Эфир. Русская теория.

Антонов Владимир Михайлович

 

1. Эфир

 

Предложена эфирная модель мира, согласно которой единственным веществом Вселенной является эфир; элементарная частица эфира — идеальный шарик. Электроны и атомы представляют собой микрозавихрения эфира. Приведены примеры топологии атомов.

Отвергнуты физическое притяжение и электрические заряды; закон всемирного тяготения заменен законами космических эфирных завихрений; электрофизика представлена в виде пневматики электронного газа.

Владимир Михайлович Антонов, 1999 г.

 

1.1. Эфир

Начнём с того, что уточним предмет разговора: речь пойдёт о среде, в которой плавают планеты и звёзды, то есть о том, чем заполнено безвоздушное космическое пространство и вообще всё пространство. Если мы с помощью вакуум-компрессора отсосали воздух из закрытой ёмкости, то это не значит, что там образовалась абсолютная пустота — ёмкость окажется наполненной эфиром, причём нельзя говорить, что он туда попал во время откачки воздуха — он там был всегда, только компрессор удалил из него атомы и молекулы, то есть очистил его. Так рыбаки, вылавливая сетями рыбу, можно сказать, «очищают» от неё воду; при этом вода свободно уходит сквозь сети: их ячейки слишком крупны, чтобы задерживать её.

Ещё более текучей, даже сверхтекучей, средой является эфир. Пока человечество не располагает средствами прямой его регистрации. Воду, даже невидимую, прозрачную, мы обнаруживаем по её сопротивлению ладони или веслу; воздух почти не ощущается ни ладонью, ни, тем более, веслом, но лицом мы можем почувствовать даже самые лёгкие его дуновения; эфир не ощущается нами никак, а если и ощущается как предвестие смены погоды, то не осознаётся. Его существование подтверждается исключительно косвенно, но достаточно убедительно.

Эфир является той средой, которая несёт «электромагнитные» волны, и в том числе — свет. Не будь этой среды, не было бы и волн. Круги от брошенного камня возникают только тогда, когда камень падает в воду: не было бы воды — не было бы и кругов; звук мы слышим только потому, что воздух несёт его волны: в безвоздушном пространстве — абсолютная тишина. Так же и со светом: если он распространяется, — а это очевидно, то, без сомнения, есть его среда; этой средой является эфир.

Свет, как свидетель существования эфира, определяет и его границы. Видимые нами звёзды находятся, очевидно, в одном с нами непрерывном эфирном пространстве; это — наше Эфирное Облако или другими словами — Видимое пространство Вселенной; за пределами этого Облака — абсолютная пустота, и свет там не гуляет. Следовательно, Вселенная представляет собой абсолютную пустоту, в которой находятся эфирные облака, и одно из них — наше. Размеры Видимого пространства огромны и не поддаются обычному представлению: свет, распространяющийся по эфиру со скоростью триста тысяч километров в секунду, пересекает только одну нашу Галактику за сто тысяч лет, а всего известно около миллиарда галактик.

Облако текучего эфира своим поведением напоминает обычное облако в жаркий летний день: оно также постоянно видоизменяет свою форму: местами сжимается, где-то расширяется, образует спиральные и дискообразные завихрения. Их различие — только в несопоставимых размерах и скоростях трансформаций: за время одной человеческой жизни удаётся наблюдать не так уж и много существенных изменений Видимого пространства, хотя одного года достаточно для того, чтобы отметить полный оборот нашей планеты Земля вокруг Солнца.

Наблюдения только за поведением родной планеты и за её соседями убеждают нас также в существовании эфира. Ничем другим, кроме как наличием эфира, нельзя объяснить дискообразность Солнечной системы: все её планеты и их спутники расположены практически в одной плоскости; так может закручиваться только сплошная текучая среда, и планеты со спутниками ведут себя в ней как захваченные ею инородные тела. Если ещё принять к сведению, что все эти планеты движутся в одном направлении, то существование эфира, закрученного в виде дискообразного завихрения, кажется очевидным. Встречное движение кометы Галлея не опровергает, а, наоборот, подтверждает наш вывод: встречные и поперечные движения в космосе в принципе возможны, и такое может возникнуть при случайных встречах космических тел; но постоянные «жители» Солнечной системы — её аборигены, хорошо нам известные планеты — плыть навстречу потоку эфира или поперёк него не могут.

Если невозможно не признать существование эфира (а об этом говорят многие и многие другие подтверждения), то из его поведения напрашиваются его свойства: эфир представляет собой прозрачную, малоинерционную, не имеющую никакой вязкости жидкость из весьма тонкой материи. Её прозрачность делает эфир невидимым (воздух тоже невидим); малоинерционность не позволяет ощутить её динамическое сопротивление (тот же воздух веслом не ощутить); отсутствие вязкости делает её сверхтекучей, а в совокупности с тонкостью материи — всепроникающей; такую жидкость можно назвать идеальной. Она проявляется только в лобовом сопротивлении: потоки эфира могут порождать движения воздуха, то есть ветер, и господство западных направлений ветров на Земле можно объяснить только его действием. Это — ещё одно свидетельство существования эфира.

Только одно признание наличия эфира, как среды, в которой плавают планеты и звёзды, не столь уж и неожиданно: существование так называемого физического вакуума не отрицается никем (а чем это не эфир?), но осмелимся на большее: будем утверждать, что он является основой всего, что кроме него в Природе ничего нет и что атомы построены из эфира. Такое утверждение напрашивается само собой, если принять как догму, что в основе своей Природа проста; сложными становятся только её проявления. Эфир, как однородная жидкость, может быть представлен в виде Эфирного Облака, или в виде громадного завихрения, образующего Солнечную систему, или в виде звёзд и планет, носимых этим завихрением, или, наконец, в виде атомов.

Простота Природы заключается ещё и в том, что эфир состоит из элементарных частиц одной формы и с одними неизменными и простыми свойствами; и всё в нашем Мире построено из этих элементарных «кирпичиков».

 

1.2. Элементарная частица эфира

Элементарная частица эфира представляет собой круглое тело — шарик. Будем считать, что не атом, а этот эфирный или элементарный шарик (ЭШ) является неделимой частицей вещества.

Его характеристика предельно проста: он идеально круглый, идеально скользкий, идеально упругий и обладает инерцией. Его округлость идеальна в том смысле, что, кроме правильной геометрической формы, его поверхность имеет нулевую шероховатость: в какой бы микроскоп мы не смотрели на неё (если это было бы возможно), никаких неровностей не заметили бы. Он скользкий потому, что не испытывает даже малейшего прилипания к другим таким же шарикам, как и он; другими словами: эфирная жидкость, состоящая из этих шариков, не имеет вообще никакой вязкости, и может течь без потери энергии. Идеальная упругость элементарной эфирной частицы выражается в том, что, во-первых, деформация шарика всегда пропорциональна сдавливавшей силе, а во-вторых, любое сжатие происходит без потерь: с какой силой шарик сдавливается, с такой же силой он распрямляется.

Для образного сравнения можно представить элементарную эфирную частицу в виде подшипникового шарика: он также кажется на взгляд идеально круглым, его блеск свидетельствует о зеркальности поверхности, он производит впечатление своей упругостью. И самое главное, может быть, подшипниковые шарики демонстрируют почти идеальные столкновения между собой: сила от любого столкновения всегда направлена нормально к поверхности и проходит через центр шарика; это выражается в предсказуемости поведения шариков при их воздействиях друг на друга. Подобные свойства характерны также для бильярдных шаров и теннисных мячей: если бы их поведение при любых столкновениях не было предсказуемым, не было бы и соответствующих увлекательных игр.

Ещё более идеальны столкновения эфирных шариков. В их среде невозможны хаотичные движения наподобие тепловых движений атомов и молекул.

Элементарные частицы эфира абсолютно независимы: они не признают никакого притяжения и никакого другого воздействия извне, кроме силового давления друг на друга; нет для них никаких гравитационных, электрических, магнитных и иных полей. Эфирный шарик, зажатый со всех сторон такими же, как и он, шариками, не ведает, где он находится (положение в пространстве для него ничего не значит), не имеет представления, есть ли у него скорость или её нет (к движению с постоянной скоростью он безразличен); он реагирует только на давления со всех сторон соседних шариков: эти давления могут быть уравновешенными или неуравновешенными; неуравновешенность возникает в результате действия двух факторов: наличия собственной инерции и неодинакового давления своих соседей.

Точно также чувствует себя человек в тесном вагоне поезда: если у него нет возможности выглянуть в окошко, то он может даже не представлять, где он находится, движется ли поезд и он с ним или нет; он легко смиряется с тем, что стиснут толпой. Выводит его из такого состояния только сосед, вознамерившийся пробраться к выходу и вынужденный толкаться.

О размерах эфирных шариков можно судить, сравнивая их с размерами атомов: самый наименьший из всех атомов — атом водорода построен из пяти с половиной тысяч шариков; атомы тяжёлых химических элементов насчитывают их более миллиона. Из таких соотношений следует, что диаметр эфирного шарика приблизительно равен 3,1 на 10 в минус одиннадцатой степени сантиметра.

Эфирный шарик всеми своими свойствами отвечает критериям вещества: он конкретен, имеет реальные размеры и обладает инерцией; можно даже утверждать большее: только он представляет собой вещество. Про атомы мы должны теперь говорить так: они состоят из вещества. Эфирные шарики являются тем строительным материалом, из которого создаются атомы. В сплошной эфирной среде атомы выделяются как сгустки, точнее сказать, как вихри. От эфирных шариков они наследуют только инерцию. Более подробно эти вопросы рассмотрим несколько позднее.

В заключение скажем, что элементарный эфирный шарик не имеет никакого внутреннего состояния; поэтому он не поглощает внешние движения (тепло) и не выделяет их; он не способен видоизменяться. А так как внутри него не происходят никакие процессы, то не может быть и смены внутренних событий и не требуется их отсчёт. Следовательно, элементарный эфирный шарик не имеет своего внутреннего времени и поэтому он — вечен; можно даже сказать так: эфирный шарик не возникает, не изменяется и не исчезает никогда и ни при каких обстоятельствах.

 

1.3 Плотность эфира

Плотность эфира в Видимом пространстве Вселенной в среднем избыточная. Это означает, что в спокойном состоянии все эфирные шарики частично сдавлены, то есть эфирная среда напряжена; только в таком состоянии эта среда способна нести так называемые электромагнитные волны, и только такая среда может удержать атомы от распада. Избыточная плотность Эфирного Облака является причиной его расширения; известно, что оно разбегается со скоростью 50 ... 100 километров в секунду на каждый мегапарсек (один парсек в 206 266 раз больше расстояния до Солнца).

Усреднённость избыточной плотности следует понимать в том смысле, что она не везде одинаковая: где-то — выше, где-то — ниже, а где-то она полностью отсутствует. Астрономам известны так называемые чёрные дыры, сквозь которые свет не проникает; не трудно предположить, что в них плотность эфира разреженная; а если это так, то и атомы там существовать не могут: не имея сдавливающего окружения, они распадутся.

О неодинаковой избыточной плотности эфира в Видимом пространстве говорит также разброс скоростей его разбегания и уже упоминавшиеся постоянные видоизменения форм галактик и метагалактик. В относительно мелком плане изменение плотности эфира может возникать в результате локальных завихрений эфира: в центрах таких завихрений плотность будет ниже, чем на перифериях. Примером может служить та же Солнечная система: отчётливо закрученный вокруг Солнца эфир более плотный на большом удалении и менее плотный в ближайших окрестностях светила. Можно высказать даже предположение, что чёрные дыры являются центрами подобных завихрений, но уже на поздних стадиях их развития.

Постоянные видоизменения внутри нашего Эфирного Облака могут расцениваться как события, а события предполагают наличие времени, а у времени есть начало. Началом начал Видимого и Атомарного мира было само возникновение избыточной плотности эфира. Сейчас трудно утверждать, в результате чего она возникла, но предполагать мы можем.

Предположим идеальный случай: в пустоте Вселенной плавали два эфирных облака, и в один прекрасный момент они столкнулись; энергия их столкновения ушла на рождение мириад атомов и на повышение плотности эфира во вновь образованном облаке. Такое предположение хорошо тем, что упрощает весь процесс и наши рассуждения о нём. Произойти это событие могло, по мнению учёных, 15 миллиардов лет тому назад.

Как ни заманчив этот вариант, но в него верится с трудом: смущает его идеальность. Тот прекрасный момент столкновения, учитывая размеры возникшего облака и скорость столкновения, пусть даже равную скорости света, должен был длиться так долго, что не хватило бы на это всех тех 15 миллиардов лет. Да и возникшее облако было бы каким-то однобоким: со стороны столкновения плотность эфира и плотность возникших атомов должна была бы быть выше; однако в действительности этого не наблюдается: звёзды распределены в Видимом пространстве более-менее равномерно.

Откажемся от идеального случая и усложним его до столкновений большого количества облаков (может быть даже очень большого количества), но произошедших приблизительно в одно и то же время. Облака могли сойтись с разных сторон в направлении к некоторому центру и за относительно короткий срок сжаться в одно облако. В результате возникло бы шаровидное образование с явно выраженной сферической структурой. Но и этого в Видимом пространстве нет. К тому же, одновременность столкновения большого количества облаков кажется нереальной, если не принимать всерьёз возможность отрицательного взрыва или взрыва в отрицательном пространстве — но такую теорию пусть рассматривают другие.

Остановимся на том, что столкновения нашего Эфирного Облака с ему подобными идут постоянно и происходят они, разумеется, на его окраинах; в результате оно получает постоянную подпитку. Толчки от столкновений не столь значительны, чтобы вызывать сжатие эфира на больших пространствах; а локальные сжатия на окраинах Видимого пространства зарегистрировать современными средствами практически невозможно; поэтому пока нет подтверждений подобных явлений. Трудность обнаружения местных столкновений усугубляется ещё и тем, что после них в тех местах сначала образуются только атомы, потом из них постепенно собираются планеты; но и то, и другое астрономы увидеть не могут. Звёзды же возникают значительно позже, когда рост плотности эфира прекращается и начинается её уменьшение: именно тогда атомы планет могут ускоренно распадаться. Свидетелем окраинных столкновений может быть только рассеянный свет, не имеющий точечных источников, и такой свет до нас доходит.

Переменная плотность эфира характерна не только для субпространств, но и в масштабах, куда как меньших, вплоть до пределов одного атома; в последнем случае она выражена наиболее ярко: уплотнённой оболочке атома противостоит разреженная сердцевина, и этот перепад плотностей удерживает атом от распада. Чем выше плотность окружающего эфира, тем атомы более устойчивы; при этом их абсолютные размеры уменьшаются. Снижение плотности вызывает разбухание атомов и, как следствие, увеличение объёма абсолютной пустоты в них; а пустота определяет гравитационную массу тела. Отсюда — вывод: при снижении плотности окружающего эфира гравитация тел уменьшается.

Если взять Солнечную систему, где плотность эфира нестабильна и зависит от удалённости от самого светила и других планет, то масса гравитации любого тела будет меньше на дальних рубежах и больше при приближении к центрам завихрений. Проще говоря, на космической станции любое тело имеет меньший объём и меньшую массу гравитации, чем на поверхности Земли. Изменение плотности эфира влияет также на изменение скорости света и на его прямолинейность.

Говоря о плотности эфира, мы всегда имели в виду избыточную плотность, но в принципе она может быть нормальной, когда эфирные шарики соприкасаясь не давят друг на друга, или даже пониженной — в случае разреженного расположения элементарных эфирных частиц.

 

1.4. Законы эфирной среды

Принимая элементарную частицу эфира идеально круглой, идеально скользкой, идеально упругой, обладающей инерцией и не испытывающей никаких иных взаимодействий с другими такими же частицами, кроме отталкивания, мы заключили, что, во-первых, среда, собранная из таких частиц, будет вести себя как жидкость, и во-вторых, она будет обладать идеальными свойствами: такая жидкость малоинерционна, не имеет никакой вязкости и, следовательно, никакого сопротивления течению, кроме лобового столкновения, и может быть поэтому охарактеризована как сверхтекучая. На такую жидкость распространяется общеизвестные законы гидравлики, основанные на классической механике в чистом виде.

Для сравнения скажем, что в атомарно-молекулярном мире законы механики в чистом виде практически не действуют: каждый раз приходится учитывать множество поправок. Взять, например, ускорение свободного падения: согласно классической механики такие разные тела, как камень и пушинка, должны были бы падать с равной скоростью, однако на самом деле этого не происходит. Или другой пример: движущееся тело всегда останавливается, несмотря на инерционное стремление продолжать своё движение. У жидкостей наличие вязкости, то есть прилипания атомов и молекул друг к другу, искажает теоретический процесс течения настолько, что в практических расчётах используют только эмпирические зависимости.

Получается так, что классики науки о механике испытывали мучения в раскрытии законов Природы только потому, что имели дело не о первородной эфирной средой, а со средой атомарно-молекулярной, и, разгребая её, доходили до такого уровня, на котором механика представлялась им в виде простейшей математики; это как раз тот уровень, где этой математике соответствует простейший эфир. И никакой иной механики, кроме классической, для описания эфирной среды и микромира вообще не требуется.

Инерция (инертность) в ряду факторов механики стоит на первом месте. Это такое загадочное свойство вещества, которое признано как факт, но не объяснено, и мало надежд на то, что кто-нибудь когда-либо сможет это сделать. Первый закон механики гласит: всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выводит его из этого состояния; в этом проявляется инерция или, другими словами, стремление к сохранению механического состояния.

Применительно к эфиру, точнее — к эфирному шарику, приведённое определение инерции нуждается в некотором изменении. Элементарная эфирная частица, как уже говорилось, зажатая со всех сторон другими такими же частицами, не может быть охарактеризована как находящаяся в покое или в равномерном прямолинейном движении: и то, и другое оценивается выбранной системой координат и является субъективной характеристикой. Одно и то же состояние эфирного шарика может рассматриваться как покой и как равномерное движение в зависимости от выбранной нами системы отсчёта; от этого же зависит определение прямолинейности движения: среди эфирных шариков нет опорных плоскостей и прямых линий (из чего бы они состояли?), и даже луч света, представляющий собой мятущиеся туда-сюда эфирные частицы, не может быть использован в качестве таковых.

В нашем случае лучше сказать так: инерция эфирного шарика выражается в том, что он может испытывать неуравновешенное воздействие соседних шариков, то есть упругая деформация шарика с одной стороны может отличаться в тот же момент от деформации с противоположной.

Инерцию, как свойство, правильнее было бы называть инертностью, а инерция — это уже мера инертности, то есть физическая величина, имеющая размерность; размерностью инерции является килограмм. Будем помнить. Что в эфирной физике инерция не имеет ничего общего с гравитацией; у последней – совсем другая размерность - метры кубические. Гравитация это такой параметр, который определяет тяготение атомарных тел к центру гравитации; и природа тяготения – не притяжение, а выталкивание. К этому вопросу мы ещё вернёмся, а пока сосредоточим своё внимание на инерции.

Второй закон механики устанавливает соотношение между силой, действующей на тело, его инерцией и его ускорением. В окружающей нас действительности в отношении тел, с которыми мы имеем дело, этот закон нуждается в серьёзных поправках, и мы уже говорили об этом. Попробуйте сами толкнуть шкаф и посмотрите, какое ускорение он при этом получит. Если вам не нравится такой грубый опыт, то толкните лодку, но не строго направленно, а случайно, и попробуйте предсказать её поведение — ничего не получится.

И только в эфирной среде Второй закон механики действует безукоризненно; только там не требуется никаких поправок и только там тела (шарики) могут быть представлены в виде точек с сосредоточенными в них массами.

Что касается Третьего закона механики, гласящего, что два тела действуют друг на друга одинаково, то он справедлив везде: и в атомарном мире, и в эфире, — и его универсальность, скорее всего, — философская. Разве не им руководствуется, не ведая того, зажатый в общественном транспорте пассажир, когда урезонивает привередливого соседа: «Я на вас давлю также, как и вы на меня»?

В эфирной среде в идеальном виде предстаёт векторностъ механики, там справедливы законы сохранения энергии и количества движения, и там реализуются в чистом виде все следствия из законов механики, такие, например, как центробежная сила, момент инерции, законы гидравлики и другие.

Для идеальной эфирной среды характерны такие её идеальные формы поведения, которые в атомарно-молекулярном мире просто невозможны. Так отсутствие какого-то ни было трения может породить ярко выраженную неустойчивость без энергетической подпитки её извне; и такое наблюдается у атомов и молекул газов: они как бы пульсируют, и эта пульсация не затухает.

Стоит отметить ещё такое интересное явление, как возникновение вокруг неустойчивых атомов и молекул своих как бы изолированных тепловых полей, на которые не распространяются действия Второго закона термодинамики, гласящего, что теплота смещается от более нагретых участков к менее нагретым.

В атомарно-молекулярной среде, как известно, царствуют хаотичные движения. Они хаотичны потому, что атомы и молекулы имеют неправильные геометрические формы, сильно отличающиеся от сферических, и их столкновения приводят к непредсказуемым последствиям. В их движениях «правит бал» вероятность: каждая частица, если она даже идеально упругая, но имеет неправильную форму, после получения удара от другой частицы совершает такой «кульбит», что упругую сдачу своей обидчице нанести уже не может; её «злость» выливается на иную случайно попавшую под руку частицу. Таким образом, получая удары чаще всего со стороны более нагретого участка, каждая частица не возвращает их назад, а передаёт по законам вероятности в разные стороны, чем способствует перемещению движений, то есть теплоты, в направлении к холодному участку.

Из Второго закона термодинамики следует вывод, обескураживающий учёных: согласно нему температура во Вселенной рано или поздно должна выравняться; хаос движений должен взять верх над порядком, или, как говорят сами учёные, энтропия должна достичь своего наибольшего значения; и это будет концом Жизни.

Эфир тепловых полей неустойчивых атомов и молекул ведёт себя несколько иначе. Правильная, более того — идеально сферическая форма эфирных шариков исключает хаос в их движениях. Эфирный шарик может получить толчок от соседа только в направлении по прямой линии, соединяющей их центры; спружинив он отскочит — ударится в следующий ряд шариков — отскочит и от них — вернётся назад и возвратит полученный толчок в целости и сохранности, то есть в прежней величине и всё по той же прямой линии. В результате движения будут распространяться от источника радиально в виде продольных колебаний прилегающих шариков, амплитуда которых будет уменьшаться в квадратной зависимости от удаления. Указанные возмущения эфирной среды вокруг источника окажутся как бы привязанными к нему; договоримся называть такое поле возмущений стоячим тепловым полем. Оно может сохраняться как угодно долго.

Это не значит, что стоячие тепловые поля - неизменны вообще; всё зависит от поведения источника колебаний. Если источник получает постоянную подпитку, то амплитуда его колебаний будет возрастать, и будет активизироваться его стоячее тепловое поле: оно будет расширять зону своих движений. И наоборот: если источник колебаний теряет свою энергию, то его стоячее тепловое поле сжимается. Равновесие удерживается только при балансе поступающей к источнику и теряемой им энергий. К слову: подпитка и потеря энергии осуществлюется через то же тепловое поле.

Диапазон изменения активности стоячих тепловых полей достаточно широк, но имеет свои пределы. Если баланс энергий источника нарушается и он больше теряет, чем приобретает, то это приводит рано или поздно к успокоению источника — он прекращает свою пульсацию, — и его стоячее тепловое поле исчезает. С другой стороны, при избытке поступающей энергии источник будет увеличивать амплитуду своих колебаний и расширять зону действия своего стоячего поля, но и одновременно начнёт чаще испускать убегающие поперечные волны; в результате очень скоро наступит равновесие, но уже на новом энергетическом уровне; это — временный верхний предел активности теплового поля. Что же касается абсолютного верхнего предела, то он, скорее всего, определяется границей, за которой начинается распад источника колебаний, в частности атома.

На эфирную текучую среду в полной мере распространяется такой общеизвестный закон гидравлики и пневматики, как связь давления со скоростью; он гласит: давление текущей жидкости (газа) больше в тех сечениях потока, в которых скорость его движения меньше, и наоборот, в тех сечениях, в которых скорость его движения больше, давление меньше. Этот закон является всеобъемлющим для эфирной среды, и поэтому его значение трудно переоценить. Его действие распространяется от масштабов гигантских космических завихрений типа Солнечной системы до крошечных, вроде атома и электрона.

Уточним применительно к эфирной среде его формулировку: в нашем случае правильнее говорить не о связи давления со скоростью, а о влиянии движений элементарных эфирных частиц на их избыточную плотность. Это влияние является следствием наиболее общего закона — закона неравномерных деформаций эфирных шариков, который звучит так: чем больше в изолированном пространстве неравномерность деформаций каждого отдельного эфирного шарика, тем меньше суммарная деформация всех шариков. Указанное пространство изолировано в том смысле, что не получает энергию со стороны и не отдаёт её на сторону; таким же можно считать пространство с балансом энергий. Под неравномерностью деформаций будем понимать неодинаковую деформацию эфирного шарика с разных сторон.

Предложенная формулировка закона позволяет, с одной стороны, конкретизировать охватываемое им явление, а с другой — исключить из сферы его действия случай с потоком параллельно движущихся эфирных шариков, в котором они полностью уравновешены (скорость в этом случае возникает как продукт выбора «не той» системы координат).

Чтобы не говорить каждый раз о неравномерности деформаций шарика, заменим её более привычным понятием движения. Для этого у нас есть все основания: неравномерность деформаций говорит о неуравновешенности сил; неуравновешенные силы порождают результирующую силу; она вызывает ускорение эфирного шарика, а ускорение может быть расценено как объективно существующее движение. Все другие движения, определяемые изменением положения или скоростью изменения положения, субъективны и лучше их движениями не называть. Короче говоря, чем больше неравномерность деформаций эфирного шарика, тем больше у него движений.

С учётом сказанного и того, что избыточная плотность эфира определяется степенью деформаций элементарных шариков, можно заключить, что, чем больше у них движений, тем меньше их избыточная плотность. Если теперь мы приравняем избыточную плотность к давлению (то и другое определяется степенью упругой деформации эфирных шариков), то получим рассматриваемый нами закон гидравлики, который звучит теперь так: чем больше движений эфирных шариков, тем меньше их давление.

Исключение составляют так называемые антипараллельные движения, то есть встречные; в них давление не уменьшается, а наоборот, растёт, и происходит это в результате лобового столкновения эфирных шариков. Исключение возникает потому, что в данном случае нарушается принцип изолированности эфирных пространств: встречные потоки являются внешними по отношению к каждому из них, и их движения препятствуют друг другу.

 

1.5. Электроны и атомы

Электроны и атомы представляют собой разные формы микрозавихрений эфира, И те и другие состоят исключительно из эфирных шариков, и никаких иных элементарных частиц в них нет. Кроме набора некоторого количества эфирных шариков для их построения требуются ещё два условия: наличие энергии и избыточное давление эфирной среды. Эти условия создаются и удачно сочетаются в моменты, исключительно важные для истории Вселенной, — в моменты столкновений эфирных облаков; тогда появляются на Свет первичные электроны и атомы; вторичные возникают в результате распада атомов, в частности электроны в основной своей массе появляются именно таким образом, и поставляет их нам в огромных количествах наше светило — Солнце: там распад атомов происходит более интенсивно, чем на планетах.

Электрон. Разберемся сначала с электронами, то есть с теми частицами, направленное движение которых известно как электрический ток. Если заставить три смежных элементарных шарика бегать друг за другом по кругу и ускорять их бег, то при достижении определённой скорости они приобретут устойчивое вращательное состояние; это и есть электрон. Он обречён на существование по двум причинам: его шарики не могут разбежаться, потому что сдавлены по периферии эфирной средой с избыточной плотностью, а остановиться не могут, так как не испытывают никакого трения. В конструкцию электрона, кроме указанных трёх бегающих шариков, входят ещё два торцовых, которые замыкают электрон и как бы являются его осью. В результате получается что-то вроде вращающегося колесика или волчка.

Масса вещества в электроне составляет всего пять эфирных шариков, но его инерция значительно больше их суммарной инерции; и возникает это увеличение за счёт вращения. В результате инерция электрона в пересчёте на принятый эталон массы составляет 9,11 на 10 в минус двадцать восьмой степени грамма.

Средняя плотность эфирных шариков в том пространстве, которое занимает электрон, меньше плотности окружающей эфирной среды. Это следует из закона неравномерных деформаций эфирных шариков: каждый бегающий по кругу электронный шарик удерживается на своей орбите центростремительным ускорением, создаваемым наружным окружением, и поэтому имеет увеличенную деформацию в точках контакта с ним, изнутри же он практически нисколько не сдеформирован, так как его осевые шарики замыкаются сами на себе и на него не давят; отсюда следует, что отмеченная неравномерность деформаций приводит к уменьшению его общей деформации, то есть к уменьшению средней плотности. Менее плотный электрон при наличии градиента эфирного давления будет вытесняться в сторону меньшего давления; и этим объясняется стремление электронов радиационного слоя Земли прорваться в виде молний к её поверхности.

Пониженная средняя эфирная плотность наблюдается не только в границах самого электрона, но и в его ближайших окрестностях: его окружают два накладывающихся одно на другое стоячих тепловых поля. Первое из них создаётся бегающими шариками электрона: каждый из прилегающих шариков получает от них за оборот по три удара, направленных под углом в сторону вращения; в результате прилегающий к электрону слой эфирных шариков совершает небольшую радиальную пульсацию и закручивается в направлении вращения самого электрона. Радиальная пульсация распространяется на последующие слои эфирных шариков с уменьшением амплитуды в квадрате от удаления.

На первое поле накладывается второе; оно вызывается нестабильностью размеров электрона, выражающейся в периодическом изменении его диаметра: его бегающие шарики то удаляются друг от друга, то сближается. Такая неустойчивость вызвана тремя факторами: инерцией, отсутствием трения и противостоянием центробежных и центростремительных сил. Радиальная пульсация электрона порождает пульсирующее поле вокруг, подвижность которого убывает также в квадрате от удаления. Это поле более активное и более объёмное, и оно также закручено в направлении вращения электрона. Впрочем, его активность и размеры не постоянны и зависят от той энергии, которой располагает электрон; если эту энергию каким-либо образом отбирать, то второе стоячее тепловое поле будет съёживаться, а если, наоборот, электрон накачивать энергией (проще говоря — движениями), то оно будет увеличиваться.

Стоячие тепловые поля, если они не сориентированы особым образом, препятствуют сближению электронов; они образуют, своего рода, пружинящие оболочки, отталкивающиеся друг от друга. По этой причине электроны в образном сравнении можно представить пушистыми, как бывают пушистыми детские игрушки: сдавливая их, можно почувствовать, что они пружинят. Пушистые свойства электронов играют существенную роль в электрических и магнитных явлениях, и поэтому мы будем на них в дальнейшем неоднократно ссылаться.

Забегая вперёд, скажем, что атомы и молекулы всех газов также неустойчивы и также окружены стоячими тепловыми полями, как и электроны. Это даёт нам право считать, что электроны представляют собой газ со всеми его свойствами; законы движения электронов строго соответствуют законам пневматики. Сжимая пушистые электроны, можно создавать их давление, и оно — такое же, как давление газов; и это давление в электрофизике называют электрическим потенциалом или напряжением. Поток электронов можно представить в виде потока газа и характеризовать расходом в единицу времени, — это — так называемая сила тока (или просто ток) в электричестве. Сопротивление движению электронов (электрическое сопротивление) равноценно сопротивлению течению газа, а ёмкость ресивера газа подобна ёмкости конденсатора. И даже каналы, по которым движутся газы и электроны, схожи: у газов — это трубопровода, а у электронов — желоба атомов металлов, перекрытые атомами и молекулами изоляторов; отличие только в том, что трубопроводы мы видим невооружённым глазом, а желоба не сможем рассмотреть даже в микроскоп: настолько они малы. Исходя из сходства электронов и газов, можно даже предположить, что электроны, как и газ, можно сжижать; если удалось бы осуществить это на практике, то, наверное, не было бы более энергоёмкого электроаккумулятора. В нормальных же условиях электроны, одетые в свои пушистые оболочки стоячих тепловых полей, не способны ни сжижаться, ни слипаться в твёрдые тела, и поэтому их иногда справедливо называют ещё пылью Вселенной.

И всё же есть у электронов одна особенность, отличающая их от газов: это — их стремление выстраиваться в цепочку. Для более внимательного рассмотрения этого явления представим себе чистое без атомов эфирное пространство с расположенными в нём всего только двумя электронами и отметим про себя, что каждый электрон со своим стоячим полем представляет собой дискообразное эфирное микрозавихрение. Окажись поблизости, оба эти микрозавихрения начнут воздействовать друг на друга таким образом, что будут выстраиваться параллельно с вращением в одну сторону; во всех других случаях они будут мешать друг другу. И как только они расположатся таким образом, так сразу сдвинутся настолько, насколько им позволят торцевые стороны стоячих тепловых полей и осевые шарики; в то же, время они сместятся до соосности. Произойдёт это по той причине, что в результате повышенного движения эфира между их дисками его давление там снизится (скажет своё слово закон неравномерных деформаций), в то время как снаружи оно сохранится прежним, и разность давлений сместит их в направлении друг к другу. По той же причине сближаются два листа бумаги, если продувать между ними воздух. Не трудно сообразить, что соосно расположенные, но встречно вращающиеся электроны будут отталкиваться, так как лобовое сопротивление их потоков создаст между ними повышенное давление.

Стремление к сближению соосных электронов, вращающихся в одном направлении, и к отталкиванию встречно вращающихся есть проявление магнетизма. Сам же электрон является элементарной магнитной частицей; любой магнит выстраивается из этих частиц. Электрон, как магнит, имеет полюса, определяемые направлением вращения: если один его торец вращается в одном направлении, то противоположный, естественно, — в обратном (при взгляде с разных сторон); отсюда — и разные полюса, и абсурдность поисков мономагнитов, имеющих, якобы, только по одному полюсу.

Выстраиваться в осевом направлении могут сколько угодно электронов; при большом их количестве собранная их них цепочка будет представлять собой вращающийся вокруг своей оси шнур — это и есть магнитная силовая линия; магнитные полюса у этого шнура проявляются только на его торцах. Прочность магнитного шнура не столь высока — сказывается помеха осевых шариков, из-за них электроны не могут сблизиться вплотную, — поэтому при незначительных внешних воздействиях шнур рассыпается.

Электрон, в отличие от эфирного шарика, имеет постоянно меняющееся внутреннее состояние, то есть он живёт, и у него, следовательно, есть внутреннее время, а у этого времени есть начало — момент рождения электрона. Ход внутреннего времени, определяемый частотой вращения, изменяется в зависимости от эфирного давления, то есть от избыточной плотности в окружающем эфирном пространстве: чем меньше плотность, тем ниже частота вращения электрона и тем медленнее идёт его внутреннее время. Снижение давления до критического значения, при котором электрон уже не может существовать и распадается, может возникать локально даже при обычных химических реакциях, в частности при горении. Кроме того электроны могут легко быть раздавлены чисто механически атомами и молекулами. В любом случае утверждение современной физики, что электрон очень живуч и что время его жизни в среднем составляет 10 в двадцать второй степени лет, кажется несколько преувеличенным. При распаде электрон порождает расходящиеся в разные стороны два кванта света, то есть две «электромагнитные» волны.

Завершая предварительный разговор об электроне, скажем, что у него не существует никакого мистического электрического заряда; есть только сам электрон — и ничего больше.

Атом. Конструкция атомов несколько сложнее, хотя строится она по тем же законам: возникают атомы, как и электроны, при столкновениях эфирных потоков на больших скоростях. Как это происходит — можно продемонстрировать на примере возникновения хорошо всем известного дымового колечка. Есть такой школьный опыт: наполняют ящик с отверстием дымом и ударяют по задней упругой стенке; при этом из ящика выбрасывается воздушный вихрь в виде кольца. Это и есть прообраз атома. Точно такие же по форме кольцеобразные микрозавихрения, представляющие собой атомы, возникают при столкновениях эфирных потоков, только размеры их несоизмеримо меньше.

В идеальном виде образующиеся кольцеобразные микрозавихрения эфира имеют вид тора с вращающейся оболочкой, состоящей из эфирных шариков. Устройство торовых оболочек атомов можно выразить через электроны. Представим себе магнитный шнур из соосно собранных электронов, вращающихся в одном направлении. Если убрать у них все осевые шарики, мешающие их полному сближению, то шнур окажется чрезвычайно крепким. Замкнув его разнополярные концы, получим торовую оболочку; это и есть атом. Следовательно, торовая оболочка атома состоит из замкнутого ряда строенных, бегающих друг за другом эфирных шариков.

Как и в случае с электроном, остановиться шарики оболочки атома не могут, потому что нет трения, а разбежаться не могут, так как сжаты избыточной плотностью окружающего эфира; по этой причине атомы обречены на существование; правда, одни из них, что покрепче, могут сохраняться долгое время, другие, — менее крепкие, более склонны к распаду.

Самым простым и наименьшим из всех известных является атом водорода: он представляет собой почти идеальный по форме тор; его правильная геометрия хоть и нарушается, но не столь значительно, как у других атомов. Его оболочка состоит приблизительно из 1840 бегающих строенных шариков, поэтому инерция атома водорода во столько же раз больше инерции электрона и составляет в масштабе эталона массы приблизительно 1,6 на 10 в минус двадцать четвёртой степени грамма. Всего в оболочке атома водорода насчитывается приблизительно 5,5 тысяч эфирных шариков. Диаметр сечения тора (у всех атомов это сечение одинаковое) равен диаметру электрона в плоскости вращения его шариков, а диаметр самого тора атома водорода приблизительно в 586 раз больше диаметра элементарного шарика.

Так выглядит атом водорода

Приблизительность, которую мы постоянно подчёркиваем, говорит о том, что атомы водорода могут быть чуть больше или чуть меньше, причём уменьшение его размеров имеет чёткий предел, определяемый упругостью шнура тела атома, а увеличение — теоретически не ограничено и могло бы продолжаться до того размера, когда из атома водорода получится атом следующего химического элемента, то есть гелия; но чрезмерно раздутые атомы водорода оказываются менее устойчивыми и чаще распадаются.

Вращающиеся торовые оболочки атомов закручивают вокруг себя прилегающий эфир, приводя его элементарные шарики в движение, и создают тем самым в нём пониженное давление; перепад давлений стремится сначала сплюснуть тор, а затем, если позволяют его размеры, скрутить его в ту или иную конфигурацию; так образуются атомы всех остальных, кроме водорода, химических элементов и их изотопов.

Процесс скручивания торовых оболочек, может быть, в какой-то степени и случаен, но в общем он подчиняется определённым закономерностям; точнее говоря, случайность сказывается на самом раннем этапе скручивания, то есть даёт толчок скручиванию, а далее события разворачиваются почти что закономерно и могут быть предсказаны логически. Образовавшаяся в результате столкновения эфирных потоков вращающаяся торовая оболочка едва ли будет с самого начала геометрически идеальной: те же эфирные потоки исказят тор уже при его рождении, — в этом как раз и состоит случайность, и этого оказывается достаточно, чтобы начался процесс скручивания.

Допустим, образовавшийся тор имеет диаметр в десятки раз больше диаметра тора водорода. Подвижность эфира, прилегающего к вращающейся торовой оболочке, будет внутри тора больше, чем снаружи; следовательно, внешнее давление попытается сжать тор. Теоретически идеальный тор, если рассматривать его как обычное металлическое кольцо, будет противостоять сжатию, но, оказавшись в силу случайности чуть-чуть сплюснутым, тор потеряет свою устойчивость и станет из кольца превращаться сначала в овал, а потом — в восьмёрку. Края восьмёрки, случайно изогнувшись, начнут далее сближаться уже по закону: между сближающимися краями давление эфира будет всё время падать. Скручивание тора будет продолжаться и далее, при этом могут возникать самые замысловатые конфигурации; и завершится процесс формирования атома только тогда, когда стремящиеся друг к другу участки шнура не придут в полное соприкосновение, а петли на их концах не уменьшатся до минимально допустимого размера, определяемого упругостью шнура. К слову, конечная конфигурация атома будет иметь минимум потенциальной энергии, или, другими словами, зона возбуждённого атомом эфира окажется наименьшей.

Так в общих чертах выглядит процесс возникновения атома и приобретения им своей законченной формы. Этот процесс можно моделировать с помощью того же дымового кольца: все закономерности скручивания атома в равной степени присущи и дымовому кольцу. Разница, пожалуй, состоит только в том, что атом формируется стремительно, по нашим меркам — почти мгновенно, а дымовое кольцо будет скручиваться в течение секунд и даже дольше.

У скрученного атома можно выделить три характерных элемента: петлю, спаренные шнуры и переходную зону. Из них только петля и спаренные шнуры активно участвуют в формировании атома и в соединении атомов между собой; переходные же зоны в этом отношении почти нейтральны. Важно отметить, что все радиусы изгибов шнуров практически одинаковы, и определяются они упругостью шнура; поэтому и формы и размеры петель у всех атомов одни и те же. Обратим внимание ещё на то, что шнуры — всегда парны: их общее количество измеряется чётным числом; так парами они и соединяются в пучки, приобретая при полном сближении устойчивое состояние. Количество петель в атоме в большинстве случаев тоже определяется чётным числом, но бывают и исключения; и характер их соединения несколько иной.

Если, рассматривая петлю, обратить внимание на направление вращения её шнура, то можно отметить, что обе её стороны выглядят по-разному: одна сторона образует как бы всасывающую воронку, а другая — выталкивающую; и ведут себя эти стороны соответствующим образом: всасывающая воронка стремится присосать к себе, а выталкивавшая — оттолкнуть. Самое прочное соединение образуется в том случае, если две петли соединились присасывающими сторонами; при этом их присасывающие способности полностью нейтрализуются. Но не все петли атома имеют возможность состыковаться друг с другом — иногда конфигурация не позволяет, — и тогда их присасывающие воронки остаются открытыми для соединения с воронками других атомов; в результате образуются межатомные связи. Атомы, соединённые между собой присасывающими воронками, образуют очень прочную молекулу. Открытые петли атомов с присасыващими сторонами образуют одну из разновидностей химической валентности; это, пожалуй, — самая главная валентность и самая чёткая из них: она либо есть, либо её нету.

Другим видом валентности является жёлоб, то есть присасывающая сторона спаренных шнуров. У них направления вращения — всегда встречные, или как говорят механики — паразитные; иначе и быть не может: только при таких направлениях вращения шнуры будут стремиться к сближению. В пучок могут входить два, четыре и другое чётное число шнуров; и на каждую пару будет приходиться один присасывающий жёлоб: у двух сблизившихся шнуров он — один, у четырёх — два, и так далее.

С помощью присасывающих желобов атомы могут соединяться друг с другом. Такая способность — то же валентность, но в отличие от петлевой у жёлоба она не столь однозначна: соединение желобов разных атомов между собою может быть самым замысловатым. Решающее значение имеет длина жёлоба: чем он длиннее, тем больше у него возможностей присоединить к себе несколько более коротких желобов (при условии, если конфигурация атома позволяет это сделать), тем, разумеется, выше его валентность. Сказывается и удобство соединения: если жёлоб ничем не загорожен, то он открыт для свободного соединения; если же он расположен не столь удачно, то и возможностей для соединения у него меньше; совсем же закрытые желоба в соединении атомов не участвуют. Петли и желоба между собою не контактируют.

Наиболее агрессивны те атомы, у которых имеются полностью открытые присасывавшие петли; такие атомы стремятся соединиться с любыми другими атомами, имеющими подобные петли. С ними очень легко соединяется водород: форму его атома также можно считать петлевой. Если атомы имеют достаточно много присасывающих участков — желобов и петель, — то они могут объединяться в большие колонии, образуя тем самым твёрдые тела и в том числе кристаллы. Если же атомы и молекулы соединяются между собой только желобами и эти соединения непрочны, то при определённой своей активности они ведут себя как жидкости, то есть имеют возможность смещаться относительно друг друга. По этому признаку металлы могут быть причислены также к жидкостям: их атомы соединяются исключительно желобами, а прочность соединений уменьшается с ростом температуры.

Особым образом ведут себя атомы и молекулы газов. Нельзя говорить, что они не имеют или имеют слабовыраженные присасывающие участки и поэтому, дескать, не слипаются. Причиной их особого поведения является наличие вокруг каждого из них стоячего теплового поля, о котором уже упоминалось выше. Атомы и молекулы газов неустойчивы и пульсируют, возбуждая вокруг себя прилегающее эфирное пространство; это делает их «пушистыми», и они никак не хотят сближаться. Преодолеть «пушистость» атом или молекула газа может только под действием внешнего толчка; поэтому-то газы вступают в реакцию только при высоком давлении, при высокой температуре, под действием жёсткого излучения и при других подобных воздействиях.

Возвращаясь к твёрдым телам, отметим, что их поверхностный слой атомов остаётся неприкрытым: присасывающие участки этих атомов сохраняются оголёнными; поэтому поверхность тел всегда активна. И иногда эта активность принимает формы агрессивности, как например у кристаллов бора. И только вездесущие электроны умеряют пыл такой агрессии: они буквально облепляют оголённые петли и желоба и практически нейтрализуют их.

Взаимоотношения электронов и атомов не ограничиваются только налипанием на присасывающие места поверхностей тел; электроны, как очень мелкие частицы, способны проникать внутрь тел и даже внутрь отдельных атомов и застревать там; ведь и атомы сами по себе, и тела из них представляют собой решётчатые (пористые) конструкции с относительно большими ячейками.

Особые отношения у электронов с атомами металлов. У последних присасывающие желоба тянутся по всему периметру и замыкаются сами на себе; поэтому прилипшие к ним электроны могут совершать безпрепятственные передвижения вокруг атомов; а с учетом того, что атомы металлов соединяются между собой теми же желобами, то у электронов есть возможность, перепрыгивая с атома на атом, легко смещаться вдоль всего тела; это уже — электрический ток. Для сравнения: электрон, попавший в присасывающую воронку петли атома диэлектрика, чувствует себя как в западне: выскочить ему оттуда нелегко и смещаться вдоль тел, состоящих из подобных атомов, он не может. Для того, чтобы оторвать от присасывающей петли атома прилипший к ней электрон, требуется определённое усилие (иногда оно, правда, небольшое), и также нелегко отрывается электрон от желобов металлов (а смещается вдоль по ним, повторим, очень и очень легко).

Металлы отличаются ещё и тем, что в конфигурациях их атомов практически нет прямых участков — атом металла похож на клубок редко намотанной пряжи, — поэтому эфирные волны легко отражаются от их поверхностей, создавая характерный блеск. Атомы других материалов, как правило, имеют прямые участки жгутов и по-другому реагируют на эфирные волны: они их поглощают и возвращают в эфир уже с собственной частотой; они «звучат» на разных частотах, как натянутые струны различной длины; этим самым определяется цвет материалов.

Об инерции атома водорода мы уже говорили; инерции атомов других химических элементов могут быть определены из пропорции их атомных весов. Инерция атомов – величина неизменная, чего нельзя сказать про гравитацию. Учитывая, что возмущённый атомными вихрями прилегающий эфир насыщается дополнительной пустотой, гравитация в результате окажется несколько большей. У разных атомов эта прибавка разная, и зависит она от конфигурации атомов.

С гравитацией атомов связано и такое понятие, как их вес. Долгое время мы считали, что он определяется двумя факторами: собственной массой и притяжением планеты. Теперь мы говорим, что притяжения нет совсем, а масса может быть либо инерционной, либо гравитационной. Вес атома, в нашем представлении, определяется его массой гравитации и градиентом эфирного давления.

Из всего сказанного про вес атома следует несколько неожиданные на первый взгляд выводы: во-первых, не планета притягивает атом, а космос выдавливает его в направлении к центру планеты, и во-вторых, чем больше атом, тем он, условно говоря, легче. Давайте на этом пока остановимся и договоримся вернуться к более детальному рассмотрению понятия веса несколько позже.

Завершим наше знакомство с атомами констатацией того, что у них, как и у электронов, есть своё внутреннее время, и объясняется это также тем, что у атомов есть постоянно изменяющееся внутреннее состояние, выражающееся во вращении его оболочки. Есть у времени атома и точка отсчёта, когда он возник, и есть конец его существованию, когда он распадается или трансформируется в другой атом. Распад атомов может происходить по двум причинам: во-первых, в результате снижения избыточной плотности окружающего эфира до критического значения, и тогда ничего от атома не останется; и во-вторых, в результате силового разрыва; при этом шнур тела атома может оказаться разорванным на несколько кусков, самых различных по величине. Крупные фрагменты шнура, если им позволит их длина, замкнутся в кольца и превратятся снова в атомы или изотопы, но уже других химических элементов. Те части, что помельче, будут стремиться при любом подходящем случае состыковаться между собой в конце концов также замкнуться в кольцо. Но а те мелкие обрывки, что не смогли этого сделать, так и останутся сами собой. Можно даже представить, как ведут себя эти неприкаянные куски вращающихся шнуров: испытывая крайнюю продольную неустойчивость, они будут извиваться подобно червям. О них можно сказать еще то, что их форма и поведение соответствуют магнитной силовой линии.

Самыми мелкими частями разорванных атомов будут электроны. Если же и они окажутся разрушенными, то ничего кроме квантов света от них, как мы уже говорили, не останется. Все эти виды обрывков атомов в огромных количествах извергаются Солнцем и как ветер разносятся по космосу; часть этого солнечного ветра достигает Земли и оседает в верхних слоях её атмосферы.

 

2. Космические метазавихрения эфира

 

О движениях эфира в космических масштабах, то есть во Вселенной, а точнее говоря, в Видимом пространстве, уже вскользь говорилось: мы сравнивали поведение Эфирного Облака с поведением обычного летнего грозового облака. Вернемся к этому вопросу ещё раз и рассмотрим его более внимательно. Нашей целью должно стать уяснение законов космического бытия на основе эфирной теории. Будем иметь в виду, что всё Видимое пространстве заполнено прозрачной, очень текучей и очень плотной жидкостью, именуемой эфиром, а все видимые космические объекты, в частности звёзды, — лишь относительно мелкие вкрапления в эту жидкость; их расположение и их перемещения свидетельствуют о внутреннем состоянии нашего Эфирного Облака; не будь их — и мы никак не смогли бы зарегистрировать течения той прозрачной жидкости, какой является эфир. Так по перемещению плавающего мусора мы судим о течении воды в реке или по кружащимся сухим листьям — о воздушных вихрях: ни саму воду, ни, тем белее, воздух при этом мы не видим.

 

2.1 Галактические формообразования

Галактические скопления являются наиболее крупными формообразованиями Видимого пространства; о их размерах можно судить только в сравнениях: одна наша родная Галактика, куда входит мельчайшей частицей вся Солнечная система, составляет менее одной миллиардной части всех галактик. Структура галактических скоплений отражает как раз те процессы, которые происходили и происходят в настоящее время в Космосе.

Человеку, не искушённому в астрономии, звёздное небо почти ни о чём не говорит: он видит в нём равномерно распределённые мириады мерцающих звезд, и всё; выявить среди них определённый порядок или какие-либо особенности он не может. Но астрономы читают небо как книгу; и то, что касается галактических скоплений, приведено ими в систему.

По внешнему виду галактики разделены астрономами на эллиптические, спиральные, линзовидные и неправильные. Объяснить трансформацию этих форм можно только исходя из эфирной теории. Любые столкновения нашего Эфирного Облака с другими облаками, происходившими ранее и происходящими в настоящее время порождали и порождают самые различные формообразования; роднит их текучесть эфира: достаточно представить, что видимые нами звёзды плавают в эфире, и сразу становятся понятными, казалось бы, самые замысловатые формы звёздных скоплений.

Проведём такой опыт: в большей чан с водой будем подливать малыми порциями подкрашенную жидкость; ещё лучше, если подливаемые жидкости будут иметь различные цвета, и станем наблюдать за потоками; струи подкрашенных жидкостей будут перемешиваться между собой и с прозрачной водой самым замысловатым образом. Наверняка среди всевозможных формообразований мы обнаружим и эллиптические, и спиральные, и линзовидные, но будут там, скорее всего, и неправильные формы. Видоизменения внутренних течений будут определяться целым рядом факторов, таких как направление потоков при столкновениях, объём и энергия подливаемых порций, наложение течений и другие, — и будут они в большей степени случайными, чем закономерными. И тем не менее все потоки со временем как-то стабилизируются и приобретут свои характерные очертания.

То же самое происходит и в Космосе, где каждая галактика может рассматриваться как результат когда-то произошедшего столкновения эфирных облаков. По характерным особенностям галактик можно судить об относительном времени их рождения, об энергии столкновения в момент их возникновения и о других паспортных данных.

Эллиптические галактики имеют не очень чёткие эллиптические формы с разбросом от сферических до сильно вытянутых. Более того, фотометрические исследования показали, что они вообще не являются эллипсоидами вращения, а больше похожи на трёхосные эллипсоиды. Нечёткая геометрия форм говорит о том, что в них не сказываются центробежные и центростремительные силы, и это подтверждают спектроскопические исследования: вращаются они довольно медленно. Инерционные массы эллиптических галактик составляют от 100 миллионов до 10 триллионов масс Солнца; самые крупные из них выглядят как изолированные объекты в Видимом пространстве. Их звезды имеют красноватый цвет и относятся к типу красных гигантов. Содержание тяжёлых химических элементов в них больше, чем в звёздах нашей Галактики. Среди эллиптических галактик встречаются и такие, у которых межзвёздное пространстве заполнено больше обычного газом и пылью и которые выделяются своим мощным радиоизлучением. Всё это говорит о том, что эллиптические галактики относятся к разряду относительно молодых. Лишним доказательством этого является то, что новые звёзды в них в настоящее время не образуются, то есть еще не пришло их время.

Старше эллиптических кажутся линзовидные галактики; их форма занимает как бы промежуточное положение между эллипсоидами и спиральными образованиями, то есть они уже раскрутились до линзовидности, но ещё не выродились в спирали с рукавами. Их звезды относятся также к разряду красных гигантов; красноватыми выглядят и сами галактики. Красноватый цвет свидетельствует о наличии в межзвёздном пространстве газа и пыли и о начальной стадии горения звёзд. Звездообразование в линзовидных галактиках не отмечено; значит, они ещё находятся в зоне с большой и стабильной избыточной плотностью эфира, и по этой причине их никак нельзя отнести к старым галактикам.

Больше всего нас должны интересовать спиральные галактики, так как в одной из них, а именно — в Млечном Пути, расположена наша Солнечная система. По всем данным Млечный Путь, как и другие спиральные галактики, не относится к молодым галактикам, об этом говорит его развитая спиральная форма с рукавами. Он представляет собой вращающийся диск диаметрам около 100 000 световых лет; толщина диска — около 1000 световых лет. Звёзды диска движутся по концентрическим орбитам; скорости их движений распределяются следующим образом: чем ближе к центру, тем они меньше; но при удалении от центра растут только до определённого значения, а дальше сохраняются постоянными. Такое распределение скоростей не относит Млечный Путь к завихрениям типа водоворота, а это значит, что характерные для вращения центробежные и центростремительные силы из-за своей малости практически никак не определяют формы спиральных галактик, и в том числе — Млечного Пути. Характером своих скоростей они больше напоминают завихрения эфира, создаваемые электромагнитными катушками.

О немолодом возрасте Млечного Пути свидетельствует также цвет звёзд — он голубоватый; это значат, что звёзды дожигают последние химические элементы. О том же говорит и интенсивное звёздообразование в центре Млечного Пути, в так называемой балдже. Содержание всех прочих химических элементов в нём, кроме водорода и гелия, составляет около одного процента, то есть они уже там практически распались. Но самое бурное звёздообразование происходит в центре балджа, где расположено созвездие Стрелец А; это — естественно, так как плотность эфира всегда наименьшая в центрах любых завихрений, и там происходит ускоренный распад атомарно-молекулярного вещества. Некоторые специалисты считают этот центр даже чёрной дырой. К сведению — он находится на расстоянии 28 400 световых лет от Солнца в направлении созвездия Стрельца.

Самые старые галактики имеют неправильные формы; объяснять это можно тем, что они уже выродились и приостанавливают свои движения. Плотность эфира в них уже снизилась настолько, что бурный распад всех химических элементов приводит к чрезвычайно активному звёздо-образованию в них. Об отсутствии тяжёлых химических элементов в неправильных галактиках говорит и их голубоватый цвет. Инерционные массы этих галактик уже стали значительно меньше других и составляют всего около 100 миллионов масс Солнца.

 

2.2. Завихрения эфира вокруг планет и звезд

По-иному ведут себя завихрения эфира, в центрах которых располагаются планеты и звёзды; это достаточно крупные по космическим меркам формообразования, но они в то же время значительно меньше галактик. Примером одного такого завихрения может служить завихрение вокруг Солнца.

Само Солнце является обычной звездой, одной из двухсот миллиардов ей подобных в нашей Галактике; его гравитационное поле преобладает над действием соседних звезд в пределах расстояний до 50 000 астрономических единиц (1 а. е. = 149 597 870 км). Наличие гравитационных полей как раз и отличает эти эфирные завихрения от галактических формообразований.

Точнее говоря, гравитация есть везде во Вселенной, но в масштабах галактик главным фактором, определяющим форму их движений, является не она, а энергия столкновения эфирных потоков, в то время как в масштабах отдельных планетных и отдельных звёздных систем законы эфироворотов (подобие водоворотов), в основе которых лежит гравитация, являются определяющими. Гравитация, выраженная в центростремительных силах, может существовать только тогда, когда есть центробежные силы, а они ощутимы только в том случае, если имеется определенное сочетание скорости и удаления от центра: чем больше скорость движения и чем меньше удаление от центра вращения, тем сильнее гравитация. В галактиках удалённость периферийных звёзд от центра настолько велика, что ни о какой реальной гравитации говорить не приходится. Да и межзвёздные расстояния в них в основном таковы, что исключают гравитационное воздействие друг на друга: ближайшая в Солнцу звезда Альфа Кентавра находится на расстоянии 250 000 астрономических единиц, что в 2,5 раза больше размеров гравитационного поля Солнца.

Обратим внимание на то, что гравитация в предыдущих рассуждениях рассматривалась не как притяжение космических тел — планет и звёзд, — а как центростремление; и такое изменение понятий рождено эфирной теорией.

Договоримся называть завихрения эфира вокруг планет и звёзд метазавихрениями (атом — тоже завихрение эфира, но — микроскопическое) и рассмотрим их более подробно. Сначала выявим причины их возникновения.

Первой причиной является само исходное столкновение эфирных облаков, то самое, которое создает избыточную плотность эфира, порождает электроны и атомы и энергии которого достаточно для того, чтобы возмутить прилегающее эфирное пространство. Не трудно себе представить, что в хаосе возникновения самых разнообразных по форме, величине и распределению относительно мелкомасштабных завихрений будет наблюдаться некоторая их упорядоченность: так основной формой, скорее всего, будет дискообразность, причём близлежащие диски завихрений будут выстраиваться в параллельность; кроме того относительно мелкие завихрения могут располагаться на «склонах» более крупных; при этом и базовые и спутниковые завихрения будут иметь ту же самую параллельную ориентацию (диск спутникового завихрения не может встать перпендикулярно диску базового).

Примером сочетания базовых и спутниковых дискообразных метазавихрений может служить Солнечная система: эфироворот вокруг Солнца является базовым по отношению к завихрению вокруг Земли; последнее в этом случае будет спутниковым, но по отношению к лунному эфировороту оно же выступает как базовое.

Метазавихрения эфира, возникшие на самых ранних стадиях возникновения избыточного эфирного давления и рождения атомарного мира как следствие столкновения эфирных облаков, можно назвать реликтовыми. Такими можно считать, по нашему мнению, метазавихрения вокруг Солнца, Сатурна, Юпитера, но не вокруг Земли и Луны; последние метазавихрения возникли по другой причине — как производные от случайно возникших на склонах реликтовых метазавихрений новых планет.

Возвращаясь к моменту столкновения эфирных облаков, отметим ещё раз, что сопровождалось это явление возникновением атомов и света, причём и то и другое носило особый рассеянный характер: свет не имел точечных источников, а атомы представляли собой пыль. И только возникновение метазавихрений явилось началом образования крупных космических тел, то есть планет (звёзды появились позднее): метазавихрения стягивали пыль к своим центрам и уплотняли ее до твёрдого состояния. Чем крупнее было метазавихрение, тем больше оно стягивало к своему центру космическую атомарно-молекулярную пыль; так рождались планеты и так они оказались в центрах метазавихрений.

 

2.3. Что крутит метазавихрения?

Разобравшись с возникновением реликтовых метазавихрений, попытаемся обосновать их высокую живучесть: на первый взгляд кажется странным, как они могли сохраниться до наших дней, испытывая сопротивление окружающей среды и трение внутри самих себя; вся их энергия, казалось бы, должна была трансформироваться в теплоту атомарно-молекулярных тел; однако этого не произошло. Почему? Ответ будем искать в распаде только что созданных атомов; именно он удерживает метазавихрения, подпитывая своей энергией их вращение и даже раскручивая их.

На Земле, а точнее — на поверхности Земли, сохранилось около сотни химических элементов, то есть около сотни устойчивых атомных формообразований; с учётом других разновидностей устойчивых и не совсем устойчивых элементов — изотопов и изобаров — общее число едва ли превышает три сотни. А в момент рождения их было — тысячи и тысячи, и подавляющее большинство из них не дожило до наших дней — распались. В пересчёте на объём (или вес) трудно даже себе представить, сколько земного вещества таким образом исчезло.

В результате распада атомов планеты «худеют», то есть уменьшаются в своих размерах; при этом их средняя эфирная плотность снижается. Объяснить это можно тем, что средняя эфирная плотность атомов ниже плотности окружающего эфира, но атом за счёт организованных движений удерживает своё пространство и противостоит давящему на него окружению. При распаде же движения элементарных шариков атома теряют свою организованность и уходят с волнами, а на месте атома остаются лишь успокоившиеся шарики; в прежнем объёме их плотность оказывается пониженной. Большое количество распадающихся атомов понижает, таким образом, эфирную плотность (эфирное давление) внутри самой планеты и служит причиной массового движения эфира, направленного из космоса к её центру. Эти течения эфира одновременно и провоцируют и поддерживают метазавихрения.

Хорошей физической моделью метазавихрений может служить водоворот. Наполним ванну водой и вращательным движением руки заставим её кружиться — получим завихрение. В круглых сосудах вращение жидкости может продолжаться довольно долго; в некруглых — быстро затухает, но и там и там оно рано или поздно исчезает; это естественно. Но стоит нам только открыть сливное отверстие, как завихрение оживится и приобретёт напряжённую форму водоворота. Следовательно, главным фактором устойчивого существования водоворота являются утечки через сливное отверстие. Чтобы лишний раз убедиться в этом, перекроем слив — и мы увидим, как водоворот скоро остановится; откроем слив — водоворот оживится; прикроем частично слив — завихрение начнёт успокаиваться; откроем его максимально — водоворот забурлит.

Если даже воду предварительно не раскручивать и открыть слив при её спокойном состоянии, то, спустя некоторое время, утекающий поток сам собой всё равно закрутится в водоворот, то есть утечки спровоцируют завихрение. Направление вращения такого водоворота определится случайным образом; главное, что у него есть причина возникновения. Для того, чтобы убедиться в том, что водовороты безразличны к выбору направления вращения, можно любой сложившийся из них заставить изменить своё направление обратным силовым раскручиванием рукою: в первый момент прежний водоворот окажет некоторое сопротивление вашей руке, но потом смирится и повернёт в обратную сторону.

Провоцирующая роль распада атомов выражается в том, что, если в некоторой точке Пространства со спокойным эфиром внезапно появится тело, часть атомов которого склонна к распаду, то устремившийся к этому телу эфир рано или поздно сорвётся в завихрение. Подобным образом возникли, по нашему мнению, метазавихрения Земли, Луны и некоторых других планет; распад сыграл в них роль утечек.

 

2.4. Тяготение

Выше мы заявили, что метазавихрения стягивают к своим центрам атомно-молекулярную пыль; наверное, также стягиваются к центрам любые тела, даже самые большие, ведь их природа — тоже атомарно-молекулярная. Этим же объясняется и то, что в условиях Земли, то есть вокруг нас, все предметы падают только вниз, в направлении к центру планеты; при этом создаётся иллюзия того, что тела притягиваются Землёй, хотя на самом деле никакого притяжения нет: не планета притягивает тела, а эфир выталкивает их в направлении к ней, а точнее — к центру метазавихрения, в котором находится она. Поэтому, собственно, и собралась сама планета, что всё вещество, её составляющее, было когда-то собрано метазавихрением в своём центре.

Пузырёк воздуха в воде устремляется вверх не потому, что его притягивает атмосфера, а в результате выталкивания его более плотной, чем он, водой. Всякое физическое притяжение, будь оно гравитационным, магнитным, электрическим или неким внутриядерным, не может быть объяснено здравым смыслом; не очень убедительны и физические опыты, якобы доказывающие существование притяжения; а что касается очевидного падения тел вниз, то столь же очевидны и подъемы некоторых из них вверх, например деревяшки в воде или наполненного водородом шарика.

Говоря так, мы посягаем на, пожалуй, самое фундаментальное физическое явление — на Всемирное Тяготение и на Притяжение вообще. Как ни печально осознавать, но это так: никакого тяготения в смысле физического притяжения в природе нет и быть не может. Правда, термин «тяготение» можно истолковать как «стремление», и поэтому он нас должен устраивать, как, впрочем, и термин «гравитация», но только — не как «притяжение».

До сих пор мы почти голословно утверждали, что атомы и молекулы, имеющие пониженную эфирную плотность (они все имеют пониженную плотность), будут стягиваться к центрам метазавихрений. И каждый из нас может в подтверждение этого сослаться на свой повседневный опыт: в водоворотах (в той же ванне или на реке) лёгкие тела всегда кружатся в их центрах, причём более лёгкие располагаются всегда ближе к ним: «виноватой» оказывается относительная плотность.

В метазавихрениях проявляется то же самое; и точно также тела с более низкой эфирной плотностью выталкиваются к их центрам с большей силой. Говоря о плотности, мы всегда подчёркиваем, что эта плотность — эфирная, в отличие от хорошо всем известной атомарно-моле-кулярной; и эти две плотности как бы противостоят друг другу: чем больше атомарно-молекулярная плотность тела, тем меньше плотность эфира в нём. Свинец, известный нам как металл с большей плотностью, в среде эфира менее плотен, чем, например, вода; и поэтому он вытесняется к центру метазавихрения (к центру Земли) с большей силой, чем вода, то есть в воде свинец тонет.

Выталкивающая способность метазавихрений объясняется тем, что эфирная плотность на их перифериях больше, чем в центрах, где она, как было оказано, снижается за счёт распада атомов. В таком поле с переменной эфирной плотностью атомы будут вытесняться в сторону её понижения, так как их средняя эфирная плотность ещё ниже. К слову: если бы в природе существовали образования типа атомов с повышенной эфирной плотностью, то они устремлялись бы, наоборот, от центра к периферии, то есть в земных условиях они поднимались бы сами собой вверх. Но таких образований нет и быть не может, а если бы и были, то давно улетели бы от нас.

 

2.5. Распределение скоростей эфира в метазавихрениях

Если мы убедили себя в том, что основой так называемого тяготения является переменная плотность эфира, возникающая в метазавихрении, то не мешало бы выявить зависимость этой плотности от удалённости от его центра.

Чтобы не усложнять задачу, будем рассматривать не наложение друг на друга нескольких метазавихрений, например лунного и солнечного на земное, а одиночное, полностью изолированное от других. На сравнительно большом удалении от его центра плотность эфира, надо полагать, будет наибольшей; она определится текущим моментом Пространства (в результате расширения Эфирного Облака плотность в нём, естественно, постоянно снижается). С дальней периферии эфир будет направляться к центру, и причиной этого явится, как мы уже не раз говорили, распад в этом центре атомарного вещества. Будем считать, что поток этот неизменен (хотя на самом деле он тоже постоянно меняется) .

По мере приближения к центру скорость эфира будет расти, так как сечение этого потока — поверхность сферы — будет постоянно уменьшаться. Ещё большее увеличение скорости будет происходить за счёт спирального движения, увеличивающего путь эфира.

Примем закон изменения скорости эфира в метазавихрении таким же, как в водовороте в той же ванне при открытом сливном отверстии: она пропорциональна утечкам и обратно пропорциональна корню квадратному от удаления от края отверстия. В нашем случае этот закон звучит так: скорость эфира в любой точке экваториальной плоскости метазавихрения пропорциональна распаду атомарного вещества в центре и обратно пропорциональна корню квадратному от расстояния до него. Его справедливость хорошо подтверждается астрономическими параметрами движения планет в Солнечной системе. Если принять такую постоянную величину метазавихрения, как произведение коэффициента пропорциональности на утечки эфира (в результате распада атомов на Солнце), равной 364 375,386 километров в степени три вторых, поделённых на секунды, то получим с учётом удалённости от Солнца следующие расчётные значения скоростей для планет в километрах в секунду:

Уран - 6,802 (для сравнения: действительная скорость равна 6,81);

Сатурн - 9,646 (действительная - 9,64);

Юпитер - 13,061 (действительная - 13,06);

Марс - 24,137 (действительная - 24.13);

Земля - 29,791 (действительная - 29.79);

Венера - 35,029 (действительная - 35,02);

Меркурий - 47,886 (действительная - 47,89).

Сходимость, как мы видим, более чем достаточная. Отсюда можно заключить, что все планеты движутся в метазавихрении Солнца в среднем со скоростями окружающего их эфира, как движутся со скоростью ветра облака на небе. Некоторое несоответствие скоростей эфира и планет может возникать в результате движения последних не по идеальным круговым орбитам, а по эллиптическим. И такое несоответствие, например, у Земли порождает сезонные изменения направлений экваториальных ветров — муссоны: летом они дуют с запада на восток, а зимой — в обратном направлении.

Причины их возникновения таковы. Двигаясь по эллиптической орбите, Земля зимой (в декабре) оказывается максимально приближённой к Солнцу, а летом (в июне) — максимально удалённой от него. Скорость Земли практически постоянна: наша планета слишком инерционна, чтобы существенно менять свою скорость в течение полугода, — а скорость эфира в метазавихрении, как мы показали, увеличивается по мере приближения к центру, в данном случае — к Солнцу. Поэтому летом, двигаясь в менее скоростном эфире, Земля обгоняет его, а зимой — отстает от него. Можно сказать по-другому: зимой метазавихрение Солнца разгоняет Землю, а летом — тормозит.

Учитывая то, что собственное метазавихрение Земли имеет направление вращения точно такое же, как и у Солнца, а именно — против часовой стрелки (глядя с севера), не трудно сообразить, что попутный зимний эфирный ветер, огибая собственное метазавихрение Земли, будет уходить на большее удаление от Солнца, встречный летний — будет приближаться к Солнцу. По закону сохранения количества движения попутный зимний ветер, удаляясь от центра вращения, уменьшит свою скорость и окажет тормозящее воздействие на метазавихрение Земли; а оно, в свою очередь, станет притормаживать воздух атмосферы, создавая тем самым ветер с направлением с востока на запад. Встречный летний эфирный поток, приближаясь к центру своего вращения, наоборот, увеличит скорость и станет раскручивать метазавихрение Земли, а через него усилит атмосферный ветер, дующий с запада на восток. И каждое полугодие экваториальные ветры меняют свое направление на обратное.

Точно такие же муссоны встречаются и на других планетах, причём, чем больше эксцентриситет орбиты планеты, тем они сильнее. Эксцентриситетом измеряется эллипсность орбиты: он равен разности наибольшего и наименьшего расстояний планеты от Солнца, отнесённой к большей оси орбиты. У Земли эксцентриситет равен 0,0167. Для сравнения: у ближайшей к нам планеты — Марса он почти в 6 раз больше и составляет 0,0934; и это отражается на силе его муссонов: бури, которые они вызывают, поднимают с поверхности Марса пыль и покрывают ею поверхность так, что изменяют внешний вид планеты до неузнаваемости. Большей эксцентриситет у Юпитера (0,0485) и у Сатурна (0,0556), и у обеих планет обнаружены чрезвычайно сильные ветры, дующие попеременно то в западном, то в восточном направлении, причем у Сатурна они — более мощные. Но самый большой эксцентриситет у планеты Меркурий — 0,2056; на нём муссоны по теории должны быть самыми сильными, но спасает планету от них отсутствие на ней атмосферы.

Говоря о метазавихрениях, следует иметь а виду, что закономерность изменения скорости в зависимости от радиуса распространяется не на всё пространство вокруг центра и даже не на диск метазавихрения, а только на его экваториальную плоскость. В слоях диска, удалённых от этой плоскости, характер завихрений изменяется; и чем больше смещение от экватора, тем сильнее изменение, а в полярных областях эфирные потоки приобретают совсем иные движения: сначала они разбегаются спирально от центра, закручиваются в полярном направлении, а потом возвращаются и как бы обдувают полюса; этим можно объяснить особенность полярных ветров на Земле, дующих вертикально из космоса и охлаждающих её полюса. Но в экваториальной плоскости диска метазавихрения закон водоворота, определяющий его скорости, действует идеально.

 

2.6. Распределение плотности эфира в метазавихрении

Увеличение скорости эфира, которое наблюдается при приближении к центру метазавихрения, может происходить только при наличии его ускорения, а ускорение возможно только в результате действия силы. Следовательно, каждый эфирный шарик в потоке будет испытывать усиленное давление со стороны периферии и уменьшенное — со стороны центра метазавихрения. Такое неуравновешенное состояние шариков говорит о наличии их движения; и эти движения являются причиной уменьшения плотности эфира (в соответствии с законом неравномерных деформаций). Если бы эфирный поток двигался к центру без ускорения, то есть с постоянной скоростью, то уменьшения плотности эфира не происходило бы.

Отсюда следует, что плотность эфира в любой точке метазавихрения уменьшается по сравнению с наибольшей на величину, пропорциональную распаду атомарного вещества в центре и обратно пропорционально расстоянию от него.

Эта закономерность справедлива только в общем и требует некоторых уточнений в частностях. Так её действие не распространяется в чистом виде на пространство, занятое ядром метазавихрения, то есть телом планеты или звезды, расположенном в центре: молекулы и прочие атомарные образования тела оказывают очень большое лобовое сопротивление эфирному потоку, пытающемуся проникнуть в центр и разрушают тем самым строгую геометрию завихрения. На протяжении от поверхности планеты или звезды до её центра плотность эфира, заполняющего межатомные пространства, изменяется по очень сложному закону и зависит от многих индивидуальных особенностей центрального тела: от его атомарного состава, от выраженной слоёности в нём, от наличия жидкой фазы внутри и от других. Но в любом случае можно утверждать, что эфирная плотность в центре планеты или звезды всегда меньше, чем на её поверхности.

А это значит, что скорость распада химических элементов, зависящая от плотности окружающего эфира, не постоянна и увеличивается по мере приближения к центру; в центре она — наибольшая. Такая же связь распада с плотностью наблюдается на всём пространстве метазавихрения: где плотность эфира выше, там атомы устойчивее, а где она ниже, там скорость распада увеличена.

Этим можно объяснить то, что на Земле число устойчивых разновидностей атомов, измеряемое сотней, больше, чем на Юпитере или Солнце, где остались, в основном, только два химических элемента: гелий и водород; а на Луне, напротив, может оказаться их больше даже, чем на Земле, так как эфирная плотность в районе Луны выше. Следуя этой логике, можно даже утверждать, что скорость распада химических элементов в глубокой шахте на Земле выше, чем на её поверхности, а на поверхности выше, чем на космической станции; поэтому использовать скорость распада в качестве эталона времени рискованно.

Если сравнивать избыточные плотности эфира в центрах различных планет, то можно отметить, что у более горячих она, вероятнее всего, меньше, а у более холодных — больше, но и у тех и у других она сохраняется всё же избыточной. Снижение плотности до нормальной может наблюдаться только в центрах некоторых звёзд; а у тех из них, у которых плотность эфира в центре упала до разреженной, образуется даже «чёрная дыра», в которой не могут существовать атомы и которая не может пропускать свет.

Ещё одной поправкой к предложенной закономерности изменения плотности может быть уточнение расстояния от центра. Правильнее было бы говорить не о расстоянии от центра метазавихрения, а о суммарной величине, состоящей из удалённости над поверхностью планеты (звезды) и из некоторой длины, близкой её радиусу, но не равной ему. Эта длина всегда больше радиуса, но с различным превышением у различных планет и звёзд: у более холодных планет превышение больше, у горячих — меньше, а у звёзд — ещё меньше.

С учётом поправок уточним формулировку зависимости; она будет звучать так: плотность эфира в любой точке метазавихрения за пределами тела планеты (звезды) уменьшается по сравнению с наибольшей на величину, пропорциональную распаду атомарного вещества тела и обратно пропорциональную удалённости от его поверхности плюс некоторая величина, превышающая его радиус.

 

2.7. Гравитационное поле метазавихрения

Договоримся ещё раз понимать под гравитацией физическое явление выталкивания тел в сторону центра метазавихрения. При более внимательном рассмотрении этого явления можно заметить, что решающим фактором при этом является не плотность эфира, а её изменение и направление изменения, то есть градиент плотности. Кусок дерева выталкивается водой не потому, что плотность воды больше плотности дерева (на Луне вода выталкивала бы деревяшку с меньшей силой, а в невесомости этой силы вообще нет), а по причине того, что плотность воды на разной глубине разная; и деревяшка выталкивается в сторону меньшей плотности.

Закон изменения величины градиента плотности в метазавихрении может быть определён чисто математически как производная от полученного нами выше выражения, описывающего закон зависимости плотности эфира от расстояния до центра метазавихрения. В любой конкретной точке метазавихрения величина градиента определится как частная производная в этой точке.

После дифференцирования получим выражение для закона гравитации, словесная формулировка которого такая: выталкивающая способность метазавихрения, определяемая градиентом плотности, прямо пропорциональна распаду атомарного вещества в его центре, обратно пропорциональна квадрату расстояния до центра и направлена к нему.

Эта выталкивающая способность определяет так называемое ускорение свободного падения (правильнее было бы говорить об ускорении свободного выталкивания); на поверхности Земли оно, как известно, приблизительно равно 9,78 метра в секунду в квадрате, на Марсе -3,72, а на поверхности Юпитера оно значительно больше - 22,88.

На предложенный закон гравитации распространяются те же уточнения, что и на закон изменения плотности эфира в метазавихрении; мы о них уже говорили. Дополнить их можно только тем, что при наложении метазавихрений выталкивающая способность определяется как результат векторного сложения градиентов. Это значит, что ускорение свободного падения на поверхности Земли определяется не только метазавихрением вокруг нашей планеты, но и метазавихрением Солнца, Луны и даже в малой степени других планет.

Уточнения могут сильно влиять на результат, но они ни в коей мере не затрагивают основу закона гравитации, то что выталкивающая способность метазавихрения определяется градиентом плотности эфира; эта основа незыблема и не допускает никаких уточнений и дополнений; она лишний раз свидетельствует, что законы механики в эфирной среде действует в чистом виде.

 

2.8. Масса и вес тела

Эфирная теория обязывает нас по-новому отнестись к известным физическим параметрам: к массе и к весу тел; частично мы уже касались этой темы — затронем её ещё раз.

Чтобы определить силу, с которой метазавихрение выталкивает тело в направлении к своему центру, необходимо полученное ускорение свободного падения умножить на массу. Так вот, эта масса в эфирном пространстве — вовсе и не масса, а нечто другое.

Под массой принято понимать количество вещества, а веществом во Вселенной является только эфир и только он; других веществ нет, Поэтому, если мы возьмём объём выбранного тела и заполним его веществом, то есть эфиром (математически это означает умножение объема на плотность), то получим …, — ничего не получим. Интересующая нас физическая величина, именно та, что нужна для определения веса тела, образуется только в том случае, если в среде эфира возникает пустота, а возникает она тогда, когда эфир закручивается в торовый вихрь, то есть превращается в атом. Суммарный объём пустот всех атомов тела образует массу его гравитации (или просто – гравитацию). Отметим,что пустота возникает не только внутри вихрей, но и в прилегающем к ним пространстве; причиной этого является возбуждение вихрем эфирных частиц снаружи. Объём внешней пустоты значительно меньше объёма внутренней, но и его нельзя игнорировать.

Таким образом, инерцию тела образуют эфирные шарики атомов этого тела, а гравитацию – пустоты внутри и вне атомных вихрей. Инерция проявляется в сопротивлении движению с ускорением, а гравитация – в виде веса в гравитационном поле. Вес тела есть векторная величина, определяемая произведением вектора градиента давления (плотности) на скаляр – объём абсолютной пустоты тела, названный нами гравитацией.

 

2.9. Закон гравитации метазавихрения и закон Всемирного Тяготения

Предложенный закон выталкивания тел в направлении к центру метазавихрения (его можно назвать законом тяготения тел к центру или просто законом гравитации) даёт, можно оказать, тот же результат, что и известный закон Всемирного Тяготения (притяжения), несмотря на то, что они различаются в основе. Произошло это потому, что закон Всемирного Тяготения получен на основе опыта и поэтому соответствует реальности.

Однако при более внимательном рассмотрении можно обнаружить расхождения этих законов, и эти расхождения — очень существенные; в частности, они по-разному определяют давления внутри планет и звёзд, и у них разное отношение к определению их масс.

Сначала — о массах инерции планет и звёзд. Закон Всемирного Тяготения принят как закон взаимовлияния тел; а после того, как он был принят, исходя из него же, определялись массы космических тел. Получается так, что он как бы замкнут на самом себе: и поэтому-то он даёт такие результаты вычислений, которые хорошо согласуются с действительностью; по-другому и быть не должно. Если мы число 12, полученное от перемножения шестёрки и двойки, разделим на то же число 6, то не должны удивляться тому, что получили в результате двойку.

Пересмотр закона Всемирного Тяготения даёт нам право усомниться в точности определения масс инерции планет и, особенно, звёзд. То, что «притягивающая» способность центра метазавихрения Солнца больше, чем у Земли, говорит лишь о том, что космический мусор будет стягиваться к Солнцу в большей степени, чем к Земле; но с учётом того, что на Солнце этот мусор почти мгновенно «сгорает» (распадается), а на Земле лишь увеличивает толщину осадочных пород, можно предположить, что действительная масса инерции светила не намного больше массы инерции нашей планеты, а может быть — даже меньше. Более-менее точно масса инерции определена у тех планет, которые досконально изучены; к ним можно отнести Марс и Луну. Что же касается таких планет, как Юпитер и Сатурн, то наличие на них бушующих ветров, дующих попеременно в противоположных направлениях, но с сильным креном в одну сторону, говорит о большом несоответствии скоростей вращения планет со скоростями вращения их метазавихрений; следовательно, их массы сильно завышены.

И еще можно утверждать, что при расчетах траекторий планет в их массы, как меры инерции, непроизвольно включаются и инерции их метазавихрений, то есть собственно массы инерций всех планет таким образом завышаются.

Что касается определения давлений и атомарных плотностей внутри планет и звёзд, то закон Всемирного Тяготения, кажется, их чрезмерно преувеличивает: едва ли внутри планет возникают давления в миллионы атмосфер, и трудно представить, что атомарная плотность достигает там невообразимых значений (экспериментально установлено, что в центре нашей планеты атомарная плотность равна плотности обычных тяжёлых элементов). Скорее всего такие результаты — плод чисто математического подхода к формуле, отражающей закон Всемирного Тяготения; в знаменателе этой формулы, как известно, стоит квадрат радиуса: принимая его совсем малым, мы получим большие числа.

Не учитывает закон Всемирного Тяготения и изменение скорости распада атомов — а оно может быть. Проявляющиеся на поверхности Земли почти что регулярные похолодания и потепления климата свидетельствуют с некоторым запаздыванием о таких именно изменениях внутри планеты.

Согласно же нашему закону гравитации метазавихрений в моменты ускорения распада все тела на Земле становятся тяжелее, а при замедлении —легче. Сила тяжести изменяется еще и при прохождении низкочастотных гравитационных волн, исходящих из космоса: на склонах каждой волны градиент плотности изменяется; закон Всемирного Тяготения такие «мелочи» игнорирует.

 

2.10. Эволюция метазавихрений от рождения до смерти

Уяснив основные законы существования космических метазавихрений, нетрудно вообразить их эволюцию от рождения до смерти. Начнём с самого-самого начала — со столкновения эфирных облаков. Фронт их столкновения порождает атомы, а более глубокие взаимные проникновения — всевозможные завихрения. Атомы, как мы уже говорили, представляют собой микрозавихрения типа дымовых колечек или, другими словами, микроскопические торовые фигуры с вращающимися оболочками. Каждое такое кольцо под действием возмущённого эфирного окружения почти мгновенно сворачивается в клубок — это и есть атом в своей окончательной форме. И размеры торовых колец, и варианты их скручивания определяются случайностью; поэтому можно предположить, что разновидностей атомов в момент их рождения — очень и очень много, значительно больше, чем имеется в настоящее время на поверхности Земли. Под разновидностью атомов в данном случае мы подразумеваем и химические элементы, и их изотопы, и их изобары.

Вслед за явлением рождения атомов появляется сопутствующее ему явление их распада. Особенно склонны к распаду те атомы, у которых чрезвычайно большие диаметры торов (очень длинные шнуры торов) и чьи скрученные конструкции неудачны. Разрывающиеся шнуры атомов будут укорачиваться, снова замыкаться и снова скручиваться, но уже в новые разновидности атомов.

Одновременно с процессами рождения и трансформации атомов происходит процесс глубокого взаимного проникновения столкнувшихся эфирных облаков с резким возмущением состояния эфира: эфир будет бурлить. Выделим из всего разнообразия форм возмущений эфира только макро- и метазавихрения с размерами менее Солнечной системы.

Завихрения эфира, как любые завихрения текучих сред (жидкостей или газов), порождают снижение плотности эфира по мере приближения к их центрам; туда же будет направлена гравитация, возникшая как градиент переменного давления. Вытесняемые повышенным периферийным давлением атомы устремятся к этим центрам. Одновременно будут происходить процессы слипания атомов в молекулы, кристаллы и прочие твёрдые тела.

Собранное в каждом центре завихрений атомарное вещество представляет собой затравку для будущей планеты. Распад атомов в этой затравке вызовет центростремительное движение эфира, и этот поток начнёт раскручивать завихрение; раскручиваясь, оно усилит своё гравитационное поле и ещё стремительнее начнёт стягивать к своему центру атомарное вещество.

Так будут действовать все завихрения, и между ними возникнет конкуренция; в результате более мощные из них начнут поглощать мелкие. И это будет происходить до тех пор, пока положение не стабилизируется, то есть пока центры оставшихся завихрений не окажутся на «безопасном» удалении друг от друга.

Столкновение эфирных облаков будет сопровождаться ростом эфирного давления (плотности); своего наибольшего значения оно достигнет в момент когда столкновение прекратится. На этом начальном этапе будет и ускоренное возникновение новых атомов, и первая волна их ускоренного распада; распадутся самые неустойчивые из них. Далее процесс несколько стабилизируется: плотность эфира некоторое время будет сохраняться постоянной, и также постоянная будет распад атомов; стабилизируются и сами завихрения: к тому времени они уже будут иметь внушительные размеры (станут уже метазавихрениями), и собранные в их центрах атомы, молекулы, кристаллы и другие твёрдые образования будут выглядеть как большие шаровидные тела — их по-праву можно уже называть планетами; так они возникают. Звёзд в такой планетной структуре, вроде бы, не должно быть; они появятся позднее.

Стабильное состояние метазавихрений нарушится при первых признаках снижения избыточной плотности эфира; произойдёт это тогда, когда, преодолев собственную инерцию, эфирное облако начнёт своё расширение. Снижение плотности породит рост распада атомов; в результате увеличатся эфирные потоки, направленные к центрам метазавихрений; эти потоки начнут их раскручивать. Таким образом устанавливается связь между расширением (разбеганием) эфира и ускорением вращения метазавихрений.

Дальнейшее развитие событий, казалось бы, — вполне предсказуемо: расширение эфирного облака и ускорение вращения метазавихрений будут продолжаться до тех пор, пока плотность эфира не потеряет свою избыточность; этот процесс по всем меркам должен был бы длиться очень и очень долго. Должен был бы, если бы не одно обстоятельство — угроза катаклизма (вспышки), как следствия неустойчивости процесса. К этому приводит цепочка логических рассуждений: начавшееся в результате общего снижения плотности эфира ускорение вращения мета-завихрения приведёт к уменьшению плотности эфира в его центре; уменьшение плотности — к ускорению распада атомов; ускорение распада - к увеличению центростремительного потока эфира, а тот, в свою очередь, ускорит вращение метазавихрения. На этом круг замыкается; налицо — казалось бы, неминуемый катаклизм, который может привести только к одному — к вспышке планеты, то есть к превращению её в звезду.

В общем-то процесс склонен именно к этому, но есть в нём, слава Богу, сдерживающие факторы, которые растягивают его во времени и тем самым оставляют нам, жителям Земли, надежду на то, что наша планета будет ускорять свое вращение и разогреваться не столь стремительно, как предсказал нам ход наших логических рассуждений. И основными тормозящими факторами являются большая инерционность метазавихрений и ступенчатость распада химических элементов.

Об инерционности говорить особо нечего: она действительно большая и очень большая. Так метазавихрение вокруг Земли эффективно далеко за Луной, а до самой Луны — аж 384 тысячи километров; и это — не самое крупное метазавихрение. Раскрутить такую махину (впрочем, и притормозить) — не так-то просто.

Ступенчатость распада химических элементов, как сопутствующий фактор, возникает не сразу; вначале распад носит плавный характер и только потом приобретает ступенчатость. Если мысленно расположить все только что возникшие разновидности атомов в линию по мере возрастания атомных весов, то пространства между положениями относительно устойчивых атомов (а их не так уж и много, это мы знаем) окажутся плотно заполненными менее в разной степени устойчивыми химическими элементами вплоть до самых неустойчивых. По мере выбывания отдельных разновидностей в результате их распада на линии расположения будут появляться прогалины, и чем дальше — тем больше. И если ранее при незначительном уменьшении плотности эфира находился такой химический элемент, который резко ускорял свой распад, то со временем возникает и усиливается ступенчатость этого процесса: ускоренный распад очередного элемента требует более значительного уменьшения эфирной плотности. Периодичность распада химических элементов становится нормой жизни каждой планеты, и периоды эти постоянно растягиваются во времени.

Подтверждением ступенчатого характера распада химических элементов можно считать периодические потепления климата на нашей планете: как только наступает время интенсивного распада очередного элемента в недрах Земли, так сразу же начинает увеличиваться среднегодовая температура планеты. Правда, эти потепления на поверхности Земли проявляются с большим запаздыванием относительно самого времени интенсивного распада, так как скорость теплопередачи коры небольшая, и тепло из недр до поверхности идёт довольно долго; но ускорение распада атомов при снижении эфирной плотности происходит практически без всяких временных задержек.

Так вот, допустим, что эфирная плотность снизилась настолько, что наступило время ускоренного распада очередного элемента: распад увеличит эфирный поток к центру метазавихрения; но — и это очень важно — метазавихрение в силу своей инерции будет раскручиваться очень и очень медленно. Если бы раскручивающая сила от ускоренного распада атомов была постоянной, то, рано или поздно, метазавихрение набрало бы соответствующую скорость. Однако распад атомов «выдыхается», элемент-очередник практически исчезает, и скорость распада снижается; начинается время притормаживания метазавихрения, и это время длится до начала ускоренного распада очередного элемента. Таким образом, инерционность метазавихрения сглаживает пики роста своей скорости, делая её более стабильной.

И всё же опасность планету подстерегает. Постоянное снижение плотности окружавшего эфира, происходящее в результате расширения метагалактики, способствует распаду атомов и приводит к разогреву планет. Наименьшая плотность эфира наблюдается в самом центре метазавихрений; там же идёт ускоренный распад атомов и наибольшее выделение тепла. Рано или поздно ядро всякой планеты разогреется до такого состояния, что вещество превратится в текучую жидкую фазу, и начнётся процесс расслоения: более тяжёлые материалы устремятся к центру; более лёгкие начнут всплывать вверх. Этот процесс будет ускоряться за счёт вращения планеты, за счёт так называемого центрифугирования. (Ещё раз попутно напомним, что самые тяжёлые в нашем представлении материалы на самом деле в эфирной среде — самые лёгкие, так как их средняя эфирная плотность наименьшая; наибольшей является их инерция.)

Расслоение вещества внутри планеты приведёт к повышению концентрации отдельных элементов в своих слоях. И не дай Бог начаться ускоренному распаду атомов одного какого-то такого слоя. Рассеянные среди прочих атомы с ускоренным распадом способны лишь разогреть планету, но собранные вместе они могут её взорвать и разнести на куски. Так когда-то, по нашему мнению, взорвалась наша прародительница-планета, а Земля — её осколок. Ждёт ли и Землю такая судьба, ведь у неё тоже жидкая сердцевина, — трудно сказать. Всё в руках Божиих!

Впрочем, от конца Света избавиться не удастся в любом случае, но более вероятен путь постепенного и прогнозируемого приближения состояния планеты, как центра метазавихрения, к такому кризисному, при котором она — планета — превратится в звезду. В конце концов наступит же такой момент в эволюции метазавихрения, когда его эфирная плотность не сможет удержать в устойчивом состоянии даже самые устойчивые разновидности атомов, и начнётся всеобщий (или почти всеобщий) распад. Это и есть переход планеты в состояние звезды. Здесь мы подошли к выводу такого умозаключения, что все планеты рано или поздно превращаются в звёзды; иной судьбы у них нет.

А вот обратный переход от звезды к планете, по нашим соображениям, не возможен; звезду ожидает только полное выгорание; погаснуть она не способна. Вместе с нею погибает и ее колыбель — метазвихрение; оно постепенно успокоится и рассеется в Пространстве.

Долго ли горят звёзды? Долго, им торопиться некуда. В начале своей жизни звезда усиленно раскручивает свое метазавихрение и тем самым стягивает к себе все тела и рассеянные атомы, что находятся в пределах её досягаемости; это — дополнительный горючий материал; он пополняется ещё случайным космическим мусором. Скорость вращения метазавихрения будет расти, вероятнее всего, не до беспредела, и поэтому в его центре будет сохраняться избыточная эфирная плотность, которая будет оберегать, по крайней мере, временную устойчивость самых устойчивых разновидностей атомов. Большая инерция метазавихрения будет способствовать именно такому сценарию развития событий.

В отдельных случаях нарастание скорости вращения метазавихрения может оказаться таким большим, что приведет к резкому снижению плотности эфира в его центре, вплоть до потери избыточности. В таком центре не могут существовать даже самые устойчивые атомы. А если плотность эфира понизится там до разреженной, то такая среда не сможет даже проводить свет; это и есть та самая чёрная дыра, о которой уже говорилось.

Выгорание звездного вещества неизбежно. Постепенное сокращение объема распадающихся атомов уменьшит стремящийся к центру эфирный поток, который крутит метазавихрение, и оно начнёт притормаживать своё вращение. Покрутившись после плавного затухания звезды какое-то время по инерции, метазавихрение начнёт успокаиваться и рассеиваться в Пространстве. Те планеты, которые крутились вокруг звезды в этом метазавихрении, при его притормаживании будут в силу своих инерций разбегаться всё дальше и дальше от центра, и могут уйти в независимое странствование, и, скорее всего, среди этих планет выделится лидер — планета с наибольшим завихрением эфира вокруг себя, — и возникнет новая планетная система. А потом эта лидирующая планета рано или поздно превратится в звезду, и процесс продолжится в направлении дальнейшего снижения эфирной плотности.

 

2.11. Эволюция метазавихрений на примере Солнечной системы

Самым главным параметром эволюции является, без сомнения, изменение эфирной плотности: сначала она резко возрастает (в момент столкновения эфирных облаков) и становится избыточной, а затем медленно снижается до потери в конце концов своей избыточности. В пределах Солнечной системы в настоящее время засечь факт роста плотности, разумеется, нельзя; поэтому проследим эволюцию (по отдельным её фрагментам) с момента начала снижения плотности эфира.

Наибольшая эфирная плотность метазавихрения Солнца находится, конечно, на самых крайних точках её гравитационного влияния; это — где-то в районе кометного облака Оорта; заглянуть туда у нас нет никакой возможности, и поэтому будем искать для рассмотрения места не столь отдалённые.

Одним из таких мест является граница гравитационного влияния двух основных метазавихрений Солнечной системы: самого Солнца и крупнейшей планеты Юпитера; находится эта зона между Марсом и Юпитером. Всё, что осталось от момента рождения атомарного вещества, здесь могло сохраниться почти в первозданном виде. Место это не так уж и удалено от нас, и поэтому астрономами хорошо изучено; они назвали эту область Поясом астероидов.

Астероиды — это, по мнению учёных, сохранившиеся до наших дней представители многочисленного класса небесных тел, столкновение и слипание которых в своё время порождало большие планеты. По основному составу химических элементов астероиды разделяются на кремневые, металлические и углеродные; кроме основных элементов они содержат практически всю таблицу Менделеева и, может быть, еще больше.

Самый большой астероид (Церера) имеет размер 974 километра; наименьшие измеряются сотнями метров. Формы астероидов — самые разнообразные: от почти сферических, как Церера, до сильно вытянутых, как Евномия; значит, астероиды — твёрдые тела. Пояс астероидов представляет собой как бы гребень эфирной плотности; часть астероидов не удержалась на этом гребне и свалилась в сторону Солнца, — в мета-завихрение Марса, — другие — в сторону Юпитера, превратившись в спутники; и по химическому составу, и по формам эти спутники не отличаются от астероидов; среди них — спутник Марса — Фобос, спутники Юпитера: Европа, Каллисто, Ганимед и другие. На некоторых из них в больших количествах присутствует вода в замёрзшем состоянии, а она, как известно, состоит из кислорода и водорода. Таким образом, в Солнечной системе есть места, где избыточная плотность эфира ещё настолько высока, что удерживает в устойчивом состоянии, по крайней мере, все нам известные химические элементы, а, возможно, и более того.

Планета Земля расположена ближе к Солнцу, то есть к центру солнечного метазавихрения, и поэтому окружена эфиром с меньшей плотностью. И если в земной коре, то есть на поверхности планеты, сохранились ещё все химические элементы таблицы Менделеева (правда, часть из них уже радиоактивна), то внутри планеты, где плотность ниже, многие из них уже распались, а другие интенсивно распадаются. Только этим можно объяснить обильное выделение тепла внутри планеты и жидкое состояние её сердцевины: по-настоящему твёрдой остаётся только оболочка планеты — корочка толщиной всего 20…40 километров. Количества химических веществ в земной коре распределены следующим образом: больше всего кислорода, далее идут с убыванием кремний, алюминий, железо, кальций, натрий, калий, магний и все прочие элементы, составляющие менее одного процента.

На нашей спутнице — Луне, состоящей из тех же веществ, но находящейся на склоне земного метазавихрения, то есть в зоне с большей эфирной плотностью, распад химических элементов не столь интенсивный, и толщина твёрдой коры у неё поэтому составляет 700 километров.

На более поздней ступени эволюции находятся такие метазавихрения, как у планет Юпитер и Сатурн: их центры находятся, можно считать, в предкризисном состоянии и готовы в относительно скором времени превратиться в звёзды; об этом говорят многие факторы, но прежде всего — химический состав планет: из всего набора, нам известного из химии, там остались в основном водород и гелий (на Сатурне их соотношение 93 и 7 процентов, на Юпитере — 90 и 10); приблизительно такой же состав и на Солнце; все прочие химические элементы на этих планетах уже распадись. Скорость вращения поверхностей планет, свидетельствующая о раскрученности их метазавихрений, значительно превышает нашу земную: сутки на Сатурне при его диаметре, превышающем диаметр Земли в 9,44 раза, составляет 10,233 часа, а на Юпитере с диаметром 11,27 земных — всего 9,841 часа. О напряжённом состоянии планет говорят также их тепловыделения: Юпитер излучает в 1,7 раза тепла больше, чем получает от Солнца, а Сатурн - даже в 2,8 раза.

И, наконец, — Солнце: оно демонстрирует завершающий этап эволюции метазавихрений. Его метазавихрение раскрутилось уже настолько, что избыточная плотность эфира, охватывающего светило, не может удержать от распада даже такие очень прочные атомы, как водород и гелий. Если ядерные процессы распада на Юпитере или Сатурне идут только внутри, то на Солнце они уже охватили всю его внешнюю оболочку. В результате ежесекундно только в виде солнечного ветра светило теряет ориентировочно один миллион тонн веществ; сколько его исчезает внутри — трудно сказать. Сгорает на Солнце и весь тот космический мусор, который стягивается к нему метазавихрением.

 

2.12. История Земли

Выше мы намекали на то, что наша родная планета Земля возникла как осколок в результате взрыва своей прапланеты. У нас нет убедительных доказательств этого, но очень и очень многие факты говорят об этом; прежде всего — то, что планеты внутренней части Солнечной системы: Меркурий, Венера, Земля, Луна и Марс, — представляют собой особую родственную группу, отличающуюся от прочих планет тем, что они компактно расположены и у них схож состав химических элементов. К такому же заключению подводят нас наши рассуждения об эволюциях метазавихрений. И всё же будем рассматривать историю Земли как наше смелое предположение, — не более того.

Проще всего сказать, что все перечисленные планеты земной группы оторвались от Солнца; но в принципе не исключается и такое, что они когда-то представляли собой другую единую планету, расположенную вблизи от Солнца и расколовшуюся впоследствии на отдельные куски. Оба эти предположения сходятся на том, что существовала огромная планета, собранная из первородной пыли в реликтовом метазавихрении, и она представляла собой идеальное космическое тело: идеальное по набору химических элементов, по их равновероятному процентному соотношению, по их расположению и слоёности, по многим другим признакам и, в частности, по своей округлости. В самом центре этой прапланеты были собраны наиболее тяжёлые атомы и молекулы, а на её поверхности — наиболее лёгкие, — и среди них те, что определяют жидкости и газы. Все прочие вещества в процессе формирования планеты и при её спокойном и продолжительном вращении выстраивались в соответствии с тем же принципом: чем тяжелее их атомы, тем они смещались ближе к центру. В результате такого центрифугирования все вещества находили свои места и в конце концов оказались уложенными в виде слоёв. Не трудно догадаться, что такая планета представляла собой многочисленные сферические монолитные оболочки, каждая из которых охватывала предыдущую внутреннюю. Те из них , что были собраны из прочных материалов, например из металлов, образовывали в полном смысле слова панцыри; благодаря им планета представляла собой очень крепкую шаровидную конструкцию, разорвать которую, казалось бы, просто невозможно, и тем не менее она была позднее разорвана.

Примеры подобных внутренних структур можно наблюдать в известных и достаточно хорошо изученных космических объектах, именуемых Галилеевыми спутниками Юпитера: некоторые из них, например Ганимед и Каллисто, представляют собой идеальные шары с толстыми водяными наружными оболочками. Остается предположить, что эти планеты также относятся к реликтовым и сохранились в первозданном виде только потому, что имели малые размеры и располагались в зоне относительно высокой эфирной плотности.

Радиоактивный распад на нашей прапланете коснулся в первую очередь самых тяжёлых трансурановых элементов, как раз тех, что были расположены в самом центре планеты; отсюда пошло образование её расплавленного ядра. Распад веществ вызывал раскручивание метаза-вихрения, а оно, в свою очередь, понижало эфирную плотность и способствовало ускорению того же распада. В состояние интенсивного распада поочерёдно включались слой за слоем, оболочка за оболочкой, и в какой-то момент оставшиеся наружные из них не выдержали внутреннего давления и дали трещины. Отметим то, что некоторые из оболочек, например базальтовые, имели очень малую теплопроводность и не пропускали внутреннее тепло планеты в наружные слои; это спасало воду и лёгкие фракции других жидкостей, располагавшихся на поверхности планеты, от испарения и улетучивания.

Первым откололся от прапланеты Марс; за ним поспешили Земля и Луна; позднее отделилась Венера, и самым последним ушёл Меркурий. Если рассматривать вариант с Солнцем, то после отделения Меркурия оставшаяся часть превратилась в звезду.

Пара Земля-Луна образовалась из одного куска прапланеты: Земля — как наружная его часть с сохранившимися на ней поверхностными веществами, и в том числе с водой и атмосферой; а Луна — как внутренняя его часть в расплавленном жидком и полужидком состоянии. Отделившись от прапланеты Луна сразу же приобрела свою округлость (каплевидность) и начала, остывая, постепенно затвердевать. В целом она должна состоять из более тяжёлых атомов, так как на самой прапланете располагалась глубже Земли.

Венера отрывалась от прапланеты тогда, когда её поверхность была уже достаточно разогрета, а Меркурий — ещё позднее, когда она уже кипела; поэтому на Меркурии нет атмосферы, и его внешний вид напоминает Луну; значит, он затвердевал, уже будучи оторванным от прапланеты.

В пользу того, что прапланетой было Солнце, говорит, в частности, согласованное направление вращения всех оторвавшихся планет и их метазавихрений: все они, кроме Венеры, вращаются против часовой стрелки (если смотреть на них с севера), и в том же направлении вращается Солнце. Оторвавшиеся планеты в первый момент сохраняли прежнее своё направление вращения, то есть то, что они имели, находясь в лоне прапланеты; такое направление можно назвать зародышевым: оно наследуется и определяет вращение возникающих вокруг планет их собственных метазавихрений. Встречное направление вращения Венеры можно объяснить тем, что она оказалась зажатой между двух метазавихрений: Земли и Меркурия. Если даже её зародышевое направление вращения было иным, оно не могло сохраниться по указанной причине.

Зародышевое вращение наиболее выражено у Меркурия: он отделился самым последним и благодаря своей быстро оформившейся округлости мало раскрутился от собственного метазавихрения. Поэтому можно предположить, что он сейчас вращается вокруг своей оси приблизительно с той же частотой, с какой вращалось Солнце в момент его отрыва, то есть с сидерическим периодом в 58 земных суток; сейчас Солнце вращается, как известно, в два раза быстрее.

Земля вначале имела далеко некруглую, угловатую форму; к тому же она унаследовала от прапланеты ярко выраженную слоёность, но не сферическую, а почти плоскую, то есть на одной её стороне, что была поверхностью Солнца-планеты, были сосредоточены лёгкие вещества, на противоположной — тяжёлые, а между ними слоями — все прочие. Благодаря этому Земля очень скоро преодолела своё врожденное вращение и остановилась, повернувшись тяжёлой стороной к Солнцу. Подобное мы наблюдаем в ориентации Луны относительно Земли: она повёрнута к нашей планете всегда одной стороной; и в этом случае причина — та же: дисбаланс Луны.

Свою округлость Земля, как и другие планеты: Марс и Венера, — приобрела не сразу: удалившись от Солнца, она попала в более плотный эфир, и шедший до того у неё распад атомов притормозился. Только значительно позднее, когда давление эфира в окрестностях Земли снизилось, распад атомов снова усилился, и планета начала разогреваться и округляться: её сердцевина расплавилась, а твёрдая кора утоньшилась настолько, что не могла противостоять округляющим силам. В настоящее время Земля представляет собой круглое жидкое тело с очень тонкой твёрдой оболочкой. В образном представлении она схожа с сырым куриным яйцом, скорлупа которого сравнима с земной корой.

Сложная география Земного шара — свидетельство того, что планета была когда-то совсем некруглым телом: континенты и океаны — её родимые пятна; по их контурам, а также по расположению старых горных хребтов можно восстановить в общих чертах первоначальную форму Земли. Позднейшие смещения геологических плит и движения континентов нужно рассматривать как развитие всё тех же округляющих процессов.

Раскрутка Земли может быть разбита на несколько этапов, первым из которых было, как уже отмечалось, притормаживание исходного вращения до полной остановки; при этом Земля оказалась повёрнутой к Солнцу своей тяжёлой стороной; лёгкие фракции веществ, в частности вода и воздух, располагались на ночной стороне.

На втором этапе происходил медленный полуповорот планеты на угол до девяноста градусов. Причиной такого углового отклонения был момент от действия ветров и океанских течений, явившихся, в свою очередь, следствием раскрутки эфирного метазавихрения. Если принять, что в те времена метазавихрение Земли было слабее теперешнего не более, чем в два-три раза, то создаваемые им ветры, дующие с запада на восток, имели скорость в десятки и даже более сотни метров в секунду. Такие ветры подымали тучи песка и пыли и гнали их вокруг планеты, сметая всё на своём пути; они как мощный абразив истирали самые крепкие породы выступающих гор. Создаваемые этим ветром яростные океанские волны буквально смывали западный берег континента. И вся эта мощь пыталась повернуть Землю.

Этот этап знаменателен тем, что ему сопутствовал бурный процесс развития микроорганизмов и роста растительности. Осаждающаяся пыль представляла собой прекрасную питательную среду: в котловинах континента она питала леса (благо, что пыль эта была насыщена влагой), а в океане и морях кормила морские микроорганизмы. Наиболее благоприятными местами для таких процессов были средняя и восточная часть континента и прилегающая к ней водная часть.

После преодоления момента дисбаланса, то есть после поворота на угол более девяноста градусов, начался третий этап во вращении Земли — раскрутка, которая продолжается и в наши дни, о чем свидетельствует преобладание западных ветров и океанских течений.

 

3. Электричество и магнетизм

 

Эфирная теория позволяет объяснить природу таких интересных физических явлений, как электричество и магнетизм; не просто принять их к сведению как факт и как факт воспринимать их законы, а именно объяснить: что это такое, как они возникают, как действуют и как взаимодействуют.

Предваряя предстоящие рассуждения, сразу заявим, что самым главным положением, определяющим и электричество и магнетизм, является их связь с электронами: не может быть без электронов ни электричества, ни магнетизма, ни электрических и магнитных полей. Исключение составляют только так называемые электромагнитные волны, которые распространяются в эфире и в присутствии электронов не нуждаются; и объясняется исключение тем, что эти волны названы электромагнитными по недоразумению: их распространение не имеет ни какого отношения ни к электричеству ни к магнетизму.

Напомним что представляет из себя электрон: это — бегающие по кругу друг за другом три эфирных шарика — вроде вращающегося колесика; есть у этого колесика и ось: два осевых эфирных шарика, примыкающих к электрону с разных сторон и упирающихся друг в друга. Особенностью электрона является его «пушистость» — способность отталкиваться от других частиц с помощью своего стоячего теплового поля; другими словами: электрон постоянно шевелится и приводит прилегающий к нему эфир в некоторое упорядоченное возбужденное состояние — оно-то и делает его пушистым.

 

3.1. Электричество

 

Будем рассматривать электричество как совокупность физических явлений, главным участником которых является электрон; это: и такое выразительное природное явление, как молния, и электризация сухих волос при расчесывании их пластмассовой расческой, и свет электрической лампочки, и работа радио-телевизионной аппаратуры, и многое-многое другое, с чем мы постоянно сталкиваемся в своей жизни.

Начнем с того, что еще раз заявим; никаких загадочных электрических зарядов в природе нет; электрон как частица есть, а отрицательного электрического заряда у него никакого нет; зарядов вообще нет никаких, ни положительных, ни отрицательных. Печально, конечно, это осознавать, имея в виду, что более двухсот лет люди верили в существование зарядов, но лучше поздно, чем никогда.

Согласно эфирной теории электроны — это газ, и на них распространяются обычные законы пневматики. Как и в пневматике, поведение электронов характеризуется давлением (электрическим напряжением), расходом (током), сопротивлением и емкостью; как и в пневматике, в электронной среде есть понятие «атмосферного» давления: это тот потенциал, который характерен для данной точки пространства; давление электронов может повышаться выше «атмосферного» и снижаться ниже его, причем повышение не ограничено, а снижение имеет предел — нулевое давление; все как в пневматике. Размеры электронов в тысячи раз меньше размеров атомов газов, — и поэтому они могут течь по таким узким каналам, которые невозможно рассмотреть даже в микроскоп. Можно сказать даже так, что для электронов нет непреодолимых преград: он может проникать практически всюду, но где-то легко, а где-то с сопротивлением, большим или меньшим. (Приблизительно также ведет себя и газ: известно, что накаченное воздухом автомобильное колесо со временем спускает, а это значит, что воздух может проникать сквозь резину.) Легче всего электроны перемещаются вдоль присасывающих желобов атомов металлов: в этом случае они не приближаются к атомам и не удаляются от них, то есть не освобождают энергию и не требуют ее.

Трудности возникают тогда, когда необходимо оторвать электрон от атомов. В химии есть даже такое понятие, как ионизационный потенциал, характеризующий силу сцепления электронов с атомами: он определяет то напряжение в вольтах, которое необходимо для отрыва электрона от атома. Наибольшие значения ионизационного потенциала имеют атомы инертных газов, наименьшие — атомы щелочных металлов, но нет ни одного химического элемента, атомы которого отдавали бы электроны свободно. Во всем «виновата» присасывающая способность атомов, точнее — наличие у атомов присасывающих воронок и желобов.

Ионизационные потенциалы атомов определены чисто экспериментальным путем (поэтому их отрицать никак нельзя) и только в отношении так называемых нейтральных атомов, то есть таких, у которых давление электронов равно «атмосферному». Если же давление — пониженное, то ионизационный потенциал возрастает, а если — повышенное, то — снижается. Снижение наблюдается и при содействии некоторых физических факторов, таких как тепловые движения (чем выше температура, тем легче отрываются электроны), жесткое излучение, вакуумирование и др.

 

Поле электронного давления — электрическое поле

Еще раз заявим, что нет никаких материалов, которые не пропускали бы в той или иной степени электроны; следовательно, они — электроны — есть везде. Натуральное давление электронов друг на друга образует так называемый электрический потенциал точки; изменение давления характеризует электрическое поле. Другими словами, под электрическим полем будем понимать распределение электронного давления в среде. Отсюда следует важный вывод о том, что электрическое поле без электронов не бывает: есть электроны — есть поле, нет электронов — нет поля. Никакого дальнодействия на электроны и электронов друг на друга, кроме непосредственного давления, не существует. Не может быть и отрицательного давления электронов: оно немыслимо.

Некоторого уточнения требует соотношение между плотностью электронов и их давлением. Если в идеальной эфирной среде избыточная плотность приравнивается к давлению (и то и другое определяется степенью деформаций элементарных шариков), то в атомарно-молекулярной среде давление и плотность электронов сильно расходятся.

Возьмем, например, воздух: атомы газов в нем, как мы уже говорили, обладают пушистыми свойствами. В сплошной своей массе воздух напоминает ворох пушистых тел (игрушек). Электроны тоже пушисты, поэтому они с трудом могут проникать между атомами, занимая пустоты. Этих пустот в воздухе немного, и, следовательно, электронов в нем также немного, то есть плотность их совсем небольшая; но при всем при том давление электронов друг на друга может быть очень и очень большим. Всякое пополнение газовой среды даже считанным количеством электронов будет существенно увеличивать их взаимное давление. Таково соотношение плотности и давления электронов в воздухе.

В «непушистых» средах, то есть в жидкостях и в твердых телах, плотность электронов может быть значительно выше: они могут занимать пустоты не только между атомами, но и внутри них, то есть атомы могут абсорбировать электроны. Абсорбирующая способность (электроноемкость) различных атомов — различная: у одних она — ниже, у других — выше, — но в любом случае «непушистые» атомы и молекулы поглощают (абсорбируют) не единицы и даже не сотни электронов, а тысячи.

Поэтому незначительное пополнение «непушистой» среды электронами практически не скажется на росте их взаимного давления. Соотношение плотности и давления электронов в жидких и твердых средах, как мы видим, совсем иное, чем в газах.

Электрическое поле может быть охарактеризовано в полной мере в том случае, если распределение электронного давления в нем буде представлено в виде градиентов, определяющих не само давление, а его изменение в пространстве и направление такого изменения (градиент — вектор).

 

Электрические явления. Молния.

Каждый из нас и чаще всего с восторгом (или, напротив, с испугом) наблюдал молнии — явление удивительное и производящее сильное впечатление. Образованный человек знает, что проявляется проскакивание электронов между облаками или между облаком и землей. Уточним наше понимание молнии в свете эфирной теории.

Электроны на Земле гибнут в больших количествах: часть из них «сгорает» в пламени химических реакций, в том числе и при обычном горении, но большая часть проникает в недра Земли и там исчезает, пополняя тепло планеты. Поэтому на поверхности Земли электронов не так уж и много. Значительно больше их в высоких слоях над атмосферой Земли, где они накапливаются как результат солнечного ветра и образуют электронную оболочку (радиационный пояс). Воздух атмосферы почти не проводит электроны: его пушистые атомы и молекулы образуют своего рода перину, которой окутана планета. Радиационный пояс из пушистых электронов можно по аналогии сравнить с пушистым покрывалом на перине атмосферы. Плотность электронов в этом покрывале очень высока; она — максимальная, какая только может быть; и давление электронов в нем очень высокое: в масштабе электрических величин оно равно 10 в девятой степени вольт.

По своей удельной эфирной плотности электроны могут быть отнесены к самым атомарно тяжелым газам, то есть они стремятся опуститься вниз на землю, оттесняя вверх все другие газы воздуха; но сделать это им не просто, так как они пушисты и пушисты все атомы и молекулы воздуха. Одного медленного просачивания электронов сквозь всю толщу атмосферы недостаточно для того, чтобы рассосать электронную оболочку; остается только надеяться на молнии: они решают задачу переноса электронов на землю очень просто и эффективно — пробоем; и помогают им в этом грозовые облака.

Когда в жаркий летний день нагретый воздух устремляется вверх, он может достигать высоты, где начинается граница радиационного пояса. Там пары воды конденсируются и переходят из состояния газа в жидкость и даже в лед, то есть молекулы воды теряют свою пушистость. Пользуясь благоприятным моментом, электроны радиационного пояса облепливают молекулы воды как только могут — сотнями и тысячами на каждую молекулу. Подъем облака в силу его инерции рано или поздно прекращается, и оно устремляется вниз, увлекая вместе с собой неисчислимое количество прилипших электронов. На низкой высоте происходит пробой воздуха, и электроны лавиной уходят в землю.

Что такое — пробой? Обратимся к аналогии — к пневматике. Допустим, у нас имеется ресивер с высоким давлением воздуха; трубка, соединенная с ресивером, уперта своим открытым концом в толстый слой пористого поролона. При этом воздух, скорее всего, будет потихоньку просачиваться сквозь поролон, но давление в трубке будет сохраняться высоким; это — исходное состояние. Теперь начнем постепенно внедрять трубку в поролон все глубже и глубже. В какой-то момент, естественно, произойдет прорыв воздуха сквозь оставшуюся толщу поролона — это и есть пробой: воздух под давлением разорвет поролон, раздвинет его и устремится по возникшему каналу.

Точно также возникает пробой воздуха атмосферы скопищем электронов грозового облака; нет ни какой разницы, если не считать яркой световой вспышки молнии, которой у пневматики, разумеется, нет. Свет порождает гибнущие в шнуре пробоя электроны. Гром, который мы слышим при грозе, представляет собой волну давления, возникшую в результате резкого раздвигания стенок канала, по которому устремляется поток электронов. Известно, что диаметр этого канала достигает двадцати сантиметров и более, а ток в нем может превышать 200 000 ампер. При подходе к земле молния расщепляется на искры, то есть общий канал распадается на рукава. Средняя скорость молнии равна 10 000 километров в секунду, а длина молнии иногда превышает 10 километров.

Как только давление электронов в канале упадет, атмосферное давление его захлопнет, и молния прекратится; произойдет еще один хлопок — кавитационный.

Пережим канала молнии атмосферным воздухом происходит самым неожиданным образом, и может случиться так, что не все электроны смогут выскочить из него и уйти в землю, и часть из них окажется запертой как бы в ловушке — в мешке; так рождается шаровая молния. Съежившись в клубочек, она будет шипеть и искриться, как шипят и искрятся провода высокого напряжения. Коснувшись токопроводящего предмета, шаровая молния уйдет в него; и лучше, если этим предметом будет не человек.

 

Электризация тел

Какое бы впечатление не производила на нас молния, более убедительные свидетельства существования электричества мы получаем в наши дни от работы электрических приборов и машин. Нагрев утюга, свет электрической лампы, голос радиоприемника, светящийся экран телевизора и многое другое и в быту и за пределами его — все связано с электричеством, все порождено им. И тем не менее сначала обратимся к осмыслению тех невзрачных проявлений движения электронов, с которых начинается изучение электричества школьниками.

Известно, что при трении предметов из некоторых материалов они электризуются; такой процесс происходит при трении стекла о шелк, янтаря или эбонита о шерсть, даже одной ткани по другой. Каков механизм электризации?

Мы уже не раз сравнивали электроны с пылью, воспользуемся этим сравнением и сейчас. При трении электроны буквально механически удаляются с одной поверхности и осаждаются на другой, как стирается, например, пыль мокрой тряпкой с мебели. Казалось бы, пыль должна одинаково распределяться между тряпкой и полированной поверхностью мебели, но нет: она вся осаждается на тряпке и полностью (почти полностью) удаляется с мебели; сказываются разные способности тряпки и полированной поверхности адсорбировать, то есть воспринимать, пыль.

То же самое происходит с электронами: они легко стираются шелком со стекла, янтарем с шерсти, одной тканью с другой и так далее. Но есть и такие материалы, и их большинство, которые адсорбируют электроны одинаково: как бы мы не терли друг о друга предметы из этих материалов электризация не обнаруживается.

В общем случае электризация выражается либо в избытке электронов, либо в их недостатке (и избыток и недостаток определяются относительно нормального «атмосферного» потенциала), и она свойственна как для проводников (металлов), так и для диэлектриков; но формы ее выражения во всех случаях — разные. В металлах и дефицит и излишек электронов рассредоточиваются по всему телу, а в диэлектриках этого не происходит; выше об этом мы уже говорили.

Каждый в отдельности атом (или молекула) диэлектрика способен удержать в независимости от своих соседей как излишек электронов, так и их недостаток; и этому способствуют, в частности, присасывающиеся воронки петель атомов; получается как бы точечная электризация. И такое свое состояние атом может удерживать некоторое время, пока в результате естественной миграции электронов их потенциал на атоме не выровняется с окружающим.

Говорилось уже и о том, что облепленные электронами присасывающие участки атомов нейтрализуются, а оголенные, наоборот, усиливают свои присасывающие способности. И поэтому уместно сравнение электронов с пылью: облепленные пылью куски сырой глины, как известно, не склеиваются.

Все эти особенности электризации очень удачно используются в светокопировальной технике типа ксерокс. С покрытой особым материалом (чаще всего — селеном) поверхности пластины удаляют электроны и оголяют тем самым все поверхностные атомы. Затем на пластину проецируют изображение; под действием света атомы снова насыщаются электронами, но там, где свет не попал, дефицит электронов сохраняется. После этого на пластину наносят порошок красителя; и там, где на пластине сохранились оголенные атомы, порошок прилипает. Пластину с прилипшим красителем прижимают к бумаге, и краситель переходит на нее; так получают копии изображений.

В качестве другого примера можно рассмотреть использование явлений электризации и слипания молекул в живой мышце. Ткань мышцы состоит из перемежающихся молекул актина и миозина, причем молекула миозина имеет полукруглую головку, упирающуюся в актин. Все пространство между молекулами заполнено жидкостью с избытком электронов; электроны облепливают молекулы миозина и актина и нейтрализуют их способность слипаться; мышца расслаблена. Сигнал на сокращение подается в виде порции кальцинированной жидкости с дефицитом электронов. Скатываясь по миозину и попадая на актин, эта жидкость отбирает у обоих молекул электроны, оголяя тем самым их присасывающие участки. В результате начинается слипание молекул; оно выражается в том, что головка миозина обкатывается по актину; при этом происходит частичное укорачивание мышцы. Если порции управляющей жидкости будут повторяться, то сокращение мышцы продолжится. Но как только поступление этой жидкости прекратится, начнется обратный процесс: избыточные электроны среды, проникая между головкой миозина и молекулой актина, будут заполнять их присасывающие участки, нейтрализуя их способность слипаться; мышца снова расслабится.

Можно предположить, что такой процесс разделения атомов и молекул под воздействием проникающих в присасывающие места электронов лежит в основе растворения веществ: электроны растворителя, имея возможность свободно перемещаться вместе со своим молекулами и подходить как угодно близко и с разных сторон к молекулам растворимых веществ, ослабляют их связи настолько, что они распадаются, то есть диссоциируют.

Наэлектризованность тел обнаруживается обычно визуально: тела либо притягиваются, либо отталкиваются; у тяжелых предметов эти явления не столь очевидны, но у легких — бросаются в глаза. Потертая о сухие волосы пластмассовая расческа притягивает к себе листочки бумаги, наэлектризованные легкие ткани слипаются, или наоборот, расходятся; таких примеров можно привести множество.

 

«Притяжение» и «отталкивание» наэлектризованных тел

Перейдем к следующему вопросу: каков механизм притягивания и отталкивания наэлектризованных тел? Вопрос интересен в том смысле, что эфирная теория отвергает и притяжение, и наличие электрических зарядов, а без них взаимовлияние наэлектризованных тел как бы становится необъяснимым.

Основой всех механических перемещений притягивающихся или отталкивающихся наэлектризованных тел является различная эфирная плотность, возникающая в результате движения электронов: чем больше эти движения, тем меньше плотность эфира и, наоборот, чем меньше движения, тем она больше. Изменение плотности порождает изменение давления эфира, а разность давлений приводит к появлению силы. О связи движений эфирных шариков с их плотностью уже говорилось; мы повторяем это в данном месте для того, чтобы подчеркнуть значимость такого явления: именно оно позволило нам отказаться от пресловутого притяжения и понять гравитацию; с его помощью будем объяснять механические взаимовлияния наэлектризованных тел, отвергая в принципе, по-прежнему, наличие притяжения и в этом случае.

Подвесим рядом два лепестка из металлической фольги и подадим на них в избытке электроны. Сделать это можно традиционным школьным способом — прикосновением к ним натертой о волосы пластмассовой расческой, или более современным способом — с отрицательного полюса заряженного конденсатора. Лепестки разойдутся; почему?

Начнем объяснение с того, что отметим наличие утечек электронов с лепестков в окружающую среду; это, может быть, — самое главное в понимании процесса. Доказательством наличия утечек является то, что довольно скоро разошедшиеся лепестки вернутся в свое исходное вертикальное положение. Утечки электронов с лепестков будут происходить в разные стороны, но очень скоро их плотность в пространстве между лепестками возрастет, и в дальнейшем предпочтительным направлением для них будут внешние по отношению к лепесткам пространства. Повышенные движения электронов понизят там эфирную плотность, и каждый лепесток будет испытывать силу от разности эфирного давления, направленную во внешнюю сторону; лепестки разойдутся. Таково наше объяснение. Подчеркнем: лепестки разойдутся не потому, что будут толкать друг друга, а вследствие разности давлений эфира с разных сторон каждого в отдельности лепестка. И еще раз повторим: решающим фактором в данном опыте явилось уменьшение плотности эфира в пространстве с движущимися электронами. Сила, порождаемая разностью эфирного давления, оказалась даже больше реактивной силы срывающихся с лепестка электронов.

Из нашего объяснения следует, что отклонение лепестка, на который подан избыток электронов, может произойти и в том случае, если другого соседнего лепестка совсем не будет, но при условии, когда с разных сторон лепестка будут уходить в окружающую среду разные потоки электронов; они в разной степени возбудят эфир, и этого окажется достаточно для того, чтобы лепесток отклонился. Сделать это можно различными способами: нанесением на одну из сторон особого покрытия, созданием различных специальных по форме шероховатостей, использованием полупроводниковых материалов и другими.

От изложенного объяснения возникновения силы на отдельном лепестке недалеко до обоснования, по крайней мере теоретически, возможности существования мифического ковра-самолета: если каким-то способом создать на верхней стороне ковра ускоренные движения электронов, то спокойный эфир под ковром создаст подъемную силу.

Теперь тот же опыт с подачей электронов на два соседних лепестка повторим наоборот: создадим на них разрежение электронов; для этого достаточно прикоснуться к ним потертой о шелк стеклянной палочкой или положительным полюсом электрического конденсатора. Лепестки снова разойдутся. Будем и этот случай объяснять, руководствуясь эфирной теорией.

Исходим из того, что электроны есть везде; есть они и в воздухе; мы об этом уже говорили. Любое тело, находящееся в воздухе, в стабильном электрическом состоянии насыщено электронами настолько, что их давление и в воздухе, и в этом теле одинаково. (О плотности электронов в этом случае можно не говорить; естественно, она больше в металле и меньше в воздухе.) А при отсутствии перепада электронного давления не будет и организованного перемещения электронов ни из воздуха в сторону тела, ни навстречу; и только при появлении перепада начнется их направленное движение.

В нашем опыте электроны окружающего воздуха устремятся к лепесткам, потому что там искусственно создано их разрежение; но очень скоро их плотность в межлепестковом пространстве упадет настолько, что основными будут потоки, идущие только извне. Движущиеся электроны уменьшат плотность эфира в наружном пространстве от лепестков, и лепестки под воздействием более высокого давления эфира в зоне между ними разойдутся. Результат тот же, что и при подаче избытка электронов на лепестки; и в этом случае также никакого отталкивания лепестков не происходит, а «виноватой» оказывается по-прежнему, разность давлений эфира.

Продолжим опыты и подадим на один лепесток избыток электронов, а на другом создадим их разряжение; результат окажется противоположным: лепестки сблизятся. Как было бы заманчиво объяснить это явление притяжением зарядов — своего рода чудесной палочкой-выручалочкой, но притяжения на самом деле нет и нет никаких зарядов, и нам не остается ничего другого, как воспользоваться прежними нашими рассуждениями.

Электроны будут утекать с лепестка, где они в избытке, и пополнять недостающую плотность на другом. Наибольший поток электронов будет наблюдаться в зоне между лепестками; следовательно, там же будет создаваться пониженное давление эфира. Возникшая в результате на каждом лепестке в отдельности разность эфирного давления породит силу, направленную извне вовнутрь; лепесток отклонится туда же; то же самое сделает независимо от первого другой лепесток; возникает иллюзия их притяжения.

Рассматриваемый опыт хорош тем, что он имеет интересное продолжение. Допустим, пополнение недостающих электронов на одном из лепестков устранило этот недостаток: плотность электронов на нем стала нормальной, но на другом лепестке она сохранилась еще избыточной. Электроны, по-прежнему, будут уходить со второго лепестка в воздух как в сторону первого, так и наружу; при этом их поток в сторону другого лепестка окажется большим. Этому будет способствовать большая поглотительная способность (электроемкость) металлического лепестка, чем воздуха. Сохранившееся повышенное давление электронов в зоне между лепестками приведет к их отклонению в направлении друг к другу, то есть их первоначальное положение сохранится. Отсюда следует такой вывод: «незаряженный» электронами лепесток будет отклоняться в сторону «заряженного», а тот навстречу первому; при этом вовсе необязательно, что бы «незаряженный» лепесток был металлическим. Последнее утверждение основано на том, что абсорбируют электроны не только металлы, но и атомы и молекулы других материалов, твердых или жидких, кроме газообразных. Поэтому-то пластмассовая расческа после трения о волосы притягивает как кусочки металлической фольги, так и другие неметаллические легкие тела: обрывки бумаги, пушинки, тонкие струи воды и прочее.

Отклонение лепестков навстречу друг другу сохраняется и тогда, когда избыток электронов появится на первоначально «незаряженном» лепестке. Казалось бы, как могут «притягиваться» лепестки, имеющие одинаковый знак «заряда», то есть имеющие избыток электронов? С точки зрения эфирной теории никакого парадокса в этом нет: поток электронов в зоне между лепестками все еще превышает потоки в других направлениях, и этого достаточно для того, чтобы лепестки сближались.

Если следить за их поведением и дальше, то, спустя некоторое время, обнаружится, что первоначально заряженный электронами лепесток перестанет отклоняться и примет вертикальное положение, в то время как второй сохранит свое прежнее отклонение. Это будет говорить о том, что заряженность электронами второго лепестка достигла такого уровня, когда утечки электронов с первого уравновесились в обе стороны, а поток прибывающих на второй лепесток электронов превысил утечки с него в наружное пространство.

Когда в результате перетекания электронов их избыточное давление на обоих лепестках выровняется, возникает та ситуация, которая нами уже рассмотрена ранее: лепестки разойдутся. Закончится опыт тем, что избыточные электроны на лепестках рано или поздно иссякнут, и лепестки примут вертикальное положение.

В середине нашего опыта может возникнуть иное продолжение: допустим, плотность электронов на том лепестке, где она была в избытке, стала в результате утечек нормальной, а на втором — все еще сохранится их разреженность. Электроны из промежуточного воздушного пространства будут усиленно вытесняться в сторону лепестка с недостатком электронов, и это приведет к сближению обоих лепестков. Когда же потоки электронов, пополняющие их недостаток с обоих сторон лепестка уравняются, он примет вертикальное положение, в то время как другой сохранит свое отклонение в его сторону. В дальнейшем возможен и такой вариант, что наибольшим будет поток электронов извне, и тогда лепесток с разреженными электронами отклонится наружу, а другой — в его сторону. Закончится опыт, опять же, полным насыщением и безразличным положением лепестков.

На примере рассмотренного опыта видно, что поведение лепестков не подчиняется примитивному закону: отталкивание тел с зарядами одного знака и притяжение — с противоположными, — оно сложнее, и его можно еще более усложнить, если использовать различные покрытия на лепестках.

Очень зримыми явления электрического «притяжения» и «отталкивания» становятся тогда, когда мы видим прилипающее к телу синтетическое платье или, наоборот, когда оно, наэлектризованное, топорщится, но ничего нового в объяснениях такие явления не требуют.

 

Движения ионов в электролитах

Отказавшись от притяжения, мы обязаны по-новому взглянуть на такой процесс, как движение ионов в электролитах. Факт их движения в сторону электродов противоположного знака неоспорим, но также хорошо известно, что без перемешивания электролита гальванический процесс почти полностью стопорится. В чем дело?

Возьмем раствор медного купороса, опустим в него электроды и подведем к ним электрическое напряжение; с отрицательного электрода — катода — электроны будут поступать в электролит, а из него — на положительный электрод — на анод. Вода, как известно, разбивает молекулу купороса на ион меди (атом с недостатком электронов) и на ион сернокислого остатка (с их избытком). Проследим за поведением отдельных ионов: меди — катиона и кислотного остатка — аниона.

Из раствора к катиону устремятся электроны, и не один, и не два, а тысячи и тысячи — именно столько способен абсорбировать ион. Электроны сначала будут направляться к нему со всех сторон, но очень скоро главным направлением их движения будет — от катода. Они понизят эфирное давление с его стороны, и разность эфирного давления сместит ион меди туда же. Как только ион насытится электронами, его движение приостановится. Приблизительно такой же маленький шажок совершит и анион, но только повышенная активность электронов возле него окажется со стороны анода: именно туда устремятся его избыточные электроны, и туда сместится он сам. Избавившись от лишних электронов, анион остановится. Остановившиеся нейтрализованные атомы меди и сернокислый остаток перестают принимать участие в гальваническом процессе и будут неподвижными до тех пор, пока судьба не столкнет их друг с другом; для этого как раз и необходимо перемешивание раствора. При столкновении сернокислый остаток отберет у атома меди электроны; они разойдутся, и ситуация повторится. Так, шаг за шагом, будут двигаться в нужных направлениях все ионы электролита.

Уткнувшийся в электрод атом меди может успеть в оголенном виде прилипнуть к нему, но если он в этот момент окажется уже облепленным электронами, то не сможет прилипнуть и будет дрейфовать в полной независимости. Этим объясняется поведение неплотного, рыхлого гальванического покрытия, в котором металл представлен в атомарном виде.

Иная судьба — у сернокислого остатка: добравшись до анода, он оторвет от него атом металла (той же меди), уйдет с ним в раствор, и там они разойдутся; оголенный ион меди устремится в долгий путь к катоду навстречу идущим к нему электронам, а сернокислый остаток вернется к аноду и повторит свои действия. Если бы не было перемешивания электролита, то все кислотные остатки сгрудились бы рано или поздно возле анода и переводили бы материал анода в атомарное состояние; и только наличие кислотных остатков во всем пространстве раствора (а это достигается перемешиванием) способствует смещению ионов меди до самого упора в катод.

Более сложные процессы с движениями ионов происходят в гальванических элементах, например в элементе Вольта, который представляет собой медный и цинковый электроды, помещенные в раствор серной кислоты. Особенность процесса состоит в том, что сернокислый остаток по-разному соединяется с медью и цинком . Когда он отрывает от электрода атом меди и присоединяет его к себе, то вместе с ним увлекает и все электроны, что были прежде а нем; в результате плотность электронов на электроде снижается. В физике такая способность атомов металлов либо забирать электроны с собой, либо, наоборот, их отдавать характеризуется абсолютным нормальным потенциалом; у меди он равен плюс 0,61 Вольта.

Когда же происходит соединение сернокислого остатка с атомом цинка другого электрода, то все наружные электроны атома и часть их остатка отжимаются и сдвигаются на электрод; в результате плотность электронов на нем увеличивается (абсолютный нормальный потенциал цинка равен минус 0,50 Вольта). Такие особенности окисления вызваны только конфигурациями атомов меди и цинка и их присасывающими желобами; эти свойства металлов постоянны и неизменны.

После того, как образовались молекулы медного и цинкового купоросов, они уходят в раствор и там, спустя некоторое время, распадаются под действием воды на ионы. При распаде молекул их электроны перераспределяются между ионами следующим образом: сернокислый остаток медного купороса оттягивает на себя большую часть электронов с атома меди и приобретает очень высокую их плотность, а сернокислый остаток молекулы цинкового купороса, забрав последние электроны с иона цинка, оголяет его начисто. Это приводит к тому, что между сернокислым остатком медного купороса и ионом цинка появляется поток электронов; он уменьшает эфирное давление между ними, и они устремляются друг к другу. Столкнувшись и соединившись, они образую снова молекулу цинкового купороса, и снова цинк вытесняет все электроны. Но, обратим внимание на то, что эти электроны уже совершили скачок от медного электрода в сторону цинкового; так они будут шаг за шагом перемещаться в этом направлении, пока их не остановит разность электронных потенциалов на электродах. Если эту разность понижать путем использования электронного тока, то гальванический процесс будет продолжаться до тех пор, пока весь медный электрод не выпадет в атомарный осадок, или весь цинк не превратится в купорос.

 

Электронный поток — электрический ток

То, что электрический ток представляет собой электронный поток и что им движет только активный перепад электронного давления, мы уже говорили; уточним некоторые моменты, связанные с ним, и будем их рассматривать по-прежнему с позиций эфирной теории.

Прежде всего — об электронном потоке: в электрофизике сложилось мнение, что кроме электронной проводимости существует еще ионная. В принципе так можно говорить, но мы должны четко представлять, что ионы, то есть атомы или молекулы с ненормальной плотностью электронов, являются всего лишь носителями или, просто, посредниками; сам же электронный поток нигде не прерывается. В этом смысле наряду с понятием электронной проводимости можно было бы употреблять выражение «металлическая проводимость».

Что касается активного перепада электронного давления, то он может возникать как от нагнетания электронов, так и при отсосе. Первый случай подобен нагнетанию воздуха с помощью компрессора, а второй — его откачке с помощью вакуум-насоса. При нагнетании электронов передняя волна давления будет выглядеть как местное уплотнение электронов, и это уплотнение будет быстро смещаться по проводнику в направлении от источника давления; это — наиболее распространенный случай. При отсосе электронов переднюю волну давления правильно было бы назвать волной разряжения, и она смещается с той же скоростью в направлении к источнику; это — так называемая дырочная проводимость.

В общем на электрическую цепь распространяется такое правило: сколько электронов ушло от источника, столько же к нему возвращается, — но могут быть отклонения и очень существенные: все зависит от емкости потребителей. В начале возникновения электронного потока от источника будет уходить больше электронов, чем возвращаться к нему; разность будет накапливаться в емкостях (в частности — в конденсаторах) потребителя. Потом процесс может стабилизироваться, но в сложных системах он полностью никогда не устанавливается.

В исключительных случаях электронные потоки могут быть только однонаправленными, например при подключении пробника с индикаторной лампочкой, и тогда используется только один проводник. Существуют и более сложные однопроводные электрические приборы; для них, естественно, более подходят однополярные источники питания — и такие в принципе могут быть: наше понимание электронных процессов допускает это.

Наиболее подходящим токопроводящим материалом являются металлы. Это объясняется тем, что атомы металлов имеют контурные присасывающие желоба; и как бы атомы не соединялись между собой (а соединяются они между собой с помощью тех же желобов), их желоба являются продолжением одних другими: скользя по желобам, электроны могут перемещаться из конца в конец проводника. В пределах атома электрон смещается без каких-либо потерь; некоторые усилия он совершает только при перепрыгивании с атома на атом, да и то только при условии, что атомы соединились между собой неудачно. Впрочем, зная условия стыковки атомов (а это — затвердевание металла и пластическая деформация волочения), мы не можем рассчитывать на то, что их присасывающие желоба соединились так, как хотели. Отсюда — электрическое сопротивление проводников.

Оно возрастает еще и от того, что у атомов есть тепловые движения, приводящие к постоянному вскрытию стыков; преодолевая их, атомы вынуждены совершать усилия. В среднем влияние температурных изменение электрического сопротивления у всех металлов приблизительно одинаковое, но есть и некоторые отклонения; так больше на температуру реагирует чистое железо и меньше — медь, а еще меньше — некоторые сплавы латуни и, конечно, ртуть, но ртуть — уже жидкий проводник. Снижение температуры благоприятно сказывается на электрическом сопротивлении; и если ее снижать до глубокого холода, то можно достичь сверхпроводимости, она возникает при температуре минус 266 градусов по Цельсию у свинца и при более низкой температуре у алюминия.

Многолетние усилия ученых создать сверхпроводящие материалы при нормальных условиях пока никаких результатов не дали, хотя, согласно эфирной теории, такое может быть. Что для этого нужно? Нужно выполнить два условия: первое — правильное соединение присасывающих желобов атомов, и второе — предотвращение вскрытия стыков при тепловых движениях. Правильного соединения атомов можно достичь при очень медленном затвердевании некоторых металлов в условиях невесомости. Известно, что очень тщательная термообработка проводников даже в земных условиях повышает температуру перехода проводников к сверхпроводимости; при этом, надо полагать, атомы имеют возможность перестроится и улучшить свои взаиморасположения. А для того, чтобы атомы не раскрывали свои стыки при тепловых движениях, нужно подбирать металлы с высокой упругостью, например вводить в сплавы бериллий. Возможны и другие варианты, но, как нам кажется, без глубокого понимания токопроводящих процессов с точки зрения эфирной теории проблему сверхпроводимости не решить. По крайней мере, нужно усвоить хотя бы то, что открытыми для перемещения электронов могут быть только присасывающие желоба атомов на поверхности проводников, а все или почти все внутренние заняты межатомными связями.

Согласно эфирной теории наименьшее сопротивление перемещению электронов оказывает вакуум; если бы он был абсолютным, то есть чистым эфиром, то сопротивления не возникало бы никакого. Но положение усугубляют два обстоятельства: во-первых, абсолютного вакуума достичь невозможно, а во-вторых, перемещаясь внутри любого канала, электроны будут цеплять за стенки и испытывать от этого сопротивление своему движению. Отсюда — вывод: легкого решения проблемы сверхпроводимости не существует.

Изучение движений электронов в вакууме интересно само по себе; оно позволяет нам хорошо понять процессы, происходящие в электровакуумных лампах. Наиболее интересными вопросами являются: отрыв электронов от электрода, управление величиной электронного потока, сжатие потока в тонкую струю и отклонение струи; последние два вопроса касаются в основном электронно-лучевых трубок. Об отрыве электронов от присасывающих желобов атомов электрода уже говорилось; остальные три явления требуют пояснения.

Утверждая, что электрическое поле не может существовать без электронов и что электроны в нем непосредственно контактируют, не имея никакого дальнодействия, мы вынуждены теперь представлять процессы, происходящие в электровакуумных лампах, как взаимовлияние нескольких электронных потоков со своими перепадами давлений; и только так. Сетка лампы, регулирующая величину проходящего через нее потока, может отсасывать часть электронов и тем самым его ускорять или, напротив, может его тормозить, создавая встречный поток. Сжатие электронного потока в тонкую струю можно осуществить простым способом, пропуская его через малое отверстие, или другим способом — созданием дополнительного бокового кругового потока. Этим же боковым круговым потоком можно отклонять электронную струю в нужном направлении; для этого достаточно дифференцировать силы потоков с разных сторон. Именно таким способом управляется электронный луч в кинескопе. Для сравнения можно сказать, что также происходит управление воздушными потоками в приборах струйной пневмоавтоматики (пневмоники).

Особый характер имеют электронные потоки в полупроводниках; к ним относятся самые разные материалы с самыми различными свойствами. К чести специалистов, занимавшихся полупроводниками, — они никогда не руководствовались планетарной моделью атомов; она их не устраивала. Их воззрения всегда базировались на признании того, что атомы представляют собой решетчатые конструкции, а электроны — как мелкие частицы среди этих решеток. Такое понимание ни в чем не расходится с эфирной теорией. Это непроизвольное сближение произошло, скорее всего, потому, что электронщики всегда отталкивались от факта, от опыта, от практики; и результаты у них впечатляющие. Можно не сомневаться, что эфирная теория будет воспринята ими как сама собой разумеющаяся. А что касается самих полупроводников, то эфирная теория, пожалуй, мало что изменит в понимании процессов, происходящих в них.

Представляя почти наглядно электрический ток в виде электронов, скользящих по бугристым поверхностям проводников, можно высказать сомнение, что скорость распространения волны их давления близка к скорости света, то есть к тремстам тысячам километров в секунду; скорее — значительно меньше. В то же время можно принять за действительную подвижность самих электронов в проводниках, указанную в справочниках; так в серебре, если верить этим данным скорость электронов равна 56 сантиметрам в секунду при разности напряжений в один Вольт на одном сантиметре; наименьшая скорость — в цинке, где она составляет всего 5,8. А вот в справочные данные по подвижности ионов в водных растворах и в газах верится с трудом, так как в нашем представлении она не постоянна и может колебаться от высоких значений вплоть до нуля.

 

3.2. Магнетизм

 

Элементарным магнитом является электрон; если говорить более точно, то — не сам электрон, а его вращение — вращение того самого колесика, в виде которого мы представляем себе электрон. Если в электричестве он выполняет функции носителя энергии, как атомы и молекулы воздуха в пневматике, то в магнетизме его роль иная: он является элементом, упорядочивающим взаимное расположение и вращение. Для уяснения сказанного позволим себе еще одно образное сравнение: если в электричестве электрон — как солдат в бою, то в магнетизме — как солдат в строю.

У электрона есть все атрибуты магнита: активные полюса и активная боковая сторона; благодаря им он выстраивается соответствующим образом по отношению к другим электронам. Полюса магнита (в данном случае — торцы электрона) получили географические названия: северный и южный. Произошло это не случайно, наблюдая за поведением магнитных стрелок, люди отмечали их ориентацию на Северный и Южный полюса Земли. Понимая, что Земля сама — магнит, и глядя мысленно из космоса на ее Северный полюс, мы отметим вращение против часовой стрелки (Солнце восходит на Востоке, а садится на Западе); отсюда — и северный полюс магнита. При взгляде на Южный полюс мы обнаружим направление вращения Земли, естественно, по часовой стрелке; по аналогии соответствующий торец магнита назван южным полюсом. К счастью, эти согласованные с названиями полюсов их направления вращения оказались такими, какими они должны быть в электромагнитных явлениях, и ниже мы это покажем.

А пока перед нашим взором — электрон; и он расположен так, что его ось вращения — вертикальна, а направление вращения, если посмотреть на него сверху — против часовой стрелки; следовательно, его северный полюс будет сверху, а южный — снизу, — привычное географическое расположение. Ближайшая к нам боковая сторона электрона смещается вправо. Договоримся и впредь именно так представлять себе расположение электрона и любого магнита в пространстве.

Если рядом окажутся несколько электронов и если ничто не будет мешать, то они, как мы уже говорили, выстроятся соосно с одним направлением вращения, образуя вращающийся вокруг своей оси шнур; это — тоже магнит, только в нем магнитные полюса будут проявляться, разумеется, только на крайних электронах, и эти проявления сохранятся неизменными: каким бы длинным не был шнур, его полюса всегда будут воздействовать на окружение неизменно. Теперь мы можем сказать так, что известная из электрофизики магнитная силовая линия есть соосно расположенные и вращающиеся в одном направлении электроны; синонимами магнитной силовой линии являются магнитный шнур и электронный шнур.

Тело атома, представляющее собой вращающуюся торовую оболочку, является по определению также магнитным шнуром, только этот шнур замкнут и поэтому не имеет полюсов. Впрочем, разорванный атом становится обычным магнитным шнуром; обычным — в магнитных проявлениях, но необычным в силе этих проявлений: тело атома более плотно и более прочно.

Рядом (параллельно) расположенные магнитные шнуры образуют пучок. Если им ничто не мешает, то их направления вращения будут паразитными, то есть встречными. Такой пучок, как единое целое, магнитные свойства теряет: у него нет своих полюсов и нет однонаправленных боковых сторон. Магнитные свойства пучок будет иметь только в том случае, если вращение всех его шнуров будет однонаправленным; при этом у него появляются полюса и действующие в одном направлении боковые стороны; такой пучок мы вправе назвать магнитным и вправе считать, что он определяет так называемое магнитное поле; точнее: магнитное поле есть пространство, заполненное пуком вращающихся в одном направлении магнитных шнуров.

Однонаправленность вращения шнуров в магнитном пучке — противоестественна и может удерживаться только при определенном внешнем воздействии; такое воздействие могут оказывать атомы и эфирный ветер.

Атомы некоторых химических веществ, например железа, никеля и кобальта, устроены таким образом, что выстраивают прилипшие к ним электроны в магнитные шнуры. Если в момент затвердевания этих веществ их атомы расположены так, что все их магнитные шнуры образуют один магнитный пучок, то полученное твердое тело окажется магнитом. В дальнейшем атомы такого естественного магнита будут удерживать образовавшийся магнитный пучок и противодействовать стремлению отдельных его магнитных шнуров сменить свое направление вращения на обратное. Действие магнитного пучка распространяется и на прилегающие к магниту пространства, то есть за его пределами: находящиеся там свободные электроны будут выстраиваться естественным образом в линии, как бы наращивая магнитные шнуры твердого тела; правда, располагаться плотно друг к другу шнуры в свободном пространстве уже не могут — будут мешать сталкивающиеся оболочки, — и выходящий из твердого тела магнитный пучок будет расходиться веером.

Другим фактором, удерживающим магнитный пучок, является разная скорость эфирного ветра; это явление имеет большое значение в электромагнетизме, и поэтому рассмотрим его более подробно. Представим себе определенный магнитный шнур, расположенный поперек эфирного потока. Если скорость эфира в сечении потока одинакова, то такой ветер может только прогибать или отклонять шнур, но повлиять на направление его вращения не сможет. Другое дело, если скорость эфира в сечении потока окажется разной: с одной стороны шнура больше, а с другой — меньше; такая разность скоростей обдувающего эфира будет либо содействовать вращению магнитного шнура, либо препятствовать ему. При содействии шнур будет чувствовать себя в безопасности, а при сопротивлении — рано или поздно вынужден будет поменять направление своего вращения.

Точно такое же воздействие оказывает эфирный ветер с разными скоростями на магнитный пучек. Если эфирный поток, пронизывающий его, имеет большую скорость с одной стороны, и она убывает по мере смещения к другой, то все магнитные шнуры пучка вынуждены будут вращаться в одном направлении, несмотря на их нежелание это делать. Более того, эфирный ветер с разными скоростями не только ориентирует магнитные шнуры, но и содействует их формированию: электроны, оказавшиеся в поле действия эфирного потока с такими скоростями, будут выстраиваться в соосность с одним направлением вращения, то есть будут объединяться в шнуры.

 

Проявления магнетизма

Переменная скорость эфира, плавно изменяющаяся в одном направлении, может возникать в макрозавихрениях, например создаваемых электромагнитными катушками. Скорость закрученного ею эфира будет убывать по мере удаления от витков как к центру катушки, так и на периферию; поэтому с одной стороны от витков будет одно магнитное направление, а с другой стороны — обратное, или, другими словами, внутри катушки сформируется пук магнитных шнуров одного направления вращения, а снаружи, охватывая внутренний кольцом, расположится другой пук с противоположным направлением.

Процесс формирования магнитных пучков микрозавихрением эфира — обратим, то есть постоянный магнит закручивает вокруг себя эфир по отмеченному выше закону: окружная скорость эфира постепенно увеличивается при смещении от центра пучка к его краю (там она — наибольшая), и постепенно уменьшается за пределами пучка при удалении от него. Такое проявление магнетизма, а именно: формирование микрозавихрением эфира магнитного пучка и обратный процесс — закручивание магнитом эфира вокруг себя, — является одним из основных; оно лежит в основе многих электромагнитных процессов.

Другим не менее важным проявлением магнетизма можно считать упругую реакцию магнитного шнура на давление сбоку. Мы знаем, что шнур не прочен, но в пределах до своего разрушения он упруго сопротивляется всякой попытке сместить или прогнуть его. При этом возникает отклоняющее воздействие, вызванное тем, что шнур вращается вокруг своей оси. Если взять проводник и упереться им в магнитный шнур, то, во-первых, потребуется усилие для его прогиба, а во-вторых, электроны проводника , обкатываясь по шнуру, сместятся в сторону его вращения, то есть совершат маленький шажок по проводнику. При его дальнейшем смещении в действие вступит следующий магнитный шнур, и снова все повторится, и электроны проводника снова совершат еще один шажок в прежнем направлении, и так далее. Таким образом в проводнике, пересекающем магнитный пучек, возникает движение электронов, то есть электрический ток. И это проявление магнетизма, а точнее говоря — электромагнетизма, трудно переоценить, ведь именно на этом принципе основана работа всех механических генераторов электрического тока.

Но в глаза обычно бросается иное проявление магнетизма: магнитные притяжения и отталкивания. Если сдвигать соосно два магнитных пучка, да так, чтобы совпадали направления вращения их шнуров, то они устремятся навстречу друг другу и потянут за собой магниты. Это кажется настолько понятным, что не требует особых разъяснений. Совпадающее направление вращение торцевых электронов сближающихся шнуров создает между ними эфирное разряжение, и они будут стремится друг к другу до упора. В свою очередь электроны «привязаны» к атомам и молекулам магнита и тянут их за собой; вот и все. При стыковке магнитов их магнитные шнуры замыкаются, и из двух образуется единый магнит.

Соосное сближение двух магнитных пучков со встречным направлением движения их шнуров порождает совсем иную картину: испытывая лобовые сопротивления, эфирные завихрения торцевых электронов будут уклоняться от взаимного сближения и противодействовать друг другу. В результате магнитные шнуры каждого пучка разойдутся крутым веером, и веера обоих пучков, как веера упругих проволок, будут препятствовать взаимному сближению. Также будут отталкиваться «привязанные» к электронам шнуров атомы и молекулы магнитов.

Кроме отмеченных проявлений магнетизма есть и другие, но они, как правило, являются производными от указанных базовых. Их много, но к ним, как мы уже говорили, не имеют никакого отношения электромагнитные волны, распространяющиеся по эфиру.

 

Магнитные поля в различных средах

Идеальной средой для магнитных шнуров является вакуум, то есть чистый эфир. Если он спокоен, то все находящиеся в нем электроны очень быстро выстроятся в магнитные шнуры; только направление вращения соседних шнуров всегда будет паразитным (антипараллельным). Одно направление вращения соседних магнитных шнуров может возникать, как было сказано выше, в эфирном завихрении, и тогда образуется магнитный пучок.

Примером почти чистой эфирной среды для магнитных проявлений может служить безвоздушный космос. На дальних подступах к Земле электроны, летящие от Солнца, имеют возможность выстроится в магнитные шнуры, и подлетая к нашей планете, они уже представляют собой поток параллельно летящих нитей. Назвать такой пучок магнитным нельзя, так как в нем будет неупорядоченное направление вращения всех магнитных шнуров. Вокруг Земли, как мы знаем, действует метазавихрение; оно уже вынуждает соседние магнитные шнуры вращаться в одном направлении, и оно превращает нашу планету в магнит. Опускающиеся к ее полюсам мириады магнитных шнуров, образующие сложные поверхности и отражающие косой свет, выглядят как северное сияние и как красочное природное явление. Возникает оно в тихие дни, когда нет ветра и, стало быть, нет порождающего его эфирного ветра; а когда он есть, то своей турбулентностью он легко разрушает и магнитные потоки, и магнитные шнуры.

Та зона на границе магнитного поля Земли, где происходит переориентация магнитных нитей солнечного ветра в упорядоченные направления вращения, называется магнитопаузой.

Благоприятной средой для магнитных шнуров и пучков являются ферромагнитные материалы, а из них лучшими — магнитно-мягкие, такие как электротехническая малоуглеродистая сталь с присадкой кремния, чистое электротехническое железо, пермаллой и другие. Они хороши по двум соображениям: их атомы, молекулы и кристаллы очень плотно насыщены электронами, и эти электроны почти беспрепятственно могут собираться в магнитные шнуры и также легко распадаться. Препятствия возникают в тех случаях, когда ориентация магнитных шнуров не соответствует ориентации атомов, молекул и кристаллов; такие свойства материалов называются магнитно-анизотропными.

Магнитно-твердые ферромагнетики, а к ним относятся хромовольфрамовые и хромомолибденовые стали, насыщены электронами не меньше, но отличаются от мягких тем, что с трудом перемагничиваются; а это значит, что электроны в них склонны удерживать свое положение и, направление вращения. На примере твердых ферромагнетиков хорошо видна инерционность электронных шнуров, усугубляющаяся нежеланием атомов изменять свои положения.

В сотни и тысячи раз слабее магнитные поля в парамагнитных материалах; к ним относятся воздух, алюминий и другие среды. Нетрудно сообразить, что ориентировать пушистые электроны среди пушистых атомов воздуха не составляет особого труда; слабость магнитных полей объясняется только редким расположением электронов в этих средах. Попутно выясняется, что плотность электронов в воздухе в сотни и тысячи раз меньше, чем в металлах, за исключением алюминия (правда, Дмитрий Иванович Менделеев его к чистым металлам не относил), но про него можно сказать так: внутри атомов алюминия электронов практически нет; мало их и в пространствах между его атомами, но поверхностные присасывающие желоба у него почти ничем не отличаются от желобов других металлов и поэтому хорошо проводят электроны; поэтому-то алюминиевые провода почти не уступают медным.

Хуже всего действуют на магнитные поля диамагнитные материалы, к которым относятся вода, кварц, серебро, медь и другие; они не усиливают внешнее магнитное поле как ферромагнетики и не равнодушны к нему как парамагнетики, а даже ослабляют его. Чем это можно объяснить? Едва ли это вызвано отсутствием электронов; можно даже утверждать, что их там очень много. Причина, вероятнее всего, кроется в том, что атомы диамагнетиков не позволяют своим электронам ни смещаться до соосности, ни поворачивать свои оси вращения.

 

3.3. Электромагнитные явления

 

Электромагнитные явления отражают связь электрического тока с магнитным полем. Все их физические законы хорошо известны, и мы не будем стараться поправить их; наша цель иная: объяснить физическую природу этих явлений.

 

Магнитное поле вокруг проводника с током

Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле. Задержимся на последнем явлении и уточним — как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности — открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, — в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.

Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами — по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки: чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную — от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.

Процесс преобразования электричества постоянного тока в магнетизм — не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

 

Движение проводника в магнитном поле

Движение электронов в проводнике возникает только тогда, когда он пересекает магнитный пучок. Этот процесс мы рассматривали чуть раньше, когда говорили об упругой реакции магнитного шнура. Дополним тем, что упруго прогибающиеся под напором проводника магнитные шнуры в какой-то момент рвутся и разрушаются и восстанавливаются только после того, как проводник их пройдет. На их восстановление, естественно, требуется время, поэтому они запаздывают и отстают от движущегося проводника; этим можно объяснить то, что они не смещают электроны в проводнике с обратной его стороны в противоположном направлении. Вполне возможно, что будут рваться и разрушаться не все магнитные шнуры; часть из них, упруго прогнувшись под действием проводника, после его прохождения выпрямится и займет прежнее свое положение; но и в этом случае их оболочки уже не будут смещать его электроны в обратном направлении.

Натыкающиеся на вращающиеся оболочки магнитных шнуров электроны проводника будут легко смещаться вдоль него только в том случае, если не будут испытывать сопротивление; но такого не бывает. Следовательно, под напором шнуров они сначала отступят поперек проводника до предела и только потом уже будут выбирать между тем, чтобы сорваться с проводника и уйти в пространство, или сместиться несмотря на сопротивление вдоль проводника. Отрыв электронов от присасывающих желобов, как мы уже знаем, — затруднителен, поэтому электронам не остается ничего другого, как двигаться по проводнику. Усилие, которое прикладывается к нему, определится силой, стремящейся оторвать электроны от желобов, а эта сила, в свою очередь, будет зависеть от сопротивления движению электронов вдоль проводника. Таким образом мы доказали справедливость закона, определяющего электродвижущую силу электромагнитной индукции, и объяснили известное в электротехнике правило правой руки, согласовывающее направления движений проводника в магнитном поле и тока в нем.

 

Проводник с током в магнитном поле

Рассмотрим теперь обратный процесс: поведение проводника с током в магнитном поле. Поток электронов, движущихся по поверхности проводника, буде увлекать за собой прилегающий эфир, и скорость эфира будет убывать при удалении от проводника — подобное мы уже наблюдали. И также, как прежде, убывающая скорость определит отношение движущегося эфира к направлению вращения магнитных шнуров; в данном случае эфир будет усиливать и укреплять магнитные шнуры с одной стороны проводника и противодействовать и разрушать шнуры с другой стороны. Можно даже конкретизировать: укрепляться будут те магнитные шнуры, касательное движение вращающихся оболочек которых будет совпадать с направлением тока в проводнике; и наоборот, разрушаться будут те шнуры, вращение которых противодействует току.

Бегущие по проводнику электроны будут обкатываться по вращающимся оболочкам оставшихся шнуров и отклоняться поперек проводника по мере возможности, а точнее говоря — до упора. Так как дальше в поперечном направлении они сместиться не могут (иначе они должны будут оторваться от проводника), то они потянут за собой в том же направлении атомы и молекулы проводника, возникнет поперечная сила смещения проводника. Очевидно, эта сила будет тем больше, чем больше напряженность магнитного поля и чем больше поток электронов в проводнике; именно такую зависимость отражает известный в электротехнике закон индукции магнитного поля.

Из нашего объяснения становится понятной связь направлений тока в проводнике, вращения магнитных шнуров и вынужденного смещения проводника; эта связь в электротехнике отображается правилом левой руки: если расположить левую руку в магнитном поле ладонью к северному полюсу и так, чтобы рука указывала направление движения тока в проводнике, то отогнутый перпендикулярно большой палец укажет направление действия смещающей электромагнитной силы.

 

Электромагнитная индукция. Трансформатор.

Эфирная теория позволяет объяснить электромагнитную индукцию, которая, как известно, заключается в том, что изменяющееся во времени магнитное поле порождает электрическое, а изменяющееся электрическое поле порождает магнитное. От себя добавим, что непосредственным участником этих процессов является также эфир в форме макрозавихрения; и об этом мы уже говорили, когда объясняли возникновение в катушке с током магнитного поля.

Обычно явление электромагнитной индукции демонстрируют с помощью постоянного магнита и подвешенного алюминиевого кольца: при приближении магнита к кольцу оно отталкивается, а при удалении от него оно притягивается. Отмечено также, что незамкнутое кольцо (с разрезом) к магниту равнодушно. Почему так происходит?

При приближении магнита к кольцу его магнитные шнуры своими вращающимися боковыми поверхностями будут сдвигать электроны в кольце до упора в осевом направлении и после этого заставят их двигаться по кругу, создавая кольцевой электрический ток, его еще называют вихревым. Подробно о подобном возникновении тока уже говорилось, когда мы рассматривали смещение проводника в магнитном поле. Если магнит будет приближаться к кольцу северным полюсом, то он породит в кольце движение электронов против часовой стрелки (при взгляде со стороны магнита); это — первый этап.

На втором этапе кольцевой электрический ток закрутит эфир в макрозавихрение. Направление вращения завихрения будет таким же — против часовой стрелки, а скорость эфира в нем распределяется по уже известному нам закону, то есть с убыванием к центру и на периферию.

На третьем этапе макрозавихрение соберет электроны в магнитные шнуры и заставит их вращаться в согласованном направлении: внутри кольца — против часовой стрелки, а снаружи — навстречу, то есть породит магнитное поле. Ориентация всех магнитных шнуров внутри кольца будет таким, что их северный полюс окажется направленным в сторону приближающегося магнита.

А дальше произойдет противодействие магнита и кольца, потому что на встречном движении окажутся одноименных магнитных полюса; кольцо будет уклоняться от магнита. (Упругое противодействие магнитных шнуров рассмотрено нами выше.)

Если постоянный магнит удалять от кольца, то сдвигание электронов в кольце будет осуществляться обратными сторонами его вращающихся магнитных шнуров, и электрический ток побежит в другую сторону, то есть по часовой стрелке, а в результате магнитное поле в кольце изменит свою ориентацию на противоположную и будет способствовать смещению кольца в сторону магнита.

Разрезанное кольцо так себя вести не может; в нем электроны не имеют возможности бегать по кругу и не закручивают эфир в макрозавихрение; поэтому процесс электромагнитной индукции прерывается.

Явление электромагнитной индукции используется в трансформаторах; в них ток одной катушки через посредство магнитного поля наводит ток в другой катушке; при этом выдвигается условие, чтобы первичный ток изменялся во времени.

Представим себе две катушки, нанизанные на общий сердечник из магнитно-мягкого материала; по одной из них мы будем пропускать изменяющийся по величине ток; назовем эту катушку первичной; во второй — должен возникнуть вторичный ток; посмотрим, как это произойдет.

При отсутствии первичного тока сердечник размагничен. По мере нарастания тока первичная катушка начнет формировать и усиливать свое магнитное поле. Возникающее магнитное поле начнет расползаться по сердечнику и будет постепенно надвигаться на вторичную катушку; это равносильно тому, что к ней приближается постоянный магнит. В витках катушки возникнет ток, или, точнее сказать, в них появится электродвижущая сила. Так как витки соединены между собой последовательно, то их силы будут суммироваться. При убывании первичного тока весь процесс повторится, но направление вторичного тока будет обратным. Так работает трансформатор.

Эфирная теория позволяет проследить за каждым шагом происходящего процесса и предсказать поведение трансформатора. Опуская подробности, скажем, что при нарастании тока в первичной катушке направление тока во вторичной будет обратным, а при уменьшении — совпадающим. Если же ток в первичной катушке сохранять постоянным, то ее магнитные шнуры не будут смещаться относительно витков вторичной катушки и не вызовут в ней появления электродвижущей силы.

 

3.4. Поперечные волны эфира («электромагнитные» волны)

К так называемым электромагнитным волнам, то есть к поперечным волнам эфира, электричество имеет самое косвенное отношение: оно может иногда их порождать, — а магнетизм вообще не имеет никакого отношения. Странным и непонятным в истории «электромагнитных» волн кажется все: и их предсказание на основе электромагнетизма, и создание их электромагнитной теории, и — самое удивительное — плодотворность этой теории: благодаря ей был создан потрясающий мир радиоволн; и в основе всего этого — ошибочная теория. Впрочем, ошибочные теории в науке — не новость, и многие из них были на каком-то этапе плодотворными; взять хотя бы для примера ту же планетарную модель атома.

Как выглядят «электромагнитные» волны в свете эфирной теории? Это — обычные поперечные волны эфира; их зарождение и распространение удобно рассматривать на примере радиоволн. Но сначала — образное сравнение: воткнем в воду палку и будем совершать вертикальные колебания; от палки в разные стороны побегут волны. Точно так же рождаются и радиоволны: электроны, бегающие туда-сюда по антенне, увлекают за собой эфир, и тот начинает «волноваться»; волны расходятся от антенны кругами.

Если вникать в природу поперечных колебаний эфира более глубоко, то можно отметить, что они возникают и распространяются благодаря двум таким основополагающим факторам: упругости эфирных шариков и их инерции. Впрочем, упругость и инерция лежат в основе всех колебаний: и звуковых, и механических, и прочих.

Низкочастотные поперечные волны эфира расходятся во все стороны равномерно; высокочастотные — предпочитают распространяться в одном каком-то направлении, а такие, как свет, — лучом, и поэтому амплитуда его колебаний не затухает.

Поперечные волны эфира могут распространяться в различных средах, так как эфир есть везде, но в чистом эфире они распространяются легче всего; и их распространение, как мы видим, никак не связано с электронами, а, значит, и с электричеством, и с магнетизмом.

Кроме поперечных волн в эфире должны существовать продольные: от низкочастотных гравитационных до высокочастотных с частотой, значительно превышающей частоту поперечных волн, — и скорость их распространения должна быть на несколько десятичных порядков выше. Об освоении этих продольных волн приходится пока только мечтать.

 

4. Топология атомов

 

О том, что микромир конкретен и прост по своему устройству, говорил еще великий Михаил Васильевич Ломоносов; в его научных трудах сквозит ясность и убедительность. Уже в то время он развил и обосновал учение о материальных атомах и корпускулах (молекулах и иных малых частицах); он представлял атомы как неделимые и способные к движению и взаимодействию: «Нечувствительные /материальные/ частицы должны различаться массою, фигурою, движением, силою инерции или расположением». Это он заложил основы физической химии, превращающей ее из описательной науки в точную. «Физическая химия, — говорил он, — есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при химических операциях». В 1752-1753 гг. М. В. Ломоносов впервые читал для студентов курс «Введение в истинную физическую химию».

Одним из шагов к конкретизации устройства микромира была разработка теории пространственного строения химических соединений — так называемой стереохимии; она касалась не только органических веществ, но и неорганических, то есть координационных соединений. В частности, стереохимия изучает пространственную изомерию: изомеры имеют одинаковый состав молекул и одинаковое химическое строение, но отличаются друг от друга расположением атомов в пространстве. Продолжением стереохимии стала топология — совсем уж конкретное описание форм молекул вплоть до их математического выражения.

Поставим перед собой задачу определить формы уже не молекул, а отдельных атомов, то есть займемся их топологией, зная в общих чертах, что атом представляет собой естественно скрученную торовую оболочку (микрозавихрение) из эфира. Но прежде окинем взором все многообразие атомарного мира, известного теперь как таблица Менделеева.

В коре нашей планеты обнаружены атомы с атомным весом от 1 (водород) до 238 (уран); искусственно получено несколько их разновидностей с весом до 272; но меньше водорода атомов не существует. Первоначально считалось, что атомы не похожи друг на друга, и каждый химический элемент существует сам по себе. Таких якобы непохожих элементов на Земле — 88; все они представлены в таблице Менделеева со своими именами, со своими атомными весами и со своими химическими характеристиками.

Однако более внимательное изучение микромира привело к признанию существования большого количества похожих элементов с отличающимися атомными весами; их назвали изотопами. Уже обнаружено около 1850 таких разновидностей; из них примерно 280 — стабильные изотопы, а 46 — природные радиоактивные в семействах тория-232, урана-238 и урана-235. Число изотопов с каждым днем все увеличивается, и можно даже предположить, что при более тонкой сортировке атомов по их атомным весам это число будет почти что неограниченно возрастать. И все же, несмотря на кажущуюся возникшую запутанность в атомном мире, по-прежнему незыблемой остается сама таблица Менделеева, как система химических элементов; в основе которой — периодический закон Д. И. Менделеева.

Датой открытия закона считается 1 марта (17 февраля по Православному календарю) 1869 года, когда Дмитрий Иванович завершил работу «Опыт системы элементов, основанной на их атомном весе и химическом сходстве»; термин «периодический закон» («закон периодичности») ученый впервые употребил в конце 1870 года. Его формулировка закона гласит: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». (Более поздние корректировки формулировок закона, привязывающим его к неким зарядам неких ядер, согласно эфирной теории, не состоятельны и нами в расчет приниматься не будут.)

Принципом построения периодической системы является ее подразделение на группы и периоды; группы, в свою очередь, делятся на главные и побочные подгруппы: в каждой подгруппе — химические аналоги. Элементы подгрупп в большинстве групп обнаруживают между собой определенное сходство, главным образом в высших степенях окисления, которые чаще всего равны номеру группы. Период охватывает элементы, начиная со щелочных металлов и заканчивая инертным газом (исключение составляет первый период). Периодическая система состоит из семи периодов и восьми групп. Последний седьмой период в земных условиях не завершен, и нет никаких принципиальных ограничений на существование восьмого и последующих периодов.

В первый период включают водород и гелий; собственно даже это и не период, а отдельно стоящие элементы. А если исключить из него гелий и сместить его в начало следующего периода, как требует того эфирная теория (в этом мы убедимся чуть позже), то в первом периоде останется один только водород, место которому не находится нив одной из групп системы. Он проявляет свойства, общие со щелочными металлами и с галогенами.

Второй период, самый, пожалуй, интересный из всех; он начинается с лития и заканчивается инертным газом неоном; всего в него входят 8 элементов. Атом щелочного металла лития присоединяет исключительно только один атом кислорода, а атом следующего за ним бериллия — уже два. Далее следует бор, слабо проявляющий металлические свойства; его степень окисления +3. (Степень окисления определяет размер присоединения, а ее знак — перераспределение электронов при таком присоединении: положительный, когда атом теряет электроны, а отрицательный, когда забирает к себе.) Следующий за бором углерод — типичный неметалл, степень окисления которого бывает как +4, так и –4. Азот, кислород и фтор — все неметаллы; у азота высшая степень окисления +5, и соответствует она номеру группы. Кислород и фтор относятся к самым активным неметаллам.

Третий период (натрий … аргон) также содержит 8 элементов; характер изменения их свойств в основном подобен тому, что наблюдается во втором периоде. Особенности состоят в том, что магний, в отличие от бериллия, более металличен, как и алюминий по сравнению с бором. Кремний, фосфор, сера, хлор — типичные неметаллы; они проявляют высшие степени окисления, равные номеру группы.

Менделеев называл элементы второго и третьего периодов (по его словам — малых) типическими. Эти элементы — самые распространенные в природе; углерод, азот и кислород, как и водород, являются основными элементами органической и живой материи.

В четвертом периоде насчитывается уже 18 элементов, начиная со щелочного металла калия и кончая инертным газом криптоном. За калием следует щелочноземельный металл кальций, а далее следует ряд из десяти переходных металлов: скандий … цинк; большинство из них, кроме железа, кобальта и никеля, проявляют высшие степени окисления, равные номеру группы.

Пятый период (рубидий … ксенон) аналогичен четвертому; в обоих этих периодах особенности изменения свойств элементов по сравнению со вторым и третьим периодами — более сложные. Шестой период (цезий … радон) включает 32 элемента; в нем, кроме переходных металлов (лантан, гафний … ртуть), располагаются лантаноиды (церий … лютеций), причисляемые к редкоземельным элементам. Седьмой период — все прочие элементы, начиная с франция.

Разделение элементов на группы и подгруппы вызвано ярко выраженным изменением химических свойств внутри периодов. Например, у химических элементов второго и третьего периода от лития до неона и от натрия до аргона с возрастанием атомной массы свойства изменяются следующим образом:

* ослабевают металлические свойства;

* усиливаются неметаллические свойства;

* возрастает высшая валентность в соединениях с кислородом;

* убывает валентность в водородных соединениях (у неметаллов);

* изменяются свойства соединений элементов от основных через амфотерные к кислотным.

Отдавая должное периодическому закону химических элементов и отмечая его системность, нельзя в то же время не упомянуть о том, что он далеко не идеален, и не потому, что ученые не до конца раскрыли его секреты, а по своей природе. Бросается в глаза такое исключение из закона: калий, имеющий меньшую атомную массу, чем аргон, должен был бы занимать место в периодической таблице перед ним; но он — щелочной металл, и его пришлось расположить после аргона. Таких перестановок в таблице оказалось три. Или еще: высшая валентность элементов отдельной группы в соединениях с кислородом должна определяться номером этой группы; но медь, относящаяся к первой группе, проявляет, например, двойную валентность, а фтор из седьмой группы никогда не бывает семивалентным. Особенно бросается в глаза нестабильность валентности: у некоторых элементов она может быть двойной, тройной и даже большей.

Будем надеяться, что выявление конфигурации атомов, производимое на основе эфирной теории и обозначенное нами как топология атомов, позволит объяснить и закономерности периодического закона и его исключения. В математике топология изучает свойства фигур, не изменяющиеся при деформациях, производимых без разрывов и склеиваний (математики говорят: при взаимно однозначных и непрерывных отображениях). В нашем случае топология будет определять варианты скручивания торовых оболочек, и точно также: без разрывов и склеиваний в прямом смысле.

 

4.1. Водород

Водород — бесцветный газ, сжижающийся лишь при очень глубоком холоде. Он — самый легкий из всех газов; плотность водорода в 14,5 раз меньше плотности воздуха; поэтому наполненные водородом шарики устремляются в небо.

В химическом плане водород — чрезвычайно активное вещество: он соединяется с очень многими химическими элементами, если не сказать, что со всеми. Он первым стоит в таблице Менделеева, и его атомная масса равна 1,0079.

После общих физических и химических характеристик (более подробно о них мы будем говорить дальше) посмотрим на водород с позиции эфирной теории; нас интересует конфигурация его атома — его топология. О том, что атом водорода представляет собой тор с вращающейся оболочкой, мы уже знаем. Шнур тора состоит как бы из соосно собранных электронов, а электрон представляет собой бегающие по кругу друг за другом три эфирных шарика. Значит, в сечении шнура тора — три таких шарика.

А сколько шариков во всем атоме водорода? Подсчитать не трудно: из физики нам известно, что атом водорода в 1840 раз тяжелее электрона, а в электроне — три шарика; значит, всего — 5520 шариков. Правда, в той же физике иногда указывается, что атом водорода тяжелее электрона всего лишь в 1863 раз; и тогда в нем будет уже 5508 эфирных шариков. Но встречается и такое: электрон легче протона (ядра атома водорода) в 2000 раз; значит, — не 5520 и не 5508, а 6000 шариков (?).

Комментируя эти расхождения, можно было бы сослаться на неточность физических опытов и вычислений: дескать, 2000 — при грубом округлении, 1840 — более точно, 1836 — совсем точно. Но, отталкиваясь от эфирной теории, мы теперь заявляем, что точны все три числа, и более того — действительный разброс инерции атома водорода намного шире. (Но при всей широте отклонений инерция конкретного атома может быть только строго кратной инерции электрона — так уж устроен шнур тора; а инерция электрона, в свою очередь, неизменна: это — три бегающих с постоянной скоростью шарика.)

У атома водорода есть минимальный размер, меньше которого он не может быть. Определяется этот наименьший размер тора упругостью шнура, а она, в свою очередь, — избыточной плотностью окружающего эфира. Каков он — этот размер? Трудно сказать, но, выбирая из упомянутых трех чисел, можно остановиться на минимальном, то есть на 1836; реально, конечно, это число еще меньше: может быть даже где то около 1800. Да это и не важно: тысяча восемьсот так тысяча восемьсот; остановимся на этом.

И вот, начиная с тысячи восьмисот, наверняка есть атомы с числом 1801, и с числом 1802, и с числом 1803, и так далее вплоть до … (?), но верхнего предела почти что нет: атом водорода может быть тяжелее электрона и в три тысячи раз, и в четыре, и в пять тысяч, и даже более, пока не превратится в атом гелия. Этим объясняется то, что у водорода обнаружены изотопы: протий, дейтерий, тритий с атомными весами1, 2 и 3. Только мы теперь заявляем, что их — изотопов водорода — в действительности не три, а более четырех тысяч; и то, что они оказались разбиты всего лишь на три указанных группы, говорит о грубости методов сортировки.

Внутренний диаметр наименьшего атома водорода — протия — можно определить, зная, что по окружности расположены 1800 эфирных шариков; следовательно, он приблизительно равен 570 диаметров шариков. (Здесь уместно отметить, что диаметр эфирного шарика, или просто — шарик, является абсолютной мерой длины.) Такой приблизительный расчет не учитывает два обстоятельства: во-первых, соседние шарики не выстраиваются в линию, а смещены друг относительно друга, то есть в своем вращении соседние строенные (электронные) шарики сдвинуты на некоторую фазу, а во-вторых, шарики на внутреннем диаметре тора сдеформированы. Обе эти поправки уменьшают действительный диаметр, поэтому будем считать, что число 570 как наиболее точное. В дальнейшем нас будет интересовать наименьший радиус изгиба шнура тела атомов, и он, следовательно, будет равен 285 эфирным шарикам.

Почему тор стремится принять форму овала, гантели, или даже восьмерки с перехлестом? Выше мы уже объясняли это; повторим: вращающаяся оболочка тора возмущает прилегающий к ней эфир, и больше — во внутреннем пространства, чем вовне; поэтому эфирное давление снаружи оказывается больше, чем внутри; разность давлений стремится сложить тор; и в противоборстве с упругостью шнура определяется окончательная его форма.

Противоборство сжимающей и упругой сил при отсутствии трения порождает неустойчивость формы; это — уже динамика. Даже идеально круглый атом протия не сохраняет свою круглую форму: он попеременно сжимается в овал то по одной оси, то по перпендикулярной к ней, то есть пульсирует. Овальный тор более крупного атома склонен прогибаться в гантель; гантель еще более крупного атома — в восьмерку, а восьмерка, в свою очередь, закручивается в перехлест; и поэтому каждый атом водорода находится в состоянии пульсации.

Динамика форм атомов усложняется еще и тем, что у вытянутых торов (у овала, у гантели и у восьмерки) края загибаются в стремлении сблизиться друг с другом. Кривизна такого поперечного загиба также определяется упругостью шнуров; минимальный радиус кривизны колеблется где-то около тех же 285 шариков: чуть меньше или чуть больше; такое колебание тоже представляется как пульсация. Следовательно, крупные атомы водорода пульсируют в разных направлениях и, естественно, с разными частотами; и чем крупнее атом, тем сложнее и энергичнее его колебания; этим можно объяснить то, что самые крупные атомы водорода (в районе трития) склонны к радиоактивности, то есть к распаду. Известно даже, что усредненное время полураспада трития составляет 12 лет.

Пульсирующие атомы водорода возбуждают вокруг себя эфир (стоячие тепловые поля), и это возбуждение делает их пушистыми, то есть обладающими способностью отталкиваться, не приближаясь вплотную, от других атомов. Пушистость делает атомы летучими, а в целом водород — газообразным. Соединение атомов водорода в молекулы не устраняет их пульсацию, и поэтому молекулярный водород (а он чаще именно таким и бывает) — тоже газообразен. Свои стоячие тепловые поля атом водорода теряет только в тех случаях, когда соединяется в молекулы с другими химическими элементами и когда его пульсация подавляется молекулярными связями.

Взятая нами на вооружение топология атомов позволяет объяснить физическую сторону валентности, то есть способности атомов соединяться друг с другом; в общих чертах мы об этом уже говорили. У атома водорода (у протия), то есть у тора с вращающейся оболочкой, одна из двух сторон — как бы присасывающая (она в самом деле присасывающая), и выглядит она как воронка, внутрь которой устремляется эфир; это и есть валентность атома: этой своей стороной, то есть этой присасывающей воронкой, атом готов прилипнуть (присосаться) к другим атомам. У протия присасывающая воронка — идеально круглая, но это — исключение: у всех других атомов она выглядит как петля, и даже у дейтерия и трития она больше похожа на петлю, чем на кольцеобразную воронку, а если говорить точнее, то, по крайней мере, у трития таких петель — уже почти две (у восьмерки — две петли); а если восьмерка — с перехлестом, то есть петли развернуты на 180 градусов, то тогда образуются две законченные петли с присасывающими воронками, расположенными с разных сторон.

Благодаря наличию у атомов водорода присасывающих воронок (валентности), они могут объединяться и объединяются в пары, то есть в молекулы. Очевидно, самое прочное соединение будет возникать в том случае, когда размеры атомов будут совпадать: протий с протием, дейтерий с дейтерием и так далее. Но по теории вероятности такие совпадения — маловероятны (еще раз в связи с этим напомним, что изотопов у водорода не три, а более четырех тысяч); поэтому в общей своей массе молекулы водорода будут состоять из разнокалиберных атомов, прочность соединения которых — не столь высока. Она будет ослабляться еще и от того, что у спарившихся разнокалиберных атомов не будут совпадать частоты их пульсаций. Если даже предположить, что произошло почти невероятное: соединились абсолютно одинаковые по размерам два протия, то и тогда прочность их соединения не будет абсолютной: наверняка их пульсации будут смещены по фазе (даже — в противофазе), и это ослабит молекулу.

Пользуясь моментом, выскажем предположение, что крупные атомы водорода (в районе дейтерия и, тем более, в районе трития) могут присоединять к себе по два мелких атома (протия).

У атомов водорода, как мы сказали, валентность выражается в наличии присасывающих воронок. У молекул эти воронки нейтрализованы, поэтому молекула водорода, как единое целое, казалось бы, нейтральна и к соединению с другими атомами не должна стремиться. Все так на самом деле и есть за исключением одного «но»: соединенные в пару приблизительно одинаковые по размерам атомы водорода образуют по контуру другую разновидность валентности — присасывающий желоб; с его помощью молекула водорода может присоединяться к другим атомам, имеющим подобную валентность, например к атомам металлов, создавая гидриды. Мешающая такому присоединению пульсация атомов водорода может быть в подобных случаях подавляться соседними атомами. С помощью присасывающих желобов молекулы водорода должны были бы соединяться и между собой, но мешают этому все те же стоячие тепловые поля, то есть пушистость молекул. Если же ее устранит, например замораживанием, то молекулы действительно начнут соединяться и создавать твердые тела, и эти тела будут обладать свойствами металлов: контурные присасывающие желоба их молекул будут образовывать непрерывные дорожки для электронов, а бугристые поверхности тел (у атомов водорода нет прямых участков) будут хорошо отражать свет и создавать характерный металлический блеск. Но для того, что бы «успокоить» атомы водорода, их нужно охладить до температуры минус 259,1 градуса Цельсия.

Подробнее о соединениях водорода с конкретными другими химическими элементами будем говорить при рассмотрении топологий атомов этих элементов.

 

4.2. Гелий

Гелий занимает вторую позицию в таблице Менделеева после водорода. Атомная масса гелия — 4,0026. Он представляет собой инертный газ без цвета. Его плотность — 0,178 грамм на литр. Сжижается гелий труднее всех известных газов лишь при температуре минус 268,93 градуса Цельсия и практически не отвердевает. Охлажденный до минус 270,98 градуса Цельсия гелий приобретает сверхтекучесть. Образуется гелий чаще всего в результате распада крупных атомов. На Земле он распространен в малых количествах, но на Солнце, где идет интенсивный распад атомов, гелия очень много. Все эти данные являются как бы паспортными и хорошо известны.

Займемся топологий гелия, и для начала определим его размеры. Учитывая, что атомная масса гелия в четыре раза больше водородной, а атом водорода в 1840 раз тяжелее электрона, получим массу атома гелия равной 7360 электронам; следовательно, общее количество эфирных шариков в атоме гелия составляет приблизительно 22 000; длина шнура атома и диаметр исходного тора соответственно равны 7360 и 2300 эфирным шарикам. Чтобы зримо представить соотношение толщины шнура исходного тора атома гелия и его диаметра, изобразим на листе бумаги ручкой окружность диаметром в 370 миллиметров, и пусть след от ручки имеет ширину в одну треть миллиметра; полученная окружность даст нам указанное представление. Один электрон (строенные эфирные шарики) будет занимать на нарисованной окружности всего лишь 0,15 миллиметров.

Скручивание исходного тора в законченную форму атома гелия происходит следующим образом. Сначала окружность сплющивается в овал, потом — в форму гантели, далее — в восьмерку, а затем петли восьмерки развертываются так, что возникает перехлест. Между прочим, перехлест у более крупных атомов не образуется, и объясняется это тем, что длина шнура у атома гелия пока еще не большая, и при стремлении средних точек шнура сблизиться — края (петли) вынуждены развернуться. Далее края изогнутся и начнут сближаться.

До этого момента топология атома гелия, как мы видим, схожа с топологией атома изотопа водорода — трития, но если у трития не хватало сил на замыкание краев (не хватало длины его шнура), то у гелия петли надвигаются одна на другую и таким образом замыкаются. Для того, чтобы убедиться в надежности соединения петель, достаточно проследить за расположением их присасывающих сторон: у внутренней петли она будет снаружи, а у внешней — изнутри.

Топологию атомов очень удобно представлять в виде проволочных моделей; для этого достаточно использовать в меру упругую, но достаточно пластичную проволоку. Атом водорода изобразится в виде обычного кольца. Увеличим длину куска проволоки в четыре раза (во столько раз атом гелия тяжелее атома водорода), свернем его в кольцо, спаяем концы и продемонстрируем процесс скручивания атома гелия. При скручивании мы должны постоянно помнить, что радиусы гибки не должны быть меньше радиуса кольца, представляющего собой атом водорода; это как бы условие, задаваемое упругостью шнура — торовых оболочек. (В натуре, напомним, минимальный радиус равнялся 285 эфирным шарикам.) Принятый минимальный радиус гибки определяет топологию всех атомов; и еще: следствием одинаковых радиусов гибки будут одинаковые размеры присасывающих петель (своего рода — их стандартизация), и поэтому-то они образуют устойчивую валентность, выраженную в способности соединять различные атомы между собой. Если бы петли имели различные размеры, их соединение было бы проблематичным.

Доводя процесс скручивания проволочной модели атома гелия до конца, мы обнаружим, что соединенные внахлест петли надвинуты одна на другую не до упора. Точнее говоря, они предпочли бы закрутиться еще дальше, но не пускает упругость шнура, то есть условие минимального радиуса. И при всякой попытке петель продвинуться навстречу еще дальше упругость шнура отбросит их назад; отскочив, они снова устремятся вперед, и снова упругость отбросит их назад; при этом атом гелия будет то съеживаться, то распускаться, то есть возникает пульсация. Пульсация, в свою очередь, породит стоячее тепловое поле вокруг атома и сделает его пушистым; так мы пришли к выводу, что гелий — газ.

На основании топологии можно объяснить и прочие физические и химические характеристики гелия. О его инертности, например, говорит то, что его атомов нет ни открытых присасывающих петель, ни присасывающих желобов: он не способен вообще соединяться с другими атомами, поэтому — всегда атомарен и практически не отвердевает. Цвета гелий не имеет потому, что у его атомов нет прямых «звучащих» участков шнуров; а сверхтекучесть у него возникает вследствие всякого отсутствия вязкости (слипание атомов), округлой формы и малого размера атома.

Как и у водорода, у гелия атомы не имеют одного размера: одни из них больше, другие — меньше, а в общем они занимают почти все весовое пространство от водорода (трития) до следующего за гелием лития; менее прочные изотопы гелия, конечно, давно уже распались, но и существующих в настоящее время можно насчитать не одну сотню.

В таблице Менделеева гелий лучше располагать не в конце первого периода — в одном ряду с водородом, а в начале второго периода перед литием, потому что его атом, как и атомы всего этого периода, представляет собой одиночную конструкцию (одиночный клубочек), в то время как атом следующего инертного газа неона выглядит уже в виде спаренной конструкции, похожей по этому признаку на атомы третьего периода.

 

4.3. Литий

Литий занимает третий номер в таблице Менделеева; его атомная масса равна 6,94; он относится к щелочным металлам. Литий — самый легкий из всех металлов: его плотность составляет 0,53 грамма в сантиметре кубическом. Он серебристо-белого цвета, с ярким металлическим блеском. Литий мягок и легко режется ножом. На воздухе он быстро тускнеет, соединяясь с кислородом. Температура плавления лития равна 180,5 градуса Цельсия. Известны изотопы лития с атомными весами 6 и 7. Первый изотоп используется для получения тяжелого изотопа водорода — трития; другой изотоп лития используется в качестве теплоносителя в котлах ядерных реакторов. Таковы общие физико-химические данные лития.

Топологию атомов лития начнем опять же с уяснения размеров исходного тора. Теперь мы знаем, что у каждого химического элемента, и в том числе у лития, существует большое количество изотопов, измеряемое сотнями и тысячами; поэтому размеры атомов будем указывать от … и до …. Но что значат эти пределы? Можно ли их определить точно? Или они указываются приблизительно? И каково количественное соотношение изотопов? Сразу скажем: однозначных ответов на поставленные вопросы нет; всякий раз необходимо внедряться в конкретную топологию атомов. Разберемся в этих вопросах на примере лития.

Как мы заметили, переход от протия к гелию с точки зрения топологии происходит планомерно: с увеличением размера исходного тора –постепенно изменяется окончательная конфигурация атомов. Но физические и, особенно, химические свойства атомов при переходе от протия к гелию изменяются более чем существенно, скорее — радикально: от всеобщей притягательности протия до полной инертности гелия. Где, на каком изотопе это произошло?

Подобные скачки свойств связаны с размерными скачками изотопов. Большой атом водорода (тритий), приобретающий очертания атома гелия, оказывается радиоактивным, то есть непрочным. Вызвано это тем, что его загнутые края петель не достигают друг друга, и можно представить, как они трепыхаются, устремленные навстречу. Они напоминают руки двух людей в расходящихся лодках, бессильно стремящихся дотянуться и сцепиться. Внешнее эфирное давление будет давить на консоли трепыхающихся петель атомов так сильно, что это до добра не доведет; получив со стороны даже небольшое дополнительное сдавливание, консоли отломятся — не выдержат крутого изгиба шнура, и атом разрушится; так оно и происходит. Поэтому можно сказать, что среди изотопов на границах существующих физико-химических переходов наблюдаются провалы: там изотопов просто нет.

Подобный провал существует между гелием и литием: если атом — уже не гелий, но еще не литий, то он непрочен, и его уже давно в земных условиях нет. Поэтому изотоп лития с атомным весом, равным шести, то есть с длиной шнура тора в 11 эфирных шариков, встречается очень редко и, как было сказано, используется для получения трития: его легко разорвать, укоротить и получить в результате изотоп водорода.

Таким образом, мы, вроде, определились с наименьшими размерами атома лития: это — 11 связанных электронов. Что же касается его верхнего предела, то тут возникает некоторая загвоздка: дело в том, что, согласно топологии, атом лития не имеет особых отличий от атома следующего за ним бериллия (мы в этом скоро убедимся), и между изотопами того и другого элементов нет никакого провала. Поэтому пока не станем указывать верхний предел размера атома лития.

Проследим за формообразованием атома лития. Исходная окружность только что возникшего микрозавихрения с указанными выше размерами будет стремится превратится в овал; только у лития овал — очень длинный: приблизительно в 8 раз длиннее диаметра концевого закругления (будущей петли); это — очень вытянутый овал. Начало свертывания атома лития похоже на такое же начало у больших атомов водорода и у гелия, но дальше происходит отклонение: восьмерка с перехлестом, то есть с разворотом петель, не возникает; дальнейшее сближение длинных сторон (шнуров) овала до полного их соприкосновения сопровождается одновременным загибом концов навстречу друг другу.

Почему не образуется восьмерка с перехлестом? Прежде всего потому, что овал очень длинный, и даже его полный прогиб в гантелю до соприкосновения шнуров в середине не вызывает их сильных изгибов; поэтому потенция разворота крайних петель — очень слабая. А во-вторых, развороту в какой-то степени противодействует начавшийся загиб концов овала. Другими словами: активный момент сил, стремящийся развернуть концевые петли, очень мал, а момент сопротивления развороту — большой.

Для наглядности воспользуемся резиновыми кольцами, например теми, что применяются в уплотнениях машин. Если пережимать кольцо малого диаметра, то оно обязательно свернется в восьмерку с перехлестом; а если выбрать кольцо большого диаметра, то его пережим до полного соприкосновения шнуров разворот концевых петель не вызывает. К слову: эти резиновые кольца также очень удобны для моделирования топологии атомов; если, конечно, имеется их широкий набор.

Загиб концов овала вызывается, как мы уже знаем, возмущением эфира между ними: чуть-чуть стронувшись с идеально прямого положения, они уже вынуждены будут сближаться до полного соприкосновения. Значит, в разные стороны концы отгибаться не могут. Но с направлением загиба у них есть выбор: либо так, что присасывающие стороны концевых петель окажутся снаружи, либо — изнутри. Первый вариант более вероятен, та как момент от сил отталкивания вращающихся оболочек шнура от прилегающего эфира на внешних точках петель будет больше, чем на внутренних.

Сближающиеся боковые стороны овала очень скоро войду в соприкосновение, смычка шнуров распространится от центра к концам и остановится только тогда, когда на концах окончательно сформируются петли с минимально допустимыми радиусами изгиба. Одновременно происходящие загибы и взаимное сближение этих петель приводят к столкновению их вершин, после чего в дело вступают их присасывающие стороны: петли, присасываясь, ныряют вглубь; и завершается процесс формирования конфигурации атома лития тем, что сместившиеся петли упираются своими вершинами в спаренные шнуры ровно по центру конструкции. Отдаленно такая конфигурация атома напоминает сердечко или, точнее, яблоко.

Напрашивается сам собой первый вывод: атом лития начинается тогда, когда вершины спарившихся первичных петель, нырнувшие внутрь конструкции, дотянутся до шнуров середины атома. А до того был еще не литий, а какой-то иной элемент, которого теперь уже нет в природе; его атом был крайне неустойчив, очень сильно пульсировал, был поэтому пушистым и относился к газам. Но и атом самого начального изотопа лития (мы его определили состоящим из 11 000 связанных электронов) тоже получается не очень прочным: радиусы изгиба его петель — предельные, то есть упругие шнуры изогнуты до предела, и при всяком внешнем воздействии они готовы лопнуть. У более крупных атомов это слабое место устраняется.

Представляя по результатам топологии образ атома лития, можно оценить то, что получилось. Две первичные петли замкнулись и нейтрализовались, также нейтрализованными оказались вторичные петли по обе стороны от первичных. Спаренные шнуры создали желоб, и этот желоб идет по всему контуру атома — он как бы замкнут в кольцо, — и его присасывающая сторона оказалась снаружи. Отсюда следует, что атомы лития могут соединяться и между собой и с другими атомами только с помощью своих присасывающих желобов; петлевое молекулярное соединение атом лития образовать не может.

Сильно выпуклые присасывающие желоба атомов лития могут соединяться между собой только на коротких участках (теоретически — в точках), и поэтому пространственная конструкция из соединившихся между собой атомов лития получается очень рыхлой и разреженной; отсюда — малая плотность лития: он почти в два раза легче воды.

Литий — металл; его металлические свойства вытекают из особенностей форм его атомов. Можно сказать по-другому: те особые свойства лития, которые обусловлены особыми формами его атомов и которые делают его непохожим физически и химически на другие вещества, названы металлическими; рассмотрим часть из них:

* электропроводность: она возникает по той причине, что атомы имеют кольцеобразную форму из спаренных шнуров, создающих присасывающие желоба, открытые наружу, охватывающие атомы по контуру и замыкающиеся сами на себе; электроны, прилипшие к этим желобам, могут беспрепятственно перемещаться по ним (напомним еще раз; что трудности возникают при отрыве электронов от атомов); а так как атомы соединяются между собой теми же желобами, то у электронов есть возможность перескакивать с атома на атом, то есть смещаться по телу;

* теплопроводность: упруго-изогнутые шнуры атома образуют чрезвычайно жесткую упругую конструкцию, которая практически не поглощает низкочастотные крупноамплитудные (тепловые) удары соседних атомов, а передает их дальше; и если бы не было в толще атомов всевозможных нарушений в их контактах (дислокаций), то тепловая волна распространялась бы с огромной скоростью;

* блеск: высокочастотные малоамплитудные удары световых волн эфира легко отражаются от напряженно изогнутых шнуров атомов и уходят прочь, подчиняясь законам волнового отражения; у атома лития нет прямых участков шнуров, поэтому у него нет собственного «звучания», то есть нет собственного цвета — литий поэтому серебристо-белый с сильным блеском на срезах;

* пластичность: округлые атомы лития могут соединяться между собой как угодно; они могут, не разрываясь, обкатываться друг по другу; и это выражается в том, что тело из лития может менять свою форму, не теряя своей целостности, то есть быть пластичным (мягким); в результате литий режется без особого труда ножом.

На примере отмеченных физических особенностей лития можно уточнить само понятие металла: металл есть вещество, состоящее из атомов с круто изогнутыми шнурами, образующими контурные присасывающие желоба, открытые наружу; атомы ярко выраженных (щелочных) металлов не имеют открытых присасывающих петель и прямых или плавно изогнутых участков шнуров. Поэтому литий в нормальных условиях не может соединиться с водородом, так как атом водорода представляет собой петлю. Их соединение может быть только гипотетическим: при глубоком холоде, когда водород отвердевает, его молекулы могут соединяться с атомами лития; но по всему видно, что их сплав был бы таким же мягким, как сам литий.

Заодно уточним понятие пластичности: пластичность металлов определяется тем, что их округлые атомы могут обкатываться друг по другу, изменяя взаиморасположение, но не теряя контакты между собой.

 

4.4. Бериллий

Бериллий занимает четвертую позицию в таблице Менделеева. Его атомная масса равна 9,012. Он представляет собой светло-серый металл с плотностью 1,848 грамма в кубическом сантиметре и температурой плавления 1284 градуса Цельсия; он — твердый и в то же время хрупкий. Конструкционные материалы на основе бериллия обладают одновременно и легкостью, и прочностью, и стойкостью к высоким температурам. Сплавы бериллия, будучи в 1,5 раза легче алюминия, тем не менее прочнее многих специальных сталей. Свою прочность они сохраняют до температуры 700 … 800 градусов Цельсия. Бериллий стоек к радиации.

По своим физическим свойствам, как видно, бериллий сильно отличается от лития, но по топологии атомов они почти не различимы; отличие лишь в том, что атом бериллия как бы «сшит с запасом»: если атом лития напоминает тесный костюм школьника на взрослом человеке, то атом бериллия, наоборот, — просторный костюм взрослого на фигуре ребенка. Избыточная длинна шнура атома бериллия при одинаковой конфигурации его с литием образует более пологие очертания с радиусами изгибов, превышающими минимальные критические. Такой «запас» кривизны у атомов бериллия позволяет их деформировать вплоть до выхода на предел изгибов шнуров.

Топологическое сходство атомов лития и бериллия говорит о том, что четкой границы между ними нет; и невозможно сказать, какой наибольший размер имеет атом лития и какой наименьший — атом бериллия. Ориентируясь только на табличный атомный вес (а он усредняет все значения), можно считать, что шнур среднего по размерам атома бериллия состоит приблизительно из 16 500 связанных электронов. Верхний предел размеров атомов изотопов бериллия упирается в минимальный размер атома следующего элемента — бора, конфигурация которого резко отличается.

Запас по радиусам кривизны шнуров атомов бериллия сказывается в первую очередь на соединении их между собой в момент затвердевания металла: они примыкают друг к другу уже не короткими (точечными) участками как у лития, а длинными границами; контуры атомов как бы подстраиваются друг под друга, деформируясь и прилегая друг к другу максимально возможным образом; поэтому такие соединения очень прочны. Свою упрочняющую способность атомы бериллия проявляют и в соединениях с атомами других металлов, то есть в сплавах, в которых бериллий используется в качестве присадок к тяжелым металлам: заполняя пустоты и присасываясь своими гибкими желобами к атомам основного металла, атомы бериллия скрепляют их как клей, делая сплав очень прочным. Отсюда следует, что прочность металлов определяется длинами слипшихся участков присасывающих желобов атомов: чем длиннее эти участки, тем прочнее металл. Разрушение металлов происходит всегда по поверхности с самыми короткими слипшимися участками.

Запас по радиусам изгиба шнуров атомов бериллия позволяет им деформироваться без изменения соединений между собой; в результате деформируется все тело; это уже — упругая деформация. Упругая она потому, что в любом исходном состоянии атомы имеют наименее напряженные формы, а при деформации вынуждены терпеть некоторые «неудобства»; и стоит только деформирующей силе исчезнуть, как атомы возвратятся в свои исходные менее напряженные состояния. Следовательно, упругость металла определяется избытком длин шнуров его атомов, позволяющим их деформировать без изменения участков взаимного соединения.

С упругостью бериллия связана его жаропрочность; она выражается в том, что тепловые движения атомов могут происходить в пределах упругих деформаций, не вызывающих изменение соединений атомов между собой; поэтому в общем жаропрочность металла определяется, как и упругость, избытком длин шнуров его атомов. Снижение прочности металла при высоком нагреве объясняется тем, что тепловые движения его атомов уменьшают участки соединений их между собой; а когда эти участки полностью исчезают, происходит плавление металла.

Упругости бериллия сопутствует его хрупкость. Хрупкость может рассматриваться в общем случае как антипод пластичности: если пластичность выражается в возможности атомов изменять свои взаиморасположения с сохранением соединяющих участков, то хрупкость выражается, в первую очередь, в том, что у атомов такой возможности нет. Всякое взаимное смещение атомов хрупкого материала может происходить только при полном разрыве их связей; у этих атомов нет иных вариантов соединений. У упругих материалов (у металлов) хрупкость характеризуется еще и тем, что она — как бы прыгающая: возникшая в результате чрезмерных напряжений трещина с быстротой молнии распространяется по всему сечению тела. Для сравнения: кирпич под ударами молотка может крошиться (это — тоже хрупкость), но не раскалываться. «Прыгающая» хрупкость бериллия объясняется тем, что его атомы соединены между собой не лучшим образом, и все они напряжены; и стоит только нарушиться одной какой-то связи, как граничные атомы стремительно начнут «выпрямляться» в ущерб соединений со своими соседями; связи последних также начнут разрушаться; и этот процесс примет цепной характер. Следовательно, хрупкость упругих металлов зависит от степени деформаций соединенных между собой атомов и от отсутствия возможности изменения связей между ними.

Радиационная стойкость бериллия объясняется все тем же запасом в размерах его атомов: шнур атома бериллия имеет возможность спружинить под жестким радиационным ударом, не доходя до своей критической кривизны, и тем самым сохраниться неразрушенным.

И тем же можно объяснить светло-серый цвет бериллия и отсутствие у него яркого металлического блеска, такого, например, как у лития: световые волны эфира, падая на нежесткие шнуры поверхностных атомов бериллия, поглощаются ими, и только часть из волн отражается и создает рассеянный свет.

Плотность бериллия почти в четыре раза больше чем у лития только потому, что плотность шнуров его атомов выше: они соединяются между собой не в точках, а длинными участками. В то же время в сплошной своей массе бериллий — достаточно рыхлое вещество: он всего лишь в два раза плотнее воды.

 

4.5. Бор

Паспортные данные бора: он занимает пятую позицию в таблице Менделеева и относится к третьей группе периодической системы, то есть он — уже не металл; атомная масса бора 10,811; у него известны два изотопа с атомными массами 10 и 11; плотность бора2,3 грамма в кубическом сантиметре; температура плавления 2075 градусов Цельсия; бор предстает обычно в мелкокристаллическом виде.

Очень чистый бор бесцветен, однако чистым он практически никогда не бывает и поэтому выглядит чаще всего как темно-серый, бурый или даже как черный. В физическом и, особенно, в химическом отношениях бор очень сильно похож на своего соседа — на углерод: он также соединяется с кислородом, с серой, с азотом, с фосфором, с металлами; соединяются они и между собой. Все эти соединения нуждаются в «поджоге»; при обычной же температуре бор соединяется только со фтором. С азотом и углеродом бор образует сверхтвердые нитриды и карбиды, а с водородом — гидриды, которые по аналогии с углеводородами называют еще бороводородами. Бор может участвовать также в соединениях полимеров.

В топологическом плане переход от конфигурации атома бериллия к конфигурации атома бора — ступенчатый, и поэтому, казалось бы, можно довольно точно указать, границу между их размерами; но на самом деле она не такая уж конкретная: в одном случае она может сместиться в сторону бериллия, в другом — в сторону бора, — поэтому нет смысла искать ее однозначной. Будем считать, что она пролегает где-то между 16 500 и 18 400 связанных электронов. Это — нижняя граница; верхней границы у атома бора нет: он плавно переходит в атом углерода.

Топологию атома бора можно рассматривать как продолжение формообразования атома бериллия, но лучше начать сначала. Итак, при столкновении двух фронтов эфира могло возникнуть микрозавихрение в виде вращающейся торовой оболочки (типа дымового кольца) диаметром приблизительно в 5 900 эфирных шариков. Это кольцо из круглого превращается в овал; при самом наибольшем сплющивании, когда радиусы закруглений на его концах уменьшатся до предельных значений, то есть до 285 шариков, его длина окажется в 30 раз больше этих радиусов. Длинные стороны овала будут продолжать сближаться до полного соприкосновения, а его концевые петли завернутся, будем считать, вверх и устремятся навстречу друг другу. Столкнувшись своими вершинами, петли завернутся еще раз в том же направлении и устремятся внутрь (вниз); погонит их туда присасывание концевых петель. Завершится этот этап тем, что вершины петель упрутся в середину спаренных шнуров; точно так же формируется атом бериллия.

А дальше произойдет следующее. Спаренные шнуры, замыкающие концевые петли, также начнут слипаться между собой и вызовут удлинение атома: из формы, напоминающей яблоко, атом превратится в подобие перца. Указанное слипание спаренных шнуров теоретически должно было бы прекратиться в момент, когда вершины петель упрутся в середину шнуров, но — и в этом весь секрет — слипшиеся петли могут промахнуться и проскочить мимо или, упершись в шнуры, по случайности могут соскочить с них; и тогда слипание спаренных шнуров продолжится. Вывернувшиеся изнутри атома спаренные петли начнут разворачиваться и уходить вверх, а внизу, как следствие, возникнут уже спаренные новые, вторичные петли. Если бы длина торового шнура была достаточной (такой она будет только у атома углерода), то атом бора вытянулся бы в линию, на концах которой располагались бы перпендикулярно ориентированные между собой спаренные петли. Но атом бора еще относительно мал, и его вывернувшиеся в сторону и уходящие вверх спаренные петли замрут в каком-то полуподнятом положении, напоминающем открытый семафор, или шлагбаум, или вождя с поднятой рукой. Произойдет это потому, что вызывающему подъем петель сближению спаренных шнуров окажут сопротивление вторичные петли, исходно спаренные и не желающие размыкаться. (Все эти манипуляции становятся очевидными, если производить их на резиновом кольце.) Так образуется и так выглядит атом бора. Обратим внимание на то, что четыре шнура, соединяющие его разнесенные петли, будут выкрученными.

Охарактеризуем полученный атом бора с точки зрения его присоединительных способностей: у него — четыре петли и два присасывающих желоба; петли — попарно сомкнувшиеся, а желоба — неконтурные и с разворотом (выкрученные).

Между собой атомы бора могут соединяться только с помощью петель. Достаточно иметь повышенную температуру и (или) повышенное давление, чтобы петли атомов раскрылись и начали перекрестно соединяться между собой. Раскрытию петель способствуют выкрученные шнуры; они после такого раскрытия становятся прямыми, но одна из пар петель вынуждена при этом развернуться так, что ее присасывающие воронки оказываются снаружи, а сами петли расходятся веером.

Стереометрия бора принципиально ни чем не отличается от стереометрии углерода; более того, атомы бора могут соединяться с атомами бора вперемежку, образуя хорошо известные три аллотропических модификации: пространственную, плоскостную и линейную. Атом бора может присоединить к четырем своим петлям четыре атома водорода; возможны также сложные петлевые соединения в одну молекулу нескольких атомов бора и нескольких атомов водорода в самых замысловатых комбинациях. Петлевые соединения атомы бора могут образовывать с атомами всех тех химических элементов, которые имеют также петли, то есть с неметаллами.

С атомами металлов атомы бора могут соединяться только с помощью присасывающих желобов; при этом его желоба вынуждены выпрямляться (избавляться от выкрученности) и раскрывать с одной стороны петли, а открытые петли, то есть петли с открытыми присасывающими воронками, ведут себя агрессивно: они готовы присосаться к первой попавшейся петле и при том даже высвобождают тепло. Соединение атомов бора с помощью желобов может осуществляться не только с атомами металлов, но и с атомами других химических элементов, у которых есть присасывающие желоба; а такие соединения могут иногда вызывать распрямление атомов бора в первоначальный длинный овал с двумя петлями на концах; такой вытянувшийся атом бора может опутывать другие атомы самым замысловатым образом.

Соединение петлями — наиболее прочное, поэтому пространственные модификации из атома бора тоже очень прочные; этому способствует еще и то, что атомы бора образуют очень простые, прямоугольные конструкции (кубические кристаллы), в которых могут отсутствовать случайные искажения — так называемые дислокации. Тепловые движения атомов поглощаются их прямыми участками и почти не затрагивают петель; отсюда — довольно высокая температура плавления. Плотность бора, определяемая расположением шнуров в межатомных соединениях, не очень высокая, но все же выше чем у бериллия, в 1,24 раза.

Идеально построенные кубические кристаллы бора имеют такую простую решетку, сквозь которую может свободно проникать свет; такие кристаллы прозрачны. Сквозь искаженные кристаллы или кристаллы с вкраплениями атомов других химических элементов свет свободно проникать не может и поглощается атомами; отдают они его уже на более низких частотах красного спектра или даже в невидимом инфракрасном диапазоне, — все зависит от собственных частот прямых участков между концевыми петлями; такие кристаллы либо бурые, либо даже черные.

 

4.6. Углерод

 

Углерод занимает шестую позицию в таблице Менделеева; его атомная масса равна 12,011. При обычных условиях он химически инертен, при высоких температурах соединяется со многими элементами. Температура плавления углерода равна 4020 градусов Кельвина. В природе известны в основном две кристаллические формы углерода — алмаз и графит.

Алмаз — полиморфная модификация углерода; в виде кубической сингонии алмаз бесцветен, но его октаэдрические кристаллы приобретают окраску. Плотность алмаза равна 3, 5 грамма в кубическом сантиметре. Он — самый твердый природный материал, обладает высоким показателем оптического преломления и в виде крупных кристаллов относится к числу драгоценных камней. Алмаз — полупроводник.

Графит — наиболее распространенная и устойчивая гексогональная полиморфная модификация углерода, имеющая чешуйчатые агрегаты. Цвет графита — от темно-серого до черного. Его плотность равна 2,2 грамма в кубическом сантиметре. Графит огнеупорен (изделия из него выдерживают температуру в 3700 градусов Цельсия) и вообще химически стоек; он обладает электропроводностью. В технике он используется в качестве твердой смазки.

Известны также линейные полимеры углерода — карбин и поликумулен; они представляют собой высокопрочные нити, которыми армируют композиционные материалы. Карбин обладает полупроводниковыми свойствами: под действием света его проводимость сильно увеличивается.

Углерод может соединяться с металлами, образуя карбиды. Карбиды вольфрама, титана, тантала и ниобия очень тугоплавки, тверды, износостойки, жаропрочны; из них изготовляют пластины режущих инструментов; детали из карбидов используют в турбинах и реактивных двигателях.

Но больше всего известны органические соединения углерода: они являются основной составной частью растительного и животного мира. Все горючие ископаемые — нефть, газ, торф, сланцы — построены на углеродной основе; особенно богат углеродом каменный уголь. Кроме природных существует множество искусственных полимеров на основе углерода. Общее число известных науке органических соединений превышает 7 миллионов.

 

Топология атома углерода

Вместе с бором углерод занимает на размерной шкале атомов диапазон приблизительно от 18 000 до 25 000 связанных электронов; «официальный» размер атома углерода, соответствующий его атомной массе, составляет 22 100 электронов. Атомы изотопов углерода могут отличаться размерами друг от друга довольно значительно; их разброс может составлять 4 500 электронов или приблизительно 20 процентов от номинала. В среднем атом углерода больше атома бора на 3 400 электронов; это, как раз, — то увеличение, которое делает углерод отличающимся от бора; а это отличие, главным образом, состоит в том, что у углерода не бывает тех «агрессивных» проявлений, какие есть у бора.

Топология атома углерода почти не отличается от топологии атома бора. Точно так же первоначальный тор деформируется в овал; потом на концах овала образуются петли; эти петли загибаются, стыкуются своими вершинами, еще раз загибаются, уходят, слипаясь, внутрь, отклоняются в сторону, выворачиваются и вытягиваются, образую в результате четырехшнурный жгут со спаренными петлями на концах.

Топология атома углерода по линии литий-бериллий-бор-углерод — основная, но возможен и такой вариант, когда литиево-бериллиевый загиб петель внутрь не происходит. В нем отпадает необходимость, если концевые петли овала случайным образом загнутся так, что их присасывающие стороны окажутся обращенными друг к другу, то есть во внутрь. Устремившись навстречу и столкнувшись вершинами, петли начнут взаимно присасываться и вытягиваться в линию, образуя на другом конце шнуров вторичные петли. Таким образом атом углерода сразу же приобретает свою окончательную вытянутую формы. Вторичные петли в таком случае оказываются взаимно отталкивающими: их присасывающие стороны будут располагаться снаружи. Отталкиваясь, они разойдутся веером и поспешат присосаться к таким же петлям других атомов. В крайнем случае, если этим петлям не представится возможность найти себе пары на стороне, они, выкручиваясь, замкнутся сами на себя. Такова топология окончательно сформировавшегося одиночного атома углерода. У него, как и у атома бора, — четыре петли и два желоба; петли — попарно сомкнувшиеся, а желоба — выкрученные.

 

Стереометрия аллотропии углерода

Атомы углерода могут объединяться между собой в разных комбинациях, и каждый вид объединений дает свою оригинальную аллотропическую модификацию. Соединения осуществляются в основном петлями, но могут быть и соединения атомов с помощью желобов.

Для того, чтобы атомы углерода начали соединяться между собой петлями, последние необходимо предварительно раскрыть. Осуществить это можно различными способами: тепловым воздействием, давлением, жесткими волнами эфира, с помощью катализаторов или комбинацией этих факторов. Наиболее распространенную аллотропическую модификацию углерода — графит можно получить, например, путем нагревания антрацита без доступа воздуха. Рассмотрим этот процесс более подробно.

Одиночный атом углерода, как мы отмечали, представляет собой дважды сложенное кольцо: сначала исходный тор сплющивается в овал, то есть растягивается, а потом складывается еще раз; полученная конфигурация напоминает фигуру шва теннисного мяча. Если вдвое сложенный замкнутый шнур атома углерода растянуть, то на концах образуются парные петли. (Напомним, что радиусы этих петель равны 285 шарикам.) Полученная форма одиночного атома — не окончательная: одна из пар петель окажется сложенной отталкивающими сторонами — такого быть не может, и эти петли постараются как-нибудь вывернуться, чтобы вновь соединиться, но уже обратными присасывающими сторонами. Длина сложенного атома углерода позволяет это сделать, и петли развернутся и сложатся, но при этом спаренные шнуры, то есть желоба, будут выкручены. Очевидно, такая форма одиночного атома углерода не очень устойчива, так как в ней присутствует противоборство желобов и петель: выкрученные желоба хотели бы выпрямиться в ущерб слипшимся петлям, а те, в свою очередь, будут всеми своими силами сохранять свое слипание.

Частичное разрешение противостояния желобов и петель может произойти даже при самом незначительном нагреве или даже без него — в нормальных условиях: если два атома случайно столкнутся между собой вывернутыми петлями, то эти петли могут раскрыться (как ладони) и состыковаться, образовав таким образом молекулу. Можно даже предположить, что в антраците углерод находится именно в таком молекулярном состоянии.

При более высоком нагреве молекулы углерода из двойных атомов соединяются в графит. При случайном столкновении двух молекул своими концами их петли могут раскрыться и соединиться перекрестно, то есть к присасывающей стороне петли одной молекулы может прилипнуть присасывающей стороной петля другой молекулы. Такое соединение первых двух молекул между собой можно считать началом роста кристалла графита. В перекрестном соединении двух молекул слипшимися оказываются только их две петли, а две другие оказываются раскрытыми. Они будут искать себе пары, и при случайном столкновении с другими молекулами раскроют их концевые петли и выберут себе по одной из них, образовав таким образом следующие межмолекулярные связи. Подобные подсоединения будут происходить и в продольном и в поперечном направлениях до тех пор, пока будут находиться очередные свободные молекулы углерода и пока их тепловые движения позволят это делать. Возникающий кристалл графита будет плоским, так как петли всех соединившихся молекул имеют параллельную ориентацию.

После прекращения роста кристалла процесс его формирования продолжится: должна решится судьба оставшихся открытыми петель, располагающихся по бокам кристалла (на концах кристалла они замкнуты). Раскрытые боковые петли соседних атомов, тех, что образовали в самом начале молекулы, устремятся навстречу друг другу, столкнутся своими вершинами и, слипаясь, загнутся вовнутрь, напоминая тем самым образование атомов лития и бериллия.

Возникшие кристаллы графита будут иметь, как принято говорить, формы чешуек, то есть будут плоскими. Если же уточнять, то их формы больше будут напоминать вытянутые пластины с анизотропными свойствами, чем гексогональные изотропные чешуйки. Кристалл графита имеет возможность в любое время продолжить свой рост; но для того, чтобы расти ему в ширину, нужно разорвать только что слипшиеся «в сердечко» петли соседних атомов, а это сделать уже не легко.

Пластины графита могут собираться в стопки, присасываясь одна к другой желобами, и даже не ими, а отдельными их точками — выступающими боковушками петель. Эти соединения непрочны, и поэтому карандаш можно чинить простым ножом. В то же время разорвать отдельный кристалл графита практически невозможно: настолько крепки его петлевые соединения. Они противостоят даже химическому воздействию; поэтому графит — достаточно инертное вещество. Его химическая стойкость, механическая прочность и тонко пластинчатая структура делают его хорошей смазкой трущихся поверхностей при большом удельном давлении.

Черный цвет графита объясняется тем, что прямые участки шнуров его атомов настолько длинные, что могут «звучать» только на низких инфракрасных частотах. Понятна также радиационная стойкость графита: его атомы не имеют опасных изгибов, готовых привести к излому упругих шнуров при жестких ударах радиации. И еще — об электропроводности графита: у его атомов все присасывающие желоба почти полностью открыты, не имеют пересечений и удобно соединяются между собой петлями, — и все это способствует тому, что электроны могут свободно перемещаться по кристаллам графита. Некоторое сопротивление они испытывают только на стыках петель. Но на боковых сторонах кристаллов, где присасывающие желоба образуют «сердечки» как у атомов металлов, сопротивление движению электронов почти полностью отсутствует. В толстом слое графита электроны имеют возможность, перескакивая с одной цепочки атомов на другую, избегать петлевых стыков и поэтому испытывают меньшее сопротивление своему движению.

Не избежать электронам петлевых стыков только в том случае, если кристаллы графита будут представлять собой отдельные нити. Выше мы отмечали, что кристалл графита анизотропен: его структуры в продольном направлении и в поперечном — различные, и обусловлено это тем, что продольное наращивание кристалла требует одних физических условий, а поперечное — других. При наличии и тех и других кристалл растет и в длину и в ширину; но если в действительности окажутся только первые условия и не будут соблюдены вторые, то кристаллы начнут вытягиваться в нити; появится новая аллотропическая модификация углерода — карбин. О нем можно сказать так: идеальный кристалл карбина представляет собой тот же кристалл графита, но с шириной в один атом.

Карбин относится к линейным полимерам углерода. Его отличительной особенностью является то, что сплетенный из его непрерывных нитей в сотни раз прочнее остальных, и поэтому нити карбина используют для армирования сверхпрочных композиционных материалов. Другой особенностью этих нитей является то, что их электропроводность значительно ниже, чем у графита (с этого мы начали разговор о нем). Правда, обнаружено, что под воздействием света электрическое (электронное) сопротивление карбина резко снижается; и в этом проявляются его полупроводниковые свойства: короткие, но жесткие волны света подталкивают электроны и помогают им преодолевать неудобные переходы в петлевых соединениях.

Но самой, пожалуй, интересной (точнее — привлекательной) аллотропической модификацией углерода является пространственный полимер — алмаз. Кристалл алмаза выращивается при сочетании определенных условий, основными из которых являются давление в 60 000 атмосфер и температура в интервале 1 600 … 2 000 градусов Цельсия. Главным из этих факторов является давление, а температура в основном определяет скорость роста.

В формировании кристалла алмаза принимают участие одиночные атомы углерода (в графите они — парные) с нормальной взаимоперпендикулярной ориентацией петель на противоположных концах, при этом у одной пары петель атома присасывающие стороны располагаются снаружи, а у другой — изнутри., так что шнуры стволов атомов — не выкрученные, а нормальные. Петли атома расходятся от ствола веером с максимальным углом между ними в 90 градусов. Конечно, в свободном состоянии атомы углерода такими быть не могут. Поэтому можно предположить, что кристаллы алмаза выращиваются не из чистого углерода, а из связанного, например из углеводорода, в частности из метана: в нем атом углерода имеет самые подходящие формы для подсоединения к кристаллу.

Кристалл алмаза представляет собой трехмерную ортогональную конструкцию без косых, диагональных связей. Особенностью кристалла является то, что узлы соединений атомов в нем — не пространственные, а плоские; трехмерность общей конструкции возникает вследствие того, что плоские двумерные узлы на концах каждого из атомов ориентированы перпендикулярно друг другу.

Рассмотрим устройство межатомного узла, имея в виду, что все узлы кристалла — абсолютно одинаковые. Он объединяет четыре атома; все они сходятся к нему по двум взаимно перпендикулярным прямым линиям. Петли одной пары атомов, лежащих на общей прямой, имеют внешние присасывающие стороны, а петли другой пары, располагающейся на перпендикулярной прямой, — внутренние. В узле петли вторых атомов охватывают петли первых, и они накрепко слипаются; прочность их соединения определяет прочность алмаза. Других соединений, например с помощью желобов, кристалл не имеет.

Завершенные узлы, объединяющие по четыре атома, располагаются внутри кристалла, а на его поверхности они — некомплектные; их доукомплектование и есть рост кристалла. Представим себе незавершенный узел, объединяющий только три атома углерода; у него слипшимися будут только две пары петель, а оставшиеся две петли от встречно расположенных атомов будут прикрыты атомами водорода. Также прикрытыми будут петли того атома углерода, который должен присоединиться к данному узлу. Учитывая то, что метан в сложившихся условиях рождения кристалла находится в предплазменном состоянии, когда атомы водорода еле-еле удерживаются на своих местах, присоединяемый атом углерода под воздействием давления отжимает атомы водорода и замыкает своими петлями освободившиеся петли узла; узел становится завершенным.

Не будет особых проблем и при доукомплектовке узла из двух атомов при дополнении его третьим, уже встроенным в кристалл и готовым к присоединению; этому третьему атому не остается ничего другого, как искать своим свободным концом возможности присоединения к некомплектному узлу, и он ее находит.

Труднее всего происходит зарождение нового узла; здесь возможны два варианта, один из которых кристаллу неприемлем; встает вопрос: как он избегает его? Неприемлемым является соединение петель однонаправленными сторонами, например наружной с наружной или внутренней с внутренней. Значит, если на свободном конце атома углерода — петли с внутренними присасывающими сторонами, то первое подсоединение к нему должно быть петель другого атома с внешними сторонами. Остается предположить, что в случае зарождения нового узла с неправильным подсоединением очередного атома (а таких случаев — половина от общего числа) не может возникнуть комбинация с встраиванием ее в кристалл, и она рано или поздно будет разрушена. И только при правильном зарождении узла атомы углерода, его образующие, встраиваются в кристалл, и там они чувствуют себя в безопасности.

Рост кристалла прекращается тогда, когда физические условия изменяются настолько, что не отвечают требованиям роста. Какие это условия? Мы их уже упоминали: во-первых, они должны создавать предплазменное состояние исходного материала; во-вторых, они должны разрушать неправильные комбинации атомов и, в-третьих, они должны быть бессильны разрушить правильно соединенные атомы. Получается так, что физические параметры условий роста кристалла алмаза должны укладываться в определенный интервал: не ниже и не выше. Если не будут выполняться эти требования, то и большого кристалла не будет. Особенно обращаем внимание на второе условие — на разрушение неправильных комбинаций; реализовать его в условиях производства искусственных алмазов можно простым механическим перетиранием кристаллов, дробящим неправильные из них, и не приносящим вреда полноценным.

После завершения роста кристалла алмаза все его поверхностные узлы будут недоукомплектованы; это означает, что он будет окружен «щетиной» из незамкнутых между собой петель атомов углерода. В естественных условиях петли притягивают к себе любой окружающий мусор и делают алмаз невзрачным. При огранке мусор удаляется и замещается прозрачным веществом. Если очищенный кристалл ничем не покрыть, то он скоро снова обрастает мусором.

Предложенная модель кристалла хорошо согласуется с физическими характеристиками алмаза. Его твердость выражается в том, что он не способен пластически деформироваться и противостоит механическому разрушению. Объясняется это тем, что атомы углерода в кристалле не имеют возможности изменять свое положение (они соединены петлями, а не желобами), связаны между собой перекрестными пространственными связями и связи эти образуются полноценными петлевыми соединениями. К этому следует еще добавить то, что кристалл алмаза не имеет дислокаций и инородных включений, за исключением, может быть, атомов бора. Последние, если их размеры близки к размерам атомов углерода, не только не ослабляют кристалл, но, напротив, упрочняют его. Разные длины атомов (у углерода, как мы знаем, они — тоже разные) делают всю конструкцию кристалла очень жесткой, противостоящей, в частности, косому сдвигу; поэтому алмаз не имеет даже упругих деформаций.

Прозрачность алмаза выражается в том, что его кристаллы имеют сквозные прямолинейные щели, сквозь которые волны эфира (света) проникают без препятствий; к тому же, на самой поверхности кристалла плотность атомов (их шнуров) не очень большая, и поэтому они не отражают свет. В то же время правильная внутренняя структура алмаза позволяет ему собирать свет и направлять его концентрированными пучками в определенных направлениях.

Стволы атомов углерода, то есть их прямые участки, в кристалле алмаза — очень короткие, так как большая часть их длины уходит на отогнутые концевые петли, поэтому если и «звучат» эти прямые участки, то только на высоких (голубых и далее) частотах.

С точки зрения электропроводности алмаз, как известно, — полупроводник: в пределах одного атома электроны движутся вдоль его присасывающих желобов, но при переходе на соседний атом они должны сначала перескочить на желоб, образованный слипшимися петлями, а затем уже с них — на присасывающий желоб другого атома; указанные перескакивания и определяют электрическое сопротивление. Перескакивания могут быть облегчены воздействием внешних факторов: жесткого света, повышенной температуры и прочих, — и это определяет полупроводниковые свойства алмаза.

 

Стереометрия углеводородов

Молекулы углеводородов построены только у атомов углерода и водорода; вариантов их соединения — огромное количество. Их можно классифицировать по разным признакам: по степени насыщенности водородом (насыщенные и ненасыщенные), по разомкнутости-замкнутости (ацикличности и алицикличности), по фазовому состоянию (газообразные, жидкие, твердые), изомерности и по другим.

Самым мелкомолекулярным насыщенным углеводородом является метан: его молекула состоит из одного атома углерода и четырех атомов водорода. Не трудно себе представить стереометрию этой молекулы: на каждой петле атома углерода на их присасывающих сторонах закреплены по атому водорода; на одном конце атома углерода водородные торы роспологаются снаружи, а на другом — изнутри; петли с прилипшими к ним атомами водорода расходятся от ствола атома углерода веером, причем угол расхождения петель с внутренними присасывающими сторонами больше, чем с внешними.

Если атом метана дополнять группой из одного атома углерода и двух атомов водорода, то получится гомологический ряд атомов насыщенных углеводородов: этан (два углерода и шесть водородов), пропан (три углерода и восемь водородов), бутан (четыре углерода и десять водородов), пентан (пять углеродов и двенадцать водородов) и так далее.

Стереометрия молекул этих углеводородов — уже сложнее, чем у молекулы метана, и, кроме того, они видоизменяются у каждого углеводорода в отдельности; такие видоизменения называются изомерами; определяются они соединениями петель атомов углерода. У этана возможны три варианта: его два атома углерода могут слипаться внешними сторонами, внутренними или перекрестно. У пропана, имеющего три атома углерода, таких комбинаций может быть четыре; у бутана — больше, а у пентана — еще больше. Но во всех этих изомерных стереометриях обнаруживается следующая закономерность: если петли соединяются одними сторонами (либо внешними, либо внутренними), то стволы атомов углерода в молекулах располагаются в линию, параллельно друг другу; а если петли соединяются перекрестно (внешней стороной с внутренней), то стволы атомов углерода располагаются перпендикулярно или близко к тому. Говоря о стереометрии углеводородов, мы не должны забывать, что петли на одном конце атома развернуты по отношению к петлям на другом его конце под прямым углом; из-за этого любая молекула представляет собой пространственную конструкцию (но на плоском листе бумаги такие объемные конструкции приходится изображать плоскими).

Стереометрия позволяет ответить на вопрос: почему некоторые углеводороды газообразны, другие в нормальных условиях являются жидкостями, а третьи — твердыми? Отметим, что газообразны мелкомолекулярные углеводороды: метан, этан, пропан, бутан; жидкостями являются углеводороды с более крупными молекулами, начиная с пентана, молекулы которого содержат по пять атомов углерода, — и кончая углеводородом с шестнадцатью атомами углерода в молекуле; и наконец, твердыми являются парафины, молекулы которых содержат более девятнадцати атомов углерода; наиболее твердые парафины — их называют церезинами —имеют молекулы, содержащие более тридцати семи атомов углерода, и мелкокристаллическую структуру.

Ответ на поставленный вопрос будем искать все в той же пушистости. Атомы углерода сами по себе не имеют противоборствующих участков и поэтому не пульсируют. Пульсируют и очень интенсивно атомы водорода — мы об этом знаем. Так вот, в соединениях тех и других, то есть в углеводородах, углерод не подавляет колебания водородных атомов, и те создают вокруг него стоячие тепловые поля; плотность их вокруг молекулы может быть такой, что она вся превратится в пушистую частицу; а это уже — главный признак газообразности. Получается так, что атомы водорода своим порханием и своим стремлением поднять атом углерода в воздух напоминают сказочных пташек, уносящих с собой в высь прицепившуюся лягушку. Если у этих пташек — у водородных атомов — хватает сил, они делают молекулу газообразной; если не хватает, то — жидкостной; а уж если совсем не будет сил, то молекула останется прилипшей к твердому телу.

Кроме того пушистость углеводородной молекуле придают петлевые соединения атомов углерода; каждое такое соединение можно приравнять в этом смысле к одному атому водорода. Сказываются также расположение атомов водорода в молекулах углеводородов, конфигурация молекул, разумеется — температура и другие факторы.

Если учитывать только отношение количества атомов водорода плюс количество петлевых соединений к количеству атомов углерода в молекулах (назовем такое отношение коэффициентом пушистости), то у газообразных насыщенных углеводородов оно изменяется в пределах от 4 у метана (температура кипения минус 164,5 градуса Цельсия) до 3,25 у бутана (температура кипения минус 0,5 градуса); у жидкостных этот коэффициент колеблется от 3,2 у пентана (кипение при 36,1 градуса) до 3,063 у углеводорода с шестнадцатью атомами углерода; у парафинов — 3,053 до 3,029, а у церезинов — от 3,027 до 3,019.

Можно отметить еще такую закономерность: атомы водорода, располагающиеся на наружных сторонах петель углерода, создают большую пушистость, чем те, что располагаются на внутренних. Так у бутана, имеющего четыре наружных водорода, температура кипения равна минус 0,5 градуса, а у изобутана с пятью наружными водородами температура кипения еще ниже и составляет минус 11,7 градуса. То же самое наблюдается у жидкостей: пентан с шестью наружными водородами закипает при 36,1 градуса Цельсия, а изопентан с семью наружными водородами при 27,9 градуса.

Стереометрия ненасыщенных углеводородов — несколько сложнее. Возьмем для примера ацетилен, молекула которого состоит из двух атомов углерода и двух атомов водорода. Он получается при реагировании карбида кальция с водой или из метана при пропускании через него электрических разрядов. Отличительной особенностью стереометрии ацетилена является тройная связь атомов углерода в его молекулах. Это означает, что, во-первых, петли с внутренними присасывающими сторонами одного атома углерода охватывают петли с наружными присасывающими сторонами второго атома, и во-вторых, из оставшихся петель две, по одной от каждого атома, загнуты навстречу друг другу и образуют накладку типа той, что есть у атома гелия; и только оставшиеся незамкнутыми остальные две петли соединены с атомами водорода.

Позволим себе предположить, как возникает молекула ацетилена в момент проскакивания электрического разряда в метане. Разряд превращает метан в плазму; по-просту говоря, он срывает с атомов углерода атомы водорода. Освободившиеся атомы углерода соединяются между собой по-парно максимально возможным образом, то есть тремя петлями, как было сказано выше. Те петли, что образуют гелиевую накладку, стягиваясь, изогнут вновь образованную молекулу так, что две оставшиеся незамкнутыми петли не смогут дотянуться друг до друга и вынуждены будут поймать и присосать к себе находящиеся поблизости атомы водорода.

Характерной чертой стереометрии ненасыщенных углеводородов является двойная связь атомов углерода, когда петли с внутренними присасывающими сторонами одного атома охватывают петли с наружными сторонами другого атома; назовем такое соединение скобою. Она наблюдается и у ацетилена, и у этилена, и у бутилена, и у всех других ненасыщенных углеводородов; благодаря ей количеств атомов водорода в молекулах таких углеводородов уменьшается.

Скоба сильно пульсирует; ее пушистость можно оценить приблизительно в 3,1 тепловых поля атомов водорода. С учетом этого коэффициент пушистости этилена оказывается равным 3,55, и он по газообразности располагается между метаном (4) и этаном (3,5); температура вскипания этилена (минус 103,8 градуса Цельсия) выше чем у метана (минус 164,5 градуса), но ниже чем у этана (минус 88,6 градуса). Коэффициент пушистости бутилена с учетом действия скобы составляет 3,275, и бутилен со своей температурой кипения минус 6,3 градуса располагается между пропаном (коэффициент пушистости 3,33, температура кипения минус 42,1 градуса) и бутаном (коэффициент 3,25, температура минус 0,5).

Особая пушистость — у ацетилена; эта особенность вызвана его оригинальной стереометрией. Если оценить пушистость гелиевой накладки в 1,7 водородных тепловых поля, то коэффициент пушистости ацетилена составит 3,4, и он со своей температурой кипения минус 75 градусов займет место между этаном и пропаном.

Завершая разговор об углеводородах, отметим их бесцветность; она объясняется все тем же: атомы в молекулах углеводородов не имеют таких длин прямолинейных участков шнуров, которые колебались бы («звучали») на видимых человеческим глазом частотах.

 

Стереометрия и топология карбидов

Карбиды, то есть соединения углерода с металлами (и некоторыми неметаллами, например с кальцием), имеют свою особую стереометрию; она характерна тем, что атомы в них соединяются не петлями, как в углеводородах, а желобами; при этом конфигурация атомов сильно видоизменяется, то есть стереометрия карбидов сопрягается с топологией атомов в них. Некоторое изменение форм атомов углерода наблюдалось, как мы видели, и в аллотропических модификациях, и в молекулах углеводородов; но там это выражалось в основном в развороте или отгибе концевых петель; но стволы атомов, состоящие из спаренных желобов, сохранялись почти неизменными. В карбидах атомы углерода могут трансформироваться до неузнаваемости.

Карбиды, как известно, получают прокаливанием при высоких температурах смеси порошков металлов или их оксидов с углем в электрических печах. Комбинацией электронного и теплового воздействия смеси приводятся в состояние плазмы, когда атомы металла разъединяются и легко скользят, с молекул оксидов срывается кислород, а стволы атомов углерода напоминают пучок бренчащих струн, утративших свое единство. В таком состоянии атомы металлов и углерода, перемешиваясь, находят такие формы контакта, которые противостоят электронно-тепловому разрушению.

Поясним сказанное на примере. Пусть прокаливается в электропечи смесь порошков бериллия и углерода; температура смеси поддерживается на уровне 1700 градусов. Бериллий в этих условиях становится жидким (его температура плавления равна 1284 градусам), а атомы углерода находятся в «пьяном» состоянии. Перемешиваясь, атомы бериллия и углерода будут находить такие соединения между собой, которые способны противостоять тепловым движениям: для их разрушения уже требуется температура в 2150 градусов; эти соединения называют карбидом бериллия. Процесс «подстраивания» будет происходить до тех пор, пока вся жидкая фаза не превратится в твердый карбид.

Пример с бериллием хорош тем, что сам бериллий дает нам подсказку в объяснении загадки карбидов. Когда мы рассматривали топологию атомов этого металла, то подчеркивали его способность склеивать атомы других металлов, делая их более прочными. Теперь точно таким же способом упрочняется сам бериллий, но в качестве клея уже используется углерод. В данном случае атом углерода напоминает своей формой атом бериллия: у него остаются замкнутыми между собой только первичные петли, а все тело выглядит как длинный желоб из спаренных шнуров, прилипший к соседним атомам бериллия и повторяющий их контуры. В образном сравнении атом углерода в карбиде напоминает тот же костюм взрослого, но не на фигуре школьника, а на груди ребенка.

Склеивание атомов металлов с помощью атомов углерода существенно повышает прочность их соединения, и это отражается на их жаростойкости, Чистый титан, плавящийся при температуре 1668 градусов, в соединении с углеродом остается твердым вплоть до температуры в 3140 градусов. Наряду с исключительной жаростойкостью и тугоплавкостью (порядка 3000 градусов) карбиды характеризуются высокой коррозионной стойкостью.

Некоторое исключение составляют карбиды марганца и железа: они термически и химически менее устойчивы, — и объяснить это можно тем, что они не являются полноценными металлами, то есть их атомы имеют несколько иные формы. К тому же, в железе углерод склонен объединяться в графит; смесь железа, карбида и графита известна как чугун.

Соединения атомов металлов с атомами углерода нельзя считать молекулами: эти соединения представляют собой сплавы; поэтому не совсем правильно изображать карбиды в виде формул молекул. То, что длины спаренных шнуров одного атома углерода хватает для того, чтобы опоясать два атома бериллия, не говорит о действительном соединении их между собой: соединиться они могут в любом количественном соотношении. Не поворачивается язык называть карбидные частицы кристаллами: они не имеют стереометрически правильную, регулярно повторяющуюся структуру, такую, например, как у графита или у алмаза.

Представление карбидов в виде сплавов, в которых атомы углерода похожи на атомы металлов, подтверждаются их металлическими признаками: большинство из них имеет высокую электропроводность, металлический блеск, положительный термический коэффициент электросопротивления и другие.

 

4.7. Азот

Азот располагается в таблице Менделеева под седьмым номером; его атомная масса равна 14,0067. Он представляет собой бесцветный газ и входит основной составляющей частью (78 процентов) в атмосферу Земли; обнаружен он также в газовых туманностях Вселенной и в солнечной атмосфере; есть он на Уране, Нептуне и на других планетах.

В природных условиях азот представлен в молекулярном виде; его молекула состоит из двух атомов; она — очень прочная и распадается лишь при нагреве выше 3000 градусов Цельсия. Азот сжижается при температуре ниже минус 196 градусов, а затвердевает ниже минус 210 градусов. В твердом состоянии он образует кубические и гексагональные модификации.

Азот химически малоактивен: в нормальных условиях он взаимодействует лишь с литием, образуя кристаллы. В то же время известны самые различные соединения азота. С водородом он образует аммиак, молекула которого состоит из одного атома азота и трех атомов водорода. Аммиак — тоже газ и тоже бесцветный; он сжижается при температуре ниже минус 34 градусов, а затвердевает ниже минус 78 градусов; получают его синтезом из простых веществ при температуре 400 … 500 градусов, под давлением 5 … 1000 атмосфер и в присутствии катализатора (обычно железа). Аммиак выделяется также при коксовании каменного угля. Современная химия представляет молекулу аммиака в виде трехгранной пирамиды с атомами в ее вершинах; атомы водорода в ней разнесены под углом 107 градусов.

Известны еще несколько соединений азота с водородом, и наиболее распространенное из них — гидразин (или диамид) — бесцветная жидкость, затвердевающая при температуре ниже двух градусов и закипающая при 113,5 градусах Цельсия. Молекула гидразина содержит два атома азота и четыре атома водорода. Гидразин менее устойчив, чем аммиак, и на воздухе горит с большим выделением тепла.

Из других соединений азота упомянем азотную кислоту, молекула которой состоит из одного атома азота, одного атома водорода и трех атомов кислорода; это — бесцветная жидкость, кипящая при 84,1 градусе, а при минус 41,6 градуса затвердевающая в прозрачную кристаллическую массу. Водный раствор азотной кислоты разрушает животные и растительные ткани, соединяется почти со всеми металлами и неметаллами.

Отметим еще так называемые нитриды — соединения азота с металлами и неметаллами. Одно такое соединение с литием мы уже упоминали: оно легко образуется, но также легко распадается при температуре выше 300 градусов. Другие нитриды металлов возникают труднее, но и отличаются высокой температурой плавления, что говорит о их термической и химической стойкости. Они характеризуются металлическим блеском, электронной проводимостью, а также высокой твердостью. Нитриды могут включать не один металл, а сплавы. Атомарные соотношения нитридов могут быть некратными, то есть на один атом металла может приходиться менее одного атома азота. Нитриды неметаллов — соединения с бором, с алюминием, с кремнием — известны как твердые полимерные вещества с температурой плавления выше 2000 градусов; они являются либо диэлектриков, либо полупроводниками.

Топология атома азота — оригинальная; об этом говорит его петлевая валентность: он присоединяет к себе нечетное количество атомов водорода, а именно три. Номинальная длина шнура исходного тора атома составляет 25 700 эфирных шариков; это относительно длинный шнур, и поэтому деформация тора идет не по пути складывания его вдвое, а —втрое: сначала окружность тора прогибается с трех сторон, затем образовавшиеся три выступа вытягиваются в лучи (лепестки), и на их концах возникают петли; так формируется трехлепестковый атом азота. Если проследить за топологией одиночного атома дальше, то можно отметить, что лепестки изогнутся в одну сторону и сойдутся вместе, уткнувшись вершинами петель друг в друга; атом приобретет грейферную форму.

Но скорее всего, до этой грейферной формы дело не дойдет: трехлепестковые атомы при случайных столкновениях будут образовывать двухатомные молекулы. В молекуле азота три петли одного атома прилипают к таким же трем петлям другого; слипаются также их лучи, так как они представляют собой желоба. Оценивая силу сцепления атомов в молекуле азота, можно сказать, что она очень большая; и для того, чтобы разорвать молекулу, нужно приложить огромное усилие.

Молекула могла бы быть вообще нерасторжимой, если бы не два обстоятельства. Первое: размеры атомов в молекуле — не одинаковые, и поэтому их взаимное прилегание — далеко не идеальное; если и встречаются идеальные пары, то они — большая редкость, и у них судьба — жить на пару почти вечно. Второе: спаренные лепестки молекулы испытывают взаимное влечение, и два из них попытаются максимально сблизиться между собой, но им будет противостоять упругость шнуров; борьба этих сил породит неустойчивость в виде порхания спаренных лепестков; колебания отдельных лепестков определяются их индивидуальными характеристиками, и поэтому лепестки в паре будут колебаться невпопад — это еще больше ослабит молекулу.

Порхания спаренных лепестков порождают вокруг молекулы стоячее тепловое поле, и это поле делает молекулу пушистой. Колеблются не только сблизившиеся лепестки, но и оставшийся одиночный, хотя в меньшей степени; и он будет дополнительно раскачивать тепловое поле. Отсюда, азот — газ.

Петлевые соединения атомов азота с атомами других химических элементов хорошо иллюстрируются на примере аммиака: атомы водорода прилипают в нем к присасывающим сторонам петель атома азота, «грейфер» при этом распускается и приобретает вид трехгранной пирамиды, а точнее сказать — три лепестка молекулы с прилипшими на концах водородными колечками расходятся так, что образуют между собой углы порядка 100 градусов. Говорить о том, что эти углы равны точно ста семи градусам, было бы не совсем правильно: учитывая то, что отогнутые лепестки молекулы аммиака не могут в нормальных условиях не колебаться, углы эти имеют переменные значения. Указанные колебания, очевидно, усиливают тепловое поле молекулы, создаваемое в основном атомами водорода; поэтому аммиак — тоже газ. Подчеркнем, что во всех петлевых соединениях азот всегда трехвалентен.

Соединения с помощью желобов атомы азота могут образовывать со всеми металлами и теми неметаллами, которые имеют свои открытые присасывающие желоба. Особняком в этом ряду стоит нитрид лития, который не требует для своего образования специальных условий. Атомы лития легко проникают внутрь «грейфера» атома азота и прилипают там своими желобами и желобами лепестков азота, у которых присасывающие стороны обращены вовнутрь; при этом лепестки расходятся, давая возможность атомам лития слипнуться между собой в центре. Длины лепестка хватает почти на весь присасывающий контур атома лития. В раскрытом виде три присасывающих желоба атома азота могут присоединить к себе атомы других элементов в разном количественном и дробном соотношении. В этом случае азот выступает в роли клея наподобие углерода и способствует упрочнению материалов: склеенные азотом металлы повышают свою твердость и тугоплавкость, сохраняя свои металлические свойства.

Бесцветность азота объясняется опять же тем, что лепестки его атомов колеблются на частотах, не регистрируемых рецепторами человеческого глаза.

Топология атома азота позволяет объяснить такую особенность азотных соединений, что в результате их переподсоединений может выделяться огромное количество тепла, а иногда такой процесс идет со взрывом. Молекулы с участием азота могут представлять собой либо пространственные конструкции, либо сугубо плоские; пространственные, да еще возбужденные молекулы вместе со своими тепловыми полями занимают очень большой объем, а плоские, наоборот, сравнительно малый. Поэтому, если молекуле представится возможность преобразоваться из пространственной в плоскую, то она сделает это с большим желанием: ее потенциальная энергия в этом случае перейдет в кинетическую; выделившееся тепло побудит соседние молекулы сделать то же самое; те, в свою очередь, подтолкнут другие молекулы, и процесс примет цепной характер в виде взрыва.

 

4.8. Кислород

Восьмой по счету химический элемент таблицы Менделеева — кислород; его атомная масса равна 15,999. Он — самый распространенный на Земле элемент; в атмосфере его 21 процент, в твердой оболочке Земли — 47 процентов; в океанах — 86 процентов.

В нормальных условиях кислород — газ; температура кипения сжиженного кислорода равна минус 182,9 градуса Цельсия, а температура перехода из твердого состояния в жидкое — минус 218,7 градуса. В воздухе атмосферы атомы кислорода объединяются в молекулы; по два атома в каждой. Известна аллотропическая модификация кислорода — озон, молекула которого состоит из трех атомов. Озон возникает при воздействии ультрафиолетового излучения и при проскакивании электрического разряда (молнии).

Кислород химически очень активен; по своей активности он уступает только фтору. Он соединяется практически со всеми элементами, исключая инертные газы. В соединениях с металлами он проявляет переменную и даже дробную валентность. Почти все реакции с участием кислорода относятся к типу экзотермических, то есть происходят с выделением тепла или даже света, а соединение с водородом происходит даже в форме взрыва. Еще более активен озон.

Из соединений кислорода наиболее известна вода, молекула которой состоит из одного атома кислорода и двух атомов водорода; водород разнесен в молекуле на угол 104,5 градуса. Вода, больше известная как жидкость, входит основной составной частью в минералы, где предстает уже в твердом виде. Жидкая вода закипает при 100 градусах и замерзает при нуле градусов по Цельсию. В жидком состоянии вода имеет малую вязкость и большую теплоемкость. Известно, что в сплошной массе молекулы воды могут диссоциировать, то есть распадаться на составляющие атомы. Вода — хороший растворитель.

С углеродом кислород образует углекислый газ, молекула которого содержит один атом углерода и два атома кислорода; при недостатке кислорода образуется угарный газ, молекула которого содержит уже по одному атому того или другого элемента.

Самую большую химическую активность кислород проявляет в составе кислот. Он объединяется в них с азотом, серой, фосфором и другими элементами; замыкают молекулы кислот атомы водорода. Водные растворы кислот разъедают практически все металлы. Атомарный кислород тоже разъедает металлы, образуя окислы, но действует менее активно.

Топология атома кислорода продолжает ту же треугольную тему, что была начата атомом азота: исходное кольцо-тор деформируется с трех сторон, выступы вытягиваются, шнуры сближаются; и заканчивается первый этап образования трехлучевой звезды с петлями на концах лучей. У азота такая звезда некоторое время сохраняется плоской и в такой форме успевает за это время найти себе подобную и присосаться к ней, образуя двухатомную молекулу.

Размеры исходного тора атома кислорода несколько больше: номинальная длина его шнура составляет 29 400 эфирных шариков, то есть на 3700 шариков длиннее, чем у азота; поэтому возникает некоторая коррекция топологии атома. Одновременно с вытягиванием концов звезды происходит их сближение и закручивание; сблизившиеся любые два лепестка образуют между собой еще одну, вторичную петлю, а оставшийся в одиночестве третий лепесток заворачивается, создавая внешний присасывающий желоб, и накрывает ее своей петлей; это — второй промежуточный этап топологии атома кислорода.

На третьем, последнем этапе сблизившиеся два лепестка сначала поворачиваются друг к другу «лицом», то есть присасывающими сторонами, слипаются насколько это возможно, а затем загибаются и упираются макушками своих петель в присасывающий желоб завернувшегося одиночного лепестка; на этом топология одиночного атома кислорода завершается.

Что же в конце концов получилось? А получилась в некотором роде уникальная форма атома: своим контурным, открытым наружу присасывающим желобом он похож на атом металла, но все же это — не металл; все его загнутые части оказываются напряженными, и по этой причине они неустойчивы, и атом пульсирует, создавая вокруг себя стоячее тепловое поле; значит, он — пушист, и эта пушистость не позволяет ему соединиться с такими же атомами, как он сам, и образовать металлическое тело. Если же он все же соединится с ними, например при образовании молекул, то происходит это с разгибом спаренных лепестков и с разворотом их петель, то есть с разрывом замкнутого контурного желоба. Получается так, что, пока атом кислорода находится в одиночестве, он — металл, а когда соединяется с другими атомами, то — уже не металл.

Молекула кислорода состоит из двух атомов, объединившихся путем слипания петель спаренных лепестков и примыкающих к ним присасывающих желобов. Молекула также пушиста: слипанию атомов в ней противодействуют их закрученные как пружины одиночные лепестки, и это противодействие порождает ее пульсацию, выражающуюся в том, что слипшиеся парные лепестки будут периодически выдвигаться из молекулы — удлиняясь, и убираться внутрь — укорачиваясь.

Соединение кислорода с водородом образует воду: в результате сильного теплового воздействия молекула кислорода распадается на атомы; их освободившиеся петли, не успев развернуться и слипнуться между собой, тотчас заполняются колечками атомов водорода; возникает знаменитая молекула аш-два-о. Бывшие ранее спаренными лепестки атома кислорода после подсоединения к их петлям атомов водорода расходятся под некоторым углом и успокаиваются. Успокаивается и вся молекула: несмотря на то, что присоединившиеся атомы водорода создают дополнительную пушистость, в целом пульсация молекулы воды оказывается несколько приглушенной, и в нормальных условиях она уже не является газообразной, а переходит в жидкость.

Вода отличается от других жидкостей многими своими свойствами, и одно из них — постоянство вязкости при изменении температуры. Если молекулы других жидкостей, ускоряя свои тепловые движения, уменьшают взаимный контакт и становятся как бы менее привязанными друг к другу, то молекулы воды сохраняют взаимную связь практически постоянной; это объясняется тем, что их подвижность вызвана в основном пушистостью атомов водорода и загнутых одиночных лепестков, а она очень мало зависит от температуры. Конечно, общие тепловые колебания молекул могут сделать их пушистыми до газообразности (это происходит при кипении) или, наоборот, уменьшить подвижность до прекращения взаимного скольжения (явление образования льда), но в интервале между этими состояниями связи между молекул между собой сохраняются практически постоянными.

Вода отличается еще очень большой своей теплоемкостью. У молекулы воды можно выделить следующие поглотители тепловых движений: это — загнутый в кольцо одиночный лепесток и два отогнутых (прямых) лепестка с водородными атомами на концах. Пульсирующее кольцо загнутого лепестка может иметь широкий диапазон амплитуд своих колебаний, то есть может накапливать большую энергию. Но основными поглотителями тепловых движений все же являются вытянутые лепестки; они представляют собой консоли с массами водородных атомов, отнесенными на их концы; момент инерции этих консолей — очень большой. Поглощая энергию внешних ударов, вытянутые лепестки лишь незначительно увеличивают амплитуду своих колебаний; и для того, чтобы раскачать их основательно, нужно приложить к ним много внешней энергии.

Объяснение других свойств воды и кислорода, таких как способности растворять и окислять, кроется в накопительстве атомом кислорода и молекулой воды в целом большего количества электронов. Атом имеет очень длинные присасывающие желоба, обращенные наружу; на таких желобах может скапливаться очень много электронов. У молекулы воды дополнительные присасывающие наружные желоба возникают по контурам атомов водорода. Поэтому молекулу воды можно считать накопителем электронов.

Большое скопление электронов является одной из причин диссоциации молекул воды: электроны, проникая в щели под атомами водорода, ослабляют их связи с атомами кислорода вплоть до их отделения. Другой причиной являются тепловые колебания консольных лепестков: молекула воды размахивает ими как деревья своими ветвями в сильный ветер; в общей массе жидкости молекулы лупят друг друга этими лепестками, как молотками; при этом атомы водорода на концах чувствуют себя не очень уютно.

Точно также происходит растворение в воде твердых веществ. Сначала, уткнувшись своим консольным лепестком в атом (или молекулу) твердого вещества, молекула воды производит инъекцию электронов (шприцует их); электроны ослабляют межатомные связи вещества; а затем ударами своих лепестков, как дубинами, вода срывает непрочные атомы и молекулы со своих мест и поглощает их. Растворение в воде кислот, содержащих кислород, сопровождается диссоциацией, то есть частичным или полным отделением атомов водорода.

Приблизительно также происходит окисление металлов. Сначала инъекцией электронов и ударами своих лепестков атомы кислорода, растворенные в воде, ослабляют крепление поверхностных атомов металла, а затем обволакивают их своими лепестками как щупальцами; при этом присасывающие желоба кислорода накладываются на присасывающие желоба металла и нейтрализуют их. Точно также ведет себя по отношению к металлу кислород, находящийся в составе кислот. Соединение их между собой происходит с помощью желобов, поэтому их количественное соотношение определяется соотношением длин желобов, и оно может быть некратным; отсюда — переменная и дробная валентность.

Обволакивание атомов различных химических элементов с помощью щупальцев (лепестков) воды способствует успокоению пульсаций ее молекул: их колебания амортизируются соседними атомами. Лишившись своей подвижности, молекулы воды становятся средствами скрепления других атомов, то есть клеем как азот, как углерод, как бор или бериллий в подобной роли. Поэтому в минералах оказывается так много воды.

Среди петлевых соединений кислорода можно выделит образование угарного и углекислого газов. При недостатке кислорода его атомы в первую очередь соединяются своими петлями с выкрученными петлями атомов углерода; его нормально замкнутые петли при этом не раскрываются; это — угарный газ. При избытке кислорода и при высокой температуре замкнутые петли углерода также раскрываются и соединяются с петлями других атомов кислорода; возникает углекислый газ. В указанных соединениях напряженность атомов углерода и кислорода уменьшается, то есть уменьшается их потенциальная энергия, и соответственно увеличивается кинетическая, тепловая энергия. Повышение температуры сопровождается выделением света: светятся атомы углерода.

Из трех состояний кислорода: атомарного, молекулярного и озонного, — последнее — наиболее активное. Если у одиночного атома кислорода и молекулы парные лепестки замкнуты своими петлями и не совсем готовы для присоединения к другим атомам, то у озона они находятся в непрочном соединении между собой и легко раскрываются.

 

4.9. Фтор

Фтор — девятый по счету химический элемент таблицы Менделеева, его атомная масса равна 18,998. Он представляет собой бледно-желтый газ с температурой плавления минус 219,6 и кипения минус 188,1 градусов Цельсия.

Фтор — самый сильный окислитель, он окисляет даже кислород; его химическая активность настолько высока, что он реагирует почти со всеми веществами, за исключением инертных газов: гелия, аргона, неона; при нормальных условиях он не взаимодействует также с азотом и с углеродом в алмазной модификации. При реакциях с его участием выделяется много тепла, иногда это происходит в виде взрыва.

Странное дело, углефторовые соединения — фторопласт и тефлон — отличаются, наоборот, поразительной химической стойкостью: их не берет даже царская водка — концентрированная смесь азотной и соляной кислот. Инертностью отличаются также фреоны (хладоны) — насыщенные углеводороды, в которых водород заменен на фтор и хлор; фреоны являются газами и используются в качестве хладоагентов для холодильников; их температура кипения — около минус 30 градусов Цельсия.

Из других соединений широко известны плавиковая кислота, молекула которой состоит из одного атома углерода и одного атома фтора, и природные минералы: флюорит, плавиковый шпат и другие. Свободный фтор в природе не встречается.

Топология атома фтора завершает треугольную тему. После формирования из исходного тора трехлучевой звезды процесс дальнейшего развития атома выбирает иное, чем у азота и кислорода, направление: два лепестка (луча) успевают сблизиться своими концами, на которых расположены присасывающие петли, раньше, чем, сойтись своими основаниями; сблизившиеся петли разворачиваются и слипаются, нейтрализуя друг друга; слипшиеся петли изгибают дугой свои спаренные шнуры и ловят макушками желоб оставшегося одиночного лепестка. В законченном виде атом фтора напоминает летящего гуся с крыльями из завернувшихся лепестков и с вытянутой шеей последнего третьего из них; петля на конце третьего лепестка ассоциируется с клювом, готовым ущипнуть. Отличие от принятого образа будет состоять, скорее всего, в том, что голова гуся не вытянута в струнку, а мечется из стороны в сторону. Новое, фторовское направление в формировании атома обусловлено удлинением лепестков: у фтора они длиннее приблизительно на 1000 эфирных шариков, чем у кислорода, и на 1500, чем у азота, а вся длина шнура атома фтора составляет 35 000 шариков.

Повышенная активность атома фтора объясняется тем, что он, во-первых, может накапливать на своих присасывающих желобах электронов больше, чем даже атомы кислорода (за счет более длинных желобов, на которых может скопится более 17 000 электронов), а во-вторых, весь этот запас электронов приходится не на два щупальца как у кислорода, а на один клюв. Имея очень длинную шею, атом фтора может дотянуться до самых удаленных слипшихся участков в молекулах других веществ, выбросить на них большую порцию электронов, ослабив тем самым их связи, прилипнуть своей петлей или своим желобом к столкнувшимся атомам или молекулам и образовать новое соединение. Поэтому перед агрессией фтора не может устоять практически ни одно вещество, и поэтому оно называется разрушителем (по гречески «фторос» — разрушение). К слову, разъединительное влияние электронов сказывается и на соединениях самого фтора: если пропустить через плавиковую кислоту электрические разряды, она распадается на водород и фтор.

С другой стороны, удивительную химическую инертность фторопласта и тефлона можно объяснить тем, что в соединениях атомов фтора с атомами углерода нейтрализуются (закрываются) не только присасывающие стороны их петель, но и их присасывающие желоба: и у того и у другого длина каждого из желобов составляет приблизительно 5000 эфирных шариков, поэтому они смыкаются без остатка. Между собой молекулы тетрафторэтилена, образующие фторопласт и тефлон, контактируют отдельными точками, в частности боковушками петель; эти контакты не очень прочны.

С азотом фтор не соединяется по простой причине: молекула азота, как мы знаем, полностью закрыта, и атом фтора бессилен подобрать к ней ключи; к тому же молекула не очень боится его электронных инъекций: у нее у самой имеется большое количество электронов. Также нам должно быть понятно то, что атом фтора не способен разрушить кристаллы алмаза: они так крепко сшиты, что не имеют щелей и прорех, через которые он мог бы проникнуть своим клювом; самое большое, что способен сделать фтор с алмазом, так это прилипнуть к нему, но и это возможно только в том случае, если поверхностные связи кристалла случайно окажутся незавершенными.

В качестве хладоагентов соединения фтора применяют потому, что они имеют очень удобную температуру кипения: давлением компрессора и охлаждением их легко превращать в жидкость, а она, испаряясь, отбирает тепло. К тому же теплоемкость фтора, атом которого имеет консоль, то есть длинную шею, довольно большая. Она — эта теплоемкость — является причиной того, что все реакции с участием фтора идут с выделением тепла: успокаиваясь в соединениях с другими атомами, фтор передает вновь образованным молекулам все свои тепловые движения.

 

4.10. Неон

Инертный газ неон занимает в таблице Менделеева десятую позицию: атомная масса неона равна 20,179. Об инертных газах известно только одно: они не способны вступать в химическую реакцию вообще. С одним из таких газов — с гелием — мы уже познакомились: неон — второй из них.

Топология атомов неона открывает новую страницу. Забегая вперед, скажем, что атом неона представляет собой два спаренных атома гелия; и такими же спаренными будут все атомы третьего периода. Отсюда можно сделать вывод о том, что в таблице Менделеева неону больше подходит место в третьем периоде перед натрием. Впрочем, подобную передвижку следовало бы сделать со всеми химическими элементами инертных газов: каждый из них лучше было бы сместить в следующий период и поставить перед первым щелочным металлом.

Исходное кольцо-тор будущего атома неона деформируется уже с четырех сторон; этому способствует длина кольца — она составляет 37 100 эфирных шариков у номинального атома, что на 2 100 шариков больше, чем у фтора. Шнуры выступов сближаются; сами выступы вытягиваются и образуют четырехлучевую звезду; на концах лучей возникают петли. Далее петли попарно сближаются, и фигура приобретает двухчастный вид; полуфигуры разворачиваются на 180 градусов, и в центре между ними возникает перехлест. Столкнувшиеся макушками петли делают полуповорот в разные стороны и взаимно сдвигаются, образуя гелиевые накладки. Завершается топология атома неона тем, что круглые полуфигуры, стягиваемые наружными присасывающими желобами, чуть-чуть поворачиваются вокруг своих осей и успокаиваются, обращенные петлевыми накладками в одну сторону; присасывающие желоба при этом укорачиваются почти до нуля.

Возникший атом неона пульсирует точно также, как атом гелия; поэтому он такой же пушистый: его температура кипения равна минус 245,9 градуса Цельсия.

Инертность атома неона объясняется тем, что у него практически нет обращенных наружу присасывающих желобов и нет открытых присасывающих сторон петель.

 

4.11. Натрий

Топология атома первого щелочного металла третьего периода таблицы Менделеева — натрия развивает четырехлучевое направление неона: вместо гелиевых накладок полуфигуры атома натрия образуют литие-бериллиевские сердечки. Они стали возможными потому, что длина шнура атома натрия на 5200 эфирных шариков длиннее, чем у атома неона, и составляет 42 300 шариков.

И так далее.

Содержание