Удивительный мир органической химии

Артеменко Александр Иванович

Глава 3

Молекулы из двух элементов

 

 

 

3.1. Тетраэдр — «подарок» природы

Вот мы и узнали, как устроен атом углерода — главный элемент органического мира. Теперь перейдем к знакомству с наиболее простыми органическими веществами. Самым известным органическим соединением является метан. Вот формула его молекулы:

Метан — не только земное, но и космическое вещество: он содержится в атмосфере Сатурна и Юпитера, а в твердом состоянии его обнаружили на Уране и Нептуне. Метан по праву можно назвать «Адамом органического мира». Заменив в его молекуле один или несколько водородных атомов на другие атомы или группы атомов, можно получить многие органические соединения.

Метан — главная составная часть природного (до 98%) газа, а также попутных газов, которые выделяются при добыче нефти. В значительных количествах он присутствует в газах нефтепереработки. Обнаружить метан можно даже в любом болоте или пруду. Если палочкой пошевелить ил, то на поверхность воды поднимутся пузырьки болотного газа, который в основном состоит из метана. Он образовался из погибших растений и других веществ под воздействием особых бактерий без доступа воздуха.

Мы ежедневно встречаемся с метаном. Его используют в качестве дешевого топлива в быту и в промышленности. Метан — газ без цвета и запаха. Поэтому, пользуясь метаном, необходимо быть очень осторожным. Он образует с воздухом взрывоопасную смесь. Обычно для обнаружения утечки метана в газопроводах к нему добавляют небольшое количество сильно пахнущего вещества. Обычно с этой целью применяют газообразные тиоспирты (меркаптаны). Особенно опасен метан в шахтах («рудничный газ»). Взрывы метана в шахтах стоили жизни многим тысячам шахтеров.

Какое строение имеет молекула метана? Ответить на этот вопрос нам поможет теория гибридизации.

Как вы помните, в молекуле метана атом углерода находится в состоянии sp3-гибридизации. Это означает, что атом имеет четыре одинаковые sp3-гибридные орбитали, направленные в пространстве под углом 109°28' друг к другу (рис. 14). Если представить атом углерода центром молекулы, то эти орбитали будут направлены к вершинам правильного тетраэдра. Перекрываясь с четырьмя орбиталями атомов водорода (в атоме водорода единственный электрон занимает шаровую 1s-орбиталь), углеродные орбитали образуют четыре одинаковые связи С—Н. Следует отметить, что перекрывание орбиталей при этом происходит по линии, соединяющей ядра атомов углерода и водорода. Такие химические связи принято называть σ(сигма)-связями, а электроны, образующие их, — σ-электронами.

Разве не удивительно, что одна из тайн природы состоит в том, что в качестве основного геометрического элемента для органической химии она избрала тетраэдр!

Мы уже говорили, что химики с успехом используют теорию гибридизации для предсказания пространственной формы многих органических молекул. Например, эта теория довольно точно предсказала величины углов между связями в молекуле метана, а также расположение этих связей в молекуле.

Метан — самое распространенное и доступное химикам вещество. В промышленности его получают из природного газа или нефти. Можно получить метан и в лаборатории, например взаимодействием карбида алюминия с водой:

Можно получать метан и при нагревании оксида углерода (II) с водородом в присутствии катализатора:

Однако синтетическим путем метан обычно не получают. В этом нет необходимости, поскольку природный газ состоит практически из метана.

Метан служит прекрасным сырьем для получения многих органических соединений. Мы узнаем об этом, если познакомимся с химическими свойствами этого простого, но удивительного вещества.

Метан относится к органическим соединениям, которые проявляют очень низкую химическую активность. Эти соединения в свое время получили название парафины (от лат. parum affinis — малоактивный). В настоящее время их называют алканами. Метан — самый первый и самый важный представитель класса этих веществ, которые образуют особый ряд, названный гомологическим (от греч. homós — равный, одинаковый). Вещества, составляющие этот ряд, являются гомологами. Первым в этом ряду стоит метан. За метаном следует этан, потом — пропан, бутан, пентан и т. д. Все эти вещества подчиняются общей формуле СnН2n+2. Это очень удобная формула. Зная количество атомов углерода в алкане, можно сразу же сказать, сколько в молекуле будет атомов водорода.

Метан и его гомологи (т. е. этан, пропан, бутан, пентан и др.) не взаимодействуют при обычных условиях с кислотами, щелочами, окислителями. Недаром же когда-то эти вещества назвали «химическими мертвецами». И все же химики «приручили» эти соединения. Они заставили их вступать в некоторые реакции. В основном это реакции замещения, при которых происходит замена атомов водорода на другие атомы. Сразу же скажем, что в реакции присоединения (когда к одному веществу присоединяется другое) алканы вступать не могут. И дело тут не в том, что они «капризны». Их углеродные атомы полностью насыщены, т. е. у них нет возможностей присоединять. Действительно, если атом углерода может образовать только четыре связи с другими атомами, то образовать пятую связь он не в состоянии.

Какие же реакции замещения характерны для алканов?

Известно, что при освещении или нагревании метан очень бурно реагирует с хлором. Ученые изучили эту реакцию и выяснили, что она начинается с распада молекулы хлора на два атома хлора. Эти атомы на внешней электронной оболочке имеют один неспаренный электрон. Атомы или группы атомов с таким «лишним» электроном называются свободными радикалами. Распад молекулы хлора при соответствующих условиях на два свободных радикала (два атома хлора) можно изобразить так:

В молекуле хлора точками обозначены электронные пары, а в атоме хлора (справа) показан неспаренный электрон. Такой атом (радикал) обладает высокой энергией. Атакуя молекулу метана, он отрывает от нее водородный атом.

В результате такого отрыва образуется новая активная частица — радикал метил (•СН3). Этот радикал очень быстро (он существует в свободном состоянии тысячные доли секунды) взаимодействует с молекулой хлора, расщепляя ее на две части. В результате образуются молекула хлорметана и снова хлор-радикал:

И все повторяется снова: хлор-радикал атакует новые молекулы метана с образованием метильных радикалов, а те, в свою очередь, «набрасываются» на молекулы хлора. Поскольку в результате таких последовательных реакций образуются свободные радикалы, то весь процесс называется свободнорадикальным. Такие реакции называют также цепными, так как одна стадия реакций связана с другой как звенья одной цепи.

Открытие таких реакций было одним из выдающихся событий в химии. За огромный вклад в изучение цепных реакций и создание их теории академик Николай Николаевич Семенов (1896-1986)  и английский химик Сирил Норман Хиншелвуд (1897-1967) были удостоены в 1956 г. высшей научной награды — Нобелевской премии.

Итак, в результате замещения атома водорода на атом хлора образуется хлорпроизводное метана — хлорметан (или иначе — хлористый метил, газообразное вещество, которое можно применять в холодильных установках в качестве хладагента).

Однако реакция метана с хлором может идти и дальше. Все водородные атомы в молекуле метана можно заместить на атомы хлора. Вот как это выглядит:

Точно так же с метаном реагирует и бром. Что же касается иода, то при непосредственном взаимодействии его с метаном иодпроизводные получить не удается. А вот фтор с метаном и подобными ему соединениями (алканами) реагирует настолько активно, что эту реакцию можно назвать взрывом. Это происходит потому, что фтор даже при нормальной температуре легко распадается на свободные фтор-радикалы.

Все эти реакции называются реакциями галогенирования, а продукты, получаемые при этих реакциях, носят название галогенопроизводных.

Галогенопроизводные метана (и его гомологов) — химически активные вещества. Из них получают многие органические соединения. Например, если на йодистый метил (иодметан) подействовать металлическим натрием, то получим этан:

Эту реакцию открыл в 1855 г. французский химик Шарль Адольф Вюрц (1817-1884). С помощью этой реакции можно получать различные предельные углеводороды (алканы).

Кроме реакций галогенирования (хлорирования, бромирования), алканы в особых условиях могут вступать во взаимодействие с кислотами — азотной и серной. Например, при действии разбавленной азотной кислоты (при нагревании и давлении) происходит замещение водородных атомов в алканах на группу NO2 (нитрогруппу):

Такие реакции называют реакциями нитрования. Впервые реакцию нитрования провел в 1888 г. Михаил Иванович Коновалов (1858-1906). Поэтому такая реакция носит имя этого русского химика.

Продукты, образованные в результате реакции нитрования, называются нитросоединениями.

Если на алкан действовать смесью оксида серы (IV) и хлора, то получают продукт, который называется сульфохлоридом. Например:

Такие реакции называются реакциями сульфохлорирования. Первую реакцию сульфохлорирования провели в США в 1936 г. Реакции сульфохлорирования приводят к получению очень важных органических продуктов — сульфокислот. Для этого на сульфохлорид нужно подействовать водой. В результате получают два продукта — сульфокислоту и соляную кислоту:

Таким образом, сульфокислота — это продукт замещения атома водорода в алканах на сульфогруппу (—SO3H). Можно ли получать сульфокислоты, непосредственно воздействуя серной кислотой на алканы? Да, иногда это удается, если алканы содержат значительное количество углеродных атомов. Низшие же алканы с серной кислотой при обычных условиях не взаимодействуют, а при нагревании происходит их окисление.

Реакции нитрования и сульфохлорирования имеют также цепной радикальный характер.

Таким образом, из алканов можно получать различные органические вещества. Изучению алканов и их химическим превращениям посвятил свою жизнь известный немецкий химик Карл Шорлеммер (1834-1892). Кстати, он назвал органическую химию химией углеводородов и их производных. А ведь алканы — это углеводороды: их молекулы состоят из атомов углерода и водорода. Таким образом, два определения органической химии — А. М. Бутлерова и К. Шорлеммера — не противоречат, а дополняют друг друга.

Алканы — горючие вещества. При горении метана выделяется большое количество энергии (880 кДж/моль):

Наряду с метаном в качестве топлива часто используют смесь пропана (С3Н8) и бутана (С4Н10). Эту смесь называют бытовым сжиженным газом. Его перевозят в баллонах (красного цвета) и применяют там, где нет природного газа.

При обычных условиях алканы устойчивы к действию даже сильных окислителей. Но при использовании катализаторов и одновременном нагревании алканы окисляются с образованием многих ценных продуктов (спиртов, карбоновых кислот и др.).

В одном из разделов этой книги мы познакомимся с различными видами топлива, в основе которых — те же самые алканы.

 

3.2. Всегда ли двойная связь прочнее?

Житейский опыт подсказывает, что двойная связь прочнее. Действительно, если морское судно привязано к пирсу двумя канатами, то это надежнее, чем если оно прикреплено одним. Но, оказывается, это не всегда так. Дело в том, что наши представления о прочности связей в бытовом плане неприменимы к другим связям — химическим. Поэтому двойная и даже тройная связь между углеродными атомами в органических молекулах вовсе не делает эту связь более прочной. Более того, такая связь будет менее прочной, чем одинарная. Но чтобы это понять, поговорим о самом простом органическом веществе, в молекуле которого углеродные атомы связаны двойной связью. Это — этилен. Этилен — бесцветный газ со сладковатым запахом, является составной частью природного или попутного газов (правда, в природном газе содержание этилена невелико — 0,5-4%).

Впервые этилен был получен в 1669 г. немецким химиком Иоганном Иоахимом Бехером (1635-1682). Однако изучение этого газа началось приблизительно через сто лет после его открытия. Все это время этилен был известен под названием «воздух Бехера». В 1795 г. голландские химики во главе с Иоганном Рудольфом Дейманом (1743-1808) подробно описали способ получения этого «воздуха» из этилового спирта и серной кислоты, а также его свойства. Они установили, что «воздух Бехера» состоит из углерода и водорода, легко вступает в реакцию с хлором, образуя маслянистую жидкость, названную потом «маслом голландских химиков». Как оказалось, это был 1,2-дихлорэтан ClСН2—СН2Cl. Позже «воздух Бехера» назвали олефиновым газом (т. е. маслородным). Кстати, олефинами стали называть и другие углеводороды, которые своими свойствами напоминали олефиновый газ, а последнему дали название — этилен. Под таким названием мы его и знаем.

Если метан — «родоначальник» алканов, то этилен дает начало другим углеводородам — этиленовым (алкенам). Эти соединения также образуют свой гомологический ряд, который имеет общую формулу СnН2n. Если ее сравнить с общей формулой для алканов (СnН2n+2), нетрудно заметить разницу: молекулы алкенов содержат на два водородных атома меньше. Поскольку молекула этилена содержит два атома углерода и четыре атома водорода, то его эмпирическая формула будет С2Н4. Однако эта формула не дает представления о строении этилена. Поэтому попытаемся изобразить возможные структуры для формулы С2Н4.

Придется сразу отказаться от структур (1) и (2), как нереальных. Действительно, они имеют по две свободные валентности, а это означает, что такие соединения будут крайне неустойчивыми. А ведь этилен — вещество вполне устойчивое и способно существовать сколько угодно времени. Таким образом, остается структура (3) с двойной связью между углеродными атомами. Как оказалось впоследствии, именно эта структура и выражает строение молекулы этилена. Итак, этилен — соединение с двойной связью между углеродными атомами.

Две черточки между углеродными атомами означают, что связь образовалась в результате обобществления двух пар электронов, т. е. двойную связь можно представить так:

Следует сказать, что обозначение двойной связи при помощи двух черточек ввел немецкий химик Эмиль Эрленмейер (1825-1909).

Двойная связь в молекуле этилена — настоящая ахиллесова пята этого соединения. Это тот случай, когда двойная связь — «хуже», чем одинарная. Действительно, если алканы — довольно устойчивые соединения, вступающие в основном только в реакции замещения, то этилен и его гомологи — очень активные вещества, для которых характерны реакции присоединения. Например, если через водный раствор брома (бромная вода) пропустить этилен, то красновато-бурый цвет раствора исчезнет. Это означает, что произошла реакция. Химики установили, что в этом случае молекула брома присоединилась к этилену:

В полученном продукте (1,2-дибромэтан) отсутствует двойная связь между углеродными атомами. То же самое происходит, если к этилену присоединить молекулу хлора (помните «масло голландских химиков» — 1,2-дихлорэтан?). Если к этилену присоединить молекулу водорода (в присутствии катализатора — платины), то получим предельный углеводород — этан, который, как нам известно, двойной связи не содержит:

Этилен легко взаимодействует и с галогеноводородами, образуя галогенопроизводные:

Этилен присоединяет даже воду. Правда, это происходит только в присутствии серной кислоты:

Вот так можно получить этиловый спирт.

Итак, в молекулах полученных веществ исчезла двойная связь! Это означает только одно: при реакциях присоединения происходит разрыв одной из связей между углеродными атомами и за счет освободившихся валентностей идет присоединение другой молекулы. Но это значит, что две связи, обозначаемые одинаковыми черточками, вовсе не одинаковы. Одна из них более прочная (она не разрывается), а вторая — более «ранимая» — разрывается:

А вот теперь самый интересный вопрос: какая же связь сохранилась, а какая разорвалась? Если допустить, что двойная связь — сумма двух простых a-связей, то обе они не будут так легко разрываться при реакциях присоединения. Они будут вести себя так, как ведут обычные связи в алканах. Например, в молекуле этана. При этом добавим, что для них будут характерны реакции замещения, а не присоединения. Значит, двойная связь — это сумма разных по характеру связей. Но чтобы все это стало понятным, нам надо опять прибегнуть к теории гибридизации (видите, как она нас выручает!).

Давайте вспомним, что атом углерода в алкенах находится в состоянии sp2-гибридизации. Это означает, что из четырех орбиталей атома углерода (одна 2s и три 2р) гибридизованы только три: одна 2s- и две 2р-орбитали. Эти орбитали, перекрываясь, образуют три обычные а-связи — одну С—С и две С—Н. Итак, одну С—С-связь мы установили. Это обычная σ-связь. А другая? Для этого продолжим наши рассуждения.

При гибридизации четвертая 2p-орбиталь осталась неизмененной (в виде объемной восьмерки), т. е. негибридизованной. Она располагается в плоскости, которая перпендикулярна другой плоскости, в которой находятся три гибридизованные sp2-орбитали. Поскольку в молекуле этилена два атома углерода, то все сказанное относится и ко второму углеродному атому. Эти две негибридизованные орбитали (по одной от каждого углеродного атома) при перекрывании друг с другом образуют новую химическую связь, которую химики называют π(пи)-связью. Отметим, что эта связь образована, как и обычная σ-связь, в результате обобществления электронов, но электронов «чистых», а не гибридизованных. Такие 2р-электроны называются π-электронами. При этом очень важно отметить, что перекрывание орбиталей этих электронов происходит не в «лобовых» областях, в которых электронная плотность гораздо выше, а в «боковых», в которых она меньше. Но это означает, что образованная π-связь будет менее прочной (чем полнее перекрывание орбиталей, тем прочнее связь). Вот почему при химических реакциях (при действии химических реагентов) π-связь будет легче разрываться.

Что же происходит с двумя другими гибридизованными орбиталями (всего-то их четыре, если учитывать два углеродных атома)? Они, перекрываясь с 1s-орбиталями атомов водорода, образуют две одинаковые σ-связи С—Н. Как видно из рисунка 15, эти связи расположены в одной плоскости под углом 120° друг к другу.

Сделаем важный вывод: символ из двух одинаковых черточек между углеродными атомами (двойная связь) в молекуле этилена означает комбинацию одной σ- и одной π-связи. Такое строение двойной связи находит подтверждение в особом виде изомерии, характерной только для этиленовых углеводородов. Эту изомерию назвали цис-, трансизомерией. Почему эта изомерия характерна только для этиленовых углеводородов?

Установлено, что вокруг простой a-связи возможно относительно свободное вращение атомов и атомных группировок. Но если углеродные атомы связаны двойной связью, то такое вращение невозможно. Этому мешает π-связь, которая образована перекрыванием двух негибридизованных 2р-орбиталей. Если «поворачивать» одну группу СН2 относительно другой, то 2р-орбитали будут выходить из состояния «внедрения» друг в друга. Но это означает, что π-связь разрушается! Чтобы этого не происходило, двойная связь (а точнее, π-связь) не допускает поворотов, т. е. атомы или группы атомов, которые связаны с углеродными атомами, строго фиксированы в пространстве. Поэтому, например, молекула бутилена (бутен-2) может находиться в виде двух пространственных изомеров.

Изомеры, в молекулах которых радикалы (в данном случае метальные группы) расположены по одну сторону от двойной связи, называются цисизомерами, а если по разные — трансизомерами (от лат. cis — по эту сторону, trans — через, т. е. по разные стороны) (рис. 16).

Цис-, трансизомеры, имея различное пространственное строение, отличаются физическими, химическими, а иногда даже — физиологическими свойствами.

Как получают этилен? Обычно его выделяют из газов нефтепереработки, а также из газов коксования угля. Но можно получать этилен и в лаборатории. Еще в 1860 г., исследуя взаимодействие йодистого метилена с галогеноотнимающими средствами, А. М. Бутлеров не только получил этилен, но и сделал вывод о том, что в его молекуле должна быть двойная связь! Эта реакция протекала так:

Отщепляя воду от этилового спирта, тоже можно получить этилен. Для этого спирт нагревают с концентрированной серной кислотой:

Если же вместо этилового спирта использовать пропиловый спирт, то получим второй представитель алкенов — пропилен (пропен):

Пропилен во многом напоминает этилен. Он легко вступает в реакции присоединения. При присоединении водорода (в присутствии катализатора) он превращается в пропан, а при воздействии галогенов — в галогенопроизводные:

Галогеноводороды также присоединяются к пропилену. Но в отличие от этилена в этом случае может получиться два продукта.

Посмотрите внимательно на их формулы. Нетрудно заметить, что атомы хлора и водорода по-разному присоединились к углеродным атомам. Эту реакцию еще в XIX в. изучал Владимир Владимирович Марковников (1838-1904).  Он установил (1869) правило, которое носит его имя: атом водорода в этой реакции присоединяется к углеродному атому, с которым связано больше атомов водорода, а атом галогена — к атому углерода, у которого водородных атомов меньше. Следовательно, из двух продуктов наиболее вероятным будет 2-хлорпропан. Как сейчас химики объясняют это правило?

Молекула пропилена, в отличие от молекулы этилена, несимметрична. Поэтому в ней электронная плотность распределена неравномерно. Дело в том, что электронная плотность в молекуле смещена от метильной группы в сторону двойной связи:

Направление распределения электронов показано стрелками. На крайнем углеродном атоме, который связан двойной связью, образуется небольшой (частичный) отрицательный заряд, обозначаемый δ- (дельта минус). На втором же атоме углерода создается недостаток электронов (возникает частичный положительный заряд δ+). Теперь нетрудно догадаться, что положительно заряженный атом водорода (протон) свяжется с крайним углеродным атомом (он несет избыток электронной плотности), а атом галогена устремится туда, где атом углерода имеет частичный положительный заряд.

Этиленовые углеводороды обладают еще одним интересным свойством. Они вступают в реакцию полимеризации, в результате которой образуется полимерный продукт. Например, при полимеризации этилена химики синтезируют замечательный продукт — полиэтилен:

О таких реакциях мы поговорим позже, когда познакомимся с высокомолекулярными соединениями.

Этиленовые углеводороды горят с выделением энергии. Вот как можно записать реакцию горения этилена:

С воздухом этилен, как и метан, образует взрывоопасные смеси.

В заключение скажем, что этилен и его гомологи — источники большого числа разнообразных органических соединений. Например, этилен используют для получения полиэтилена, этилового спирта, галогенопроизводных, оксида этилена и многих других ценных продуктов.

 

3.3. Всем известный ацетилен

Углеродные атомы могут соединяться между собой не только с помощью двойной связи, но и тройной. Самым простым углеводородом, содержащим тройную связь, является известный многим газ — ацетилен. Этот газ бесцветен, не имеет запаха. Однако при его получении из карбида кальция (а именно так получают ацетилен в технике) образуются газообразные примеси (РН3, H2S, NH3), которые придают ацетилену типичный «карбидный запах». Наверное, многие его ощущали в тех местах, где занимаются сваркой или резкой металлов. Ацетилен при горении в кислороде создает высокотемпературное пламя (свыше 3000 °С). Это и используют в технике. Кстати, ацетилен для автогенной сварки начали использовать еще в 1906 г. в США. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах.

Впервые об ацетилене узнали в 1836 г., когда он был получен при действии воды на карбид кальция (СаС2). Но в 1862 г. этот газ уже был синтезирован М. Бертло при пропускании водорода через электрическую дугу между двумя угольными электродами (т. е. из элементов — углерода и водорода). Этот же ученый определил его состав (С2Н2) и дал этому газу название — ацетилен. Кроме того, он предположил, что ацетилен является первым углеводородом, образующим гомологический ряд с общей формулой СnН2n-2.

Итак, молекула ацетилена состоит из двух атомов углерода и двух водородных атомов. Следовательно, чтобы соблюсти четырехвалентность атома углерода, формулу ацетилена следует записать так:

Ацетилен — самое простое органическое соединение с тройной связью между углеродными атомами. Как же устроена такая связь?

Для объяснения снова обратимся к теории гибридизации. Согласно этой теории атом углерода в молекуле ацетилена находится в состоянии sp-гибридизации. Перекрыванием двух sp-гибридных орбиталей (по одной от каждого углеродного атома) образуется одна связь между углеродными атомами. Это — σ-связь, которую в формулах обозначаем одной черточкой. Две другие sp-гибридные орбитали (также по одной от каждого углеродного атома) образуют с 1s-орбиталями двух водородных атомов две σ-связи С—Н. Они расположены друг относительно друга под углом 180°. Но у каждого углеродного атома остались еще по две негибридизованные 2р-орбитали! Вот они-то, перекрываясь в двух взаимно перпендикулярных плоскостях, и образуют две π-связи. В формуле они обозначены еще двумя черточками. Обратите внимание, что перекрывание 2p-орбиталей, как в случае этилена, происходит «боками», а не «лбами». Поэтому прочность образовавшихся π-связей незначительна. Как видно из рисунка 17, молекула ацетилена имеет линейное строение. Таким образом, символ из трех черточек в формуле молекулы ацетилена означает сочетание одной σ-связи и двух π-связей.

Поскольку мы уже знаем строение одинарной, двойной и тройной связей, давайте сравним их длины. Не может быть, чтобы эти связи не отличались по длине. Действительно, рентгеноструктурный анализ показал, что длина простой связи равна 0,154 нм (1 нм = 10-7 см), двойной — 0,134 нм, а тройной — 0,120 нм. Таким образом, длина тройной связи — самая короткая.

Мы уже знаем, что впервые ацетилен получили из карбида кальция. Вот схема этой реакции:

Этим способом и сейчас получают ацетилен в технике. Для этого карбид кальция «выпекают» в электропечах при прокаливании кокса с негашеной известью при температуре 2500 °С:

Интересно, что впервые карбид кальция был получен еще в 1892 г. (уже специально для получения ацетилена) французским химиком Анри Муассаном (1852-1907).

Сейчас ацетилен в промышленности получают разложением метана при температуре 1500 °С:

Как оказалось, этим способом ацетилен получил М. Бертло еще в 1868 г. Тогда же он высказал мысль о том, что такой путь может оказаться перспективным. Что ж, ученый оказался прав: в 1936 г. в Германии и США ацетилен стали получать термическим разложением метана.

Ацетилен, как соединение непредельное, легко вступает в реакции присоединения со многими веществами. Например, при гидрировании (присоединение водорода) в присутствии катализатора вначале образуется этилен (разрывается одна π-связь), а затем — этан (разрывается вторая π-связь):

Подобным образом происходит и присоединение галогенов. Вначале образуется дигалогенопроизводное, а затем — тетрагалогенопроизводное. Например:

Но есть еще одна интересная реакция ацетилена. При действии на него аммиачного раствора оксида серебра получают ацетиленид серебра — продукт замещения водородных атомов на серебро.

Это желтоватое вещество в сухом состоянии способно взрываться от удара. Ацетиленид серебра формально напоминает соль, но не следует думать, что ацетилен — кислота. Дело в том, что водородные атомы в молекуле ацетилена немного «подвижнее», чем в молекуле этилена, а тем более — в молекуле этана. Поэтому ацетиленовые водороды замещаются на атомы серебра. Впервые ацетиленид серебра получил в 1866 г. М. Бертло, но еще раньше, в 1860 г., он обратил внимание на другую реакцию — взаимодействие ацетилена с водой. В результате этой реакции ученый получил уксусный альдегид.

Позже эту реакцию начал изучать известный русский химик Михаил Григорьевич Кучеров (1850-1911). В качестве катализатора он использовал соли ртути. Как установил ученый, при гидратации гомологов ацетилена можно получать кетоны (соединения, в которых карбонильная группа связана с двумя радикалами). Например:

«Реакция Кучерова» нашла широкое практическое применение. В некоторых странах (Германия, Италия, Англия, Франция и др.) получение уксусного альдегида было начато еще в 1914-1916 гг. Получают его по этой реакции и в нашей стране.

Ацетилен обладает одной интересной особенностью. В 1866 г. М. Бертло удалось получить из ацетилена бензол.

Так была установлена генетическая связь между ацетиленом и бензолом. Однако бензол получался в незначительных количествах. В 1924 г. академик Николай Дмитриевич Зелинский (1861-1953), применив в качестве катализатора активированный уголь, превратил эту реакцию в промышленный метод получения бензола.

Но, как оказалось, ацетилен при циклизации может дать и другие циклические соединения:

Используют ацетилен и для получения различных полимерных продуктов.

При действии окислителей ацетилен легко окисляется. При этом происходит разрыв молекулы по месту тройной связи. Такую реакцию легко наблюдать, если ацетилен пропускать через водный раствор перманганата калия (марганцовку). В результате раствор быстро обесцвечивается. Эта реакция, как видите, является качественной не только на двойную связь, но и тройную.

При полном сгорании ацетилен образует оксид углерода (IV) и воду:

Но при неполном сгорании можно получить углерод (сажу):

Вот такими свойствами обладает этот газ — всем известный ацетилен. Его значение в химии настолько огромно, что существует даже отдельная химическая наука — химия ацетилена.