Доказательства делятся на виды в зависимости от: 1) цели доказательства, 2) способа доказательства и 3) роли опытных данных как оснований доказательства.
1. РАЗЛИЧИЕ ДОКАЗАТЕЛЬСТВ ПО ЦЕЛИ ДОКАЗАТЕЛЬСТВА
В отношении цели доказательство может быть или доказательством истинности, или доказательством ложности некоторого положения. Доказательство, имеющее целью установление истинности тезиса, называется просто дока- зательством. Доказательство, имеющее целью установление ложности тезиса, называется опровержением.
С логической точки зрения опровержение есть доказательство того, что между опровергаемым положением и другими положениями, о которых известно, что они истинны, существует отношение противоположности. Так как два противоположных суждения не могут быть — согласно закону противоречия — оба сразу истинными, то из истинности суждений, противоположных опровергаемому, необходимо следует ложность опровергаемого положения. С этой точки зрения опровергнуть данное положение— значит найти такие положения, которые были бы противоположны данному и о которых было бы известно, что они истинны.
Такие противоположные опровергаемому и вместе с тем истинные положения могут быть либо суждениями о воспринимаемых или удостоверенных фактах, либо суждениями, доказанными на основании других истинных суждений.
Так, если американская пропаганда силится доказать, будто США стоят за мир, то это лживое утверждение опровергается указанием на факты, противоречащие ему. Такими известными всему миру фактами являются: создаваемые американцами во всех частях света военные базы; отказ правительства США от встречи глав великих держав с целью обсуждения всех спорных вопросов, имеющих значение для ослабления международного напряжения; поддержка правящими кругами США реакционных сил во всех странах; засылка шпионов и диверсантов в страны демократического лагеря и т. д. и т. п. Здесь опровержение достигается путём сопоставления опровергаемого положения с положением об удостоверенных фактах.
Но противоположные опровергаемому истинные положения могут быть не только суждениями, полученными из восприятия или удостоверения фактов. Они могут быть также суждениями, доказанными в качестве истинных на основании других истинных суждений. Так, положение о том, что ко всякой кривой можно провести касательную, опровергается путём сопоставления этого положения с противоречащим ему положением о существовании непрерывных функций, не имеющих производной. Но последнее положение доказывается на основании ряда других истинных положений.
Следует заметить, что опровержение того или иного суждения не зависит от того, будет ли противопоставляемое ему противоположное истинное суждение противоречащим или противным (контрарным). Так, положение о том, что «ни одно растение не питается животными», опровергается противопоставлением ему истинного положения о существовании растений, которые питаются или насекомыми, или рачками, личинками комаров, инфузориями и т. д. Здесь ложность опровергаемого общего суждения выводится из истинности противоречащего ему частного суждения.
Напротив, положение естествоиспытателей-метафизиков, что «ни один вид не изменяется и не переходит в другой», оказалось опровергнутым, когда было доказано, что «все виды изменяются и способны переходить в другие виды». Здесь ложность опровергаемого общего суждения выводится из доказанной истинности противного общего суждения.
Возможность опровержения ложного суждения путём противопоставления ему не только истинного противоречащего, но также и истинного противного (контрарного) суждения — вполне понятна. Опровержение, как мы уже знаем, состоит в выводе о ложности опровергаемого суждения из истинности некоторого другого суждения. Но возможность заключения от истинности данного суждения к ложности противоположного ему суждения не зависит от вида противоположности. Заключение это основывается на законе противоречия, а этот закон распространяется и на противоречащую и на противную противоположности.
Опровержение — часто применяемый вид доказательства. И в практической жизни и в науке, поставленной на службу жизни, поиски истины неотделимы от опровержения заблуждения. Истина пускает корни только в почву, очищенную от лжи и заблуждения. История науки в бесчисленных случаях доказывает, что условием движения науки вперёд является непримиримая борьба с тем, что противоположно истине, т. е. устранение заблуждения. Наука, подлинная, передовая наука, не отделяющая себя от народа, работающая на благо народа, несовместима ни с каким заблуждением ни в какой области знания. Разумеется, для полного искоренения заблуждения одного лишь противопоставления истины заблуждению недостаточно. Жизненным основанием и корнем заблуждения в классовом обществе часто оказывается практический интерес реакционных классов. Именно реакционный классовый интерес побуждает ныне буржуазных деятелей науки извращать истину и насаждать заблуждение. В противоположность этому рабочий класс всегда заинтересован в установлении истины и искоренении заблуждения.
Но как бы ни была велика роль практического интереса в деле устранения заблуждения, без теоретического разоблачения лжи борьба истины против заблуждения не только не может быть завершена, но даже не может быть и начата. Необходимым логическим средством и условием этой борьбы является опровержение.
2. РАЗЛИЧИЕ ДОКАЗАТЕЛЬСТВ ПО СПОСОБУ ДОКАЗАТЕЛЬСТВА
По способу доказательства каждое доказательство бывает или прямое, или косвенное.
Прямое доказательство ведёт через рассмотрение оснований и через рассмотрение выводов, опирающихся на основания, к усмотрению истинности доказываемого тезиса. Схема этого вида доказательства: из данных оснований (а, b...) необходимо следуют положения (k, l...); из этих последних необходимо следует доказываемый тезис p. Так как все основания доказательства (а, b...)— истинны и так как логическая связь, ведущая от (а, b...) через (k, l...) к положению p, — правильная, то доказываемый тезис p — истинен.
Прямое доказательство устанавливает истинность доказываемого тезиса посредством исследования самого доказываемого тезиса. Исследование это выясняет, что так как доказываемый тезис необходимо следует из некоторых положений и так как положения эти истинны, то доказываемый тезис также будет истинным.
Косвенное доказательство устанавливает истинность доказываемого тезиса, исследуя не самый доказываемый тезис, а некоторые другие положения. Эти положения так связаны с доказываемым тезисом, что из установления их ложности необходимо вытекает истинность доказываемого тезиса. Поэтому в косвенном доказательстве задача состоит в выяснении ложности положений, обусловливающей истинность доказываемого тезиса.
Косвенное доказательство бывает или разделительным, или апагогическим.
В разделительном косвенном доказательстве доказываемый тезис рассматривается как одно из некоторого числа предположений, в своей сумме исчерпывающих все возможные по данному вопросу предположения. Доказательство состоит в том, что все эти предположения опровергаются, кроме одного, которое и есть доказываемый тезис. Тем самым доказывается, что этот тезис, как единственное из всех возможных предположений, которое осталось неопровергнутым, должен быть истинным.
Если, например, установлено, что имело место преступление, которое непосредственно могли совершить только лица А, В, С и D, и если, кроме того, установлено, что ни В, ни С, ни D непосредственно не совершили его, то тем самым доказано, что преступление непосредственно совершило лицо А.
Условием логической безупречности разделительного доказательства является полнота перечисления и, соответственно, полнота исследования всех возможных по данному вопросу предположений. Только при этом условии опровержение всех рассмотренных предположений, кроме одного, означает необходимую истинность этого последнего оставшегося неопровергнутым предположения. Так, возвращаясь к рассмотренному примеру, необходимо заметить, что виновность А в непосредственном совершении раскрытого преступления необходимо вытекает из опровергнутой виновности В, С и D лишь при условии, если установлено, что только А, В, С и D могли непосредственно совершить данное преступление. Но если бы оказалось, что по обстоятельствам данного случая преступление могло быть непосредственно совершено также и лицом Е, то опровержение виновности В, С и D, разумеется, ещё не доказало бы виновности А, так как виновным может оказаться Е.
В математических науках разделительное доказательство применяется очень часто, так как в этих науках особенно легко достижимо исчерпывающее перечисление всех видов данного рода или всех предположений, возможных в исследуемом случае.
В науках нематематических применение разделительной формы доказательства обусловлено возможностью исчерпывающего перечисления всех возможных положений, одним из которых является доказываемый тезис. В этих науках часто невозможно заранее перечислить и учесть все эти положения. В таких случаях, если пренебречь тем, что не имеется необходимых условий для строгого разделительного доказательства, легко возникает ошибка необоснованного заключения, которое может оказаться ложным. Но даже если бы выведенное заключение случайно оказалось соответствующим действительности, истинность его осталась бы в данном случае недоказанной.
Апагогическое косвенное доказательство устанавливает истинность доказываемого тезиса посредством опровержения противоречащего ему положения. Из ложности последнего следует — на основании закона исключённого третьего — истинность доказываемого тезиса. В математических науках апагогическое доказательство принимает особую форму, называемую обычно «доказательством от противного». Название это, общепринятое в математике. не точно, так как в этих доказательствах истинность доказываемого тезиса выводится из ложности не противного, а противоречащего ему тезиса.
Косвенное апагогическое доказательство имеет две части. Сначала при помощи особого приёма доказывается ложность тезиса не-p, противоречащего доказываемому тезису р. А именно: предполагают, что тезис не-р, противоречащий доказываемому, — истинен. Этот противоречащий тезис (не-p) вводится в число оснований доказательства (а, b, с, d), о которых известно, что они истинны. Затем из получившихся таким образом оснований (а, b, с, d..., не-p) развивают ряд необходимо следующих из них выводов. Выводы эти развивают до тех пор, пока не получится какое-нибудь заключение, противоречащее одному из оснований, например основанию а. Так как два противоречащих друг другу положения не могут быть — по закону противоречия — оба сразу истинными, и так как известно, что положение а — истинно, то заключение не-a необходимо должно быть ложно. Итак, развивая выводы из принятых оснований, мы получили ложное заключение не-a. Но заключение не-a может быть ложно или оттого, что ложно какое-нибудь из оснований, на которые опирается не-а, или оттого, что логическая связь между основаниями (а, b, с, d..., не-p) и заключением (не-а) — неправильная. Так как в нашем случае логическая связь (по предположению) — правильная, и так как известно, что все основания, кроме не-р,— истинны, то ложным должно быть положение не-р.
Такова первая часть, или стадия, косвенного апагогического доказательства. Эта первая стадия выявляет ложность сделанного вначале предположения об истинности тезиса, противоречащего доказываемому. Поэтому первая часть косвенного доказательства называется reductio (deductio) ad absurdum, т. e. «приведение к нелепости».
Вторая стадия косвенного апагогического доказательства очень краткая. Предположенный истинным тезис не-p оказался ложным. Но тезис этот— противоречащий по отношению к доказываемому. На основании закона исключённого третьего из ложности суждения необходимо следует истинность противоречащего ему суждения. Поэтому из установленной ложности не-p необходимо следует истинность р, т. е. истинность того самого положения, которое должно было быть доказано.
Такова схема косвенного, апагогического доказательства.
Примером такого доказательства может быть доказательство известного правила первой фигуры простого категорического силлогизма. Согласно этому правилу, меньшая посылка первой фигуры должна быть утвердительной. Доказывается это следующим образом.
Предположим, что меньшая посылка первой фигуры может быть отрицательной, т. е. предположим, что истинен тезис, противоречащий доказываемому. Все остальные условия и правила первой фигуры, доказанные теорией силлогизма в качестве истинных, оставим в силе и, присоединив к ним предположение, будто меньшая посылка может быть отрицательной, посмотрим, какие выводы последуют из всех этих положений.
Если меньшая посылка (S—М) — отрицательная, то, согласно общим правилам силлогизма, заключение (S—Р) также будет отрицательное. Как известно из правил распределённости терминов, в отрицательном суждении предикат всегда распределён. Но предикат заключения является большим термином силлогизма. Согласно общим правилам силлогизма, если больший термин (Р) распределён в заключении, то он должен быть распределённым и в большей посылке. Но в этой посылке больший термин, будучи её предикатом, может быть распределённым только в том случае, если она отрицательна.
Однако (по предположению) меньшая посылка (S—М) тоже отрицательная. Так как, согласно общим правилам силлогизма, отрицательной может быть только одна посылка, то заключение об отрицательности большей посылки — ложно.
Обнаружившаяся ложность заключения может быть обусловлена либо логической ошибкой в выводе, либо ложностью оснований. Однако в данном случае вывод сделан правильно. С другой стороны, все основания, кроме предположения об отрицательности меньшей посылки, представляют собой заведомо истинные и строго доказанные логические правила теории суждения и силлогизма. Отсюда следует, что сделанное вначале предположение об отрицательности меньшей посылки — ложно. А так как ложное предположение об отрицательности меньшей посылки противоречит положению о её положительности, то, согласно закону исключённого третьего, из доказанной ложности предположения об отрицательности меньшей посылки необходимо следует её утвердительность.
Опровержения, так же как и простые доказательства истинности тезиса, могут быть как прямыми, так и косвенными.
Условием прямого опровержения является доказательство истинности положения, противоположного опровергаемому тезису. Из истинности положения, противоположного опровергаемому тезису, на основании закона противоречия следует ложность самого опровергаемого тезиса. При этом истинное положение, противопоставляемое опровергаемому, может быть как противоречащим, так и противным. И действительно: заключение от истинности противопоставляемого положения к ложности опровергаемого делается на основании закона противоречия, который относится не только к противоречащим, но и к противным суждениям.
Если опровергаемое прямым способом положение — общее, то для опровержения его достаточно доказать истинность противоположного ему частного положения. Так, чтобы убедиться в ложности общего суждения о том, что все славянские языки имеют формы склонения имён, достаточно узнать об отсутствии форм склонения, например в именах болгарского языка. Так как противоположность здесь — противоречащая, то из истинности частного будет следовать необходимая ложность общего.
Но если опровергаемое прямым способом положение — частное, то для опровержения его уже недостаточно установить истинность противостоящего ему частного положения. Такая противопоставленность, будучи подпротивной, не допускает применения закона противоречия, а потому, доказав истинность частного положения, противостоящего опровергаемому, мы ещё не получим права заключать о ложности опровергаемого положения — тоже частного. Так, желая доказать ложность частного суждения «некоторые языки являются надстройкой над базисом», мы не можем удовлетвориться доказательством того, что «некоторые языки не являются надстройкой над базисом». Доказательство истинности этого частного положения не позволяет сделать заключение о ложности противостоящего ему частного положения: как подпротивные, оба суждения могут оказаться истинными. В этом случае для доказательства прямым способом ложности частного положения необходимо доказать истинность противоречащего ему общего положения, другими словами, доказать, что «ни один язык не является надстройкой».
Но опровержение может быть и косвенным. Оно совершается посредством уже известного нам приёма «приведения к нелепости» (reductio ad absurdum). Получение нелепого заключения путём вывода, все основания которого, кроме одного, заведомо истинны, и есть косвенное опровержение, т. е. косвенное доказательство посредством закона противоречия ложности того единственного основания, относительно которого не было известно, истинно оно или ложно, и которое только предполагалось истинным.
3. РАЗЛИЧИЕ ДОКАЗАТЕЛЬСТВ ПО РОЛИ ОПЫТНЫХ ДАННЫХ КАК ОСНОВАНИЙ ДОКАЗАТЕЛЬСТВА
Во всех науках и во всех научных доказательствах все понятия, которые входят в состав доказательства, ведут своё происхождение в конечном счёте из материальной практики, из опыта. В этом отношении не составляют исключения и доказательства математических наук. Правда, понятия, которыми пользуется математик, отвлекаются от целого ряда свойств, принадлежащих предметам этих понятий. Математический круг, куб, шар и т. д. не существуют в опыте в том виде, в каком их мыслит ум геометра. И всё же даже самые отвлечённые понятия математики возникли в конечном счёте из опыта и на основе опыта. Это справедливо и относительно математических определений и относительно аксиом, т. е. недоказываемых положений, принадлежащих к начальным основаниям всего математического знания. Какими бы далёкими от опыта, а иногда даже противоречащими опыту ни казались эти определения и аксиомы,— все они в конце концов являются продуктами отвлечения от известных сторон опыта и не могли сложиться в мысли иначе, как на основе опыта.
Идеалисты отрицают опытное происхождение математических понятий. При этом они опираются на то, что математика мыслит свои предметы — линии, поверхности, тела и т. д.— такими, какими они в точности никогда не бывают в действительности. Математическая линия, например, имеет лишь длину, но не имеет ни ширины, ни высоты, математическое тело есть лишь замкнутая математическими поверхностями часть пространства, мыслимая независимо от наполняющего пространство вещества, и т. д. Опираясь на эту отвлечённость современных математических понятий, идеалисты утверждают, будто понятия эти не могут иметь своим источником опыт и потому являются априорными, т. е. внеопытными и доопытными.
Так, идеалист Кант утверждает, будто «настоящие математические положения всегда суть априорные, а не эмпирические суждения, потому что они обладают необходимостью, которая не может быть заимствована из опыта».
И точно так же идеалист-неокантианец Эрнст Кассирер утверждает, будто тенденция современной науки «всё более и более ведёт к тому, что устраняются «данные» элементы, как таковые, и им не уделяется никакого влияния на общую форму хода доказательства». «Всякое понятие и всякое положение, которое употребляется в ходе доказательства и не служит просто для целей наглядности, должно быть обосновано строго и выведено целиком из законов конструктивной связи».
Выражаясь проще, математическое понятие есть, согласно взгляду идеалистов, не порождение опыта, а порождение (или построение, «конструкция») ума, отливающееся в априорные формы мысли и возникающее по априорным законам мышления.
Учение идеализма о внеопытном и доопытном характере математических понятий совершенно ошибочно. Несостоятельность этого учения была доказана Энгельсом в «Анти-Дюринге». Исходя из того же самого факта — крайней обобщённости и отвлечённости математических понятий,— на котором идеализм всегда строил свою философию математики, Энгельс показал, что правильным объяснением этого факта может быть только материалистическое. «Понятие фигуры, как и понятие числа,— разъяснял Энгельс,— заимствовано исключительно из внешнего мира, а не возникло вовсе в голове из чистого мышления. Раньше чем люди могли прийти к понятию фигуры, должны были существовать вещи, которые имели форму и формы которых сравнивали. Чистая математика имеет своим предметом пространственные формы и количественные отношения действительного мира, т. е. весьма реальное содержание. Тот факт, что это содержание проявляется в крайне абстрактной форме, может лишь слабо затушевать его происхождение из внешнего мира. Чтобы изучить эти формы и отношения в их чистом виде, следует их оторвать совершенно от их содержания, устранить его как нечто безразличное для дела. Так получаются точки без протяжения, линии без толщины и ширины, а и Ь, х и у, постоянные и переменные. ..Точно так же выведение математических величин как будто бы друг из друга доказывает не их априорное происхождение, но только их рациональную связь. Прежде чем пришли к мысли выводить форму цилиндра из вращения прямоугольника вокруг одной из его сторон, нужно было исследовать не мало реальных прямоугольников и цилиндров, хотя бы и в весьма несовершенной форме... как и во всех областях мышления, отвлеченные от действительного мира законы на известной ступени развития отрываются от действительного мира, противопоставляются ему как нечто самостоятельное, как явившиеся извне законы, по которым должен направляться мир... так, а не иначе, применяется впоследствии чистая математика к миру, хотя она и заимствована из этого мира и представляет только часть его составных форм несобственно, только поэтому она вообще применима к нему».
Так обстоит дело с понятиями, определениями и аксиомами математики. Сложнее обстоит дело с доказательствами. Во всех науках, кроме математических, доказательство всегда непосредственно связано с опытом. Это значит, что кроме той связи с опытом, без которой вообще не могло бы существовать никакое понятие, никакая аксиома, в науках этих в состав доказательства всегда входят такие части и такие данные, которые прямо предполагают обращение к опыту: к наблюдению, эксперименту и т. д.
Напротив, в математических науках доказательства (если рассматривать одну логическую их сторону, а не происхождение понятий, входящих в состав доказательств) всегда ведутся таким образом, что в ходе доказательства математику не приходится прямо обращаться к опыту, помимо тех обобщений опыта, которые уже содержатся в его понятиях, определениях и аксиомах. Иными словами, опыт входит в математические доказательства не непосредственно, как он входит в доказательства физика, химика, биолога, но лишь посредством понятий, которые образуются на основе опыта, но в своём содержании являются отвлечёнными по отношению к этому опыту.
Это различие между науками математическими и науками эмпирическими, т. е. доказывающими свои положения при участии прямого обращения к опыту, порождает различие в видах доказательства.
Доказательства математических наук, не требующие привлечения прямых данных опыта в самом ходе доказательства и опирающиеся на опыт лишь через посредство тех обобщений опыта, которые содержатся в основных понятиях, определениях и аксиомах этих наук, называются математическими доказательствами.
Доказательства наук, необходимо требующие привлечения прямых данных опыта в самом ходе доказательства и, таким образом, не ограничивающиеся теми обобщениями опыта, которые содержатся в их основных понятиях, называются эмпирическими доказательствами.
Из этих определений и объяснений ясно, что различие между двумя рассматриваемыми видами доказательства состоит вовсе не в том, что доказательства математических наук стоят якобы вне опыта, а доказательства эмпирических наук основываются на опыте. Все доказательства всех наук — математических так же, как и эмпирических,— предполагают опыт в качестве необходимой и последней основы и в качестве критерия истинности всех своих положений.
Различие между этими двумя видами доказательства обусловлено только тем, что в одном случае самим ходом доказательства требуется прямое обращение к данным опыта, в другом же для осуществления доказательства достаточно той связи с опытом, которая дана уже в содержании понятий, входящих в состав доказательства. Из сказанного видно, что различие между математическими и эмпирическими доказательствами — не безусловно. Об этом свидетельствует также и следующее. Ряд наук о природе, доказывающих свои истины при помощи прямого обращения копыту, содержит в себе и такие части, в которых доказательства ведутся по методу математических наук. С другой стороны, и в математических науках математической форме доказательства часто предшествует обоснование, предполагающее прямое обращение к опыту, так что математическая форма доказательства вырабатывается впоследствии уже после того, как истинность доказываемого тезиса стала известной из опыта. Примером такого перехода от найденного в опыте результата к его математическому и дедуктивному по форме обоснованию может быть история определения Архимедом площади параболы.