Музыка эфемерна и существует только в нашей памяти. Она непостижима и неуловима. Именно поэтому музыка обладает магической аурой, благодаря которой люди испокон веков использовали ее в своих ритуалах. Музыка стала способом постичь божественное, доступным лишь избранным. Археологические открытия свидетельствуют, что музыкальные инструменты существовали еще в доисторические времена. Уже тогда были изобретены разнообразные ударные (например, бубен), а также примитивные трубы и флейты. Это доказывает, что первые мелодии были придуманы еще в древности.

Древняя Греция

Слово «музыка» происходит от греческого musike; в буквальном переводе это означает «искусство муз». В греческой мифологии музы были богинями — покровительницами искусств, танцев, астрономии и поэзии.

Ученики пифагорейской школы, которая сформировалась в VI веке до н. э., пытаясь постичь гармонию Вселенной, считали числа и отношения между ними отражением этой гармонии. Пифагорейцы создали настолько подробные астрономические и музыкальные математические модели, что невозможно не понять: музыку и математику они изучали неразрывно друг от друга. Пифагорейцы считали, что движение планет порождает незаметные для человека гармонические колебания, так называемую музыку сфер.

Во всех античных цивилизациях теоретические знания отделялись от декоративно-прикладного искусства. Семь свободных искусств делились на две большие группы: первая, тривиум (от лат. tri — три и vium — дорога), состояла из грамматики, диалектики и риторики; вторая, квадривиум (от quadri — четыре), включала арифметику, геометрию, астрономию и музыку. Считалось, что человек, изучивший эти семь дисциплин, «семь свободных искусств», живет в гармонии со Вселенной.

Музыкальная система Пифагора

Последователи пифагорейской школы изучали музыку на основе звуков, издаваемых единственной струной музыкального инструмента, называемого монохордом. Длина струны монохорда изменялась подобно тому, как гитарист зажимает струны при игре на современной гитаре. При изменении длины изменялась звучащая нота: чем короче струна, тем выше нота. Пифагорейцы попарно сравнивали звуки, соответствующие различным длинам струны. В своих экспериментах они описывали соотношения длин сторон, выражаемые небольшими числами: они делили струну пополам, в соотношении один к двум, два к одному и так далее.

Результаты оказались удивительными: звуки, издаваемые при колебаниях струн, длины которых выражались небольшими числами, оказывались самыми приятными, то есть самыми гармоничными. На основе этих наблюдений пифагорейцы создали математическую модель физического явления, в которой при этом учитывалась и эстетическая составляющая. Нечто подобное произошло позднее, в эпоху Возрождения, когда понятие красоты стали связывать с золотым сечением.

Простейшее соотношение образуется, если зажать струну ровно посередине. Это отношение в численном виде записывается как 2:1 и соответствует интервалу в одну октаву (например, от ноты до до следующего до). Еще одно простейшее соотношение образуется, если прижать струну в точке, отстоящей от конца струны на треть ее длины. В численном виде это отношение записывается как 3:2 и соответствует интервалу в одну квинту (интервал от до до соль). Если прижать струну в точке, отстоящей от ее конца на четверть длины, что в численном виде записывается как 4:3, получится интервал, известный под названием кварта (интервал от до до фа).

* * *

ЗВУКИ ПЛАНЕТ

Представление о гармоничном космосе было частью классической культуры, пережившей второе рождение в эпоху Возрождения. Воплощением этого представления, которое изучали пифагорейцы, а также Аристотель и Платон, является гармония сфер. Ее суть заключается в том, что планеты при движении издают звуки, не слышимые человеком, и эти звуки являются созвучными, то есть гармоническими. Немецкий ученый   Иоганн Кеплер (1571–1630) изучал религию, этику, диалектику, риторику, а также физику и астрономию. Он был сторонником гелиоцентрической теории и следовал заветам пифагорейцев и Платона. В начале XVII века движение планет считалось загадочным даже в научных кругах. Считалось, что объяснить его можно было лишь волей Бога.

Кеплер пролил свет на эту загадку, открыв законы движения планет, что стало одним из величайших научных открытий всех времен. Однако этим он не ограничился и включил в свою теорию классическое представление о гармонии сфер. Так, в своей книге  Harmonices Mundi («Гармония мира») 1619 года Кеплер помимо астрономических законов изложил тезис о том, что каждая планета при вращении вокруг Солнца издает звук, зависящий от ее угловой скорости. Эта угловая скорость максимальна в перигелии (точке, ближайшей к Солнцу) и афелии (точке, наиболее удаленной от Солнца) эллиптической орбиты планеты. Кеплер сравнил звуки, соответствующие перигелию и афелию орбит всех планет, а также звуки, издаваемые соседними планетами. Затем он разработал музыкальный строй и аккорды, соответствующие этим звукам. Согласно его расчетам, мелодии Венеры и Земли в разных точках орбиты отличались на полутон или менее, а мелодия Меркурия изменялась более чем на одну октаву. Кеплер был религиозным человеком, поэтому придерживался мысли, что звучание планет очень редко оказывается гармоничным — возможно, лишь единожды, в момент божественного Сотворения.

Иллюстрация из книги Harmonices Mundi  Иоганна Кеплера , на которой записаны предполагаемые звуки, издаваемые планетами.

ПИФАГОР САМОССКИЙ (ОК. 570 — ОК. 490 ГГ. ДО Н. Э.)

Пифагор родился на греческом острове Самос. Вдохновленный примером философа и математика Фалеса Милетского, он совершил длительное путешествие в Египет и Месопотамию, где изучал различные науки. Путешествие побудило его создать собственную школу, в которой сочетались различные естественно-научные, эстетические и философские дисциплины. Пифагор и его последователи изучали самые разнообразные области знания: акустику, музыку, арифметику, геометрию, астрономию. Слава Пифагора и его школы была столь велика, что ему приписывается авторство одной из фундаментальных теорем геометрии — теоремы Пифагора, которая была известна на Востоке несколькими веками ранее. В виде формулы теорема Пифагора записывается так:

а 2 + Ь 2  = с 2 .

Это уравнение имеет бесконечно много целых решений, которые называются пифагоровыми тройками. Любые три числа, образующие пифагорову тройку, являются длинами сторон угольника — инструмента, используемого в сельском хозяйстве и различных ремеслах для построения прямых углов.

* * *

Таким образом, становится очевидно, что если длины струн удовлетворяют соотношению

(n + 1)/n,

то соответствующие им звуки будут гармоническими, приятными слуху. Пифагорейцы считали это доказательством прямой взаимосвязи между числами и гармонией, красотой.

Абсолютная высота звуков

Чтобы лучше понять важность открытий, совершенных пифагорейцами, следует различать абсолютную и относительную высоту звука. Каждая музыкальная нота задает высоту, в зависимости от которой звук называется низким или высоким. Высота звука определяется частотой колебаний соответствующей звуковой волны (мы поговорим об этом позже). Чем больше частота, тем выше звук. (В приложении I приводится подробное объяснение этого и других понятий музыки.)

Клавиши пианино, соответствующие низким звукам, расположены слева; клавиши, соответствующие высоким звукам, — справа.

* * *

ЛОПАЮЩЕЕСЯ СТЕКЛО И ТОНУЩИЕ МОСТЫ

Во многих художественных и мультипликационных фильмах можно увидеть, как певец берет очень высокую ноту и силой своего голоса разбивает стеклянный бокал. Это абсолютно реальное физическое явление. Твердые тела обладают собственной частотой колебаний, зависящей от материала, формы и других свойств. Источник звука испускает звуковые волны, вызывающие колебания окружающего воздуха. Если частота звуковой волны и частота собственных колебаний предмета совпадают, то амплитуда колебаний резко возрастает. Это физическое явление называется резонансом. Если при этом увеличивается акустическая энергия (иными словами, громкость звука), то амплитуда колебаний предмета становится еще больше. Струна не рвется от подобных колебаний благодаря своей гибкости. Другие тела, не столь упругие, не справляются с колебаниями и разрушаются. Именно из-за этого лопается стеклянный бокал. Известны и более серьезные случаи. 7 ноября 1940 года, спустя несколько месяцев после постройки, из-за колебаний, вызванных сильным ветром, обрушился висячий Такомский мост в американском штате Вашингтон. В авиации такое явление известно под названием флаттер.

* * *

Человеческое ухо способно различать звуковые колебания частотой примерно от 20 до 20000 герц. 1 герц (Гц) означает одно колебание в секунду. Колебания более низкой частоты называются инфразвуком, более высокой — ультразвуком. Частота звука каждой ноты является абсолютным значением, однозначно определяющим конкретную ноту. Известно, что нота ля настраивается на 440 Гц, но следует различать звук частотой 440 Гц и название, которое носит звук такой частоты. Этот звук обозначается нотой ля из соображений удобства. Эта частота была выбрана произвольно, подобно метру, который лежит в основе всей метрической системы измерений, и утверждена была похожим образом. Частота в 440 Гц была принята в качестве стандарта ноты ля в 1939 году на Международной конференции в Лондоне. Ранее это значение не было унифицированным. В разное время и в разных регионах производители музыкальных инструментов использовали разные значения. В настоящее время многие оркестры все еще предпочитают настраивать инструменты на другие частоты, и в некоторых случаях частота ноты ля достигает 444 Гц и более.

* * *

ПРОБЛЕМЫ С ПРОСТЫМ ЧИСЛОМ

В начале XX века была установлена стандартная частота ноты ля в 439 Гц. Почему же в итоге была выбрана частота в 440 Гц? Согласно гипотезе одного из членов Британского института стандартов, «частота, используемая в трансляциях ВВС, определялась осциллятором, в котором использовался пьезоэлектрический кристалл с частотой колебаний в миллион герц. Эта частота уменьшалась электронными средствами до тысячи герц, затем умножалась на 11 и делилась на 25. Так получилась частота в 440 Гц. Так как число 439 является простым, то его нельзя получить подобным способом».

* * *

Интервалы и относительная высота звуков

Перед тем как рассказать об относительной высоте звуков, следует объяснить понятие интервала. Как вы только что увидели, каждой ноте соответствует определенная частота, которая отличает эту ноту от других. Однако пифагорейцы анализировали не отдельные ноты, а отношения между ними. Две любые ноты разделяет расстояние, называемое интервалом. Существует два подхода к этому понятию. Согласно первому, интервал — это расстояние между нотами. Каждый интервал носит название в соответствии с числом нот, содержащихся в границах интервала. Так, интервал между до и фа содержит четыре ноты: до-ре-ми-фа. Интервал до — фа называется квартой. Также говорят, что расстояние между до и фа равно кварте. Уже известный нам интервал октава подчиняется этому же правилу: чтобы перейти от до к следующему до, нужно восемь нот: до-ре-ми-фа-соль-ля-си-до. Указанные выше интервалы являются восходящими. Нисходящие интервалы начинаются с более высокой ноты и читаются в обратном направлении: интервал до — ля называется терцией, так как охватывает три ступени: до-си-ля. (Полная классификация интервалов несколько сложнее. О ней подробно рассказано в приложении I.)

Согласно второму подходу, интервалы можно также представлять в численном виде как соотношение частот нот. В этом случае имеет значение не абсолютная частота звука каждой ноты, а отношение между их частотами. Тогда две ноты можно сравнить, указав разделяющий их интервал в виде отношения частот соответствующих звуков. Если, например, мы сыграем две ноты, разделенные интервалом в одну кварту, то более высокая нота будет иметь частоту, равную 4/3 частоты более низкой ноты. Если два звука разделены интервалом в одну квинту, то их частоты относятся как 3:2. Например, для ноты ля частотой 440 Гц следующая нота ми, отделенная интервалом в одну квинту, будет иметь частоту в 660 Гц.

* * *

ЛИНЕЙНЫЙ И ЭКСПОНЕНЦИАЛЬНЫЙ РОСТ

Интервал между двумя нотами называется по числу нот, их разделяющих, включая границы интервала. Из-за этого операция сложения интервалов не является интуитивно понятной. Чему равна сумма секунды и терции? Квинте? Достаточно выполнить несложные расчеты, чтобы показать, что это не так. Пусть началом интервала, равного искомой сумме, будет нота до . Прибавив секунду, мы получим ноту ре . Прибавив терцию, получим фа . Таким образом, сумма этих интервалов равна не квинте, а кварте.

Сумма интервалов подчиняется линейному закону. Если мы пронумеруем клавиши пианино, обозначив за 1 самую низкую ноту, за 88 — самую высокую, то увидим, что клавиши, соответствующие ноте ля , имеют номера 1, 8, 15, 22, 29 и так далее. Иными словами, чтобы перейти от одной ноты ля к следующей, нужно перейти на семь клавиш вправо или влево. Однако если мы рассмотрим не клавиши пианино, а частоты соответствующих звуков, то увидим, что они возрастают не линейно, а экспоненциально. Так, самый низкий звук пианино, соответствующий ноте ля , настраивается на частоту 27,5 Гц. Чтобы перейти к следующему ля , нужно не прибавить к этой частоте какое-то фиксированное число, а умножить эту частоту на 2. Таким образом, следующая ля настраивается на 55 Гц, следующая — на 110 Гц и так далее.

* * *

Отношение между длинами двух струн обратно отношению между частотами звуков, издаваемых этими струнами. Например, если звуки разделены квинтой, то есть их частоты относятся как 3:2, то длины этих струн относятся друг к другу как 2:3. Далее мы не будем упоминать о длинах струн, а будем говорить только о частотах звуков.

Так, две ноты, частоты которых равны 440 Гц и 880 Гц, разделены интервалом в одну октаву и настроены в точном соответствии со стандартом для ноты ля. Ноты, частоты которых равны 442 Гц и 884 Гц, также разделены интервалом в одну октаву, хотя настроены не по стандарту. И наконец, ноты, частоты которых равны 443 Гц и 887 Гц, не разделены интервалом в одну октаву. На слух они распознаются как «ненастроенная октава».

* * *

ПРОКЛЯТИЕ АБСОЛЮТНОГО СЛУХА

Абсолютный слух — это способность, позволяющая на слух определять ноты. Если мы нажмем любую клавишу пианино, человек с абсолютным слухом сможет назвать прозвучавшую ноту. Абсолютный слух и музыкальное дарование не связаны между собой. На самом деле многие музыканты страдают от своего абсолютного слуха. Например, в хоровой музыке партитуры часто транспонируют, подстраивая их под тон, в котором будет лучше звучать хор. Песня может исполняться в полном соответствии с партитурой, но на полутон ниже. Исполняемые ноты не совпадут с нотной записью, и музыкант с абсолютным слухом придет в замешательство.

* * *

Соотношение между частотами нот позволяет на основе одного известного звука найти другой, отделенный от исходного любым интервалом. Для этого нужно умножить частоту исходного звука на соответствующий коэффициент. К примеру, зная частоту F 1 можно найти частоту F 2   звука на одну кварту выше, то есть в 4/3 раза больше, следующим образом:

Эту формулу можно последовательно применять несколько раз, используя необходимые множители. Например, если F 3 на одну большую терцию больше (отношение частот звуков будет равняться 5/4), чем F 2 можно вычислить отношение между F 3 и F 1 следующим образом:

Эти расчеты можно производить и в обратном порядке, используя деление вместо умножения. Например, частота F 4 , которая на одну квинту ниже F 1 ,  вычисляется так:

Музыкальная и численная формы представления интервалов тесно связаны между собой. Далее мы будем использовать и ту, и другую форму в зависимости от контекста.

Настройка пианино

Попробуем определить частоты 12 нот одной октавы пианино.

Будем действовать следующим образом: определив частоту одной ноты ре, зададим частоты всех остальных ре путем умножения или деления этой частоты на 2. Выполним аналогичные действия для всех остальных нот.

Нота до будет иметь нормализованное начальное значение, равное 1. Всем остальным нотам будут соответствовать числа в интервале от 1 (начальное до) до 2 (следующее до). Эти числа будут соответствовать отношению частоты заданной ноты и начального до. Чтобы настроить пианино, нужно определить эти значения для всех нот. В качестве начального значения для расчетов можно выбрать любое число (например, 440 Гцдля ноты ля).

12 нот означают, что начальное и следующее до разделяют 12 «шагов». Каждый из этих шагов называется полутоном. Сначала попробуем решить эту задачу, используя результаты, применяемые пифагорейцами при настройке инструментов той эпохи.

Пифагорейский строй

Пифагорейский строй основывался на простых отношениях между различными звуками. В его основе лежали два интервала: октава, соответствующая отношению между частотами звуков 2:1, и квинта, соответствующая отношению 3:2. Пифагорейцы получали различные звуки с помощью последовательности квинт, затем использовали перенос на одну или несколько октав, чтобы найти частоты звуков в необходимом диапазоне.

В качестве примера начнем с ноты до. Сначала найдем частоту звука, отделенного от этой ноты восходящей квинтой, и получим ноту соль. Повторив эти же действия, получим ре, затем ля, затем ми и, наконец, си. Выполнив смещение на одну нисходящую квинту с начального до, получим ноту фа. Так получаются семь звуков пифагорейского строя:

фа <— до —> соль —> ре —> ля —> ми —> си.

* * *

НАЗВАНИЯ НОТ

Греки дали названия нотам по первым буквам ионийского алфавита. Один и тот же звук, измененный на половину тона или сдвинутый на одну октаву, обозначался разными буквами. Например, нота фа  обозначалась буквой альфа, бета обозначала фа-диез , гамма — фа-дубль-диез . Звуки пифагорейского строя располагались в порядке убывания, в современном музыкальном строе они расположены с точностью до наоборот.

Римляне также использовали буквы алфавита для обозначения звуков. Боэций, который в V веке н. э. создал пятитомный труд по теории музыки, рассматривал строй из пятнадцати нот, охватывавших две октавы. Каждую из этих нот Боэций обозначил своей буквой, не учитывая цикличность октав. На следующем этапе, разумеется, эта цикличность стала учитываться в названиях нот, и одни и те же ноты разных октав стали обозначаться одинаковыми буквами.

В так называемой английской (или немецкой) нотации семь нот обозначались заглавными латинскими буквами от А до G , ноты следующей октавы — строчными буквами от а  до g, ноты третьей октавы — удвоенными строчными буквами ( аа , bb , сс , dd , ее , ff , gg ). Так свои названия получили семь звуков, соответствующие белым клавишам фортепиано. Остальные пять звуков, соответствующие черным клавишам, получили производные от основных звуков названия позднее, с появлением понятий «бемоль», «бекар» и «диез».

В XI веке тосканский монах  Гвидо д'Ареццо (ок. 995 — ок. 1050) разработал набор мнемонических правил для чтения нот. Возможно, самым известным из них является так называемая гвидонова рука. В этом методе ноты условно располагаются в алфавитном порядке на пальцах руки. Гвидо д'Ареццо также дал названия всем нотам. Он обозначил каждый звук первым слогом в каждой строке очень известной в то время молитвы Иоанну Крестителю:

Ut queant laxis,

res onare fibris,

Ml ra gestorum,

fa muli tuorum,

Sol ve polluti,

La bii reatum,

Sa ncte lohannes.

Позднее слог ut  заменился на do . Так появились названия нот, которые используются и сейчас.

Рисунок «гвидоновой руки» из средневековой рукописи.

* * *

Если продолжить цепочку квинт, получится 12 звуков так называемого хроматического строя, составляющие квинтовый круг:

где знаки бемоль ( ) и диез (#) означают изменение на полутон ниже и выше соответственно.

После того как мы получили 12 нот, упорядочив квинты, нетрудно вычислить частоты всех нот, лежащих в пределах одной октавы, путем сдвига на одну или несколько октав.

Подсчеты

Определим частоту каждой ноты с помощью цепочки квинт и сдвига на одну или несколько октав, то есть путем деления и умножения частоты на 2. Напомним, что отношение между частотами звуков всегда будет принимать значение между 1 (соотношение частоты одного и того же звука) и 2 (отношение частот нот до соседних октав).

Сначала определим относительную частоту ноты соль, которая отстоит на одну квинту от ноты до:

соль = 3/2

Затем определим частоту ноты ре, которая отстоит на одну квинту от соль (необходимо умножить частоту на 3/2), но потребуется сдвиг на одну октаву ниже (умножить частоту на 1/2):

Расстояние между до и ре называется целым тоном. Как и следовало ожидать, один тон равен двум полутонам.

Затем определим относительную частоту ноты ля, отстоящей на одну квинту от ре:

Нота ми отстоит на одну квинту от ля, но потребуется сдвиг на одну октаву ниже:

Последние ноты строя — си, отстоящая на одну квинту от ми, и фа, для получения которой необходим сдвиг на одну квинту ниже до с последующим смещением на одну октаву выше (потребуется умножить частоту на 2).

Приняв частоту до за 1, представим частоты всех нот в таблице:

Можно повторить эти же действия, чтобы определить частоты бемолей, соответствующих черным клавишам пианино.

Для этого нужно последовательно выполнять сдвиг на одну квинту ниже, начиная с ноты фа.

Пифагорейская комма

На одну квинту выше ноты си находится фа-диез, который должен совпадать с соль-бемоль. Но это не один и тот же звук: разница между фа-диез и соль-бемоль называется пифагорейской коммой. Аналогично, определив частоты фа-диез и ре-бемоль, мы увидим, что они отстоят друг от друга не на одну кварту, а на интервал, который отличается от квинты на одну пифагорейскую комму. Эта квинта, которая немного меньше настоящей, называется волчьей квинтой.

Построив квинтовый круг из 12 квинт, мы получим ноту, которая немного отличается от первоначальной и отстоит от нее на семь октав:

Это «немного» и есть пифагорейская комма. Ее значение (обозначим его ПК) можно вычислить, взяв за основу частоту f и сравнив цепочку из 12 квинт, начиная с f, с цепочкой из семи октав:

Отличие будет чуть больше 1 % октавы или, что равносильно, почти четверть полутона. Это отличие вызвано тем, что дробь, соответствующая квинте, несовместима с дробью, соответствующей октаве, что нетрудно показать. Для этого попробуем найти такие показатели степеней х и у, которые позволят связать эти две дроби:

Из последнего равенства следует, что нужно найти число, которое одновременно было бы степенью двух и трех. Однако, так как 2 и 3 являются простыми числами, это противоречит основной теореме арифметики, согласно которой любое положительное число можно однозначно представить в виде произведения простых множителей. Эту теорему, которую сформулировал Евклид, впервые полностью доказал Карл Фридрих Гаусс. Из нее следует, что квинта и октава пифагорейского строя никогда не совпадут, то есть не существует хроматического строя без пифагорейской коммы, что аналогично.

Другие разновидности музыкального строя

И человеческий голос, и безладовые инструменты допускают использование так называемого натурального строя, в котором ноты более согласованны, гармоничны. И голос, и струнные инструменты допускают незначительное изменение высоты издаваемого звука (корректировку строя) для наибольшего созвучия. Как вы увидели, пифагорейский строй создается на основе одной главной ноты, из которой получаются остальные ноты путем упорядочивания чистых квинт. Однако это вызывает некоторые математические затруднения: во-первых, несовместимость квинты и октавы ведет к появлению уже упомянутой волчьей квинты, во-вторых, существует несовместимость между квинтами и большими терциями.

В пифагорейском строе соотношение частот для терций получается с помощью цепочки из четырех квинт. Используя смещение на одну или несколько октав, получим, что соотношение частот равно 81:64. Однако существует и другой способ определения терции с помощью простого соотношения 5/4 или, что равносильно, 80:64. Это чистая терция.

Отсюда следует, что в пифагорейском строе, представляемом в виде последовательности квинт, терции не являются чистыми. На белых клавишах пианино расположены три терции: до — ми, фа — ля и соль — си. Можно сказать, что пифагорейский строй состоит из чистых квинт в ущерб чистоте терций.

Диатонический строй

В результате поисков «чистого» натурального строя появилась новая система отношения звуков — диатонический строй. В пифагорейском строе звуки выражаются в виде последовательности квинт. Диатонический строй имеет более сложную структуру.

Начиная с ноты до, соблюдая интервалы в одну квинту, откладываются две следующие основные ноты этого строя: фа и соль. Далее определяются ми, ля и си, отстоящие на чистую терцию от до, фа и соль соответственно.

Последняя нота, ре, отстоит от ноты соль ровно на одну квинту:

Интервалы диатонического строя «чище» и более постоянны. Это проявляется и в том, что соотношения частот звуков диатонического строя относительно просты. Сначала, начиная с ноты до, частота которой принимается равной 1, рассчитываются частоты нот фа и соль, отстоящих от до на одну чистую квинту. Частота фа принимается равной 4/3, частота соль — 3/2. Далее рассчитывается частота ноты ми, отстоящей от до на 5/4.

Аналогично определяется частота ноты ля, которую отделяет от фа одна терция:

Си отстоит на одну терцию от соль:

И наконец, рассчитывается частота ре, которую отделяет от ноты соль одна чистая квинта со сдвигом в одну октаву:

Последовательность, определяющая интервалы диатонического строя, подчиняется структуре тональной музыки. К тональной музыке принадлежит подавляющее большинство музыкальных композиций, созданных за последние несколько веков, начиная от периода барокко и классики и заканчивая рок- и поп-музыкой, а также западной фолк-музыкой.

В тональной музыке ноты выстроены в иерархию вокруг главной ноты, которая называется тоникой, или тональным центром. Каждая нота выполняет определенную музыкальную «функцию» в произведении. Из-за этого некоторые ступени тональности (особенно те, в построениях которых участвуют диезы и бемоли, которым соответствуют черные клавиши пианино) настраиваются в зависимости от контекста. Эти варианты приведены в следующей таблице.

Неизбежные сложности

Диатонический строй не миновали проблемы, неизбежно возникающие из-за несовместимости основных интервалов — октавы, квинты и терции. Почти для всех квинт соотношение частот звуков равно 3/2, но для квинты ре — ля оно немного меньше: 40/27. При дополнении диатонического строя диезами и бемолями все усложняется еще больше: неизбежно появляется волчья квинта.

Было предпринято множество попыток решить эту проблему с помощью различных темпераций — систем, в которых трудности при построении строя решаются в ущерб чистоте некоторых интервалов. Изменение чистоты каждого интервала определяет его «окраску».

Хотя построением различных строев и темперированием достигается относительно приемлемое равновесие, оно всегда основывается на тонике — ноте, от которой отсчитываются все остальные.

Если тоника остается неизменной, не возникает никаких трудностей. Однако при смене тонального центра изменяется весь строй.

Несмотря на то что абсолютная частота звуков, соответствующих всем нотам, остается неизменной, смена тонального центра нарушает равновесие, что приводит к смене «окраски».

Если музыкальное произведение, тональным центром которого является нота до, исполняется на инструменте, настроенном от до, то произведение звучит в точности так, как было задумано. Представим, что мы хотим исполнить это же произведение, но на тон выше, то есть с центром в ре, на том же инструменте, который по-прежнему настроен от до. Мелодия покажется нам не только более высокой, но и фальшивой.

Чтобы убедиться в этом, подробно рассмотрим интервал ре — ля. В диатоническом строе соотношение частот для этого интервала равно не 3/2, а 40/27. В новой интерпретации с тональным центром в ре интервал ре — ля займет место интервала до — соль, соотношение частот для которого равно 3/2.

Решение проблемы

Пока что нам не удалось найти музыкальный строй, не содержащий «ненастроенных» интервалов. Неизбежно возникает вопрос: можно ли создать такой строй, в котором все соотношения между нотами оставались бы неизменными вне зависимости от выбора тонального центра? Эту проблему нельзя решить посредством уравнивания интервалов, изменяя частоту нот так, чтобы увеличить или уменьшить определенные интервалы. Решение задачи заключается в том, что октава изначально должна делиться на 12 равных интервалов. Эти 12 интервалов должны разбиваться на 12 равных полутонов, которые в сумме составляют одну октаву.

Винченцо Галилей, отец Галилео Галилея, еще в XVI веке предложил разделить октаву на 12 равных полутонов. Соотношение частот этих полутонов равнялось 18/17. Упорядочиванием 12 таких интервалов получались малые октавы и квинты, соотношение частот для которых равнялось 1,9855… и 1,4919… соответственно.

Подойдем к решению этой задачи с чисто математической точки зрения. Обозначим за х отношение частот звуков для последовательных полутонов такое, что 12 интервалов по х образуют октаву. На языке алгебры это означает, что должно выполняться равенство

Значение х, равное 1,059463094…, позволяет по определению получить идеальную октаву. Пифагорейская комма равномерно распределяется по всему строю.

Как вы уже увидели, во всех разновидностях музыкального строя, которые использовались в разное время, положение пифагорейской коммы определялось в зависимости от того, какой интервал считался самым важным. Самые важные интервалы сохранялись чистыми, остальные искажались. В строе с соотношением частот 1,059463094…, который называется равномерно темперированным строем, все интервалы «ненастроены» равномерно.

Чтобы определить частоту звуков для каждого интервала, необходимо составить цепочку из необходимого числа полутонов. Рассмотрим в качестве примера квинту. Она состоит из семи полутонов. Следовательно, отношение частот звуков, определяющих границы квинты, будет равно

х7 = (1,059463094…)7 = 1,498307071…

С помощью этого простого правила формируется строй из 12 нот. Соотношение частот для всех интервалов приведено в следующей таблице:

Равномерно темперированный строй стал использоваться во всем мире, особенно для инструментов с фиксированным строем. Звуки этого строя приятны на слух. Хотя некоторые интервалы получаются излишне большими, а другие, напротив, слишком малыми, равномерно темперированный строй имеет два важных преимущества. Во-первых, что ценно с практической точки зрения, его можно использовать для уже существующих инструментов. Во-вторых, что ценно с музыкальной точки зрения, благодаря тому, что все интервалы равны между собой, «окраска» остается неизменной вне зависимости от выбора тонального центра. (Стоит отметить, что некоторые считают это не преимуществом, а недостатком, ведущим к утере разнообразия.)

Важно учитывать, что все вышеизложенное справедливо для инструментов с фиксированным строем, например для пианино: его звучание не меняется по ходу исполнения музыкального произведения. Однако инструменты с нефиксированным строем, а также человеческий голос могут быть настроены согласно диатоническому или равномерно темперированному строю.

Центы

Цент — это логарифмическая единица, используемая для точного измерения интервалов, отношение частот для которых крайне мало. Цент получается делением полутона на 100 равных (перемножающихся!) микроинтервалов. Интервал в 1 цент слишком мал, чтобы его можно было различить на слух.

Подобно тому как 12 полутонов образуют октаву, цент — это число с такое, что

С помощью центов можно по-новому сравнивать интервалы различных темпераций. Так как цент — это логарифмическая единица, то в цепочке центов частоты складываются, а не перемножаются, как в предыдущих случаях. Следовательно, использование центов значительно упрощает вычисления. Интервал р выражается в центах следующим образом:

с(р) = 1200·log2p.

Благодаря этой формуле можно пересчитать все интервалы и представить их в виде центов, что упрощает сравнение различных музыкальных строев:

* * *

ГАРМОНИЧНЫЕ КОЛОКОЛЬЧИКИ

Ветряные колокольчики состоят из небольших трубок разной длины, обычно металлических, которые крепятся к круглому основанию. Под дуновением ветра трубки ударяются о кольцо, закрепленное в центре. Как правило, трубки подбираются так, чтобы их звучание соответствовало пентатоническому звукоряду. Они также могут быть подобраны индивидуально, в соответствии с любым другим звукорядом. Должна соблюдаться относительная длина трубок, кроме того, отверстие в каждой трубке должно находиться в строго определенном месте. За основу берется трубка длины L , звук которой принимается в качестве основы звукоряда. Через L i   рассчитываются длины остальных трубок в соответствии с формулой

Колокольчики различной формы, изготовленные из металлических трубок.

R i   — соотношение частоты данного звука и базового. В свою очередь, подвес должен располагаться на высоте, равной 22,4 % от общей длины трубки. В следующей таблице приведены некоторые значения длин трубок для колокольчиков из семи трубок:

Также можно вычислить длины трубок для более низких звуков, например для нисходящей кварты. В этом случае значение R i будет обратным значению для восходящей кварты:

* * *

Квинты равномерно темперированного строя несколько меньше чистых квинт. Терции равномерно темперированного строя, в свою очередь, больше чистых терций, но меньше пифагорейских.

Соизмеримость

Пифагорейцам не были известны дроби в том виде, в котором мы их используем сейчас. Вместо этого применялось эквивалентное понятие отношения между целыми числами. Как вы уже увидели, с помощью таких отношений пифагорейцы описали соотношения длин струн, способных производить гармоничные звуки: 2:1, 3:2, 4:3, …

Пифагорейцы были твердо убеждены в том, что числа выражали гармонию Вселенной, поэтому две величины всегда должны быть соизмеримы: их отношение должно выражаться как отношение целых чисел. Понятие соизмеримости напрямую связано с числами, которые мы называем рациональными. Рациональное число — это число, представляемое обыкновенной дробью, числителем которой является целое число, а знаменателем — натуральное. На языке современной математики пифагорейское понятие соизмеримости будет звучать так: две произвольные величины А и В соизмеримы, если существует третья величина С и два целых числа р и q такие, что С укладывается в А р раз, а в В — q раз.

Иными словами, можно, используя всего два целых числа, точно определить, во сколько раз А больше (или меньше) В. Однако уже пифагорейцы, к своему неудовольствию, обнаружили, что существуют несоизмеримые числа, отношение между которыми нельзя представить с помощью целых чисел. В настоящее время такие числа называют иррациональными. Самые известные иррациональные чисда — это π и √2. Корень из двух — это длина гипотенузы прямоугольного треугольника с катетами длиной 1, вычисленная по теореме Пифагора.

* * *

ТРИ СРЕДНИЕ ВЕЛИЧИНЫ

Пифагор находился под влиянием своих знаний о средних величинах (среднем арифметическом, среднем геометрическом и среднем гармоническом) и о мистицизме натуральных чисел, особенно первых четырех, называемых «тетракис».

Как видно на рисунке ниже,

3:4 — это среднее арифметическое 1 и 1/2:

2:3 — среднее гармоническое 1 и 1/2:

Пифагор экспериментально доказал, что струны с соотношением длин 1:2,2:3 (среднее гармоническое 1 и 1/2) и 3:4 (среднее арифметическое 1 и 1/2) издают приятные звуки. Как вы уже знаете, на основе этих соотношений он создал свой музыкальный строй. Пифагор назвал эти интервалы диапазон, диапент и диатессарон. Мы называем эти интервалы октавой, квинтой и квартой соответственно. Но что случилось со средним геометрическим? Пифагор отказался от него, так как оно было несоизмеримо с остальными? Вовсе нет: среднее геометрическое точно соответствует ноте фа-диез хроматического строя.

* * *

Как вы уже увидели, при настройке интервалов так, чтобы соотношение частот равнялось 18/17, что предлагал Винченцо Галилей, нельзя получить чистые октавы. Число 18/17 достаточно точное, но стоит задаться вопросом: существует ли рациональное число, равное  — соотношению частот для интервалов равномерно темперированного строя? Иначе говоря, существуют ли два целых положительных числа а и b такие, что

Их не существует. Следовательно, если соотношение частот звуков описывается отношением целых чисел а/Ь, то цепочка из 12 полутонов не будет равна «настоящей» октаве. Если бы такие числа существовали, то выполнялось бы равенство

и, как следствие, существовали бы два целых числа а’ = а6 и b’ = b6 такие, что (а’/Ь’)2 = 2. Следовательно, число √2 было бы рациональным, что невозможно.

Что сказали бы пифагорейцы, увидев, что задача о создании идеального музыкального строя решается с помощью иррациональных чисел?