Удивительный мир органической химии

Артеменко Александр Иванович

Глава 14

Источники богатства

 

 

 

14.1. «Черное золото»

Нефть — чудесный дар природы. Человек познакомился с нефтью еще за 5-6 тыс. лет до н. э. Наиболее древние промыслы нефти известны на берегах Евфрата, в Керчи, в китайской провинции Сычуань. За 4 тыс. лет до н. э. древним шумерам, населявшим территорию между Тигром и Евфратом, был известен нефтяной битум, который они использовали как вяжущее и уплотняющее средство. Шумеры возводили свои постройки из кирпича, который изготовляли из смеси песка, глины или гравия и битума (около 35%). Они знали также о горючести нефти, называли ее «светящейся водой» и использовали в светильниках. Применяли нефть и для лекарственных целей. В Древнем Египте нефть использовали для бальзамирования трупов. Греки и римляне применяли нефть и для военных целей. Так, был изобретен грозный вид оружия — «греческий огонь». Правда, историки так и не установили, кому же принадлежит секрет приготовления этого «огня». Его тайна охранялась очень строго. Долго оставался неизвестным состав горючего вещества. Только в XI в. его смогли разгадать арабские алхимики. Оказалось, что в состав «греческого огня» входила нефть с добавками серы и селитры.

В древности нефть добывали довольно примитивным способом. Для этого рыли ямы или канавы, в которые из почвы просачивалась нефть. Кстати, современный термин «нефть» произошел от слова «нафата», что означает «просачиваться». Но не исключено, что слово «нефть» связано с греческим словом «нафта» — горная смола. Так, в латинских странах нефть называют петролиумом, что означает «каменное (горное) масло». Собранную нефть обычно не обрабатывали, а использовали такой, какой получали. Только в 1745 г. в России был пущен первый нефтеочистительный завод на реке Ухте. История сохранила даже имя его основателя — Федор Прядунов. На этом примитивном заводе нефть очищали от воды и почвы. Но спустя 78 лет (в 1823 г.) недалеко от Моздока был построен нефтеперерабатывающий завод, на котором из нефти получали керосин (от греч. керос — воск). Это осуществили братья Дубинины (Василий, Макар и Герасим). В то время керосин называли фотогеном (от греч. фотос — свет и геннас — рождаю). Дубинины на 7 лет опередили немецкого ученого Рейхенбаха и на целое десятилетие — американца Салимана.

Только в 1833 г. такой же завод был построен в Америке.

Несколько лет тому назад в Моздоке была открыта памятная плита с изображением братьев Дубининых, их установки и надписью, что здесь «в 1823 г. был построен первый в мире нефтеперегонный завод».

Позже на нефтеперерабатывающих заводах стали осуществлять прямую перегонку нефти, получая при этом четыре фракции: бензин, керосин, дизельное и котельное топливо, а также смазочные масла и парафин. Остатками, которые загрязняли котлы, были пек и асфальтоподобные продукты.

Таким образом, при простой перегонке нефть разделяется на отдельные компоненты, которые отличаются друг от друга температурами кипения. Разделить же нефть на все компоненты, входящие в нее (а их огромное число), невозможно, так как разница в кипении между некоторыми фракциями незначительна.

Изучением нефти и продуктов ее переработки занимались многие ученые мира, но особую роль в этом сыграли русские ученые. Всех интересовал вопрос: как возникла нефть? Появились две теории — органическая и неорганическая. Согласно первой теории нефть возникла из органического сырья, т. е. из остатков некогда населявших планету растений и животных. Эта теория находит свое подтверждение в том, что в нефти обнаружены некоторые азотистые органические вещества, являющиеся, вероятно, продуктами распада природных веществ, присутствующих в тканях растений. Согласно второй теории нефть образовалась в результате действия воды в толщах земного шара на раскаленные карбиды металлов (соединения металлов с углеродом). В результате этого под влиянием высокой температуры и давления могли образоваться различные углеводороды. Эту теорию поддерживал Дмитрий Иванович Менделеев (1834-1907). Этот выдающийся русский химик особенно много сделал для развития нефтехимии и нефтяной промышленности в России.

Бурение нефтяных скважин началось с 1859 г. Горный инженер Г. Д. Романовский для бурения использовал даже паровую машину. Первая в мире нефтяная скважина была заложена в 1864 г. на Кубани, а в 1868 г. на реке Ухте. Спустя 3 года началось широкое применение бурения нефтяных скважин в России. Однако, несмотря на это, основным продуктом, используемым при переработке нефти, был все же керосин. Его применяли для заправки осветительных ламп. Получаемый при перегонке нефти бензин либо сжигали, либо сливали в реки (вот уже когда возникали проблемы с экологией!). Д. И. Менделеев доказывал, что получать и использовать из нефти только керосин — слишком расточительно. Из нефти, по мнению ученого, можно получать гораздо больше ценных продуктов. По инициативе Д. И. Менделеева под г. Ярославлем в 1879 г. был построен Константиновский нефтеперерабатывающий завод (в 1934 г. ему было присвоено имя Д. И. Менделеева), на котором получали не только керосин, но и смазочные масла, а также более десяти видов других нефтепродуктов.

В 1875 г. А. А. Летний установил, что при температуре свыше 300 °С тяжелые нефтяные остатки (после перегонки нефти) частично разлагаются на более легкие продукты — бензин, керосин и газы.

Изучением нефти занималась также одна из первых русских женщин-химиков — Юлия Всеволодовна Лермонтова (1847-1919), дальняя родственница великого поэта.

Если при переработке нефти самым ценным продуктом оставался все же керосин, то с бензином не знали, что и делать. Но времена менялись. В 1860 г. был изобретен двигатель внутреннего сгорания, который в качестве горючего мог использовать только бензин. Число автомобилей, хотя и медленно, начало расти. Вот тогда и появился спрос на бензин. Более того, бензина стало не хватать! Но возникла другая проблема: бензин, получаемый из нефти путем простой перегонки, оказался мало пригодным для двигателей внутреннего сгорания. Нужно было срочно решать эту проблему. Продолжая работы А. А. Летнего, выдающийся русский изобретатель Владимир Григорьевич Шухов (1853-1939) в 1891 г. открыл новый метод получения бензина из высококипящих фракций нефти. Такой процесс был назван крекингом (от англ. to crack — расщеплять). Однако царское правительство не спешило с внедрением этого изобретения. Поэтому первые установки крекинга нефтепродуктов в нашей стране были построены только в советское время.

Если прямая перегонка нефти — физический процесс (он не изменяет строение молекул углеводородов нефти), то крекинг нефтепродуктов — процесс химический. При нагревании высококипящих фракций нефти до высоких температур без доступа воздуха происходит расщепление молекул, содержащих значительное число атомов углерода, на меньшие. При этом образуются как предельные, так и непредельные углеводороды. Если при крекинге процесс проводят только при высокой температуре (без катализатора), то это — термический крекинг. Он имеет цепной радикальный механизм.

Полученные при этом углеводороды также участвуют в процессе крекинга, разлагаясь на углеводороды с еще более короткими углеродными цепями. Место разрыва углеродной цепи определяется температурой и давлением. С повышением температуры разрыв происходит ближе к краю цепи с образованием устойчивых углеводородов с короткими цепями. С повышением давления цепь разрывается ближе к середине.

Если же при крекинге используют катализатор (например, SiO2 или Аl2O3), то это каталитический крекинг, который имеет, скорее всего, ионный характер.

Несмотря на разнообразные варианты процесса крекинга, происходит практически одно и то же: высококипящие составные части нефти расщепляются до более легкокипящих соединений. Жидкие и газообразные продукты крекинга разделяют на специальных установках — ректификационных колоннах. Наиболее ценная жидкая фракция — бензиновая.

При крекинге фракций нефти образуется огромное количество газообразных продуктов расщепления — газов крекинга. Это — этилен, пропилен, изобутилен и др. — реакционноспособные соединения, которые путем химических превращений могут быть переработаны в ценные продукты (СМС, спирты, горючее, хлороформ, пластмассы, душистые вещества, синтетические волокна, каучуки и др.).

В настоящее время около 90% всех органических соединений получают из нефти. В то же время использование углеводородного сырья для химической переработки достигает во всем мире всего 4-5% от добычи нефти! Не правда ли, пародоксальная ситуация... Поэтому задача сегодняшнего дня — более полное использование нефти для получения химических продуктов.

И все же хорошо известно, что нефть и газ — наиболее эффективные и удобные в наше время виды топлива. Более 90% добытых нефти и газа сжигаются в промышленных топках и двигателях машин. Разумно ли это? «Нефть — не топливо. Топить можно и ассигнациями...» — так образно подчеркнул Д. И. Менделеев ценность нефти как источника химического сырья. К этой мысли химики возвращаются и сейчас. Американский ученый Ральф Лэпп повторил слова Д. И. Менделеева: «Я считаю варварством сжигание уникального наследия Земли — углеводородов — в форме нефти и природного газа. Сжигание этих молекулярных структур только для получения тепла следует считать преступлением».

 

14.2. «Пища» для моторов 

И все же нефть сжигают. Потому что без автомобильного, авиационного, железнодорожного и других видов транспорта трудно представить жизнь современных людей. Количество автомобилей в мире постоянно растет и уже приближается к миллиардному рубежу. Самолетов в мире меньше, но вполне достаточно, чтобы быстро и с комфортом добраться до любого материка или государства. А кто может точно сказать, сколько в мире тракторов, самосвалов, мотоциклов и мопедов? Сколько тепловозов, морских и речных судов? Кроме этого, современная армия опирается прежде всего на моторы. Вся эта гигантская движущаяся, летающая и плавающая армада нуждается в огромном количестве горючего — бензина, керосина, дизтоплива.

О бензине знают все. Бензин состоит из десятков жидких углеводородов, содержащих в молекуле от 5 до 12 углеродных атомов. Это в основном изомеры пентана, гексана, гептана и октана. Так как бензин — смесь углеводородов, то он не имеет определенной точки кипения. Кипение происходит в интервале от 40 до 195 °С.

Бензин — основное топливо для карбюраторных двигателей внутреннего сгорания (этот двигатель изобрел француз Этьен Ленуар в 1860 г.). От качества бензина зависит работа двигателя, его долговечность, скорость движения автомобиля.

Как работает карбюраторный двигатель внутреннего сгорания?

Смесь паров бензина с воздухом сжимается поршнем в цилиндре. Сжатая смесь поджигается электрической искрой от запальной свечи и сгорает с образованием СO2, СО и воды. Образовавшиеся газы двигают поршень, совершая работу. Чем сильнее сжимается смесь паров бензина и воздуха в цилиндре, тем больше мощность двигателя. Однако бывает так, что смеси некоторых углеводородов, входящих в состав бензина, сгорают еще до достижения максимального сжатия. Происходит это не от электрической искры, а от высокой температуры в цилиндре. Взрывообразное сгорание порождает волну, которая с огромной скоростью ударяет о поршень, о чем свидетельствует характерный стук в двигателе. Такое взрывное сгорание, называемое детонацией, приводит к преждевременному износу двигателя.

Оказалось, что детонацию вызывают углеводороды нормального (неразветвленного) строения, а углеводороды с разветвленной углеродной цепью, а также непредельные и особенно ароматические углеводороды сгорают без детонации.

Антидетонационные свойства углеводородов и их смесей выражают октановым числом. Чем выше это число, тем выше стойкость углеводородов к детонации и тем выше качество бензина. Для наиболее устойчивого к детонации изооктана (2,2,4-триметилпентана)

октановое число приняли за 100, а для н-гептана, который обладает сильно выраженной склонностью к детонации, октановое число приравняли к 0. Смешивая изооктан и н-гептан, можно получать промежуточные октановые числа. Например, бензин с октановым числом 90 обладает такими же антидетонационными свойствами, как смесь из 90% изооктана и 10% н-гептана. Чем выше октановое число, тем более высокими антидетонационными свойствами обладает бензин.

Бензин, получаемый из нефти путем простой перегонки, содержит много углеводородов нормального строения, поэтому, как уже говорилось, обладает низким октановым числом (50-60). Такой бензин не может служить горючим для двигателей современных автомобилей. Для повышения октанового числа поступают так: или в горючее вводят добавки, которые регулируют процесс сгорания бензина (или обладают высоким октановым числом), или подвергают бензин различным химическим воздействиям. В качестве добавок могут служить различные антидетонаторы, например, марганецорганическое соединение С5Н5Мn(СО)3. Еще совсем недавно с этой целью широко использовали тетраэтилсвинец Рb(С2Н5)4, незначительное количество которого (0,05%), добавленное к горючему, повышало его октановое число. Но тетраэтилсвинец оказался очень ядовитым соединением. Сейчас «этилированный бензин» (бензин, к которому добавляли тетраэтилсвинец) не используется. Увеличить октановое число бензина можно добавлением в него изооктана, бензола, этилового спирта и некоторых других веществ.

Бензин с более высоким октановым числом получается при крекинге. В зависимости от типа крекинга это число составляет 70-80. Следует отметить, что применение каталитического крекинга (по сравнению с термическим) позволяет повысить октановое число бензина приблизительно на 10 единиц. Качество бензина можно улучшить также риформингом. Риформинг похож на процесс крекинга. Его проводят в паровой фазе под давлением и при нагревании в присутствии катализаторов. При этом молекулы с неразветвленной цепью углеродных атомов превращаются в разветвленные или образуются ароматические соединения. Особая заслуга в решении вопросов ароматизации нефти принадлежит знаменитому химику-органику Н. Д. Зелинскому.

В 1897 г. немецкий инженер Рудольф Дизель изобрел двигатель внутреннего сгорания с воспламенением от сжатия. В цилиндрах этих двигателей происходит быстрое сжатие воздуха до высоких давлений. Дизельные двигатели установлены на судах, тепловозах, грузовых автомобилях, тракторах и дизельных электростанциях. Для дизельного двигателя необходимо другое горючее, которое назвали дизельным топливом. Это топливо отличается от бензина по числу углеродных атомов (15-20) и кипит при температуре 180-360 °С.

С появлением реактивной авиации произошло второе «рождение» керосина. Издавна он исправно выполнял свою роль. Без него не обходились бытовые осветительные и нагревательные приборы. Еще сейчас можно кое-где встретить старые керосинки, керогазы и примусы. Правда, они уже отслужили свой век. На смену им пришло электричество и газ. А на смену винтовой авиации пришла авиация реактивная. Это произошло в начале 50-х гг. XX в. Реактивная авиация — основной потребитель керосина. Для реактивных самолетов бензин непригоден. Почему?

Керосин кипит в интервале 200-300 °С, а бензин — при 40-195 °С. Если бы реактивные самолеты использовали бензин, то высота их полета была бы значительно ниже. Известно, что атмосферное давление падает при подъеме. Поэтому потребовалась бы сверхтщательная герметизация топливных баков и всей топливной системы в самолете. Это, в свою очередь, увеличило бы его массу и усложнило конструкцию. Кроме того, при увеличении скорости самолета топливо в баках заметно нагревается. Чем выше скорость, тем выше температура. Например, при скорости самолета даже ниже скорости звука топливо в топливных насосах и топливомасляном радиаторе нагревается до 100-120 °С. Если же скорость самолета выше скорости звука, то приходится учитывать и трение самолета о воздух. Например, при скорости 2300 км/ч топливо разогревается до 180 °С! В этих условиях бензин начал бы кипеть, а керосин — нет. Поэтому для реактивных самолетов керосин стал основным видом топлива. Это важно еще и потому, что керосин дешевле, а реактивные самолеты расходуют топливо в огромных количествах. Так, самолет Ил-86 за один час полета «съедает» до 11,5 т топлива, а Ил-76 — 8 т. Даже небольшой Як-40 расходует за один час 1,2 т.

Но керосин — топливо не только для реактивной авиации. Это также и жидкое топливо для ракет. Известно, что в американских ракетах типа «Атлас» топливом служит смесь керосиновой и бензиновой фракций нефти. Двигатели, которые выводили советские космические корабли «Восток» на орбиту Земли, также работали на керосине.

 

14.3. Уголь глазами химиков

Поговорим об угле — веществе, которое согревает и освещает, а также служит сырьем для промышленного производства огромного числа органических веществ.

Было время, когда человек знал только один уголь — древесный. Он был необходим человеку, когда тот научился работать с металлом. Это было около 5-6 тыс. лет назад. Человек сам изготавливал древесный уголь. Но однажды он нашел готовый уголь, который создала сама природа. Он отличался от древесного угля, потому что был похож на камень. Это был каменный уголь. Чтобы создать такой уголь, природе потребовались миллионы лет. Уголь — вещество растительного происхождения, образовавшееся из древесины, т. е. в конечном счете — из целлюлозы. В течение миллионов лет при отсутствии воздуха при повышенном давлении и температуре, часто в присутствии влаги происходили процессы обугливания. Так возник каменный уголь.

Запасы каменного угля в природе значительно превышают запасы нефти. Из 3,5 трлн т органического топлива, которые можно извлечь из земных недр, 80% составляет уголь.

Уголь — сложная смесь веществ, состоящая из различных соединений углерода, водорода, кислорода, азота и серы. В состав угля входят также минеральные вещества, содержащие соединения кремния, алюминия, железа, кальция, магния и других элементов.

Полезной частью каменного угля является органическая масса, которая придает ему горючие свойства. Это смесь высокомолекулярных соединений с небольшим количеством битумов.

Уголь в жизни людей играет огромную роль. Прежде всего уголь — источник энергии. Подумайте только: одним килограммом угля можно нагреть 7 т воды на 1 °С или 70 кг воды — до 100 °С. Но уголь — не только источник энергии, но и богатый источник разнообразных органических веществ.

Существуют три основных направления переработки каменного угля: коксование, гидрирование и неполное сгорание.

Коксование каменного угля. Основная цель этого процесса — получение кокса для металлургических заводов. Более 80% вырабатываемого кокса используют для выплавки чугуна (доменный кокс). При этом кокс служит не только топливом, но и восстановителем руды. Кокс содержит 96-98% углерода.

Коксование угля проводится в коксовых печах, состоящих из камер, в верхней части которых находятся отверстия для загрузки угля (рис. 31). Камеры отделены друг от друга отопительными простенками. В них сжигается газ, предварительно подогретый в регенераторах, которые расположены под камерами. Температура в камерах 1000-1200 °С. При этой температуре без доступа воздуха каменный уголь подвергается сложнейшим химическим превращениям, в результате которых образуются кокс и летучие продукты. Коксование каменного угля — периодический процесс: после выгрузки кокса в камеру загружается новая порция угля. Полученный кокс гасят водой. Остывший кокс отправляют на металлургические заводы.

При охлаждении летучих продуктов (коксовый, или светильный, газ) образуется каменноугольная смола и аммиачная вода. Несконденсированными остаются аммиак, бензол, водород, метан, оксид углерода (II), азот, этилен и другие вещества. Пропуская эти газы через раствор серной кислоты, выделяют аммиак в виде сульфата аммония, который используют как азотистое удобрение. Бензол поглощают растворителем, а затем отгоняют его из раствора. После отделения от аммиака и бензола коксовый газ используют в качестве топлива или химического сырья. Такой очищенный газ содержит метан и водород.

Каменноугольная смола образуется в незначительных количествах (до 3%). Но учитывая масштабы производства кокса, каменноугольная смола применяется в качестве сырья для получения большого количества органических веществ. Из каменноугольной смолы получают бензол и его производные, нафталин, фенол и другие ароматические соединения. Если из смолы отогнать продукты, кипящие до 350 °С, то остается твердая масса — пек. Он может служить для изготовления лаков (пековый лак), незаменимых при окрашивании железных и деревянных конструкций. Это предохраняет их от гниения и коррозии.

Гидрирование угля. При температуре 450-500 °С под давлением водорода в присутствии катализатора из угля образуется смесь жидких углеводородов, которая может служить в качестве моторного топлива. Достоинством этого метода является возможность гидрирования низкосортного дешевого бурого угля.

Неполное сгорание (газификация твердого топлива). Этот процесс является источником оксида углерода (II). На катализаторе (никель, кобальт) при обычном или повышенном давлении из водорода и оксида углерода (II), смесь которых называется синтез-газом (СО + Н2), можно получать бензин, содержащий предельные и непредельные углеводороды:

К сожалению, такой бензин имеет низкое октановое число и нуждается в дополнительной переработке.