стр. отсутствует?

-110-

стр. отсутствует

-111-

помнить, что привычный нам образ взрыва здесь глубоко условен) до сих пор в полной мере являются самыми жгучими тайнами нашего Мироздания. Подробности современных представлений о Большом Взрыве читатели могут найти в книге автора, которая так и называется — «Большой Взрыв», а пока давайте задумаемся, почему именно астрономы-космологи и физики-теоретики с таким неослабевающим вниманием следят за новыми находками математиков. В общем, это понятно, ведь гордые заявления физиков-экспериментаторов о том, что им удалось смоделировать Большой Взрыв, столкнув пару атомных ядер в ускорителе элементарных частиц, являются лишь красивой метафорой. Ведь иначе некий новый ускоритель, скажем, на порядок более мощный, чем знаменитый Большой адронный коллайдер, просто превратится в генератор новых миров! Абсурд подобного очевиден каждому, ведь наша неистовая Вселенная, о которой нам пока известно ничтожно мало, обладает неисчислимым количеством естественных колоссальных по энергии «ускорителей», в которых каждое мгновение сталкиваются ядра и атомы. Однако пока еще никто из астрономов не наблюдал космического проявления подобных процессов.

Ничто так не раздражает ученых, как неведение в фундаментальных вопросах, поэтому не следует удивляться обилию гипотез о нулевой точке творения Мироздания. Чаще всего можно услышать мнение, что зародышем Вселенной стала некая «квантовая сингулярность», которая дала начало и пространству, и времени, и материи. Что такое «квантовая сингулярность», объяснить очень трудно. Недаром еще великий Ричард Фейнман смело утверждал, что квантовой механики толком никто не понимает. Можно, конечно, придумать очень отдаленный и топорный, но все же наглядный пример. Представьте себе безбрежный космический океан, наполненный перенасы-

-112-

щенным жидким раствором. В него попадает неизвестно откуда взявшаяся микроскопическая пылинка квантовой флуктуации. Мгновенно происходит своеобразный фазовый переход, и вся безбрежная волнующаяся поверхность протоматерии превращается в не менее безбрежную твердую поверхность уже привычного нам Мира. Незабываемый художественный образ подобного явления создал в своем культовом научно-фантастическом романе «Колыбель для кошки» Курт Воннегут. Вообще-то, физические детали этого процесса, как более или менее надежно установленные, так и гипотетические, излагаются в сотнях и тысячах популярных книг и статей.

Наблюдения за Вселенной показывают, что и на самых больших масштабах она со временем эволюционирует. Если на основе современных теорий проследить эту эволюцию назад во времени, то окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и компактнее, чем сейчас, а начало ей дал Большой Взрыв — некий процесс возникновения Вселенной из сингулярности — особой ситуации, для которой современные законы физики неприменимы.

Физиков такое положение вещей не устраивает, им хочется понять и сам процесс Большого Взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построить теорию, которая была бы применима и к этой ситуации. Поскольку в первые мгновения после Большого Взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках пока гипотетической квантовой теории гравитации.

Одно время физики надеялись, что квантовая гравитация будет описана с помощью теории суперструн, но недавний кризис суперструнных теорий поколебал эту уверенность. В такой ситуации больше внимания стали привлекать иные подходы к описанию квантово-гравитационных явлений и, в частности, петлевая квантовая гравитация.

-113-

Рис. 41. Новорожденная Вселенная

Для однородных и изотропных вселенных возможны лишь три случая, соответствующие отрицательной, нулевой или положительной кривизне. Они приводят соответственно к открытому пространству (отрицательная кривизна), евклидову пространству (нулевая кривизна) и замкнутому пространству (положительная кривизна). Все эти решения начинаются со Вселенной, сосредоточенной в точке. Эта точка и является решением уравнения Пуанкаре — Перельмана при обратном процессе стягивания нашего Мира в первичную сингулярность.

Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат, который оказался неразрывно связан с топологией первичного пространства и, следовательно, с выводами теоремы Пуанкаре — Перельмана. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает. Большой Взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в то, что было до Большого Взрыва. Петлевая квантовая гравитация принципиально отличается от обычных физических теорий и даже от теории суперструн. Похоже, что уже скоро физики-теоретики с помощью преобразований Перельмана смогут продемонстрировать нам электронные модели (в виде своеобразных электронных анимаций) рождения нашего Мира из того, что ему предшествовало.

-114-

Объектами теории суперструн, например, являются разнообразные струны и многомерные мембраны, которые, однако, летают в заранее приготовленном для них пространстве и времени. Вопрос о том, как именно возникло это многомерное пространство-время, в такой теории не решить.

Рис. 42. Наглядная история Большого Взрыва

«Только в одном случае можно получить последовательную научную теорию: если законы физики справедливы всегда,

-115-

включая начало Вселенной. Можно воспринимать это как триумф принципа демократии. Почему законы природы для начальной Вселенной должны отличаться от законов природы, действующих в других точках? Если все точки эквивалентны, то среди них не может быть более эквивалентных, чем остальные».
Стивен Хокинг. Природа пространства и времени. Квантовая космология

В петлевой теории гравитации главными объектами являются маленькие квантовые ячейки пространства, соединенные друг с другом определенным способом. Законом соединения и их состоянием управляет некое существующее в них поле, величина которого является для ячеек своеобразным внутренним временем: переход от слабого поля к более сильному выглядит так, как если бы было какое-то «прошлое», которое бы влияло на какое-то «будущее». Этот закон устроен так, что для достаточно большой Вселенной с малой концентрацией энергии (то есть далеко от сингулярности) ячейки как бы сплавляются друг с другом, образуя привычное нам сплошное пространство-время.

Многие космологи и астрофизики утверждают, что этого уже достаточно для решения задачи о том, что происходит со Вселенной при приближении к сингулярности. Решения полученных ими уравнений показали, что при экстремальном сжатии Вселенной пространство «рассыпается», ведь квантовая геометрия не позволяет уменьшить его объем до нуля, и неизбежно происходит остановка и вновь начинается расширение. Эту последовательность состояний можно отследить как вперед, так и назад во времени, а значит, в этой теории до Большого Взрыва с неизбежностью присутствует Большой коллапс предыдущей Вселенной.

Далее мы остановимся на обсуждении одной из наиболее привлекательных рабочих гипотез современной космологии, в рамках которой проблема Большого Взрыва — проблема начала расширения Вселенной — приобретает вполне законченные контуры. Оригинальные идеи, сформулированные в работах выдающихся физиков Д. Уилера, С. Хокинга,

-116-

Я. Б. Зельдовича, А. Д. Сахарова, А. Д. Линде, А. А. Старобинского и др., сводятся к тому, что наша Вселенная — это гигантская флуктуация топологии более общего суперпространства, связанного с вакуумным состоянием физических полей.

Свойства этого состояния должны радикально отличаться от свойств обычного пространства-времени. Его размерность не обязательно должна равняться трем пространственным и одной временной координатам. Более того, вакуум как основное состояние материи характеризуется нулевыми физическими зарядами, следовательно, не существует и классического прибора, способного зафиксировать какую-то упорядоченность событий, а значит, не существует и самих понятий пространства и времени, как, впрочем, и причинности.

Наконец, будучи сугубо квантовым объектом, вакуум физических полей флуктуирует, порождая топологические аномалий, которые рождаются и гибнут. Внутри каждой оболочки такой аномалии можно ввести понятие собственного времени, направление которого фиксирует эволюцию материи внутри от момента рождения и до коллапса. Подавляющая доля таких аномалий имеет время жизни, сравнимое с планковским временем, и внешне проявляет себя как замкнутые миниатюрные вселенные. Такое своего рода «кипение» вакуума — рождение и гибель виртуальных вселенных — является обобщением на гравитацию хорошо известного в квантовой физике эффекта поляризации вакуума: рождения и гибели виртуальных пар частица — античастица.

Однако применительно к нашей Вселенной планковское время, типичное для виртуальных мини-вселенных, оказывается почти на 60 порядков меньше современного возраста галактик. Что же задержало наш Мир от мгновенного коллапса?

Вот тут на помощь физикам-теоретикам и приходят математики-топологи, предполагающие, что миры нашего типа являются своеобразными геометрическими

-117-

аномалиями, выраженными в решениях теоремы Пуанкаре — Перельмана. Из этого можно сделать вывод (для этого понадобится несколько десятков страниц формул), что первично устойчивое состояние вакуума в результате флуктуации топологии стало неустойчивым по отношению к нашей Вселенной. Это состояние с определенной долей вероятности может привести к тому, что внутри геометризированной оболочки аномалии вакуум начинает изменять свои свойства, стремясь к новому устойчивому пределу. Такой процесс топологической перестройки вакуума, описываемый математической моделью Перельмана, должен, по идее, сопровождаться гигантским выделением энергии, в результате чего новообразованная Вселенная и начинает расширяться с колоссальной скоростью.

Рис. 43. Первичные топологические флуктуации метрики пространства-времени

«Сотни лет научных исследований показали, что математика обеспечивает мощный и острый язык для анализа Вселенной. На самом деле история современной науки насыщена примерами, в которых математика делала предсказания, которые

-118-

казались противоречащими как интуиции, так и ощущениям (что Вселенная содержит черные дыры, что Вселенная имеет антиматерию, что удаленные частицы могут быть запутанными и так далее), но которые в конце концов эксперименты и наблюдения смогли подтвердить. Такие разработки сами по себе оставили глубокий след в культуре теоретической физики. Физики пришли к осознанию, что математика, когда она используется обоснованным образом, является проверенной дорогой к истине».
Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Чудо вселенского взрыва ложного вакуума (в отличие от окружающего нас настоящего физического вакуума) очень трудно описать в привычных представлениях, и здесь снова приходят на помощь топологические построения российского математика. Главное, что получил Григорий Перельман, — это самодостаточный образ гладко расширяющегося Мироздания: без разрывов пространства, воронок, уходящих в иные измерения, и вздутий «вырожденных» миров. Таким образом, похожие решения теоремы Пуанкаре — Перельмана будут описывать именно нашу Вселенную как Мир без трещин пространства-времени и лакун иных измерений.

Естественно, грандиозность масштаба такого взрыва, его обусловленность квантово-гравитационными свойствами пространства-времени, лежащими за пределами современной классической физики, могут вызвать определенный скепсис по отношению к обсуждаемой гипотезе.

Большинство авторов новейших гипотез Мультивселенной строят свои рассуждения на базе очень красивой модели Большого Взрыва, предложенной в 1980 году Аланом Гутом и вскоре серьезно модифицированной Андреем Линде, Полом Стейнхардтом и Андреасом Альбрехтом. Согласно этому сценарию, в самом начале своего существования наша Вселенная испытала кратковременное, но чрезвычайно быстрое расширение, в ходе которого ее размеры росли пропорционально экспоненциальной функции времени.

-119-

Эта стадия эволюции Космоса называется инфляционной (от англ. inflation — раздувание), поэтому все направление называют инфляционной космологией.

По современным представлениям инфляция началась через 10-43 секунды после образования сингулярности Большого Взрыва. Знаменитый исследователь космологических парадоксов И. Д. Новиков так характеризовал временные окрестности этой удивительной точки космической эволюции в своей книге «Куда течет река времени?»:

«Что было до сингулярности? Было ли сжатие всего вещества и текло ли обычное время или нет?

Окончательного ответа на эти вопросы пока нет. Но большинство специалистов считают, что никакого сжатия не было и космологическая сингулярность является истоком реки времени в том смысле, как сингулярность в черных дырах является концом "ручейков времени". Это означает, что в космологической сингулярности время тоже распадается на кванты, и, возможно, сам вопрос: "Что было до того?" теряет смысл.

Здесь у исследователей пока очень много неясностей. Вероятно, вблизи сингулярности, в масштабах квантов времени и пространства… существует своеобразная "пена" квантов пространства-времени, как говорят, происходят квантовые флуктуации пространства и времени. Рождаются и тут же исчезают маленькие виртуальные замкнутые миры и виртуальные черные и белые дыры. Это микроскопическое "кипение" пространства-времени в некотором отношении аналогично рождению и умиранию виртуальных частиц…

…При рассматриваемых больших энергиях в очень малых масштабах, возможно, пространство имеет не три, а больше измерений. Эти дополнительные измерения так и остаются скрученными, "скомпактифицированными". А в трех пространственных измерениях Вселенная расширяется, превращаясь в "нашу Вселенную"…

С сегодняшней точки зрения мы должны сказать, что время в сингулярности в корне меняет свои свойства и на-

-120-

чало расширения мира есть исток нашего непрерывного потока времени…

…Здесь пространство-время… представляет собой "дышащую пену" из возникающих и тут же пропадающих черных и белых дыр, очень маленьких замкнутых мини-вселенных и еще более сложных топологических структур…

…В возникающих из нее "пузырях" происходят квантовые флуктуации, и в то же время они раздуваются из-за гравитационного отталкивания вакуумноподобного состояния, которое там имеется. Большая часть объемов пузырей из-за флуктуаций тут же возвращается в состояние "пены". В малой же части объема продолжается раздувание, сопровождающееся квантовыми флуктуациями плотности вакуумноподобного состояния. Очень малая доля первоначального объема после длинной цепочки случайных флуктуаций может существенно уменьшить свою плотность. Теперь амплитуда квантовых флуктуаций не так велика, как раньше. Эти объемы продолжают систематически раздуваться… превращаясь после распада вакуумноподобного состояния в горячие вселенные…

В одной из таких вселенных мы и находимся».

На этом этапе существовал только физический вакуум, первичное скалярное поле, параметры которого сильно менялись из-за квантовых флуктуаций (этот загадочный субстрат образно называют пространственно-временной пеной). Для определенности будем говорить только об одном-единственном поле, хотя в более реалистичных моделях это ограничение отброшено. Какая-то из флуктуаций привела к тому, что интенсивность поля достигла острого локального пика, после чего стала спадать. Этот скачок как раз и создал условия для выхода на инфляционный режим. В итоге возник молниеносно расширяющийся объем с первоначальным диаметром 10-33 см, который и стал зародышем нашей Вселенной.

Инфляция прообраза нашего Мира была чрезвычайно кратковременной, менее 10-34 секунд. За это ничтожно

-121-

малое время его поперечник неизмеримо вырос и Вселенная приобрела макроскопические размеры. Далее она эволюционировала в соответствии с моделью Фридмана, в которой скорость расширения приблизительно пропорциональна квадратному корню из средней плотности материи и потому постепенно падает. Когда возраст Вселенной достиг 6,5 миллиарда лет, на смену фридмановскому режиму пришла эволюция иного рода, первую модель которой в 1917 году построил голландский астроном Биллем де Ситтер. Темп расширения не только перестал падать, но, напротив, начал возрастать, что мы сегодня и наблюдаем.

На этапе инфляции, когда интенсивность скалярного поля дошла до минимума и стабилизировалась, окончательно сформировался тот набор фундаментальных физических законов, которые управляют поведением вещества и излучения в нашем Мире. При подходе к минимуму скалярное поле быстро осциллировало, рождая элементарные частицы. В результате к концу инфляционной фазы Вселенная уже была наполнена горячей плазмой, состоящей из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов электромагнитного излучения. Очень важно, что обычных (естественно, с нашей точки зрения) частиц было чуть больше, нежели античастиц. Эта разница была микроскопической, порядка стотысячных долей процента, но все же не нулевой. В результате, когда Вселенная охладилась настолько, что излучение перестало рождать новые частицы, вся антиматерия исчезла в процессе аннигиляции. Через тридцать микросекунд после Большого Взрыва кварки и глюоны сконденсировались в протоны и нейтроны, а где-то на десятой секунде наступила эра первичного нуклеосинтеза, то есть возникновения композитных ядер гелия, дейтерия и лития.

Очень поэтично описал подобную картину академик Новиков: «Можно сказать, что происходит вечное рождение Вселенной из флуктуаций (или, если угодно, рождение

-122-

многих вселенных), вечное воспроизводство Вселенной самой себя. У такого мира в целом нет начала и не будет конца. Он вечен и юн одновременно. Это — картина взрывающейся Вечности.

При рождении новых мини-Вселенных из вакуумной пены, происходят, вероятно, изменения, или, как говорят, флуктуации всех физических параметров, включая изменение размерности пространства и времени и флуктуации самих физических законов.

Итак, возможно, природа пыталась несчетное число раз создавать вселенные с самыми разными свойствами. Мы живем в наиболее удачном (для нас) экземпляре этого вечного творения. В нашей Вселенной физические условия оказались наиболее подходящими для возникновения жизни».

В середине 1980-х годов видный космолог А. Д. Линде выдвинул теорию вечной инфляции, которая предполагала, что квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать самопроизвольно и в любом количестве, если для этого есть подходящие условия. Они способны давать начало инфляционным процессам, в ходе которых рождаются все новые и новые вселенные. Не исключено, что и наше Мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной возникнет флуктуация, которая «выдует» юную Вселенную совсем другого рода, тоже способную к космологическому «деторождению». Можно даже пойти дальше и построить модель, в которой инфляционные вселенные возникают непрерывно, отпочковываясь от своих родительниц и находя для себя собственное место. В одной из своих последних статей А. Д. Линде пишет, что Космос состоит из множества раздувающихся шаров, которые дают начало таким же шарам, а те, в свою очередь, рождают подобные шары в еще больших количествах. Так продолжается до бесконечности.

-123-

Рис. 44. Инфляционная экспансия в представлении многообразия Пуанкаре — Перельмана

Как же «геометрически» взорвался наш Мир? Современные космологи чаще всего приводят довольно странную модель первичного взрыва отрицательного давления поля инфлатона. Неким, пока еще до конца не ясным образом в самом начале Большого Взрыва возникло гигантское гравитационное отталкивание, которое буквально принялось оттаскивать каждый регион пространства друг от друга. На языке космологов это звучит так: инфляционная экспансия раздула Вселенную до ее современных размеров. Любопытно, что в этой сугубо умозрительной модели за невообразимо краткий планковский миг времени — что-то около 10-35 секунд — нечто ничтожно малое трансформировалось в неохватно большое, превратив элементарную частицу в Метагалактику. Вот здесь космологам и требуются построения Григория Яковлевича Перельмана, ведь именно топология пространства-времени вместе с потенциальной энергии инфляционного поля и определяет численный масштаб расширения Вселенной как некий фактор «континуальной экспансии» в 1030, 1050 или даже в 10100 раз. С любой точки зрения это потрясающие числа, ведь даже самый минимальный фактор расширения в 1030 раз означает, что крупная молекула в планковское

-124-

мгновение ока вдруг превратилась в гигантскую галактику вроде нашего Млечного Пути, и все это за временной интервал, который меньше, чем миллиардная миллиардной миллиардной доли от мигания глаза. Для сравнения: даже этот минимальный фактор расширения в миллиарды миллиардов раз больше расширения, которое могло бы возникнуть, соответствуя стандартной теории Большого Взрыва за тот же самый временной интервал, и это превышает полный фактор расширения, который возник в целом за 14 миллиардов лет!

Спонтанные флуктуации скалярного поля, запускающие инфляционный процесс, могут случаться в неодинаковых формах. Это означает, что «холодные» постинфляционные вселенные отнюдь не копируют друг друга. Речь идет даже не о том тривиальном различии, что они могут развиваться из разных начальных условий и потому эволюционировать по-разному. Вполне допустимо, что в них устанавливаются различные физические законы (или, как частный случай, одни и те же законы, но с различными значениями фундаментальных констант — скорости света или постоянной тонкой структуры). Теория струн, о которой неоднократно упоминалось, позволяет считать, что эти вселенные необязательно обладают лишь тремя пространственными осями, число измерений может быть и другим.

Спонтанные квантовые флуктуации первичного скалярного поля приводят к возникновению областей космологического масштаба, которые в совокупности и составляют Мультивселенную. Флуктуация рождает данный регион и выступает в качестве его затравочного Большого Взрыва.

Существование инфляционной Мультивселенной можно подкрепить и аргументами, выходящими за рамки физики и космологии. Вероятно, самый известный сегодня сторонник такого подхода — Мартин Рис, профессор космологии и астрофизики Кембриджского университета. Логика его рассуждений примерно такова. Природа случайным образом рождает множество параллельных миров, которые служат для нее своеобразным полем для экспериментов по созданию жизни. Возникла жизнь на небольшой планете, обращающейся

-125-

вокруг рядовой звезды одной из рядовых галактик именно нашего мира по той простой причине, что этому благоприятствовало его физическое устройство. Другие миры Мультивселенной в своем абсолютном большинстве для жизни приспособлены плохо и потому мертвы, если не пусты.

Мартин Рис для простоты предполагает, что в различных мирах действуют одни и те же физические законы, но значения основных констант в них не одинаковы. Он характеризует состояние каждой отдельной Вселенной набором из шести параметров. Оказывается, что в нашей Вселенной их величины укладываются в чрезвычайно узкие границы, создающие коридор, который ведет к возникновению жизненных форм.

Первый параметр — это интенсивность ядерных сил в постинфляционную эпоху. Будь она чуть-чуть поменьше, композитные ядра просто не могли бы возникнуть; будь побольше — на стадии первичного нуклеосинтеза практически весь наличный водород пошел бы на образование гелия.

Второй параметр — гравитация. Если бы она была слабее, первичные газопылевые туманности не могли бы конденсироваться в плотные скопления вещества, дающие начало звездам; в противном случае звезды сгорали бы так быстро, что жизнь не успела бы возникнуть.

Третий параметр — отношение средней плотности вещества и энергии к тому значению, которое разделяет открытые и закрытые космологические модели. Для нашей Вселенной это значение с очень высокой степенью точности равно единице, причем таким оно было уже через секунду после Большого Взрыва (кстати, инфляционная теория это очень логично объясняет). Окажись оно тогда меньше на ничтожные доли процента, Вселенная слишком быстро раздулась бы и охладилась; окажись чуть больше — Вселенная давным-давно перестала бы расширяться и испытала гравитационный коллапс.

Четвертый параметр — космологическая постоянная, мера энергии физического вакуума. По неизвестным пока причинам семь миллиардов лет назад она сдвинулась от нуля

-126-

к положительному значению, из-за чего Вселенная начала расширяться с возрастающей скоростью.

Пятый параметр — это средняя относительная амплитуда флуктуаций реликтового микроволнового излучения, равная всего лишь 10-5. Будь она немного ближе к нулю, Вселенная так бы и осталась безжизненной и бесформенной смесью газа и пыли, размазанной по космическому пространству. Обратный случай, с нашей точки зрения, ничем не лучше: материя быстро бы «склеилась» в компактные и массивные галактики, которые давным-давно сколлапсировали бы в черные дыры.

«Обычный кусок ткани есть конечный продукт работы ткача, который аккуратно соединил вместе отдельные нити, являющиеся исходным материалом текстильных изделий. Поэтому можно спросить, не существует ли исходного материала для ткани пространства-времени, то есть такой конфигурации струн космической структуры, в которой они еще не срослись в организованную форму, узнаваемую нами в образе пространства-времени. Заметим, что не вполне корректно представлять это состояние как беспорядочную массу отдельных колеблющихся струн, которые затем должны сшиться вместе в упорядоченное целое, поскольку наше обычное восприятие заранее использует понятия пространства и времени — пространства колеблющихся струн и текущего времени, благодаря которым мы можем наблюдать изменение конфигурации от одного момента к последующему. В исходном состоянии, когда создающие структуру пространства-времени струны еще не включились в упорядоченный, когерентный "танец" колебаний, пространства и времени не существует. Сам наш язык слишком груб, чтобы говорить о таких вещах: в нем нет слов, с помощью которых можно описать то, что происходило до этого "танца". Можно в каком-то смысле представлять себе исходные несвязанные струны "осколками" пространства-времени, которые породят знакомое пространство-время лишь после того, как включатся в резонансные колебания определенного вида»-.
Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

-127-

Последний параметр — размерность пространства. С одной стороны, вряд ли надо доказывать, что ни двумерное, ни тем более одномерное пространство не может вмещать биомолекулы. С другой стороны, в четырехмерном пространстве и пространствах более высоких размерностей были бы невозможны стабильные планетные орбиты, так что для жизни опять-таки не нашлось бы места.

Конечно, все эти соображения основаны на предположении, что жизнь возникает лишь в привычных нам формах, но ведь других мы не знаем. Разумеется, можно было бы вспомнить и «Облако» Холла и «Солярис» Лема, да и вообще порассуждать о разумной плазме или даже неких мыслящих биополях, но Рис использует иные аргументы: «Нет ничего удивительного в том, чтобы в большом магазине готового платья подобрать костюм себе по размеру. Аналогично в великом множестве вселенных, в каждой из которых реализуется какой-то определенный набор космологических параметров, вполне может найтись хоть одна, где существуют предпосылки для возникновения жизни. В такой Вселенной мы и находимся. Иначе говоря, наш мир таков, каков есть, он биофилен (термин придуман Рисом для Вселенной, допускающей наличие живой материи. — Прим. автора) не потому, что его так спроектировал неведомый конструктор или творец, а просто в силу закона больших чисел.

Эта концепция тем и отличается от чистой спекуляции, что ее удастся проверить астрономическими наблюдениями или физическими экспериментами в не слишком отдаленном будущем, возможно, лет через двадцать, не более. Но практических путей к этому пока не видно…»

Теперь, вооружившись знаниями по квантовой инфляции, мы можем задать себе главный вопрос, ради которого, собственно, и была написана данная глава: как связан таинственный и малопонятный процесс инфляционного расширения с выводами теоремы Пуанкаре — Перельмана?

-128-

Насер и Грубер в своей статье приводят описание решения Перельмана, сделанное гарвардским математиком Барри Мазуром на основе «авторемонтной» аналогии: «Представьте, что у вашей машины погнуто крыло и вы звоните в автомастерскую, чтобы узнать, как вам его выпрямить. Автомеханику будет очень трудно объяснить вам это по телефону. Вам придется приехать в мастерскую, чтобы механик смог исследовать повреждение. Только после этого он сможет сказать, в каком месте по крылу нужно постучать. Гамильтон ввел понятие, а Перельман завершил описание процедуры, которая работает независимо от вида повреждения. Поток Риччи, будучи применен к любому трехмерному пространству, сгладит все шероховатости и выпрямит все выбоины. Автомеханику даже не потребуется смотреть на вашу машину — достаточно будет просто применить уравнение. Перельман доказал, что "сигары", особенно беспокоившие Гамильтона, на самом деле не могут образоваться под воздействием потоков Риччи. Проблема "перешейков" оказалось решаемой с помощью серии сложных хирургических манипуляций — вырезания сингулярностей и латания неровных краев. В результате мы получили инструмент, с помощью которого возможно сглаживать неровности и в критических ситуациях контролировать разрывы».

Далее следует краткий комментарий давнего оппонента Перельмана, известного американского математика и физика-теоретика китайского происхождения Яу: «Многие, хотя и не все, эксперты убеждены, что Перельману удалось "затушить" все "сигары" и обуздать узкие "перешейки". Но они вовсе не уверены, что Перельман может контролировать число хирургических операций, необходимых для сглаживания сингулярностей. Эта проблема может оказаться критической для всего решения».

Все это может иметь важное значение для обоснования именно самого разноречивого момента инфляционных теорий — мгновения инфляционной экспансии окружающего нас пространства-времени. Ведь именно подобный подход позволяет объяснить органическое единство Космоса без сингулярных «проколов» в иную реальность и локальных объемов с иными физическими законами.

-129-