10.1. Предпосылки появления новых подходов к использованию информационных технологий при подготовке производства и изготовлении изделий в машиностроении
10.2. Основные преимущества CALS (ИПИ) – технологий
10.3 Особенности построения единого информационного пространства предприятия
10.4. Методы реализации CALS
10.5. Этапы внедрения CALS-технологий на предприятии
10.1. Предпосылки появления новых подходов к использованию информационных технологий при подготовке производства и изготовлении изделий в машиностроении
Основной формой представления результатов интеллектуальной деятельности людей и инструментом их информационного взаимодействия до последнего времени оставалась бумажная документация. Ее созданием были заняты миллионы инженеров, техников, экономистов и других служащих на промышленных предприятиях, в государственных учреждениях, коммерческих структурах. С появлением компьютеров начали создаваться и широко внедрялись разнообразные средства и системы автоматизации выпуска бумажной документации: системы автоматизированного проектирования (САПР) – для разработки чертежей, спецификаций, технологической документации; системы автоматизированного управления производством (АСУП) – для создания планов производства и отчетов о его ходе; офисные системы и системы по автоматизации документооборота – для подготовки текстовых и табличных документов и организации технологии их использования.
Однако в последние годы стало ясно, что все эти достаточно дорогостоящие средства не оправдывают возлагающихся на них надежд: разумеется, некоторое повышение производительности труда происходит, однако не в тех масштабах, которые прогнозировались. Дело в том, что они не решают наиболее важных проблем информационного обмена между различными участниками жизненного цикла изделия (заказчиками, разработчиками, производителями, эксплуатационниками и т. д.). При переносе данных из одной автоматизированной системы в другую требуются большие затраты труда и времени для повторной кодировки, что приводит к многочисленным ошибкам. Оказалось, что разные системы «говорят на разных языках» и плохо понимают друг друга. Более того, выяснилось, что бумажная документация и способы представления информации на ней ограничивают возможности использования современного высокопроизводительного технологического оборудования с ЧПУ. Так, трехмерная модель изделия, создаваемая в современной САПР, вообще не может быть адекватно представлена на бумаге.
С другой стороны, по мере усложнения изделий происходит резкий рост объемов технической документации. Сегодня эти объемы измеряются тысячами и десятками тысяч листов, а по некоторым изделиям (например, самолетам, кораблям, атомным реакторам) – тоннами. При использовании бумажной документации возникают значительные трудности при поиске необходимых сведений, внесении изменений в конструкцию и технологию изготовления изделий. Возникает множество ошибок, на устранение которых затрачивается много времени. В результате резко снижается эффективность процессов разработки, производства, эксплуатации, обслуживания, ремонта сложных наукоемких изделий. Все более усложняется взаимодействие заказчиков и производителей как при подготовке, так и при реализации контрактов на поставки сложной техники, а также последующего обслуживания и ремонта.
Анализ мирового рынка наукоемких промышленных изделий показывает, что он определяется тремя основными тенденциями:
1) постоянным повышением сложности и наукоемкости изделий;
2) повышением конкуренции на рынке;
3) развитием кооперации между участниками жизненного цикла (ЖЦ) изделия (в том числе путем создания «виртуальных предприятий»).
Основной проблемой, по мнению ученых и специалистов, стоящей сейчас перед отечественной промышленностью, является повышение конкурентоспособности выпускаемых изделий с учетом перечисленных тенденций. Добиться повышения конкурентоспособности изделия, главным образом, можно путем:
повышения степени удовлетворения требований заказчика;
сокращения сроков создания изделия;
сокращения материальных затрат на создание изделия.
При этом основным способом повышения конкурентоспособности изделия является повышение эффективности процессов его ЖЦ, т. е. повышение эффективности управления ресурсами, используемыми при его создании. В настоящее время существует большое количество методик, предназначенных для повышения эффективности управления ресурсами разного типа: материальными, финансовыми, кадровыми или информационными.
Для преодоления этих трудностей потребовались новые концепции и новые идеи. Среди них главной стала идея информационной интеграции стадий жизненного цикла продукции (изделия), которая и легла в основу CALS-технологии.
Концептуальная модель CALS
В основу новой концепции CALS, принципиально отличающей ее от других, положены инвариантные понятия, которые реализуются (полностью или частично) в течение жизненного цикла (ЖЦ) изделия (рис. 10.1).
Рис. 10.1. Концептуальная модель CALS [19]
Эти инвариантные понятия условно делятся на три группы [19]:
базовые принципы CALS;
базовые управленческие технологии;
базовые технологии управления данными.
К числу первых относятся:
системная информационная поддержка ЖЦ изделия на основе использования интегрированной информационной среды (ИИС), обеспечивающая минимизацию затрат в ходе ЖЦ;
информационная интеграция за счет стандартизации информационного описания объектов управления;
разделение программ и данных на основе стандартизации структур данных и интерфейсов доступа к ним, ориентация на готовые коммерческие программно-технические решения (Commercial Of The Shelf – COTS), соответствующие требованиям стандартов;
безбумажное представление информации, использование электронно-цифровой подписи;
параллельный инжиниринг (Concurrent Engineering);
непрерывное совершенствование бизнес-процессов (Business Processes Reengineering).
К числу вторых относятся технологии управления процессами, инвариантные по отношению к объекту (продукции):
управление проектами и заданиями (Project Management/Workflow Management);
управление ресурсами (Manufacturing Resource Planning);
управление качеством (Quality Management);
интегрированная логическая поддержка (Integrated Logistic Support).
К числу третьих относятся технологии управления данными об изделии, процессах, ресурсах и среде.
Наиболее важной составляющей CALS-технологии является реализация в ней интегрированной информационной среды (ИИС), представляющей совокупность распределенных баз данных, содержащих сведения об изделиях, производственной среде, ресурсах и процессах предприятия, обеспечивающая корректность, актуальность, сохранность и доступность данных тем субъектам производственно-хозяйственной деятельности, участвующим в осуществлении ЖЦ изделия, кому это необходимо и разрешено. Все сведения (данные) в ИИС хранятся в виде информационных объектов.
ИИС в соответствии с концепцией CALS представляет собой модульную систему, в которой реализуются следующие базовые принципы:
прикладные программные средства отделены от данных;
структуры данных и интерфейс доступа к ним стандартизированы;
данные об изделии, процессах и ресурсах не дублируются, число ошибок в них минимизируется, обеспечивается полнота и целостность информации;
прикладные средства работы с данными представляют собой, как правило, типовые коммерческие решения различных производителей, что обеспечивает возможность дальнейшего развития ИИС.
Термин CALS (Continuous Acquisition and Lifecycle Support – непрерывная информационная поддержка поставок и жизненного цикла) означает совокупность принципов и технологий информационной поддержки жизненного цикла продукции на всех его стадиях. Русскоязычный аналог понятия термина CALS – Информационная Поддержка жизненного цикла Изделий (ИПИ). В последнее время за рубежом наряду с CALS используется также термин Product Lifecycle Management (PLM) – управление жизненным циклом продукта [19].
Цель внедрения CALS (ИПИ) – технологий – минимизация затрат в ходе жизненного цикла изделия, повышение его качества и конкурентоспособности.
Основная идея нового подхода состоит в отказе от «бумажной среды», в которой осуществляется традиционный документооборот, и переходе к интегрированной информационной среде, охватывающей все стадии жизненного цикла изделия. Информационная интеграция заключается в том, что все автоматизированные системы, применяемые на различных стадиях жизненного цикла, оперируют не традиционными документами и даже не их электронными отображениями (например, отсканированными чертежами), а формализованными информационными моделями, описывающими изделие, технологии его производства и использования. Эти модели существуют в интегрированной информационной среде в специфической форме информационных объектов. Системы, которым для их работы нужны те или иные информационные объекты, по мере необходимости могут извлекать их из интегрированной информационной среды, обрабатывать, создавая новые объекты, и помещать результаты своей работы в ту же интегрированную информационную среду. Чтобы все это было возможно, информационные модели и соответствующие информационные объекты должны быть стандартизованы.
Интегрированная информационная среда (ИИС) представляет собой совокупность распределенных баз данных, в которой действуют единые, стандартные правила хранения, обновления, поиска и передачи информации, через которую осуществляется безбумажное информационное взаимодействие между всеми участниками жизненного цикла изделия. При этом однажды созданная информация хранится в интегрированной информационной среде, не дублируется, не требует каких-либо перекодировок в процессе обмена, сохраняет актуальность и целостность.
Революционность нового подхода состоит в том, что многие поколения конструкторов, технологов, производственников воспитаны на основе совершенно другой системы, базирующейся на сотнях стандартов ЕСКДИ, ЕСТД, детально регламентирующих ведение дел с использованием бумажной документации. В условиях применения CALS эта система должна претерпеть коренные изменения, учитывающие следующие особенности [19]:
появляются принципиально новые средства инженерного труда; полностью изменяется организация и технология инженерных работ;
должна быть существенно изменена, то есть дополнена и частично переработана, нормативная база;
тысячи специалистов должны быть переучены для работы в новых условиях и с новыми средствами труда.
Для подготовки и осуществления этой революции, сулящей многократное повышение эффективности процессов жизненного цикла изделий, необходимо выполнить комплекс организационных, научно-исследовательских, проектных и иных работ, направленных на создание новой культуры инженерной деятельности.
10.2. Основные преимущества CALS (ИПИ) – технологий
Технологии, стандарты и программно-технические средства CALS обеспечивают эффективный и экономичный обмен электронными данными и безбумажными электронными документами, что дает следующие преимущества:
возможность параллельного выполнения сложных проектов несколькими рабочими группами (параллельный инжиниринг), что существенно сокращает время разработок;
планирование и управление многими предприятиями, участвующими в жизненном цикле продукции, расширение и совершенствование кооперационных связей (электронный бизнес);
резкое сокращение количества ошибок и исправлений, что приводит к сокращению сроков реализации проектов и существенному повышению качества продукции;
развитие средств и технологий информационной поддержки на послепродажной стадии жизненного цикла – интегрированная логистическая поддержка изделий.
На экономические показатели предприятий, применяющих CALS-технологии, непосредственно влияют следующие факторы:
сокращение затрат и трудоемкости процессов технической подготовки и освоения производства новых изделий;
сокращение сроков вывода на рынок новых конкурентоспособных изделий;
сокращение брака и затрат, связанных с внесением изменений в конструкцию;
увеличение объемов продаж изделий, снабженных электронной технической документацией (в частности, эксплуатационной), составленной в соответствии с требованиями международных стандартов;
сокращение затрат на эксплуатацию, обслуживание и ремонт изделий ("затрат на владение"), которые для сложной наукоемкой продукции подчас равны или превышают затраты на ее закупку.
Вот некоторые количественные оценки эффективности внедрения CALS в промышленности США, имеющей более чем 15-летний опыт их использования [19]:
прямое сокращение затрат на проектирование от 10 до 30 %;
сокращение времени разработки изделий от 40 до 60 %;
сокращение времени вывода новых изделий на рынок от 25 до 75 %;
сокращение доли брака и объема конструктивных изменений от 20 до 70 %.
сокращение затрат на подготовку технической документации до 40 %;
сокращение затрат на разработку эксплуатационной документации до 30 %.
Стратегия CALS
Путь реализации концепции CALS содержится в стратегии CALS, предполагающей создание единого информационного пространства (ЕИП) для всех участников ЖЦ изделия, отличающегося следующими свойствами:
Вся информация представляется в электронном виде.
ЕИП охватывает всю информацию о создаваемом изделии.
ЕИП является единственным источником данных об изделии (прямой обмен данными между участниками ЖЦ исключен).
ЕИП строится только на основе международных, государственных и отраслевых информационных стандартов.
Для создания ЕИП используются программно-аппаратные средства, уже имеющиеся у участников ЖЦ.
ЕИП постоянно развивается.
Стратегия CALS предусматривает двухэтапный план создания ЕИП:
1. Автоматизация отдельных процессов (или этапов) ЖЦ изделия и представление данных о них в электронном виде.
2. Интеграция автоматизированных процессов и относящихся к ним данных, уже представленных в электронном виде, в рамках ЕИП.
Основными преимуществами ЕИП являются:
– обеспечение целостности данных;
– возможность организации доступа к данным географически удаленных участников ЖЦ изделия;
– отсутствие потерь данных при переходе между этапами ЖЦ изделия;
– изменения данных, доступных сразу всем участникам ЖЦ изделия;
– повышение скорости поиска данных и доступа к ним по сравнению с бумажной документацией;
– возможность использования различных компьютерных систем для работы с данными.
ЕИП может быть создано для организационных структур разного уровня: от отдельного подразделения до виртуального предприятия или корпорации. При этом различается и эффект, получаемый от создания ЕИП.
10.3. Особенности построения единого информационного пространства предприятия (ЕИП)
Информацию, циркулирующую в системе информационной поддержки ЖЦ машиностроительного изделия и определяющую состав ЕИП, можно условно разделить на три класса:
– данные о продукции (изделии);
– данные о ресурсах;
– данные о выполняемых процессах.
Под изделием (конечным продуктом) понимается комбинация материалов, предметов, программных и иных компонентов, готовых к использованию по назначению. Компоненты конечного изделия в свою очередь являются изделиями. Данные об изделии составляют основной объем информации в ЕИП. На разных стадиях ЖЦ требуются различные подмножества из всей совокупности данных об изделии, отличающиеся составом и объемом информации. В целом информация об изделии включает [19]:
1) данные о составе и структуре изделия, используемых материалах и комплектующих изделиях с указанием возможных альтернатив и их взаимозаменяемости;
2) данные, определяющие состав возможных конфигураций изделия в зависимости от внешних требований и условий, а также данные об отличиях конкретных экземпляров изделий (партий изделий);
3) данные о технических, физических и других характеристиках изделия;
4) классификационные и идентификационные данные об изделии и его компонентах, в том числе его наименование, обозначение, классификационные коды, данные о поставщиках, сведения, касающиеся степени конфиденциальности информации об изделии и его компонентах;
5) геометрические данные, представленные в форме объемных геометрических моделей изделия, сборочных единиц и отдельных деталей, электронных (векторных) и сканированных бумажных (растровых) чертежей;
6) текстовую документацию;
7) сведения об имеющихся версиях структуры изделия, документов, моделей и чертежей и их статусе;
8) данные о разработчиках;
9) указания и требования, касающиеся финишной обработки и качества поверхностей готового изделия;
10) данные о качестве изделий;
11) данные об эксплуатации изделия.
Приведенный перечень не является полным и может быть расширен.
Многие из перечисленных типов данных требуют для своего представления сложных специфических информационных моделей, учитывающих семантику данных и правила работы с ними. Так, группы международных стандартов ИСО 10303 и ИСО 15384, включающие более 100 ГОСТов, регламентируют технологию представления данных об изделии и его компонентах на стадии проектирования и подготовки производства, стандарты ИЛП [DEF STAN 0060] – представление данных об изделии в контексте обеспечения эффективной эксплуатации, стандарты серии ИСО 9000 рассматривают данные о качестве изделий.
Ресурс – это совокупность материальных, финансовых, интеллектуальных или иных ценностей, используемых и расходуемых в ходе деятельности, связанной с разработкой, проектированием, производством или эксплуатацией изделия. Ресурсы, используемые в проекте, могут иметь различную природу, свойства и характеристики. Некоторые классификационные характеристики ресурсов приведены в табл. 10.1.
Между ресурсами могут существовать отношения заменяемости, когда один ресурс может заменить другой, и взаимозаменяемости, когда ресурсы могут заменять друг друга. Ресурсы могут быть простыми и составными и, соответственно, образовывать иерархические структуры.
Таблица 10.1
Классификационные характеристики ресурсов [19]
Структуры данных, описывающих ресурсы различного типа, регламентируются стандартом ИСО 15551.
Процесс (бизнес-процесс) – это совокупность последовательно или/и параллельно выполняемых операций, преобразующая материальный или/и информационный потоки в соответствующие потоки с другими свойствами. Бизнес-процесс протекает в соответствии с управляющими директивами, вырабатываемыми на основе целей деятельности. В ходе процесса потребляются финансовые, энергетические, трудовые и материальные ресурсы и соблюдаются ограничения со стороны других процессов и внешней среды.
Описание процесса может быть представлено как совокупность составляющих процесс операций, необходимых условий и ресурсов, входных и выходных потоков. Совокупность стандартизованных информационных моделей изделия, процессов и ресурсов образует единую интегрированную модель, обеспечивающую информационную поддержку задач, выполняемых в ходе ЖЦ.
На каждой стадии ЖЦ требуется свой объем данных, определяемый содержанием решаемых задач (рис. 10.2). Совокупность этих данных можно трактовать как контекстные информационные модели изделия, процессов и ресурсов, соответствующие стадиям ЖЦ изделия.
Рис. 10.2. Информационные модели изделия, процессов и ресурсов [19]
Можно выделить две основные проблемы, стоящие на пути повышения эффективности управления информацией. Во-первых, с увеличением сложности изделий и применением для их разработки современных компьютерных систем значительно увеличивается объем данных об изделии. При этом прежние методы работы с данными уже не позволяют обеспечивать их точность, целостность и актуальность при сохранении приемлемых временных и материальных затрат. Во-вторых, увеличение количества участников проекта по разработке изделия (особенно в случае виртуального предприятия) приводит к возникновению серьезных проблем при обмене информацией между участниками из-за наличия между ними коммуникационных барьеров (например, из-за несовместимости компьютерных систем). Все это требует создания принципиально новых подходов к организации технической подготовки производства и его управлению.
10.4. Методы реализации CALS
При реализации стратегии CALS используются три группы методов, называемых CALS-технологиями [19]:
I. Технологии анализа и реинжиниринга бизнес-процессов – набор организационных методов реструктуризации способа функционирования предприятия с целью повышения его эффективности. Эти технологии нужны для того, чтобы корректно перейти от бумажного к электронному документообороту и внедрить новые методы разработки изделия.
II. Технологии представления данных об изделии в электронном виде – набор методов для представления в электронном виде данных об изделии, относящихся к отдельным процессам ЖЦ изделия. Они предназначены для автоматизации отдельных процессов ЖЦ (первый этап создания ЕИП).
III. Технологии интеграции данных об изделии – набор методов для интеграции автоматизированных процессов ЖЦ и относящихся к ним данных, представленных в электронном виде, в рамках ЕИП.
При автоматизации отдельных процессов ЖЦ изделия используются существующие прикладные программные средства (САПР, АСУП и т. п.), однако к ним предъявляется новые требования – наличие стандартного интерфейса к представляемым ими данным. При интеграции всех данных об изделии в рамках ЕИП применяются специализированные программные средства – системы управления данными об изделии (PDM – Product Data Management). Задачей PDM-системы является аккумулирование всей информации об изделии, создаваемой прикладными системами, в единую логическую модель. Процесс взаимодействия ΡDM-системы и прикладных систем строится на основе стандартных интерфейсов. Стандартные интерфейсы взаимодействия компьютерных систем можно разделить на четыре группы:
Функциональные стандарты. Задают организационную процедуру взаимодействия компьютерных систем, например IDEF0.
Стандарты на программную архитектуру. Задают архитектуру программных систем, необходимую для организации их взаимодействия без участия человека, например CORBA.
Информационные стандарты. Задают модель данных об изделии, используемую всеми участниками ЖЦ.
Коммуникационные стандарты. Задают способ физической передачи данных по локальным и глобальным сетям, например Internet-стандарты.
Поскольку потребитель тоже является полноправным участником ЖЦ изделия, необходимо обеспечение для него доступа в ЕИП. Однако использование с этой целью PDM-системы нецелесообразно в силу ее большой стоимости и значительного срока внедрения и освоения. К тому же, если потребитель эксплуатирует изделия от разных поставщиков, ему приходится иметь дело с разными ЕИП и, соответственно, разными PDM-системами.
Учитывая это, а также то, что потребителю необходимы только эксплуатационные данные об изделии, в качестве средства доступа к ЕИП он будет использовать не PDM-систему, а интерактивные электронные технические руководства (ИЭТР).
ИЭТР должно разрабатываться поставщиком, обеспечивать доступ потребителя к эксплуатационной информации об изделии в ЕИП. Для этого может быть рекомендован стандартный интерфейс пользователя (например, согласно MIL-M-87268), что позволяет сотрудникам эксплуатирующей организации одновременно обслуживать изделия от разных поставщиков. Последнее особенно актуально для производителей и пользователей наукоемкой техники в военной сфере (авиа-, судо-, ракетостроения и других видов вооружения).
10.5. Этапы внедрения CALS-технологий на предприятии
Для внедрения CALS-технологий на предприятии должны быть выполнены следующие этапы [19].
Формирование рабочей группы . Рабочая группа должна включать как сотрудников производственных отделов предприятия (конструкторов, технологов и т. п.), так и специалистов отдела автоматизации (программистов и системных аналитиков). Все сотрудники рабочей группы должны пройти обучение по соответствующим CALS-технологиям и программным продуктам. Для сохранения преемственности решений необходимо иметь рабочую группу с постоянным составом в течение всего процесса внедрения CALS-технологий.
Анализ существующих бизнес-процессов и информационного обеспечения на предприятии . Цель анализа – выявить существующее взаимодействие между бизнес-процессами и оценить их рациональность и эффективность. С этой целью с использованием CALS-технологий разрабатываются функциональные модели, содержащие детальное описание выполняющихся процессов в их взаимосвязи. Формат описания регламентирован стандартом IDEF0. Полученная функциональная модель позволяет решать целый ряд задач, связанных с оптимизацией, оценкой величины и распределения затрат, оценкой производительности, загрузки и сбалансированности составных частей, обеспечить применение ABC-метода (Activity Based Costing). Формирование концепции информационной интеграции и внедрения PDM-системы на предприятии включает выбор показателей оценки эффективности процессов, формирование целей внедрения CALS-технологий и стратегии их достижения. Основными показателями являются конкурентоспособность (или качество) продукции, затраты и длительность процессов разработки и освоения производства изделия.
Реинжиниринг бизнес-процессов . Реинжиниринг бизнес-процессов производственного предприятия должен быть направлен на внедрение следующих организационных методов разработки изделия:
– создания условий параллельного проектирования;
– формирования единого информационного пространства;
– подготовки и организации взаимодействия междисциплинарных групп специалистов.
Выбор и приобретение PDM-системы и технических средств . Системы управления данными об изделии в настоящее время достаточно широко реализованы и представлены на российском рынке. Поэтому перед каждым предприятием будет стоять задача, какую систему выбрать и как ее применять для решения конкретных задач. В любом случае предприятие должно осознавать, что оно приобретает не просто компьютерную программу, но целый пакет услуг, поэтому необходимо учитывать не только качества самой PDM-системы, но и способность ее производителя (или дилера) обеспечить ее сопровождение, модернизацию и адаптацию к потребностям предприятия. Задача выбора и приобретения технических средств (компьютеров и сетевого оборудования) тесно связана с задачей выбора PDM-системы. Конкретные программные продукты отличаются набором реализуемых ими функций PDM-системы. В качестве примера одной из таких систем может быть названа система ЛОЦМАН: PLM, разработанная российской фирмой АСКОН. Основные функции этой системы – управление инженерными данными и жизненным циклом изделия, а также ведение электронного архива.
Разработка стандартов предприятия . Разработка комплекса нормативной документации, регламентирующей порядок ввода и изменения информации об изделии в PDM-систему на основе международных, государственных и отраслевых стандартов, необходима для организационного обеспечения внедрения PDM-системы.
Интеграция PDM-системы с существующими и внедряемыми системами и ее адаптация к условиям предприятия . Для создания на предприятии ЕИП необходимо интегрировать PDM-систему с уже существующими компьютерными системами. Кроме того, при внедрении понадобится учесть специфические условия функционирования предприятия. Средствами интеграции и адаптации PDM-системы являются:
– прикладные модули АСУП и САПР, оперирующие данными в PDM-системе;
– прикладные модули PDM-системы (расширение функций);
– конверторы PDM-АСУП, PDM-САПР и т. д.
Наполнение PDM информацией о ранее разработанных изделиях . Для эффективного использования накопленного предприятием производственного опыта требуются значительные затраты на перевод существующей документации о разработанных изделиях в стандартное представление и занесение ее в хранилище данных интегрированной информационной системы с использованием средств адаптации.
Пример проекта общей сметы затрат на внедрение типовой структуры CALS-технологий на среднем машиностроительном предприятии представлен в табл. 10.2.
Таблица 10.2
Пример проекта сметы затрат на внедрение CALS-технологий на машиностроительном предприятии в (у.е.)
Применяемые CALS-технологии в России
Россия существенно отстает от ведущих промышленно развитых стран в области внедрения современных информационных технологий (ИТ), в том числе технологий CALS. Это отставание чревато далеко идущими негативными последствиями, прежде всего, высокой вероятностью резкого сокращения экспортного потенциала российских производителей наукоемкой продукции вплоть до полного вытеснения их с международного рынка, что может, по мнению зарубежных экспертов, произойти к 2005–2008 году [17].
Мировой рынок полностью отторгнет продукцию, не снабженную электронной документацией и не обладающую средствами интегрированной логистической поддержки постпроизводственных стадий жизненного цикла. Уже сегодня многие иностранные заказчики отечественной продукции выдвигают требования, удовлетворение которых невозможно без внедрения CALS-технологий:
– представление конструкторской и технологической документации в электронной форме;
– представление эксплуатационной и ремонтной документации в форме интерактивных электронных технических руководств, снабженных иллюстрированными электронными каталогами запасных частей и вспомогательных материалов и средствами дистанционного заказа запчастей и материалов;
– организация интегрированной логистической поддержки изделий на постпроизводственных стадиях их жизненного цикла;
– наличие и функционирование электронной системы каталогизации продукции;
– наличие на предприятиях соответствующих требованиям стандартов ИСО 9000:2000 систем менеджмента качества и т. д.
Выполнение этих требований, наряду с необходимостью повышения эффективности производства, оснащаемого современным технологическим оборудованием, предопределяет необходимость внедрения на отечественных предприятиях CALS-технологий в полном объеме.
В настоящее время CALS-технологии в сочетании с CAD-CAM-CAE-системами включены постановлением правительства РФ в состав критических технологий для их разработки и внедрения на промышленных предприятиях. Особенно это актуально для предприятий оборонного комплекса и предприятий, выпускающих наукоемкую продукцию, требующую использования высоких технологий как при подготовке производства, так и при изготовлении изделий.
Ниже приведен перечень промышленных предприятий Российской Федерации, наиболее активно использующих или разрабатывающих CALS-технологии, показывающий те сферы, где в первую очередь они находят применение.