ЛОГИКА

Асмус Валентин Фердинандович

Глава XIV. Доказательство и его строение. Виды доказательств

 

 

Доказательство

§ 1. Всякая истина есть не только верное суждение, т. е. суждение, соответствующее фактам. Всякая истина есть, кроме того, суждение обоснованное, т. е. суждение, высказывание которого сопровождается указанием оснований, в силу которых оно истинно и должно быть признано истинным.

Есть суждения, истинность которых удостоверяется простым восприятием. Такие суждения называются непосредственно очевидными и не нуждаются в доказательстве. Примеры непосредственно очевидных суждений: «я вижу что-то белое», «эта линия — ломаная».

Некоторые из непосредственно очевидных суждений составляют основу целого ряда истин, в том числе не обладающих очевидностью, но относящихся к одной и той же области знания. Такие суждения называются аксиомами. Пример аксиомы: «целое больше своей части».

Суждения, истинность которых не имеет непосредственной очевидности, доказываются, т. е. приводятся к очевидности, посредством указания оснований, в силу которых они являются истинными.

Доказательность, как мы уже знаем, есть одно из важнейших условий научного знания. Огромное большинство научных истин не дано непосредственно нашему восприятию. Более того. Непосредственное восприятие часто вводит нас в заблуждение, так как часто показывает нам явления не такими, каковы они в действительности. Например, для непосредственного восприятия только что взошедшая Луна кажется большей по величине, чем та же Луна, когда она высоко поднимется над землёй. В действительности угол, под которым виден поперечник Луны, один и тот же и в тот момент, когда Луна восходит, и в тот, когда она стоит высоко над горизонтом. Так как очевидность восприятия может быть обманчивой, то в наиболее точных науках, как математика, не доверяют непосредственной очевидности восприятия и стремятся доказывать, по возможности, все истины, за исключением крайне небольшого числа аксиом. Но и аксиомы время от времени пересматривались в математике с целью установить, не может ли быть число их уменьшено посредством доказательства тех из них, которые в сравнении с остальными представляются не столь очевидными.

§ 2. В широком смысле слова доказательством называется всякий способ уяснения оснований, по которым известное суждение считается истинным. В этом широком смысле слова к доказательствам принадлежат также и выводы, или умозаключения.

При выводе основанием для заключения является не непосредственное восприятие, но истинность других суждений, признав которые в качестве истинных мы не можем не признать истинным и заключение. При выводе истинность суждения не просто утверждается, но доказывается. Однако доказательство здесь состоит лишь в усмотрении необходимой связи между посылками и заключением, самые же посылки принимаются в качестве истинных без исследования и без проверки их истинности.

§ 3. В более узком и специальном смысле доказательством называется не всякий вывод, но особый вид вывода или особая форма обоснования истины. В этом — специальном — смысле доказательством называется исследование истинности (или ложности) суждений. А именно: доказательство есть такое умозаключение, посредством которого удостоверяется истинность (или ложность) данного суждения.

Сравним с этой точки зрения два следующих вывода:

Первый. «Так как все злаки цветут колосками и так как все бамбуки — злаки, то все бамбуки также цветут колосками».

Второй. «Если верно, что все злаки цветут колосками, а также что все бамбуки — злаки, и если умозаключение правильно, то верно и то, что все бамбуки цветут колосками. Но утверждения, что все злаки цветут колосками и что все бамбуки — злаки, истинны. Также правилен и самый ход умозаключения. Следовательно, заключение, что все бамбуки цветут колосками, истинно».

В широком смысле понятия оба эти вывода — доказательства. В специальном смысле понятия доказательством будет лишь второй вывод, первый же будет обыкновенным умозаключением. Первый вывод есть усмотрение необходимой связи между посылками и заключением. Второй вывод есть доказательство того, что заключение, т. е. суждение «все бамбуки цветут колосками», истинно. Первый вывод состоит только из сопоставления посылок и из усмотрения вытекающего из них заключения. Второй — более сложен и представляет умозаключение об умозаключении. А именно: умозаключение, составляющее предмет другого умозаключения, есть условное умозаключение: «Если суждения «все злаки цветут колосками» и «все бамбуки — злаки» истинны и если само умозаключение — правильное, то заключение «все бамбуки цветут колосками» истинно». Второе умозаключение удостоверяет истинность первого: «Так как истинно, что все злаки цветут колосками и что все бамбуки—злаки, и так как умозаключение оказалось правильным, то заключение «все бамбуки цветут колосками» истинно».

§ 4. Можно было бы подумать, будто отличие вывода, или умозаключения, от доказательства состоит в том, что в выводе мысль идёт от посылок к заключению, а в доказательстве, напротив, — от доказываемого положения к посылкам, или основаниям, из которых оно выводится.

В действительности как в выводе, так и в доказательстве ход мысли может быть и тот и другой. В одних случаях вывод состоит в том, что даны посылки и требуется извлечь из них заключение. Например, даны посылки: «калий — металл», «калий не тонет в воде»; требуется ответить на вопрос: какое заключение следует из этих посылок? Ответ: «некоторые металлы не тонут в воде». Здесь мысль идёт от посылок к заключению.

Другой пример. Дано суждение: «некоторые металлы не тонут в воде»; требуется ответить на вопрос: какими посылками может быть обосновано это суждение как заключение вывода? Ответ: такими посылками могут быть, например, посылки: «калий — металл» и «калий не тонет в воде». Здесь мысль идёт от заключения к обосновывающим это заключение посылкам.

Но не иначе обстоит дело и с доказательством. И в доказательстве возможны, как мы убедимся ниже, два способа установления истинности доказываемого положения: один состоит в том, что от установленных или признанных положений рассуждение идёт через ряд следствий, выведенных из этих положений, к доказываемому суждению; другой состоит в том, что, рассмотрев доказываемое суждение, показывают, что, при условии, если это суждение принято в качестве истинного, из него вытекает ряд положений, истинность которых уже установлена и которые были доказаны другими способами.

Таким образом, отличие доказательства от вывода, или умозаключения, вовсе не в том, что в выводе мысль идёт от посылок к заключению, а в доказательстве — наоборот. И в выводе и в доказательстве равно возможны оба эти хода мысли.

Главное отличие доказательства от вывода состоит в том, что вывод есть усмотрение необходимой связи между понятиями, образующими выводное суждение, доказательство же есть не только усмотрение связи между понятиями, но и усмотрение истинности суждения. Понятно, что там, где истинность суждения обосновывается, как в рассмотренном выше примере, посредством умозаключения, доказательство принимает форму умозаключения об умозаключении.

§ 5. Этим различием между выводом и доказательством определяется строение доказательства.

С логической точки зрения доказательство не есть самый процесс доказывания. Доказательство есть особая логическая форма, выражающая логический результат уже состоявшегося процесса доказывания, т. е. оправдания (или опровержения) доказываемого (или опровергаемого) положения.

Во всяком доказательстве имеется налицо, во-первых, доказываемое положение, удостоверяющее, что известный тезис истинен (или, наоборот, ложен). Так, в рассмотренном нами примере доказываемым положением является положение: «заключение, что все бамбуки цветут колосками, истинно». Отсюда видно, что доказываемое положение должно быть отличаемо от тезиса. Тезис есть то суждение, истинность или ложность которого доказывается. В нашем примере тезис — суждение: «все бамбуки цветут колосками». Доказываемое положение есть суждение о тезисе, или суждение, в котором тезис удостоверяется в качестве истинного или ложного. В нашем примере доказываемым положением будет следующее: «заключение, что все бамбуки цветут колосками, истинно». Доказываемое положение заключает в себе тезис как свою часть.

Различие между доказываемым положением и тезисом ясно выступает в доказательствах, задачей которых является опровержение, т. е. доказательство ложности рассматриваемого тезиса. При опровержении доказываемое положение всегда формулируется так, чтобы ясно было не только то, о каком тезисе идёт речь, но и то, что тезис этот ложен. Здесь раздельно даются и тезис и характеристика этого тезиса в качестве ложного.

Напротив, в доказательствах, задачей которых является оправдание, т. е. доказательство истинности, рассматриваемого тезиса, доказываемое положение очень часто формулируется так, что выражается только самый тезис, характеристика же истинности тезиса опускается. В нашем примере доказываемое положение вместо полной формы («суждение «все бамбуки — злаки» истинно») могло бы быть выражено и в сокращённой форме: «все бамбуки — злаки».

Однако независимо от того, состоит ли доказываемое положение из одного лишь тезиса или из тезиса, сопровождаемого отдельной характеристикой его истинности (или ложности), главная задача всякого доказательства заключается именно в характеристике истинности (или ложности) тезиса. Там, где доказываемое положение состоит из одного лишь тезиса, характеристика сливается в одно целое с утверждением тезиса, но не теряет от этого своего значения.

Вторая составная часть всякого доказательства — основания, т. е. суждения, истинность которых или уже установлена, или по крайней мере предполагается несомненной и которые поэтому могут служить посылками умозаключений, при посредстве которых доказывается положение об истинности (или ложности) тезиса.

Третья составная часть всякого доказательства — рассуждение (аргументация, демонстрация), т. е. ряд умозаключений, доказывающих истинность (или ложность) тезиса. В рассуждении сопоставляются основания, выступающие в качестве посылок умозаключений, с выводами, которые из этих оснований следуют. Для обозначения частей доказательства в целом употребляются иногда термины «довод» и «аргумент». Иногда «доводом» (или «аргументом») называют всё доказательство в целом, т. е. тезис, основания и рассуждение. Иногда же терминами этими обозначаются основания доказательства.

 

Главнейшие виды доказательств

§ 6. Все доказательства могут быть разделены на две большие группы — в зависимости от того, исследуется ли в них истинность содержания и правильность логической связи между основаниями и тезисом или же исследуется происхождение суждений, входящих в доказательство, источник, из которого эти суждения почерпнуты, условия, при которых они дошли до нас или переданы нам, и т. д.

Те доказательства, в которых исследуется содержание оснований, а также логическая связь между основаниями и тезисом, называются доказательствами по существу. В этих доказательствах для удостоверения в истинности (или ложности) тезиса не требуется ничего, кроме рассмотрения оснований по существу их содержания и кроме рассмотрения логической связи между основаниями и тезисом. В доказательствах по существу для характеристики тезиса в качестве истинного или ложного достаточно удостовериться в том, имеется ли необходимая логическая связь между содержанием истинных суждений, которые играют роль оснований, и содержанием тезиса.

Те доказательства, в которых исследуется происхождение суждений, входящих в доказательство, а также условия, при которых эти суждения дошли до нас, называются доказательствами по источнику происхождения суждений, или генетическими (от греческого слова «генезис», означающего происхождение).

§ 7. Если бы каждое суждение, которое мы усваиваем в качестве истинного, принималось нами только на основе доказательства по существу, то объём и разнообразие наших знаний были бы гораздо меньшими, чем каковы они в действительности.

Существует ряд знаний, в которых убеждение в их истинности возникает в результате нашей уверенности в том, что источники, из которых почерпнуты эти знания, не могут ввести нас в заблуждение. Таковы в подавляющем большинстве случаев все усваиваемые нами в школе знания, относящиеся к области геологии, географии, астрономии и т. д. Не только ученик, но и учитель, опирающийся на учебник, по которому идёт преподавание предмета, не могут доказать каждое своё утверждение по существу, т. е. путём рассмотрения одного лишь содержания суждений и логической связи между этими содержаниями.

Никто из нас не мог побывать во всех уголках земного шара, чтобы проверить путём доказательства по существу все те истины, которые сообщаются, например, учебником геологии о составе и строении земной коры в различных местах и о характере происходящих в ней процессов образования и исчезновения гор, морей, материков и т. д. Конечно, многие из этих истин, усваиваемых нами из учебника путём доказательства по источнику их происхождения, могли бы быть проверены нами также и путём доказательства по существу их содержания, если бы мы только могли посетить все изученные геологами места и убедиться, посредством обращения к наблюдениям и к опыту, в истинности их утверждений.

Однако, необходимость удовлетворяться доказательствами по источнику происхождения наших знаний обусловливается не только ограниченностью нашего личного опыта и неспособностью — в границах этого опыта — проверить всё невообразимо огромное множество истин, установленных наукой путём доказательств по существу.

Имеется ряд наук и отраслей знания, в которых, по самому характеру этих наук и этих отраслей знания, многие доказательства всегда вынуждены остаться всего лишь генетическими, т. е. доказательствами по источнику происхождения суждений. Во всех исторических науках для доказательства огромного множества установленных в них истин нет других путей, кроме удостоверения в том, что источники, из которых мы почерпнули эти истины, заслуживают доверия, не могут нас обманывать или вводить в заблуждение. Никто из нас не был свидетелем, например, Бородинской битвы, но мы знаем с совершенной достоверностью, что битва эта произошла 26 августа 1812 г., что русской армией командовал Кутузов, а французской — Наполеон, что русские войска отразили все атаки французов и нанесли армии вторжения смертельный для неё удар и т. д. и т. д. Все эти и бесчисленное множество подобных истин оправдываются путём доказательства по источнику происхождения наших суждений — посредством изучения, сопоставления, критической проверки и сравнительной оценки дошедших до нас официальных документов, сообщений, докладов, приказов, донесений, дипломатической переписки, дневников и записей очевидцев, воспоминаний участников этих событий, публицистической литературы и т. д.

Поэтому генетические доказательства составляют особую группу доказательств, не сводимую нацело к доказательствам по существу. Больше того: генетические доказательства по своему значению для знания не только не уступают доказательствам по существу, но часто превосходят их. Что может быть важнее для нашего знания и для формирования нашего мировоззрения, чем те истины, которые мы усваиваем, изучая, например, вопросы истории общества? Но истины исторических наук оправдываются только путём анализа и исследования источников, из которых они могут быть почерпнуты, т. е. посредством доказательств генетических.

 

Доказательства по существу

§ 8. Доказательства по существу представляют, как мы уже знаем, исследование содержания оснований и логической связи между основаниями и тезисом. В этих доказательствах решается вопрос: имеется ли необходимая логическая связь между содержанием данных оснований и содержанием тезиса, который из них выводится.

Доказательства по существу делятся на четыре главные группы: 1) доказательства, в которых все случаи доказываемого тезиса исчерпываются при помощи полной индукции; 2) разделительные доказательства, в которых последовательно исключаются все предположения, кроме одного, а именно кроме доказываемого тезиса; 3) опровергающие доказательства, или опровержения, в которых от истинности известного суждения заключают в ложности другого суждения, несовместимого с первым; 4) обусловливающие доказательства, в которых от наличия всех необходимых условий истинности (или ложности) суждения заключают к его действительной истинности (или ложности).

§ 9. Доказательства, исчерпывающие все возможные случаи доказываемого тезиса. В этих доказательствах рассматривается прежде всего доказываемый тезис. Рассмотрение это имеет целью полностью исчерпать все возможные случаи доказываемого тезиса. Далее доказывается, что тезис истинен для каждого из этих случаев в отдельности. Отсюда, по методу полной индукции, делается заключение, что тезис истинен вообще, т. е. безотносительно к тому или иному частному случаю.

Этот вид доказательства по существу часто применяется в математике, особенно в геометрии. Посредством этой формы доказательства обосновывается, например, теорема, по которой ни одно коническое сечение не пересекается прямой более чем в двух точках.

§ 10. Разделительные доказательства. В разделительных доказательствах истинность доказываемого тезиса удостоверяется посредством исключения всех гипотез разделительного умозаключения, кроме одной единственной, которой является доказываемый тезис. Так как истинной должна быть непременно одна из гипотез, в своей сумме исчерпывающих возможное деление, и так как все они, кроме гипотезы, совпадающей с доказываемым тезисом, оказались опровергнутыми, то тезис как единственная гипотеза, оставшаяся неопровергнутой, необходимо будет истинным.

Если, например, установлено, что некоторое преступление могли совершить только лица А, В, С и D, и если, кроме того, установлено, что ни В, ни С, ни D не совершили его, то отсюда следует, что заключение, признающее виновником преступления А, истинно.

При этом, однако, как это постоянно бывает в случае оправдания доказываемого тезиса, доказываемое положение ограничивается одним тезисом, характеристика же самого тезиса в качестве истинного обычно опускается.

Особенность этой формы доказательства — в том, что истинность доказываемого тезиса удостоверяется не прямо, а косвенным образом. И действительно, оправдание доказываемого тезиса достигается в этом случае не посредством прямого исследования или обоснования этого тезиса, но лишь косвенно — путём опровержения всех возможных предположений, кроме того, которое совпадает с тезисом.

§ 11. Опровергающие доказательства. Доказательства этой формы имеют задачей не оправдание тезиса, а его опровержение. Достигается опровержение посредством сопоставления тезиса с другим суждением, стоящим к тезису в отношении логической несовместимости. Основанием для заключения о ложности тезиса является удостоверение в том, что несовместимое с тезисом суждение истинно.

Так, ложность мнения старых зоологов, полагавших, будто ни одно млекопитающее не принадлежит к яйцекладущим, была доказана, как только было установлено, что некоторые млекопитающие, например утконосы, относятся к яйцекладущим. Доказательство в этом случае было опровергающим. Оно сводилось к сопоставлению опровергаемого тезиса с противоречащим ему, т. е. с несовместимым с ним суждением.

Опровергающие доказательства имеют огромное распространение в практической жизни и в науке. Доказательство невиновности обвиняемого в непосредственном совершении приписываемого ему преступления достигается посредством опровержения предположения, будто обвиняемый мог совершить его. Установив, например, alibi обвиняемого, т. е. отсутствие обвиняемого в момент, когда было совершено преступление, в том месте, где оно было совершено, суд тем самым удостоверяет истинность положения, логически несовместимого с предположением о виновности обвиняемого в непосредственном совершении преступления. Тем самым опровергается предположение, будто обвинённый в преступлении действительно есть непосредственный исполнитель преступления.

§ 12. Обусловливающие доказательства. В этих доказательствах исследование начинается с установления всех необходимых условий истинности тезиса. Далее удостоверяется, что все условия эти имеются налицо. Отсюда заключают к истинности тезиса.

Пример обусловливающего доказательства был уже рассмотрен при объяснении отличия доказательства от простого умозаключения. Другой пример обусловливающего доказательства: требуется доказать тезис, что некоторые членистоногие не являются насекомыми. Самый тезис этот может быть выведен из следующего умозаключения: «Все пауки — членистоногие, ни один паук не есть насекомое, следовательно, некоторые членистоногие — не насекомые». Но наша задача — не в том только, чтобы усмотреть необходимую логическую связь между найденными посылками и тезисом. Наша задача — в том, чтобы доказать, что тезис «некоторые членистоногие — не насекомые» истинен.

Для удостоверения его истинности развиваем следующее обусловливающее доказательство: «Если посылки «все пауки — членистоногие» и «ни один паук — не насекомое» истинны и если умозаключение правильно, то положение «некоторые членистоногие — не насекомые» истинно». Но обе посылки действительно истинны, также правильно и умозаключение. Поэтому тезис «некоторые членистоногие — не насекомые» истинен.

§ 13. Как видно из обоих примеров, обусловливающее доказательство есть умозаключение об умозаключении. В обоих случаях сначала было найдено умозаключение, обосновывающее тезис. Затем было найдено умозаключение, доказывающее, что тезис этот истинен.

То умозаключение, посредством которого устанавливается логическая связь между основаниями и тезисом, называется основным умозаключением обусловливающего доказательства. В нашем последнем примере основным умозаключением является первое умозаключение: «Все пауки — членистоногие, ни один паук — не насекомое, следовательно, некоторые членистоногие — не насекомые».

То умозаключение, посредством которого удостоверяется истинность тезиса, как вытекающая из наличия всех условий его истинности, называется условным умозаключением.

Далеко не всегда обусловливающее доказательство заключает в своём составе оба эти умозаключения: основное и условное. Обычно условное умозаключение не выражается в тексте самого доказательства и лишь подразумевается. Полностью формулируется только основное умозаключение. Но так как в основном умозаключении раскрывается только необходимая логическая связь между основаниями и тезисом, истинность же тезиса удостоверяется только условным умозаключением, то это последнее есть главная составная часть обусловливающего доказательства.

На примере обусловливающего доказательства лучше, чем на примере какой бы то ни было другой формы доказательства, видно, различие между доказательством в специальном смысле понятия и простым умозаключением.

§ 14. Так как обусловливающее доказательство состоит из двух умозаключений и так как одно из них, а именно условное, обычно лишь подразумевается, то в случае обусловливающего доказательства часто бывает трудно определить, какие суждения являются основаниями доказательства. И действительно, так как в обусловливающем доказательстве обычно полностью выражается лишь основное умозаключение, то легко возникает представление, будто его посылки и составляют основания всего доказательства. Но так как характеристика тезиса как истинного (или ложного) содержится только в условном умозаключении (независимо от того, высказано оно или только подразумевается), то, строго говоря, основаниями обусловливающего доказательства являются посылки условного умозаключения: посылка, указывающая необходимые условия истинности тезиса, и посылка, удостоверяющая, что в данном случае все условия эти имеются налицо.

§ 15. Наиболее распространённая разновидность обусловливающего доказательства есть доказательство, в котором, удостоверившись в истинности (или ложности) посылок основного умозаключения и в правильности логической связи, заключают отсюда к истинности (или ложности) тезиса.

Пусть, например, требуется доказать, что ни один папоротник не размножается семенами. Строим умозаключение: «ни одно споровое не размножается семенами, все папоротники — споровые, следовательно, ни один папоротник не размножается семенами». Рассмотрим посылки и логическую связь между ними. Так как это рассмотрение обнаруживает, что обе посылки истинны и что логическая связь между ними правильная, то мы вправе вывести, что основное умозаключение истинно. Из истинности же основного умозаключения следует, что вытекающее него суждение «ни один папоротник не размножается семенами» истинно. Но это суждение и есть доказываемый тезис.

§ 16. Второй распространённой разновидностью обусловливающего доказательства является доказательство, в котором, удостоверившись в ложности некоторого суждения, заключают отсюда к ложности основного умозаключения, из которого это суждение следует.

Но ложность умозаключения может быть обусловлена: 1) или ложностью посылок, 2) или неправильностью логической связи между посылками, 3) или соединением ложности посылок с ошибочностью устанавливаемой между ними логической связи.

Поэтому, установив на основании ложности тезиса — ложность обосновывающего этот тезис умозаключения, мы ещё не знаем, каким именно из указанных трёх условий вызывается в каждом данном случае ошибочность умозаключения. Для решения этого вопроса должны быть исследованы, во-первых, всё посылки основного умозаключения, во-вторых, логическая связь между ними.

При этом исследовании возможны два случая. Первый из них — когда исследованием устанавливается, что логическая связь между посылками основного умозаключения правильная и что все посылки, за исключением одной единственной, которая не рассматривается, истинны. Результатом исследования в этом случае будет разделительное умозаключение: «Ошибочными могли быть или самые посылки, или логическая связь между ними. Но так как ни логическая связь между посылками, ни посылки — кроме одной, нами не рассмотренной,— не ошибочны, то ошибочна та единственная посылка, которая осталась не рассмотренной».

§ 17. Примером этого случая являются доказательства, называемые апагогическими, или «приведением к нелепости» (reductio ad absurdum). Если бы, рассматривая данное суждение, мы могли сразу противопоставить ему другое суждение, логически несовместимое с первым и в то же время заведомо истинное, то мы тем самым опровергли бы данное суждение. Это был бы обыкновенный случай так называемого «опровергающего» (см. выше § 11), а не обусловливающего доказательства.

Но если мы не можем сразу найти такое суждение, которое, будучи несовместимым с данным, было бы в то же время заведомо истинным, то опровержение тезиса принимает ту форму обусловливающего доказательства, о которой шла речь выше. А именно: строится умозаключение, в котором тезис, т. е. опровергаемое суждение, является одной из посылок. Все остальные посылки умозаключения подбираются истинные, логическая связь между ними устанавливается правильная. Получив — по правилам вывода — заключение, находят затем другое суждение с таким расчётом, чтобы оно было логически несовместимым с нашим заключением и в то же время чтобы оно было истинным. Найдя такое суждение, тем самым опровергают заключение. В свою очередь опровержение заключения обнаруживает ошибочность умозаключения, из которого заключение было выведено. Но в чём может состоять в этом случае ошибочность умозаключения? Так как логическая связь в нём правильная и так как все посылки, кроме той, которая является тезисом доказательства, истинны, то ложным должен быть только тезис.

 

Рис. 67

Пример апагогического доказательства. В геометрии доказывается теорема (см. рис. 67), согласно которой при условии если два равных угла АОВ и COD имеют общую вершину О и две стороны ОВ и ОС на одной прямой линии, то и две другие стороны ОА и OD составляют одну прямую линию, и потому углы АОВ и COD — вертикальные. Доказывается теорема следующим образом. Положим, что АОD — не прямая, а ломаная линия. Положим, далее, что ОЕ есть продолжение стороны АО. Тогда углы АОВ и СОЕ как углы, составленные пересечением двух прямых линий, будут углы вертикальные и, следовательно, равные между собой. Но по положению ∠DОС равен ∠АОВ. Две величины, равные порознь третьей, равны между собой. Поэтому ∠ЕОС должен равняться ∠СОD (так как ∠ЕОС и ∠COD равны порознь каждый ∠АОВ).

Но ∠ЕОС, очевидно, не может равняться ∠СОD, так как ∠СОЕ есть только часть ∠СОD. Итак, предположение, будто АОD не есть прямая линия, как предположение, приводящее к нелепому заключению, будто часть равна своему целому, ложно. Но если ложно, что АОD не есть прямая линия, то должно быть истинным, что АОD — прямая и что углы AОВ и СОD — вертикальные.

Присматриваясь к ходу этого рассуждения, мы видим, что оно вполне подходит под схему рассматриваемой разновидности обусловливающего доказательства. Задачей рассуждения было доказательство теоремы посредством опровержения противоречащего ей тезиса. Опровергаемый тезис был сделан одной из посылок умозаключения. Все остальные посылки, кроме тезиса, оказались истинными. Само умозаключение также оказалось правильным. Полученное из этого вывода заключение (равенство ∠ЕОС ∠СОD), сопоставленное с аксиомой о том, что целое больше своей части, оказалось несовместимым с нею.

Тем самым было удостоверено, что заключение, будто ∠ЕОС равен ∠COD, ложно. Но ложность заключения означает ложность того умозаключения, из которого это заключение добыто. В свою очередь исследование ложности умозаключения приводит к следующему разделительному силлогизму: «Источником ошибки в нашем умозаключении могла быть либо ложность посылок, либо ошибочность логической связи между ними. Но в данном случае логическая связь была правильная, все посылки, кроме той, которая является опровергаемым тезисом, — тоже правильные. Стало быть, ложен опровергаемый тезис».

§ 18. Логическая схема рассмотренной разновидности обусловливающего доказательства сама по себе совершенно проста и ясна. Однако при её осуществлении на практике часто приходится преодолевать значительные трудности.

Трудности эти возникают обычно в той части доказательства, где заключению, выведенному из основного умозаключения, необходимо противопоставить другое — несовместимое с ним и в то же время заведомо истинное суждение.

И действительно, для успешного решения этой задачи требуется, чтобы заключение, добываемое из основного умозаключения, непременно было ложным, а противопоставляемое ему и несовместимое с ним суждение было непременно истинным.

Что касается ложности заключения, то, вообще говоря, как заключение вывода, в составе которого имеется ложная посылка (опровергаемый тезис), заключение это должно быть ложным. Однако иногда при ложной большей посылке заключение силлогизма может случайно оказаться истинным. Например, из посылок «все студенты изучают французский язык» и «Николаев — студент» получается заключение «Николаев изучает французский язык». Может случиться, что, несмотря на ложность большей посылки, утверждающей, будто все студенты изучают французский язык, Николаев случайно окажется принадлежащим к той части студентов, которые, не исчерпывая собой всех студентов, действительно изучают французский язык. В этом случае ложность одной из посылок не препятствует истинности тезиса. Объясняется это не тем, что истинность эта логически следует из ложности посылки, а тем, что она не зависит от количества большей посылки: чтобы студент Николаев оказался принадлежащим к изучающим французский язык, нет необходимости в том, чтобы все студенты изучали этот язык. Для этого достаточно, чтобы хотя бы часть студентов изучала этот язык и чтобы Николаев оказался принадлежащим именно к этой части.

Зная, что при известных условиях наличие в числе посылок одной ложной может сочетаться с истинностью заключения, мы должны считаться с этой возможностью при разработке апагогических доказательств. Так как в этих доказательствах заключение основного умозаключения необходимо должно оказаться ложным, то посылки этого умозаключения должны подбираться с таким расчётом, чтобы сочетание ложного тезиса, составляющего одну из посылок умозаключения, с другими истинными его посылками дало в заключении непременно ложное суждение.

Напротив, суждение, противопоставляемое заключению, как несовместимое с ним, обязательно должно быть истинным. Однако далеко не всегда истинность суждения, противопоставляемого заключению и несовместимого с ним, оказывается непререкаемой для тех, к кому обращается доказательство. Во многих отраслях знания суждение, истинное в глазах одних, представляется ложным или по крайней мере сомнительным для других. Но если суждение, противопоставляемое несовместимому с ним тезису, представляется ложным, то самый тезис уже не будет оцениваться в качестве ложного, и, таким образом, опровержение тезиса, составляющее центр всего доказательства, окажется недостигнутым.

§ 19. Мы рассмотрели первый случай исследования ошибочности основного умозаключения. В этом случае исследованием устанавливается, что логическая связь между посылками и заключением правильная и что все посылки истинны, кроме той, которая и есть опровергаемый тезис.

Второй случай исследования основного умозаключения имеет место, когда исследованием устанавливается, что ошибочны не посылки, но логическая связь между посылками и заключением.

Для удостоверения в ошибочности логической связи исследуемое основное умозаключение сопоставляется с другим умозаключением. Это последнее подбирается с таким расчётом, чтобы все без исключения посылки в нём были истинны, чтобы логическая связь между посылками и заключением была ошибочная и чтобы заключение было явно ложным.

Выполнение всех этих условий даёт право на следующий вывод. Умозаключение, с которым мы сопоставляем основное умозаключение нашего доказательства, имеет ложное заключение. Поэтому оно ошибочно. Ошибочность его может быть обусловлена или ошибочностью посылок, или ошибочностью логической связи. Так как все посылки в нём, несомненно, истинны, то ошибочной в нём может быть только логическая связь. Но наше основное умозаключение имеет такое же строение, как и то умозаключение, с которым оно сравнивается. Так как заключения в этих умозаключениях ложны, а все посылки истинны, то и в основном умозаключении ошибочна только логическая связь.

Например, требуется исследовать ошибку в умозаключении: «Все великие художники были впечатлительны, Н — впечатлителен, следовательно, Н — великий художник». Если ошибочность логической связи в этом умозаключении не бросается в глаза и не поддаётся — вследствие недостатка у исследующего логических познаний — точному логическому определению, то она может быть обнаружена следующим образом.

Сопоставляют исследуемое умозаключение с другим, имеющим такое же строение, такое же ложное заключение, но содержащим только истинные посылки: «У всех великих художников — две руки и две ноги, у Н — две руки и две ноги, стало быть, Н — великий художник». Так как оба умозаключения имеют совершенно одинаковое строение, так как все посылки в них истинны, а заключения ложны, то ошибочна в обоих только логическая связь между посылками и заключением.

 

Генетические доказательства

§ 20. Мы уже знаем, что вторую группу доказательств после доказательств по существу составляют так называемые генетические доказательства, или доказательства по источнику происхождения.

В генетических доказательствах истинность (или ложность) тезиса доказывается посредством исследования: 1) условий возникновения тезиса и 2) условий его передачи от одних лиц к другим.

Потребность в генетических доказательствах возникает всюду там, где особое значение приобретает вопрос об источнике суждения, а также где имеет значение вопрос о том, совпадает ли суждение, дошедшее до нас путём передачи, с первоначальным суждением, послужившим для него источником.

Так, историк постоянно вынужден проверять истинность суждений, высказывавшихся историческими деятелями, очевидцами, мемуаристами. Для этого он обращается к исследованию источника этих суждений, осведомлённости, добросовестности и точности лиц, которые их высказывали, и т. п. Историк античной или древнерусской литературы применяет генетические доказательства при оценке истинности дошедших до нас прямых и косвенных сведений о тех или иных авторах, об их жизни и деятельности, об их произведениях и т. д. Судебное следствие проверяет истинность свидетельских показаний о том или ином факте или действии, исследуя возможные умышленные или невольные искажения истины при передаче суждений от одних лиц к другим и т. д.

Во многих случаях при решении вопроса об истинности или ложности суждения у нас нет другого пути, кроме доказательства по источнику происхождения.

§ 21. Генетические доказательства, как всякие доказательства, представляют либо установление истинности тезиса (его оправдание), либо обнаружение его ложности (его опровержение).

Оправдание тезиса в генетических доказательствах имеет следующее строение. В первой части доказательства устанавливается, что первоначально возникшее суждение в силу самих условий его возникновения не могло быть ошибочным. Во второй части доказательства устанавливается, что проверяемый тезис совпадает с первоначальным суждением, так как при передаче первоначального суждения от лица к лицу суждение это не могло исказиться. В этой части доказывается, что: 1) первоначальное суждение не могло измениться вследствие ошибок памяти; 2) лицо, сообщившее суждение, не имело целью умышленно исказить его; 3) лицо это точно выразило смысл суждения; 4) лицо, усвоившее суждение в чужой передаче, правильно поняло смысл переданного.

Если ответ на все эти вопросы получается положительный, то отсюда следует, что проверяемый тезис действительно совпадает с первоначально сообщённым суждением.

В третьей части доказательства в результате предшествующих исследований получается заключение об истинности тезиса.

Посредством генетических доказательств оправдываются только вероятные, но не достоверные суждения. Степень вероятности суждений, доказываемых таким способом, вообще говоря, колеблется в широких пределах — от весьма малой вероятности до вероятности, практически граничащей с достоверностью. Чем больше звеньев передачи проходит сообщаемое первоначальное суждение, тем легче могут возникать различные искажения его смысла, тем меньшей становится вероятность доказываемого тезиса.

§ 22. Опровержение суждений в генетических доказательствах, как во всех других, есть установление ложности доказываемого тезиса. Обычно установление это достигается следующим образом. В первой части опровержения устанавливается ложность первоначально высказанного суждения. Во второй части опровержения устанавливается, что рассматриваемое суждение совпадает с первоначально высказанным суждением, так как ни в одном из звеньев передачи первоначальное суждение не могло подвергнуться никакому искажению.

Так как первоначальное суждение, согласно первой части доказательства, ложно и так как рассматриваемое суждение, согласно второй части доказательства, тождественно с первоначальным, то рассматриваемое суждение также ложно.

§ 23. Не следует думать, будто ложность первоначального суждения делает излишним рассмотрение условий его передачи от лица к лицу. Хотя, вообще говоря, ложность первоначального суждения означает также и ложность того суждения, которое получается в результате передачи, возможны случаи, когда, в итоге некоторых изменений, происшедших в звеньях передачи, рассматриваемое суждение случайно оказывается истинным.

Так, например, лицо, высказывающее суждение, может умышленно сказать ложь, т. е. выдать заведомо ложное сообщение за истинное. Но если, желая ложь выдать за истину, лицо это само ошибётся и по ошибке будет считать ложью то, что в действительности истинно, то в результате передачи рассматриваемое суждение может оказаться истинным.

§ 24. Генетическое опровержение возможно не только там, где первоначальное суждение ложно. Если первоначальное суждение само по себе истинно, но если при этом оно испытало изменение в звеньях передачи и если изменение это делает первоначальное суждение несовместимым с восходящим к нему суждением, то тем самым доказывается, что это последнее суждение ложно. Например, обвиняемый в получении взятки от лица Н утверждает, будто он взятки не брал.

Если это утверждение истинно, то в этом случае он, конечно, не мог ошибиться, т. е. относящееся к этому случаю первоначальное суждение должно было быть истинным. Но свидетельскими показаниями установлено, что в этом случае обвиняемый лжёт. Так как ложь не что иное, как замена первоначального суждения несовместимым с ним суждением, то отсюда следует, что утверждение обвиняемого ложно.

 

Роль практики и опыта в доказательствах

§ 25. Во всех науках и во всех научных доказательствах все понятия, которые входят в состав доказательства, ведут своё происхождение в конечном счёте из практики, из опыта. В этом отношении не составляют исключения и доказательства математических наук. Правда, понятия, которыми пользуется математик, отвлекаются от целого ряда свойств, которые принадлежат предметам этих понятий в нашем опыте. Математический круг, куб, шар и т. д. не существуют в опыте в том виде, в каком их мыслит ум геометра. И всё же даже самые отвлечённые понятия математики возникли в конечном счёте из опыта и на основе опыта. То же справедливо относительно математических определений и относительно аксиом, т. е. непосредственно очевидных истин, лежащих в основе всего математического знания. Как бы ни казались далёкими от опыта, а иногда даже противоречащими опыту эти определения и аксиомы, — все они в конце концов являются продуктами отвлечения от известных сторон опыта и не могли сложиться в мысли иначе, как на основе опыта.

§ 26. Так обстоит дело с понятиями, определениями и аксиомами математики. Сложнее обстоит дело с доказательствами. Во всех науках, кроме математических, доказательство всегда непосредственно связано с опытом. Это значит, что кроме той связи с опытом, без которой вообще не могло бы существовать никакое понятие, никакая аксиома, в науках этих в состав доказательства всегда входят такие части и такие данные, которые прямо предполагают обращение к опыту: к наблюдению, эксперименту и т. д.

Напротив, в математических науках доказательства — если рассматривать одну логическую их сторону, а не происхождение понятий, входящих в состав доказательств, — всегда ведутся таким образом, что в ходе доказательства математику не приходится прямо обращаться к опыту, помимо тех элементов опыта, которые уже содержатся в его понятиях, определениях и аксиомах. Иными словами, опыт входит в математические доказательства не непосредственно, как он входит в доказательства физика, химика, биолога, но лишь посредством понятий, которые некогда образовались на основе опыта, но в своём современном содержании являются отвлечёнными по отношению к этому опыту.

§ 27. Это различие между науками математическими и науками эмпирическими, т. е. доказывающими свои положения на основе прямого обращения к опыту, порождает различие в видах доказательства.

Доказательства математических наук, не требующие привлечения прямых данных опыта в самом ходе доказательства и опирающиеся на опыт лишь через посредство тех элементов опыта, которые содержатся в основных понятиях, определениях и аксиомах этих наук, называются математическими доказательствами.

Доказательства наук о природе, необходимо требующие привлечения прямых данных опыта в самом ходе доказательства и, таким образом, не ограничивающиеся теми элементами опыта, которые содержатся в их основных понятиях, называются эмпирическими доказательствами.

Из этих определений и объяснений ясно, что различие между этими двумя видами доказательства состоит вовсе не в том, что доказательства математических наук стоят якобы вне опыта, а доказательства эмпирических наук основываются на опыте. Все доказательства всех наук — математических так же, как и эмпирических, — предполагают опыт в качестве необходимой последней основы и проверочной инстанции всех своих истин и положений.

Различие между этими двумя видами доказательства обусловлено только тем, что в одном самым ходом доказательства требуется прямое обращение к данным опыта, в другом для осуществления доказательств достаточно той связи с опытом, которая дана уже в самом содержании понятий, входящих в состав доказательства.

Из сказанного видно, что различие между математическими и эмпирическими доказательствами — не безусловно. Ряд наук о природе, доказывающих свои истины при помощи прямого обращения к опыту, содержат в себе и такие части, в которых доказательства ведутся по методу доказательств математических наук. С другой стороны, и в математических науках математической форме доказательства часто предшествует обоснование, предполагающее прямое обращение к опыту, так что математическая форма доказательства вырабатывается впоследствии, когда доказываемый тезис, т. е. результат доказательства, стал уже известен из опыта. Примером такого перехода от найденного в опыте результата к его математическому и дедуктивному по форме обоснованию может служить уже упомянутая выше история архимедовского определения площади параболы.

Наконец, даже в строго математических по форме доказательствах последние основания, на которые эти доказательства опираются, а именно определения основных понятий науки и аксиомы, возникли в конечном счёте на основе опыта, хотя в том содержании, в каком они мыслятся наукой в настоящее время, они могут вследствие своей крайней отвлечённости казаться ни от какого опыта не зависящими.

Деление доказательств на математические и эмпирические зависит, как было показано, от того, ведётся ли доказательство без прямого обращения к опыту или же в состав доказательства в том или ином объёме входит также и прямое обращение к данным опыта.

§ 28. Доказательства различаются также и по ходу мысли в самом рассуждении. Доказательство, в котором рассуждение идёт от установленных или признанных положений — через ряд следствий, выведенных из этих положений, — к тезису или доказываемому суждению, называется прогрессивным доказательством. Название это показывает, что мысль в ходе рассуждения идёт всё время вперёд — от оснований — через рассуждение — к доказываемому тезису.

Так, например (см. рис. 68), из пифагоровой теоремы (а2 + b2= с2) и из определения тригонометрических функций синуса и косинуса (sin(α)=a/c и cos(α)=b/c) может быть посредством прогрессивного доказательства выведена одна из основных формул тригонометрии.

 

Рис. 68

В самом деле, по теореме Пифагора имеем:

а2 +b2 = с2 (1)

Разделим обе части уравнения на с2 и получим:

а2/c2 + b2/c2 = 1 (2)

В левой части уравнения каждый её член есть квадрат:

(a/c)2+(b/c)2 = 1 (3)

Но так как, согласно определениям, a/c=sin(α) и b/c=cos(α), то наше уравнение (3) принимает вид:

sin2α +cos2α = l.

§ 29. Но ход рассуждения в доказательстве может быть и обратный. В ряде случаев рассуждение исходит не из оснований, а из рассмотрения доказываемого тезиса. Рассмотрение это показывает, что из тезиса (окажись он принятым) необходимо вытекает ряд положений, о которых уже известно, что они истинны, и которые были доказаны другими способами. Доказательство, в котором рассуждение идёт не от оснований к тезису, но наоборот — от рассмотрения тезиса к уяснению необходимой связи этого тезиса с основаниями, называется регрессивным. Название это показывает, что мысль в ходе рассуждения идёт как бы назад: от тезиса к основаниям.

Часто одно и то же положение может быть доказано как прогрессивным, так и регрессивным способом. Та же тригонометрическая формула, которую мы выше вывели посредством прогрессивного доказательства, может быть выведена путём доказательства регрессивного.

Требуется доказать, что sin 2 α +cos 2 α = l.

Рассматривая доказываемый тезис и вспоминая, что по определению sin α=a/c и cos α = b/c можем выразить тезис в уравнении:

(a/c)2+(b/c)2 = 1. (2)

Осуществив требуемое формулой (2) возведение a/c и b/c — в квадрат, получаем:

a2/c2 + b2/c2 = 1. (3)

Помножая обо части уравнения (3) на с2, имеем: а2 + b2 = с2 (4), т. е. формулу теоремы Пифагора.

В истории разработки науки весьма многие положения были сначала найдены путём регрессивного доказательства. Часто догадка об истине, предвосхищение истины предшествовали той форме доказательства, при которой доказываемый тезис получается как итог длинного ряда выводов, направляющихся от оснований к доказываемому положению. В этих случаях доказательство принимает регрессивную форму. Исследователь, «предчувствуя» истинность тезиса, направляет своё внимание на то, чтобы уяснить необходимую связь, существующую между тезисом и другими истинами, ранее познанными из других оснований.

§ 30. Математические доказательства могут быть различаемы в зависимости от того, доказывается ли тезис прямо или же путём опровержения суждения, противоречащего доказываемому тезису. Доказательство, в котором тезис прямо выводится из других суждений, установленных или принятых в качестве истинных, называется прямым.

Доказательство, в котором для обоснования тезиса опровергается суждение, противоречащее тезису, называется косвенным. Из этого определения видно, что к косвенным доказательствам принадлежит уже известное нам апагогическое доказательство.

Апагогическое доказательство называется также «reductio ad absurdum», т. е. «приведением к нелепости». Название это указывает, что выводы из допущения, принятого в начале апагогического доказательства, извлекаются до тех пор, пока не дойдут до вывода, который оказывается нелепым, так как противоречит другим — истинным — посылкам.

Нетрудно заметить, что в ходе этого доказательства применяется модус tollens, а также закон исключённого третьего. В самом деле: ложность допущенного положения выводится из ложности следствия, к которому это допущение приводит, т. е. по модусу tollens, а истинность доказываемого тезиса выводится из ложности допущенного положения, которое стоит в отношении противоречащей противоположности к тезису и потому, оказавшись ложным, тем самым доказывает, согласно закону исключённого третьего, истинность тезиса.

В математике апагогические доказательства называются «доказательствами от противного». Название это, с точки зрения логической терминологии, не совсем точно, так как в доказательствах этих опровергается не противное по отношению к доказываемому тезису, но именно противоречащее допущение.

 

Опровержение

§ 31. Опровержение, как мы уже знаем, по существу не отличается от доказательства. Опровержение состоит либо в доказательстве того, что посылки ошибочны или сомнительны, либо в доказательстве того, что вывод не вытекает с необходимостью из данных посылок, хотя бы каждая из них в отдельности была истинной. При этом для опровержения не требуется, чтобы посылки были непременно ложными: достаточно, чтобы они были только сомнительными — и вывод уже не имеет доказательной силы.

Опровержение известного утверждения, т. е. доказательство ложности его по существу, есть в то же время опровержение всякого доказательства этого утверждения, каковы бы ни были применяемые при этом формы доказательства.

Но опровержение данного доказательства, т. е. обнаружение его несостоятельности, не есть ещё опровержение того тезиса, или утверждения, которое должно было быть обосновано посредством этого доказательства. Вполне возможен случай, когда тезис по существу истинен, но доказательство, при помощи которого его пытаются обосновать, ошибочно. Ошибочным оно может быть или потому, что пытаются вывести его из ложных оснований, или же потому, что, несмотря на истинность оснований, не умеют показать, какова необходимая связь, ведущая от этих оснований к тезису.

Поэтому обнаружение несостоятельности доказательства не есть ещё обнаружение ложности доказываемого положения. Так как одно и то же положение может быть доказываемо, вообще говоря, не одним единственным, а несколькими способами, возможен случай, когда, опровергнув несостоятельное доказательство, указывают затем истинное, при помощи которого тезис действительно может быть доказан.

Подобные случаи наблюдаются и в практике повседневного мышления и в развитии науки. Бывает, что неискусный спорщик отстаивает верное по существу положение, но неспособен найти надлежащее доказательство, которое привело бы к очевидности доказываемый им тезис. Но и в истории наук, даже таких точных, как математика, не раз бывало, что в доказательствах, которые ранее считались безупречно строгими, со временем — по мере уточнения понятий — обнаруживались неточности, и тогда эти доказательства исправлялись, т. е. заменялись более строгими, действительно раскрывающими необходимую связь между основаниями и тезисами.

 

Основания как части доказательств

§ 32. Рассматривая доказательства любой математической науки, нетрудно заметить, что все истинные положения этой науки образуют как бы длинную цепь, в которой каждый доказываемый тезис опирается на ранее доказанные основания, а эти основания в свою очередь доказываются как тезисы — из других оснований и т. д.

Однако это восхождение от тезисов к основаниям и от этих оснований, рассматриваемых как тезисы, к другим основаниям не может продолжаться до бесконечности. Раньше или позже мы дойдём до таких положений, которые уже не могут быть доказаны с помощью других оснований и которые сами являются основаниями, посредством которых доказываются — прямо или косвенно — все без исключения положения и теоремы данной науки.

Прямое участие этих оснований в доказательствах заключается в том, что положения эти применяются при доказательстве некоторых теорем в качестве единственных оснований, на которые опирается доказательство этих теорем. Так, в геометрии первые теоремы этой науки доказываются не на основании других теорем, а на основании определений основных понятий геометрии и на основании некоторых аксиом, или постулатов, которые уже нигде далее не доказываются.

Косвенное участие этих оснований в доказательствах заключается в том, что теоремы, доказываемые при помощи одних только этих оснований, в свою очередь служат основаниями для доказательства других положений и теорем данной науки.

Так как эти основания являются для каждой математической науки основаниями, уже невыводимыми из других оснований, и так как, достигнув их, мы уже не можем продолжать восхождение к новым основаниям, то такие основания принято называть последними или исходными основаниями как данной науки в целом, так и всех употребляемых в ней доказательств.

Но так как при изложении математических наук на первом месте сообщаются именно исходные основания науки и уже затем с помощью этих оснований доказываются сначала первые, а затем все последующие теоремы этой науки, то исходные основания иногда называют также и первыми основаниями.

§ 33. Все исходные основания являются либо определениями основных понятий данной науки, либо её аксиомами.

Никакая наука — каковы бы ни были её предмет и её область — не может доказывать своих положений без точного определения понятий, входящих в эту науку и во все её доказательства. Геометрия, арифметика, механика, физика, химия, политическая экономия и т. д. начинаются с определения основных для каждой из них понятий. Будучи однажды установлено в своём содержании, определение должно мыслиться в том же самом содержании во всех рассуждениях данной науки и во всех её доказательствах. Если бы, взявшись исследовать, например, свойство плоских треугольников, мы в одном случае под словом «плоский треугольник» разумели одно содержание, а в другом — другое, противоречащее первому, то мы не могли бы доказывать свойства этих треугольников. И точно так же, если бы, взявшись исследовать законы производства и обмена товаров, политическая экономия в одном случае разумела под словом «товар» одно, а в другом — другое содержание, она не могла бы обосновывать свои учения о товаре.

§ 34. Кроме определений к числу высших оснований науки принадлежат также и аксиомы. Так называются основания, которые не доказываются данной наукой и принимаются ею в качестве исходных оснований. Примером аксиомы в арифметике может быть аксиома, согласно которой сумма данных количеств не изменяется от перестановки слагаемых количеств и т. д.

Сходство между определением и аксиомой состоит в том, что и определения и аксиомы употребляются в качестве исходных оснований доказательства, т. е. таких оснований, которые не выводятся из других оснований.

Различие между определением и аксиомой может быть легко выяснено. Определение есть установление содержания основного для данной науки понятия. Определение, например, вертикального угла предполагает согласие между всеми геометрами о том, какое содержание разумеют они, когда речь идёт о вертикальных углах. Определение понятия «товар» предполагает согласие между экономистами, по которому под «товаром» все они разумеют вещь, способную удовлетворять какую-либо потребность и способную обмениваться на другие вещи. Установление системы принятых в данной науке определений устраняет ту сбивчивость в понятиях, которая была бы неизбежной, если бы относительно терминов, означающих эти понятия, не существовало согласия.

Чем точнее определение, тем меньше опасность логических ошибок, происходящих от отсутствия определённости в мышлении. И, напротив, при отсутствии точных определений понятий всегда возможно недоразумение, состоящее в том, что собеседники или спорщики только воображают, будто рассуждают об одном и том же предмете, в действительности же каждый из них в ходе рассуждения под одним и тем же словом разумеет не совсем одно и то же (а иногда и совершенно различное) содержание.

§ 35. В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.

Определение, само по себе взятое, ещё не говорит о необходимой истинности определяемого. Правда, в огромном большинстве случаев определения выражают то самое содержание предмета, которое существует в действительности. Но возможно точное определение и такого понятия, которое означает предмет, не существующий и не могущий существовать в действительности. Так, задача квадратуры круга, т. е. отыскания квадрата, площадь которого была бы в точности равновелика площади круга, есть задача неразрешимая, но самое понятие квадратуры круга может быть определено вполне точно.

Напротив, аксиома есть не условие, принятое относительно значения и содержания известного понятия, но некоторое утверждение, которое рассматривается в данной науке в качестве положения заведомо истинного.

§ 36. Иногда думают, будто аксиомы не доказываются потому, что истины, выражаемые в этих аксиомах, настолько очевидны, что не требуют никакого доказательства. Мнение это не совсем правильное. И действительно, очевидность истины, сама по себе взятая, ещё не освобождает от необходимости доказать эту истину, — если только такое доказательство может быть найдено.В геометрии, например, существует немало теорем, которые не-специалисту представляются совершенно очевидными в своей истинности и которые тем не менее доказываются со всей строгостью принятых в этой науке доказательств. Такова, например, теорема, согласно которой диаметр всякого круга делит этот круг на равные части и т. д.

§ 37. Но аксиомы даже не являются положениями безусловно очевидными.

По крайней мере некоторые из аксиом геометрии уже в древности казались далеко не безусловно очевидными. Таков, например, пятый постулат, или одиннадцатая аксиома Евклида, согласно которой через точку С (см. рис. 69), взятую вне данной прямой АВ, на плоскости, где находятся и С и АВ, можно провести только одну единственную прямую, например ОС,которая при продолжении не пересекалась бы с прямой АВ, так что всякая другая прямая, проведённая через точку С и лежащая в той же плоскости, при достаточном продолжении пересечётся с прямой АВ.

 

Рис. 69

Замеченная уже самим Евклидом независимость ряда предложений, доказываемых геометрией, от одиннадцатой аксиомы, появление этой аксиомы в «Началах» Евклида лишь после доказательства 28 теорем первой книги «Начал», внушали геометрам мысль доказать эту аксиому в качестве теоремы. Однако попытка доказательства её, предпринятая вслед за другими геометрами Лобачевским и так же, как и у них, неудавшаяся, привела Лобачевского к открытию, что допущение, противоречащее аксиоме о параллельных, в сочетании со всеми остальными аксиомами Евклида, будучи принято в качестве одного из исходных оснований геометрии, даёт возможность развить целую систему геометрии, которая, при всём противоречии этого основания непосредственному наглядному представлению о пространственных отношениях, нигде не запутывается во внутренних противоречиях и строго доказывает все свои предположения.

Придя к этой мысли, Лобачевский действительно развил эту систему геометрии. В геометрии Лобачевского вместо одиннадцатой аксиомы Евклида принимается другая аксиома. Согласно этой аксиоме, через точку С, лежащую вне прямой АВ, проходят две параллельные ей прямые КСК1 и LCL1. Каждый из равных острых углов DCK и DCL1 которые предположенные в геометрии Лобачевского параллели с двух сторон образуют с перпендикуляром CD, Лобачевский назвал углами параллельности в точке С относительно прямой АВ.

Лобачевский показал далее, что при исходных положениях, принятых им в качестве оснований новой геометрии, геометрия Евклида оказывается лишь частным случаем геометрии Лобачевского, а именно случаем, когда угол параллельности имеет постоянное значение и всегда равен прямому углу.

§ 38. Таким образом, аксиомы отнюдь не являются положениями очевидными в такой степени, чтобы очевидностью этой исключалась всякая возможность сомнения в их истинности и всякая необходимость требовать для них доказательства. Этим, между прочим, объясняется тот факт, что в истории математики крупнейшие учёные не раз пытались найти доказательства для некоторых аксиом. Так, философ Гоббс и философ-математик Лейбниц пытались — правда безуспешно — доказать аксиому о том, что целое больше своей части. К попыткам этого рода побуждает не только небезусловная очевидность аксиом, но также то, что при разработке математических наук всегда необходимо свести круг недоказуемых положений к возможно наименьшему числу. В сравнении с другими положениями аксиомы всё же являются наиболее очевидными утверждениями, так что усмотреть истинность аксиом легче, чем усмотреть истинность других положений, также обладающих очевидностью. Кроме того, от прочих очевидных положений аксиомы отличаются ещё тем, что они представляют наименьшую по числу совокупность положений, которые, будучи приняты данной наукой без доказательства в качестве исходных оснований этой науки, оказываются в соединении с определениями вполне достаточными для того, чтобы из них и из определений могли быть доказаны все прочий доложения науки, в том числе и некоторые положения, также обладающие очевидностью, но всё же доказуемые.

§ 39. Аксиомы иногда рассматриваются в качестве постулатов. Так называются положения, не доказываемые, так же как аксиомы, и составляющие вместе с определениями совокупность исходных оснований науки. Отличие постулата от аксиомы состоит только в том, что совокупность постулатов, полагаемых в качестве исходных оснований науки, устанавливается независимо от вопроса об их очевидности и с таким расчётом, чтобы принятые постулаты не противоречили друг другу и тем самым давали возможность развить из них также свободную от противоречий систему доказанных на их основе истин. Второе отличие аксиомы от постулата состоит в том, что аксиомы сравнительно с постулатами обладают большей общностью.

Наряду с аксиомами или постулатами в систему положений, принимаемых в качестве истинных, входят леммы. Леммой называется положение, относительно которого известно, что оно признано истинным в системе какой-либо другой науки и что оно применяется также в системе данной науки.

При этом истинность леммы может быть или непосредственно очевидной, или установленной в этой другой науке путём доказательства.

В системе физики леммами являются, например, все положения математики — независимо от того, рассматриваются они как аксиомы или же доказываются как теоремы.

Иногда различают теоремы и выведенные из них положения: следствия и дополнения. С точки зрения логики эти различия существенного значения не имеют.

§ 40. Не всякая попытка доказательства увенчивается успехом. В доказательствах, также как и в других видах логической деятельности мышления, возможны различные ошибки, лишающие доказательство его силы.

Так как всякое доказательство состоит из: 1) доказываемого тезиса, 2) оснований и 3) рассуждения, то возможные в доказательствах ошибки бывают: 1) либо ошибками относительно тезиса, 2) либо ошибками в основаниях, 3) либо, наконец, ошибками в рассуждении.

 

Ошибки относительно доказываемого тезиса

§ 41. Ошибки относительно доказываемого тезиса возникают в случаях, когда, несмотря на истинность и признанность оснований, а также несмотря на правильный ход умозаключений, т. е. несмотря на наличие необходимой логической связи между основаниями и заключением, само заключение не совпадает с тем тезисом, который должен быть доказан. Иными словами, ошибка здесь состоит не в том, что делают неправильный вывод, а в том, что, правильно сделав вывод из истинных оснований, ошибочно полагают, будто вывод этот есть то самое положение, которое взялись доказать, в то время как на деле вывод этот не совпадает с доказываемым тезисом и только по ошибке принимается за этот тезис.

Ошибка эта называется «подменой тезиса, который должен быть доказан», или «отступлением от тезиса», «игнорированием тезиса, который должен быть доказан».

Случаи такой ошибки весьма часты. Особенно в спорах часто можно наблюдать картину, когда, желая опровергнуть противника, опровергают не то положение, которое он на деле высказал, но совсем другое положение, о котором, однако, ошибочно думают, будто оно и есть высказанное противником положение. В таких случаях спор напоминает сражение Дон-Кихота с ветряными мельницами, принятыми им за великанов.

§ 42. Не менее часто в спорах происходит и то, что опровергнув доказательство, посредством которого противник пытался обосновать свой тезис, ошибочно полагают, будто тем самым опровергли и самый доказываемый тезис. Но, как мы уже знаем, опровержение доказательства не есть ещё опровержение доказываемого положения. Возможно, что само это положение истинно и только требует другого доказательства взамен ошибочного, посредством которого его пытались обосновать. Совершенно очевидно, что тот, кто принимает опровержение доказательства за опровержение доказываемого положения, совершает ошибку подмены доказываемого тезиса. Например, один из спорящих доказывает существование на Марсе органической жизни на том основании, что астрономами Скиапарелли и Ловелом наблюдалась на поверхности Марса сеть правильных пересекающихся и сходящихся в известных точках линий, которые были приняты Ловелом за «каналы», будто бы построенные обитателями Марса.

Другой участник спора опровергает мысль о существовании органической жизни на Марсе; ссылаясь на соображения, развитые астрономом Антониади и другими, он доказывает, что никаких правильных «каналов» на поверхности Марса не существует и что «каналы» Скиапарелли и Ловела при более тщательном исследовании оказались не правильными тонкими линиями, образующими геометрическую сеть, которая могла быть создана только трудом разумных живых существ, но рядами пятен различной ширины и различной длины, отделённых друг от друга различными расстояниями. Отсюда он делает заключение о том, что на Марсе органическая жизнь не существует.

Рассуждение это также есть пример подмены доказываемого тезиса. Ошибка здесь состоит в том, что опровержение доказательств ошибочно принимается за опровержение самого тезиса.

В спорах по вопросу о происхождении видов растений и животных ошибку подмены доказываемого тезиса постоянно делали — да и теперь делают — противники теории развития в естествознании. Основной тезис дарвинизма по этому вопросу состоит в утверждении, что все виды растений и животных развились естественным путём из одной или нескольких первоначальных форм организмов. Положение это Дарвин и его последователи доказывали, опираясь на факты случайных изменений в организмах, на выживание наиболее приспособленных и на законы наследственности. Противники учения об естественном| происхождении видов не раз пытались опровергнуть это учение, отрицая мысль Дарвина о развитии организмов из случайных изменений, закрепляемых естественным отбором и передаваемых по законам наследственности. При этом они не замечали, что впадают в ошибку подмены доказываемого тезиса. В самом деле, если бы даже оказалось, что указанные Дарвином факты (случайные вариации, естественный отбор, наследственность), отдельно взятые, сами по себе ещё недостаточны для того, чтобы с их помощью объяснить развитие организмов, доказательство их недостаточности для этой цели, разумеется, не есть ещё доказательство несостоятельности тезиса дарвинистов, состоящего в правильном утверждении, что все растительные и животные виды не существовали искони, но возникли и развивались естественным путём из одной или из нескольких первоначальных форм. И здесь доказываемый тезис подменён другим, выдаваемым за тот самый, который должен быть доказан.

§ 43. Иногда подмена доказываемого положения другим, который продолжают принимать или выдавать за доказываемый, заходит так далеко, что даже сама область, из которой почерпнуто положение, заменяющее доказываемый тезис, оказывается совершенно чуждой этому тезису. Такая разновидность подмены доказываемого тезиса называется «переходом в другой род» (буквальный перевод греческого термина «метабазис ейс алло генос»). Например, желая доказать, будто поступок, совершённый данным лицом, безукоризнен в нравственном отношении, вместо того доказывают, что поступок этот чрезвычайно умён. Здесь подмена доказываемого тезиса заходит так далеко, что действительно имеет результатом «переход в другой род»; доказательство ума, проявленного при совершении поступка, принимается за доказательство нравственного достоинства этого поступка.

§ 44. Особенно заслуживает внимания — по своей распространённости — тот вид подмены доказываемого тезиса, при котором доказательство истинности (или ложности) положения подменяется доказательством достоинств или недостатков (например, нравственных) лица, выдвинувшего тезис. В этом случае доказываемый тезис подменяется другим, который так действует на чувства, что склоняет недостаточно строго мыслящего читателя или слушателя согласиться и с тем тезисом, который должен был бы быть доказан, но на деле оказался недоказанным, так как вместо него было доказано другое положение.

Например, вместо того чтобы доказать истинность какой-нибудь теории, доказывают, что автор этой теории —нравственно хороший человек. Этот приём рассчитан на то, что, сославшись на нравственную репутацию автора, расположат тем самым в пользу его теории.

Такая аргументация, подменяющая оценку теории (дела) оценкой автора (лица), получила специальное название «argumentum ad hominem» («доводом о человеке»).

Чем ниже уровень логической культуры и логической дисциплины мышления человека, тем менее способен он отделить доказательную силу доводов от тех чувств, симпатий и предубеждений, которые стараются ему внушить, тем легче может такой человек поддаться действию «argumentum ad hominem».

Поэтому во всякого рода спорах, диспутах, доказательствах и опровержениях не только для участников, но также и для всех присутствующих очень важно сохранять полное самообладание и, прослеживая ход доказательств, не давать своим чувствам увлечь себя настолько, чтобы не заметить подмены доказываемого тезиса другим.

 

Ошибки в основаниях доказательства

§ 45. Ошибки второго вида, возможные в доказательствах, вытекают из ошибок в основаниях. Есть три главные разновидности этих ошибок.

Первая из них состоит в том, что для доказательства известного тезиса используется в качестве основания положение заведомо ложное или такое, ложность которого может быть доказана. Например, исходя из предпосылки, что все металлы тонут в воде и что калий — металл, делают вывод, будто калий тонет в воде. В выводе этом одно из оснований — утверждение, будто все металлы тонут в воде, — есть суждение заведомо ложное, а потому вывод оказывается ошибочным.

Ошибка, состоящая в использовании ложного основания, называется первичной ложью или ложью в исходном положении доказательства.

§ 46. Некоторые частные случаи ошибки ложного основания заслуживают — по своей распространённости — особого внимания. Это, во-первых, ошибка, состоящая в том, что в качестве основания используется положение, которое является истинным только под известным условием или в известном отношении, в доказательстве же это основание рассматривается как истинное вообще, безусловно, безотносительно, без всяких ограничений.

Примером этой ошибки может быть высмеянное Лениным рассуждение экономиста и философа С. Н. Булгакова в его книге «Капитализм и земледелие». Доказывая, будто увеличение числа и площади крупных земледельческих хозяйств означает упадок сельского хозяйства, Булгаков в качестве основания своего доказательства ссылался на то, что в известных условиях уменьшение площади хозяйства приводит к увеличению его продуктивности. «Видите, — писал по этому поводу Ленин, — как замечательно логично рассуждает наш «ученый»: так как уменьшение площади хозяйства означает иногда, при интенсификации, рост производства, поэтому увеличение числа и площади латифундий должно вообще означать упадок!». Полное название этой ошибки — ошибочный вывод от сказанного под известным условием к сказанному безусловно.

§ 47. Другой особый случай ошибки ложного основания состоит в использовании основания, посредством которого может быть доказано не только то положение, какое подлежит доказательству, но и другое — заведомо ложное положение. Будучи ложным, это последнее положение опровергает — посредством reductio ad absurdum — также и доказываемое положение. Например, хотят доказать закон сохранения энергии, опираясь на основание, согласно которому ни при каком изменении не может получиться ни прироста, ни убывания. Но основание это ложно. Согласившись с ним, пришлось бы принять, что понятие прироста и убыли вообще заключает в себе логическое противоречие, т. е. лишено смысла.

Ошибка этого вида называется ошибкой «чрезмерного доказательства». О человеке, впадающем в эту ошибку, говорят:, «кто доказывает слишком много, тот ничего не доказывает».

Обычно источником ошибки чрезмерного доказательства является стремление получить вывод непременно из общих посылок, так как общность эта кажется наиболее внушительной. Но если взятая в столь общем виде посылка оказывается ложной, то ложность её без труда может быть обнаружена ссылкой на противоречащие случаи.

§ 48. В некоторых случаях за ошибку чрезмерного доказательства принимают доказательство, которое на деле этой ошибки не содержит. Таковы доказательства, в результате которых получается обоснование не только тезиса, подлежащего доказательству, но сверх того и некоторого другого тезиса. Например, доказательство теоремы Пифагора, развитое в «Началах» Евклида, доказывает не только то, что квадрат, построенный на гипотенузе, в итоге равняется сумме квадратов, построенных на катетах. Кроме этого положения, в ходе доказательства устанавливается, какую часть общего итога составляет квадрат, построенный на каждом из катетов в отдельности.

Такова первая группа разновидностей ошибки ложного основания. Все ошибки этой группы объединяются одним признаком: во всех доказательствах, где содержатся эти ошибки, основание — заведомо ложное.

§ 49. Вторая группа ошибок в основаниях состоит в использовании такого основания, которое хотя и не является заведомо ложным, однако не может считаться бесспорным и только принимается или выдаётся за бесспорное. Латинское название этой ошибки — «petitio рrіnсіріі», т. е. «предвосхищение основания». Название это показывает, что для подлинного доказательства выдвинутого тезиса требуется другое основание, а не то, которое было предвосхищено в качестве основания, будто бы обосновывающего вывод, но которое на деле его не обосновывает.

Так в начале прошлого века некоторые учёные пытались доказывать, будто такие вещества, как, например, мочевина, не могут быть получены в лаборатории искусственным путём. Ошибка в рассуждениях этих учёных была ошибкой petitio рrіnсіріі: они исходили, как из бесспорного основания, из недоказанного в то время (а впоследствии оказавшегося ложным) положения, будто продукты, вырабатываемые в организмах, не могут быть получены лабораторным способом.

Особый вид ошибки petitio рrіnсіріі образует ошибка, состоящая в том, что утверждение относительно группы предметов, истинное только при условии, если группа эта рассматривается в качестве некоторого целого, выдаётся, без всякой проверки, за основание, истинное относительно каждого из этих предметов в отдельности. Или же, наоборот, относительно группы предметов, рассматриваемой как некоторое целое, без всякой проверки утверждается в качестве истины то, что является истинным лишь относительно каждого из этих предметов в отдельности.

Например, было бы ошибкой, если бы из утверждения «грибы водятся в тенистых местах» мы сделали вывод, будто и гриб шампиньон водится непременно в тенистых местах. Как известно, гриб этот часто попадается и на незатенённых пустырях. Ошибка здесь состоит в том, что утверждение, истинное лишь относительно группы в целом, мы без надлежащей проверку признали истинным также относительно каждого предмета группы.

Обратный пример: одну нитку легко перервать руками. Но было бы ошибкой сделать отсюда вывод, будто сотня ниток, сплетённая в ткань, также легко может быть перервана руками. Ошибка здесь в том, что положение, верное в отношении к единичному предмету группы, принимается за верное также и по отношению к группе в целом.

§ 50. Мы рассмотрели группу ошибок заведомо ложного основания и группу ошибок сомнительного (недоказанного) основания с их главными разновидностями.

Третья группа ошибок в основании состоит в том, что в качестве основания используется положение, которое хотя и было ранее доказано, однако было доказано при помощи того же самого основания. В этом случае положение X доказывается при помощи Y, которое в свою очередь было ранее доказано при помощи положения X. Ошибка эта называется «кругом в доказательстве», по-латыни «circulus in demonstrando».

Круг в доказательстве сразу бросается в глаза, если рассуждение коротко. Но в доказательствах, состоящих из длинных цепей умозаключений, «круг» может легко остаться незамеченным.

Даже самые глубокомысленные философы не замечали иногда ошибки «круга», если доказательство, в котором имелась эта ошибка, было достаточно длинно и если положение, которое обосновывалось этим доказательством, принадлежало к числу тех, доказательство которых считалось особенно важным и желательным.

 

Ошибки в аргументации, посредством которой доказывается тезис

§ 51. Кроме ошибок относительно доказываемого тезиса и кроме ошибок в основании при доказательствах возможен ещё третий вид ошибок: это ошибки в рассуждении или в аргументации, посредством которой совершается переход от оснований к доказываемому тезису или выводу.

Ошибка в аргументации может состоять, во-первых, в том, что доказываемый тезис просто высказывается вслед за выдвинутыми основаниями, но на деле вовсе не вытекает из этих оснований, т. е. не стоит ни в какой логической связи с ними.

Эта ошибка часто встречается в мышлении людей, стоящих на низком уровне умственного развития, или в мышлении людей небрежных, неспособных сосредоточенно следить за логической связью мыслей в рассуждении. Но и на более высоких ступенях развития науки ошибка эта возможна там, где требование строго необходимой логической связи между основаниями и заключением ещё недостаточно определилось. Так история геометрии показывает, что именно наиболее элементарные теоремы этой науки были доказаны античными геометрами с наименьшей точностью, так как в ту пору требование безукоризненно строгой связи между основаниями и выводом не было осознано.

§ 52. Во-вторых, ошибка в аргументации может состоять в том, что доказываемый тезис хотя и не присоединяется к основаниям без всякого к ним отношения, а выводится из оснований, однако выводится из них путём ошибочного умозаключения.

Нет необходимости подробно рассматривать здесь все виды ошибочных умозаключений. Они уже были рассмотрены нами в главах об умозаключении и об индукции. Всякое нарушение известных уже нам и изложенных в этих главах правил силлогизма или методов индукции ведёт к ошибке в рассуждении.

Отметим только, что ошибки в аргументации различаются в зависимости от того, имеем ли мы дело с достоверными выводами (как это имеет место в силлогизмах) или с вероятными выводами (как это имеет место в индуктивных выводах).

Из ошибок в рассуждении, которые возможны в достоверных выводах, часто встречается ошибка «учетверения терминов» (quaternio terminorum). Как известно, ошибка эта заключается в том, что один из терминов силлогизма (чаще всего — хотя не обязательно — средний) только по видимости является одним и тем же, а на деле каждый раз мыслится с несколько иным, нетождественным содержанием.

Ошибка учетверения терминов состоит в нарушении логического закона тождества: появляясь вновь в мышлении, термин мыслится и понимается уже не в прежнем смысле, тождество его нарушается.

Важным средством, помогающим избежать учетверения терминов, является точное определение всех основных понятий, входящих в данное рассуждение или доказательство. Бесплодность многих споров именно в том, что спорящие только воображают, будто имеют в мысли один и тот же предмет. На самом деле, употребляя одни и те же термины, они вкладывают в них каждый несколько иное не тождественное содержание.

§ 53. Одним из самых важных источников ошибки учетверения терминов является неточность языка. В каждом высоко развитом и богатом языке имеется множество омонимов, т. е. одинаковых слов, применяемых для выражения не совсем одинаковых, а часто и вовсе различных мыслей.

Для доказательства не представляют опасности те омонимы, у которых значения явно отличаются между собой, относятся к совершенно различным, удалённым друг от друга областям явлений. Например, термин «склонение» имеет несколько значений: грамматическое (склонение имён по падежам), физическое (смещение магнитной стрелки в зависимости от близости к магнитному полюсу), астрономическое (расстояние светила от небесного экватора). Так как все эти значения слишком различны и слишком очевидно относятся к различным областям реальности и познания, то смещение или отождествление их в одном термине, конечно, невозможно.

Но есть омонимы, у которых значения хотя и различны, однако относятся к одной области явлений. В этих случаях опасность ошибки учетверения терминов значительно возрастает, так как с одним и тем же содержанием связываются по существу различные отношения, ничем не отличаемые в языке. Например, здоровым, согласно основному значению, называют прежде всего тело («здоровое сердце», «здоровая рука»). Но здоровым называют также по отношению к телу и всё то, что поддерживает здоровье тела («здоровый воздух», «здоровое гулянье»), и всё то, чем восстанавливается это здоровье («здоровое лекарство»), и даже всё то, что, не имея никакого прямого влияния на здоровье, является признаком здоровья («здоровый цвет лица»).

Такие омонимы, называемые омонимами отношения, часто бывают источником ошибок учетверения терминов.

§ 54. В случаях, когда причиной учетверения терминов являются омонимы, устранение ошибки достигается путём выяснения различных значений, в каких применяется один и тот же термин. Для этого полезно противопоставлять различные применения слова.

Иногда двусмысленность слова отчётливо выступает при попытке перевести это слово на другой язык, в котором для каждого из различных значений имеется особое слово. Кто, например, переводит на английский язык русское слово «клетка», тот не может не заметить, что в одних случаях слово это означает то, что передаётся посредством английского слова «cage» («клетка для животных»), а в других — посредством слова «chest» («грудная клетка»), в третьих — посредством слова «cell» («клетка в биологическом смысле»). Для того чтобы понимать, в каком смысле это слово применяется в каждом отдельном случае, необходимо внимательно присматриваться к смыслу высказывания в целом или, как говорят, к контексту.

§ 55. Другим источником ошибки учетверения терминов являются синонимы. Так называются различные словесные выражения одной и той же мысли.

Так как формы языка неотделимы от содержания, которое выражается посредством этих форм, то всякая попытка передать одно и то же содержание при помощи различных словесных выражений приводит в конце концов к тому, что передаётся не в точности то же самое значение: какая-то часть передаваемого содержания утрачивается, и, наоборот, к передаваемому содержанию присоединяется какая-то новая, часть, отсутствующая в первоначальном значении.

Это свойство языка и словесных выражений выступает особо ясно при переводах с одного языка на другой. Так, слово «истина» в русском языке выражает свойство истинной мысли говорить о том, что есть, т. е. о том, что существует в действительности. В латинском языке «истина» передаётся словом «veritas», которое выражает свойство истинной мысли говорить о том, что достойно доверия. В греческом языке понятие «истина» передаётся словом «алетейя», которое указывает на свойство истинной мысли говорить о том, что не может быть забыто, или о незабвенном, незабываемом и т. д. Но все эти три значения выражают одно и то же понятие — понятие «истина». Совершенно очевидно, что здесь — не только тождество, но и различие в самом тождестве.

В этом случае источником всякого рода недоразумений, двусмысленностей, учетверения терминов не может быть наличие в словах различных языков всех этих оттенков значения, посредством которых выражается понятие истины. Эти различные оттенки значения в русском, латинском, греческом словах («истина», «veritas», «алетейя») ни в малейшей мере не мешают мыслить посредством этих слов тот же самый предмет, который этими оттенками обозначается, — истину. Источником двусмысленностей и учетверения терминов может быть лишь такое выделение в мысли различий, при котором утрачивается сознание, что различиями этими обозначается один и тот же предмет мысли.

Так обстоит дело со всяким выражением мысли в языке. Ошибочные доказательства, в которые ошибка вкралась непреднамеренно, незаметно для самого доказывающего, называются паралогизмами. Ошибочные доказательства, которые ведутся с сознанием их ошибочности и в которых нарушение правил доказательства совершается намеренно, так как нарушение это ведёт к заключению, в согласии с которым читателей или слушателей заинтересован сам доказывающий, называются софизмами.

Различие между паралогизмами и софизмами, важное с психологической и моральной точек зрения, не имеет никакого значения для логики, так как логическое содержание ошибок в доказательствах совершенно не зависит от того, каким образом — намеренно или ненамеренно — ошибки эти оказались допущенными в ходе доказательства.

§ 56. Если в рассуждениях, входящих в доказательства выводов достоверности, часто встречается ошибка учетверения терминов, то в рассуждениях, входящих в доказательства выводов вероятности, т. е. индуктивных выводов, часто встречается ошибка, состоящая в пренебрежении к случаям, которые противоречат обобщению.

Во многих случаях, сделав на основе подмеченных фактов или случаев известное обобщение, автор обобщения не склонен принимать во внимание, ни тем более искать случаев, противоречащих сделанному им обобщению, которое часто представляется к тому же ценным или желанным.

Ошибка эта чрезвычайно распространена в мышлении. Нет такого суеверия, нет такого предрассудка, для доказательства которых нельзя было бы привести благоприятных этому суеверию или предрассудку фактов. Но факты эти, а вместе с тем и самые доказательства лишены всякой доказательной силы, так как при этом оставляют без внимания другие многочисленные факты, противоречащие выводу.

Существует рассказ, хорошо иллюстрирующий это положение. Одному путешественнику, посетившему приморский город и осматривавшему тамошний собор, показали длинный список лиц, пожертвовавших по обету подарки и вклады в собор в благодарность богу за своё спасение во время кораблекрушения. Путешественник спросил: а где списки тех, которые также дали обет о таком же пожертвовании, но, несмотря на обет, погибли. Путешественник этот правильно вскрыл основную ошибку индуктивного вывода, допущенную в этом случае: игнорирование фактов, противоречащих обобщению.

 

Задачи

Определите логический тип приводимых ниже доказательств. Если в этих доказательствах имеются логические ошибки, укажите, какие именно.

1) Теорема. Если в △АВС углы АВС и АСВ равны, то и стороны АС и АВ, противолежащие этим углам, равны.

 

Рис. 70

Доказательство. Предположим, что стороны АС и АВ не равны. Тогда одна из них, например АВ, будет больше. Отложим на большей стороне АВ, от точки В, отрезок BD = АС и соединим С с D. В △ АВС и △ DCB

BD = AC, ВС есть сторона общая и ∠DВС = ∠АСВ. Следовательно, △ DBС и △ AВС, как имеющие по равному углу, заключённому между равными сторонами, равны между собой. Но DВС есть часть АСВ. Таким образом, выходит, что часть равняется своему целому. Но это невозможно, так как противоречит аксиоме, что целое больше своей части. Из этого следует, что АС и АВ не могут быть неравными. Следовательно АВ = АС.

2) Доказательство существования пустоты:

3) Доказательство того, что питательное вещество растения движется не только по направлению к листу, но и из листа – по ситовидным сосудам вторичной коры.

«Что такое движение должно существовать, очевидно a priori, так как в листе вырабатывается органическое вещество, из которого построены все части растения; что оно действительно существует, наглядно доказывается следующим любопытным опытом. Срежем ивовую ветвь и поставим её в воду. По прошествии нескольких дней или недель вокруг нижнего сечения ветви образуется нарост или наплыв, и из этого наплыва начинают пробиваться корешки. Эти корешки, очевидно, должны были образоваться на счет веществ, полученных из листа или уже находившихся по дороге от него в стебле. Постараемся определить, каким же путём спустились они до вновь образовавшихся корней... Сделаем в одной ветви кольцевую вырезку коры вплоть до камбия... и поместим нашу ветвь в воду на несколько недель. Заметим, что на этот раз корни появятся не в нижней части стебля, а на верхнем краю кольцевой вырезки; очевидно, что, перерезав кору, мы преградили путь питательным веществам, спускавшимся вниз по стеблю. Значит, кольцевая вырезка коры, нисколько не вредящая поднятию сока, идущего из корня, окончательно препятствует соку, идущему в обратном направлении. Значит, сок, идущий из корня, направляется по древесине, сок, идущий из листьев, – по коре. В справедливости этого вывода убеждает и другой опыт. Выберем ветвь какого-нибудь растения, на которой только что начали завязываться плоды, и вырежем кольцо коры в том месте ветви, которое отделяет плоды от ближайших листьев, – плоды перестанут развиваться. Таким образом, кольцевая вырезка коры, разобщающая какой-нибудь орган, будет ли то корень или плод с питающими его листьями, заранее отнимает у этого органа возможность развития. Следовательно, не подлежит сомнению, что питательные вещества, служащие для построения органов, движутся по коре. Но кора, как мы видели, представляет сложное строение; мы различаем в ней первичную и вторичную кору; по которой из этих двух систем движется питательный сок? Делаем вновь опыт с кольцевой вырезкой, но на этот раз осторожно срезываем только наружную часть, первичную кору, стараясь не повредить вторичное, т. е. лубяной части сосудистых пучков. Получаются результаты, как в первом опыте, т. е. корни образуются при основании ветви. Значит, движение совершается по вторичной коре. Попытаемся сделать ещё один шаг – определить, по каким же элементам вторичной коры будет двигаться этот сок. Мы знаем, что их, главным образом, два: лубяные волокна и ситовидные сосуды. Уже одно сравнение форм этих двоякого рода элементов делает вероятным, что это отправление принадлежит последним, так как волокна представляют очень толстые стенки и почти полное отсутствие полости, между тем как ситовидные сосуды представят широкие каналы, сообщающиеся посредством открытых пор, через которые могут проходить не только жидкие и полужидкие вещества, но даже проскользают мелкие крупинки крахмала. Это вероятие превращается в полную достоверность благодаря следующему опыту. Берём ветвь олеандра и проделываем с ней то же, что сделали во втором опыте с ивовой ветвью, т.е. срезаем полное кольцо коры до самого камбия. Получается совершенно неожиданный результат: корни образуются не только на краю вырезки, но и при основании ветви, – значит, питательные вещества проникают туда какими-нибудь иными путями помимо коры. Это кажущееся противоречие вполне выясняется, когда узнаём, что стебель олеандра представляет уклонение от... типического строения ствола. У него, кроме ситовидных сосудов в коре, существуют ещё пучки этих элементов в сердцевине, и они-то, вопреки кольцевой вырезке коры, проводят соки в нижнюю часть стебля. Таким образом, описанные четыре простых опыта с ветвями ивы и олеандра, постоянно, систематически ограничивая круг возможных предположений, наконец, с полною достоверностью указывают нам на ситовидные сосуды, как на те пути, по которым распространяется так называемое пластическое, т. е. служащее для построения новых частей, питательное вещество растения».

4) Доказательство неподвижности земли, развиваемое противником Коперника Симпличио в Диалоге Галилея о двух системах мира:

Коперник придаёт земле сложное, троякое движение. Чтобы звери и человек могли делать разнообразные движения, им даны сочленения. Но если возможны, как в случае земли, сложные движения без сочленений, то зачем природа, не делающая ничего лишнего, дала без нужды животным члены. Но если члены для сложных движений необходимы, то земля – однородное, бесчленное тело, – таких движений иметь не может.

5) Доказательство невозможности всемирного потопа, развитое в фрагментах Леонардо да Винчи:

«В Библии читаем, что названный потоп заключался в 40 днях и 40 ночах всеобщего дождя и что дождь этот поднял воду на шесть локтей выше самой высокой горы мира; и если бы действительно дождь был всеобщим, то он придал бы нашей земле вид сферы, а на сферической поверхности каждая её часть одинаково удалена от центра своей сферы; поэтому, если бы сфера воды находилась в подобном состоянии, то было бы невозможно, чтобы вода на ней двигалась, так как вода сама по себе не движется, если только не опускается; поэтому, как сошла бы вода подобного потопа, если доказано здесь, что у неё не было движения? А если она сошла, как же она двигалась, если не опускалась? Здесь естественные причины отсутствуют, потому необходимо для разрешения таких сомнений призвать на помощь чудо или же сказать, что вода та испарилась от солнечного жара».