движение воды.

Короче говоря, топливо, вода, ветер—посредники между человеком и Солнцем. Но, надо сказать, посредники эти не слишком расторопные и экономные. Передавая людям энергию Солнца, они не спешат и мало теряют.

Лишь с помощью полупроводниковых световых батарей и искусственного фотосинтеза можно будет без всяких посредников брать с неба всесильный лучистый поток.

Освоение богатств солнечных лучей — великая и заманчивая перспектива. В будущем эту область техники ждет грандиозное развитие. Однако будущее это, видимо, не близкое, ибо многочисленные технические, проблемы,, связанные с ее развитием, еще очень далеки от окончательного решения.

Зато уже протоптана человеком тропа совершенно иного приобретения энергии, не связанного с Солнцем.

МИНУЯ СОЛНЦЕ

На твердом индустриальном фундаменте сегодня стоит ядерная энергетика. Создание первой в мире атомной электростанции ознаменовало, помимо всего прочего, важный поворот в истории — начало похода науки против вековой зависимости людей от Солнца. Правда, и раньше мы получали какие-то крохи энергии помимо светила — от приливов, вызываемых главным образом Луной, из теплоты недр планеты. Но энергетические кладовые тяжелых атомных ядер неизмеримо доступнее. Освоение ресурсов урана и тория, бесспорно, отодвигает угрозу энергетического голода. Однако надолго ли? Оказывается, не очень. Если всю мировую энергетику перевести на «расщепляющееся» ядерное горючее, то при нынешних темпах роста потребления энергии его хватит лишь на 100—200 лет, на тот же период, за который израсходуются запасы угля и нефти.

Что ж, значит, атомный век сулит быть именно веком? Неужели ему суждено завершиться так скоро?

Нет. Нескончаемо долго будет служить людям энергия атомного ядра, ибо далеко не одно «расщепляющееся» ядерное горючее учатся использовать люди. Мирное освоение энергии ядерного синтеза, извлечение ее без взрывов, искусственное солнце — вот что вольет жизнь в исполинскую технику будущего.

Если бы нашелся способ обуздать термоядерные реакции, люди навеки обеспечили бы себя собственной, чисто земной, независимой от Солнца энергией и в таких количествах, которые выглядят совершенно фантастическими. Ведь водород и дейтерий — это вода океанов!

АРГЕНТИНСКАЯ ЗАГАДКА

В истории науки порой случаются странные, трудно объяснимые эпизоды. Об одном из них, касающемся проблемы искусственного солнца, стоит вкратце упомянуть.

Ходят слухи, что еще в конце 40-х годов, за несколько лет до того, как поднялся над Землей первый зловещий гриб водородного взрыва, в пору, когда никто из признанных лидеров физики и не помышлял о возбуждении спокойной термоядерной реакции, опыты в этом направлении уже ставились. И где бы, вы думали? В Аргентине. В глухом уголке этой страны пастухов и овец — на уединенном острове какого-то озера, под бдительной охраной наемных стражников, в обстановке строжайшей секретности — некто, по фамилии Рихтер, пытался осуществить лабораторный термоядерный синтез. Сообщение о физике-«подпольщике» просочилось тогда па страницы американского журнала «Нуклеонике» и вызвало волнение в научной среде. Нашлись скептики, поднявшие на смех не ведомого никому «чудака» и «мечтателя». Но иные из ученых отнеслись к нежданной вести с интересом. Журнал обратился к Рихтеру с призывом поделиться итогами опытов. Ответа не последовало. Таинственный экспериментатор как в воду канул.

И поныне неизвестно, что делал этот человек. Непонятно и кем он был: гениальным ли провидцем, не пожелавшим никого посвятить в свои замыслы, алчным ли изобретателем, в угрюмом одиночестве стремившимся к наживе... Может быть, то был ловкий спекулянт и фальсификатор, преследовавший чисто жульнические цели — вроде небезызвестного Метьюза, который во время первой мировой войны сорвал солидный куш за лжеизобретение каких-то универсально смертоносных лучей? Трудно сказать...

Во всяком случае, и неудача талантливого ученого-одиночки теперь не вызвала бы удивления. Проблема лабораторного ядерного синтеза оказалась необычайно трудной. Она под силу лишь большим коллективам исследователей, работающих во всеоружии новейшего оборудования необычайной сложности и точности. Это отнюдь не дело одного человека—это огромная задача, задача подлинно государственного, даже международного масштаба.

ГЕНЕРАЛЬНАЯ ЗАДАЧА

Первые широко организованные поиски подходов к решению великой проблемы управляемого термоядерного синтеза были предприняты в начале 50-х годов в Советском Союзе, Англии и США примерно одновременно. После ряда предварительных изысканий стало ясно, что наука уже созрела для того, чтобы начать планомерное движение к заветной цели.

В 1955 году президент Академии наук СССР академик А. Н. Несмеянов говорил: «Настало время вместо использования жалких крох консервированной в том или ином виде на нашей планете колоссальной энергии Солнца создать свое солнце на Земле. Не правда ли, это звучит как фантазия? Но разве фантазия — электростанции, использующие ядерную энергию деления урана, двигатели на атомном горючем? Еще ближе мы подойдем к цели, когда сумеем получить управляемую термоядерную реакцию, подобную реакциям, идущим на Солнце. Тогда мы действительно создадим наше солнце на Земле».

А вот слова ведущего советского исследователя физики атомного ядра академика И. В. Курчатова, произнесенные с высокой трибуны XX съезда Коммунистической партии Советского Союза:

«Теоретические работы по атомной и ядерной физике открыли возможность искать новый путь использования атомной энергии в мирных целях, открыли возможность экспериментального развертывания работ по осуществлению управляемых термоядерных реакций — реакций синтеза, или слияния, что является важнейшей, генеральной задачей науки».

Итак, надо научиться возбуждать термоядерные процессы без атомной или какой угодно другой бомбы - в небольших, безопасных масштабах, с тем чтобы выделяющаяся гигантская энергия сделалась доступна контролю, регулированию и, стало быть, техническому, освоению.

Горючим могут служить те же изотопы водорода — дейтерий и тритий, ядра которых способны к знакомым нам реакциям:

Теперь об этом чудесном топливе стоит рассказать поподробнее.

ЧТО ПРЕДСТОИТ ЗАЖЕЧЬ

Тяжелый водород содержится в естественном водороде в довольно значительном количестве— 15,6 килограмма на тонну. В довоенные годы разделение изотопов водорода считалось труднейшей задачей. И. В. Курчатов в одной из своих статей вспоминает, что в ту пору тяжелый водород для научных исследований удавалось добывать буквально граммами. Зато теперь получение дейтерия — дело не слишком сложное. Во всяком случае, оно неизмеримо проще разделения изотопов урана, о котором мы упоминали, обсуждая способы приготовления делящегося ядерного горючего. Ведь разница в весе атомов изотопов водорода весьма велика, а это влечет за собой и заметные различия их физических свойств. В результате тяжелая вода плотнее обычной, точка кипения ее 101,42 градуса Цельсия, а замерзает она при 3,802 градуса Цельсия.

Имеется несколько промышленных путей выделения тяжелой воды из обычной. Удобные методы предложены и для отделения дейтерия от водорода. В Институте физических проблем Академии наук СССР разработан метод разделения изотопов водорода при их глубоком охлаждении. Легкий водород и дейтерий становятся жидкими при разных температурах, и поэтому их отделяют друг от друга перегонкой. Стоимость дейтерия по энергетической ценности уже сейчас в сто раз меньше стоимости угля.

Несколько слов о наиболее эффективном горючем термоядерных реакторов будущего — тритии.

Как вы думаете, сколько его на земном шаре в естественных условиях?

Несколько сот граммов — всего-навсего.

Почему же?

Мы уже говорили, что тритий сильно радиоактивен. За каждые двенадцать лет его запас наполовину тает — распадается. А возобновляется он только за счет того, что атомные ядра азота воздуха то там, то здесь подвергаются бомбардировке нейтронами, появляющимися в космических лучах. Ядро азота, поглотив нейтрон, распадается на ядро углерода и ядро трития.

Сходным путем тритий изготовляют искусственно, но не из азота, а из щелочного металла лития. Об этом мы тоже упоминали.

Потоки нейтронов ядерного реактора направляют на стержни, сделанные из лития-6. Его атомные ядра жадно захватывают нейтроны и расщепляются на ядра трития и легкого гелия. В стержнях накапливается сверхтяжелый водород, который потом выделяют, погружая их в воду.

Особенно удобны для получения трития реакторы с расширенным воспроизводством ядерного горючего — те самые «волшебные печи», из которых вместе с «золой» извлекают новое топливо — плутоний или уран-233. Тритий, как видим, не так уж просто вырабатывать, и поэтому в наши дни он обходится в тысячи раз дороже, чем дейтерий. Но, когда появятся мирные термоядерные реакторы, тритий бесспорно станет гораздо дешевле и доступнее. Ведь при синтезе ядер изотопов водорода будут неизбежно освобождаться нейтроны, которые станут излучаться реактором. Эти нейтроны предложено «размножать» в таком материале, как, например, бериллий, свинец, висмут (атомное ядро таких элементов легко поглощает быстрый нейтрон, но тут же выпускает взамен два медленных нейтрона). Размноженные этим способом нейтроны можно затем использовать для получения трития из лития-6. Так, без всяких специальных реакторов будет осуществляться расширенное воспроизводство сверхтяжелого водорода — с помощью самой термоядерной установки его будут вырабатывать даже больше, чем «сгорит» в плазме. Тритий при этом сулит стать не таким уж дорогим горючим. Пока не исчерпаются на Земле запасы лития, тритий можно будет добывать в огромных количествах.

Итак, в нашем распоряжении куда более удобные материалы для медленных реакций ядерного синтеза, чем на Солнце и звездах. Небесные светила вынуждены пользоваться легким водородом и довольствоваться нескончаемо долгим превращением протонов в дейтоны. Человек отсекает это первое звено солнечного конвейера и начинает цепочку реакций прямо с дейтонов. Кроме того, в отличие от Солнца, люди владеют легко и бурно реагирующим тритием.

Таково горючее. Мы еще вернемся к рассказу о нем, а пока начнем разговор о том, как же его заставить вспыхнуть спокойным термоядерным огнем.

ТРУДНОСТИ ЗВЕЗДНОГО НАГРЕВА

Как вам уже известно, и на Солнце и в водородной бомбе термоядерный процесс возникает из-за чрезвычайно сильного нагрева вещества. Ядерный синтез поджигается, а затем развивается сам собой. Подобно этому костер воспламеняется от спички и горит, пока не израсходуется весь хворост. Отличие заключается в начальной температуре. Вспышка спичечной головки развивает 700 градусов, а для поджога термоядерного горючего должна быть изобретена маленькая вполне безопасная «спичка», создающая колоссальный нагрев — во многие миллионы градусов. Это главный, решающий рубеж проблемы.

Что значит сильно нагреть вещество?

Это значит привести его атомы в очень интенсивное беспорядочное движение. Подъем температуры соответствует увеличению средней энергии хаотического теплового танца атомов.

И вот этот атомный хаос — весьма заразительное явление. Невозможно заставить «танцевать» какую-то малую часть атомов. Они неминуемо расталкивают своих соседей, те, в свою очередь других, и так далее. Вы разогреваете вещество где-то в одной точке, а увеличенная

энергия теплового движения растекается оттуда во все стороны, распределяется между все большим и большим числом частиц. Стало быть, их средняя энергия, соответствующая температуре вещества, повышается очень слабо.

Теперь вам ясна первая трудность высокотемпературного нагрева—необходимость изоляции раскаляемого объекта от внешней среды.

Физики довольно давно пытались в своих лабораториях раскалить вещество до сверхвысоких температур. Один из применявшихся методов — взрывы тонких проволочек сильными ударами электрического тока — привел к мгновенному нагреву в сотни тысяч градусов. Подобное явление, кстати сказать, знакомо многим нашим читателям: нечто похожее происходит, когда перегорают пробки в осветительной электросети.

Другой способ — столкновение газовых струй огромного давления, вырывающихся из маленьких отверстий в баллонах, — дает десятки тысяч градусов.

Испытывали и столкновение ударных волн от двух одновременных небольших взрывов, направленных навстречу друг другу через сужающиеся конусные трубы. Между концами труб находился газ. И под двусторонней встряской взрывных волн он очень сильно раскалялся.

Однако ни в одном из перечисленных способов лабораторного нагрева требование строгой изоляции разогреваемого объекта от внешней среды не выполняется. Впрочем, можно возразить, что в водородной бомбе тоже нет изоляции от внешней среды. Верно. Но там нагрев обгоняет растекание энергии из-за чудовищного обилия внезапно выделяющегося тепла, из-за страшного по силе взрыва. А это отнюдь не контролируемая реакция. Никакая бомба, никакой взрыв нам теперь не нужны.

Зато на Солнце, горящем медленно, требование тепловой изоляции выполнено идеально. Скованный могучим тяготением, солнечный шар висит в пустом пространстве, не соприкасаясь ни с каким веществом, способным отсасывать энергию теплового движения солнечных частиц.

Однако окружающая пустота не мешает Солнцу отдавать свою энергию наружу. Она вырывается лучистыми потоками. С этим связана вторая трудность звездного нагрева, к которой мы сейчас и переходим.

ПРОТИВ ЛУЧИСТЫХ ПОТЕРЬ

Не только столкновения с окружающими атомами отнимают тепло у раскаленных тел. При определенной температуре в любом, даже идеально изолированном объеме вещества начинается весьма заметное лучеиспускание. Оно неумолимо растет при повышении температуры. В конце концов лучистая энергия, рожденная теплом, начинает с колоссальной скоростью вырываться наружу.

Здесь важно отметить существенную особенность: чем меньше размеры раскаленного тела, тем большую долю своего тепла оно испускает в виде лучей. Ведь выделяется-то энергия во всем объеме, а излучается только с поверхности. В маленьких телах отношение поверхности к объему больше, чем в крупных. Поэтому маленькие тела излучают быстрее крупных. Значит, и для нагрева их требуются более высокие темпы поступления энергии.

Отсюда понятно, почему в миллионоградусной жаре солнечных недр скорость энерговыделения невелика— если поделить общее количество вырабатываемой энергии на массу светила, то получится, что в килограмме солнечного вещества выделяется в среднем за секунду всего 1900 эргов энергии. Вскипятить на таком потоке энергии пол-литровую кружку воды удастся за... 34 года! Неожиданный результат, не правда ли? Он неважно согласуется с представлением о великом солнечном могуществе. Но зато он хорошо иллюстрирует размеры массы светила и ничтожность его поверхности по сравнению с объемом.

Иное дело в телах малого размера.

Представьте себе, что какой-то твердый предмет величиной с арбуз нагрет до миллиона градусов. Чтобы восполнить собственное излучение и не остывать, он должен получать ежесекундно сотни миллиардов калорий тепла на каждый килограмм вещества. В подобном потоке энергии десятки тысяч литров воды закипели бы за секунду.

Колоссальное излучение энергии не играло бы заметной роли, если бы мы могли построить установку термоядерного синтеза размером... с Луну. В реальных земных условиях это, разумеется, невозможно.

Как же быть?

Первое условие: нагревать горючее надо быстро. Подводить энергию, обращающуюся в тепло, следует, обгоняя рост лучеиспускания. Только тогда будут достигнуты температуры, достаточные для возбуждения незатухающих термоядерных реакций. При этом быстрый подвод энергии вовсе не должен быть безмерно большим. На скоростной разогрев изолированного от окружающей среды грамма дейтерия может уйти всего несколько киловатт-часов энергии — в десятки тысяч раз меньше, чем потом выделится при синтезе гелия.

Еще важнее другой залог успеха в борьбе с колоссальным лучеиспусканием: использовать горючее только в виде газа, причем возможно более разреженного. Ни жидкое, ни твердое горючее, столь выгодные для водородной бомбы, теперь вообще не годятся — именно потому, что мы хотим добиться спокойного выделения энергии. При сверхвысоких температурах в жидкостях и твердых телах неотвратимо создаются исполинские давления, которые приводят к катастрофическому разлету вещества— ко взрыву. Иное дело — разреженный газ. Его можно удержать в достаточно прочном сосуде даже в сильно нагретом состоянии.

Главное же преимущество газообразного горючего — прозрачность. Чем прозрачнее тело, чем меньше в нем «черноты», тем слабее оно излучает энергию при нагревании (вы помните, что больше всего излучает «абсолютно черное тело»). Словом, в газе при ничтожной плотности потери на излучение неизмеримо меньше, чем в жидкости или в твердом теле. Поэтому для звездного нагрева газа энергию можно подводить не столь стремительно, что очень важно для осуществления спокойного, не взрывного процесса.

ТЕМПЕРАТУРЫ ВОСПЛАМЕНЕНИЯ

До каких же все-таки температур надо нагреть газообразное термоядерное горючее, чтобы вызвать в нем самоподдерживающийся процесс ядерного синтеза?

Зная вероятности ядерных реакций при разных скоростях сталкивающихся частиц (что соответствует разным температурам), на этот вопрос ответить нетрудно.

Расчет показывает, что даже при комнатной температуре слияния ядер случаются, хоть и невообразимо редко. В литре холодного дейтерия при обычном атмосферном давлении одна пара дейтонов соединяется раз за 500 лет. С повышением же температуры число реакций увеличивается по определенному закону — сначала очень медленно, а затем неимоверно быстро.

Физики-теоретики составили любопытный график этой зависимости. Он изображен на стр. 153 и относится к газообразному термоядерному горючему, находящемуся при комнатной температуре под давлением в 0,001 атмосферы. Нижняя кривая отражает поведение дейтерия, а верхняя — смеси дейтерия с тритием. Внизу по горизонтали отложены температуры. Слева по вертикали— мощность термоядерной энергии, которая создается в кубическом сантиметре раскаленного горючего. А справа по вертикали — отношение вырабатываемой термоядерной энергии к энергии излучаемой. Обратите внимание: все значения физических величин даны степенями числа 10. Это как бы сжимает график, делает его особенно наглядным.

О чем говорят кривые?

В смеси дейтерия с тритием количество вырабатываемой и излучаемой энергии делаются одинаковыми при 40—50 миллионах градусов. Это и есть температура вспышки самоподдерживающегося термоядерного процесса. В дейтерии же, как показывает график, температура вспышки гораздо выше — составляет приблизительно 300—400 миллионов градусов. И каждый кубический сантиметр горючего при этом будет вырабатывать и излучать сотни ватт энергии.

Вот такими должны быть заветные температуры для создания искусственного солнца. И это — минимальный нагрев, при котором изотопы водорода лишь «загорятся». Наиболее выгодные, оптимальные температуры самоподдерживающегося термоядерного синтеза выше. Для дейтерия это примерно 500 миллионов градусов, для смеси дейтерия с тритием —150 миллионов градусов, причем вычисления степени нагрева изотопов водорода проведены здесь в предположении, что горючее -надежно изолировано от окружающей среды, что частицы его прочно удерживаются в постоянном объеме. В противном случае температуры возбуждения незатухающих термоядерных реакций оказываются гораздо более высокими.

Надо отметить еще, что термоядерное горючее (как и уран и уголь) может воспламениться лишь в достаточном объеме. Иначе цепной реакции просто негде будет развернуться и она не сможет стать самоподдерживающейся. Поэтому реактор на смеси дейтерия с тритием не может быть размером меньше метра в поперечнике. А реактор на дейтерии должен иметь еще большие размеры.

ЧИСТОТА - ЗАЛОГ УСПЕХА

Наконец, очень существенно требование чистоты горючего. Добавки тяжелых атомов в нем недопустимы даже в ничтожных количествах. Дело в том, что самая крохотная порция лишних атомов, особенно — тяжелых, действует здесь, как таблетка аспирина в организме гриппозного больного: снижает температуру, ослабляет термоядерную лихорадку. Почему?

Ведь до того, как станут возможны ядерные реакции, вещество должно ионизироваться — превратиться в электронно-ядерный газ, в так называемую плазму. Другими словами, атомы должны быть наголо «обриты» — лишены электронов. Причем тяжелые «негорючие» ядра гораздо гуще обросли электронной «щетиной». «Обрить» их труднее, чем легкие — «горючие». Понятно, что на такую «парикмахерскую» работу уходит значительная часть энергии нагрева.

Кроме излишних затрат «на бритье», эта энергия расходуется еще на расталкивание ядер примеси, принимающих, конечно, участие в общем беспорядочном тепловом движении частиц. Наконец, очень большая доля энергии уносится из плазмы электромагнитным излучением, которое возникает при торможении электронов тяжелыми атомными ядрами. Тяжелые ядра обладают сравнительно большим положительным зарядом и поэтому тормозят пролетающие мимо электроны особенно резко. А при сильном замедлении движения электроны обязательно излучают, «стреляют» рентгеновскими и гамма-фотонами, которые тут же уносятся прочь из плазмы.

Чем многочисленнее лишние ядра, тем большую часть энергии нагрева они отсасывают па себя. Например, присутствие всего лишь одного атома урана на тысячу водородных снижает температуру в два с половиной раза.

Итак, что же нам нужно для создания искусственного солнца?

Необходимо научиться достаточно быстро нагревать тщательно очищенные газообразные изотопы водорода в значительном объеме до десятков и сотен миллионов градусов. Этот нагрев надо вести так, чтобы гарантировать строгую изоляцию от окружающей среды и от стенок сосуда. Такова должна быть «звездная спичка».

Сделать ее — задача феноменальной трудности.

Но никто не сказал, что эта задача неразрешима.