Медицинская микробиология, иммунология и вирусология

Бабичев Сергей Анатольевич

Коротяев Александр Иванович

Часть вторая

ГЕНЕТИКА БАКТЕРИЙ

 

 

Глава 9

Некоторые общие понятия о генетической системе

 

Существование генов как дискретных единиц наследственности было установлено в 1865 г. Г. Менделем, а в 1869 г. Ф. Мишер впервые выделил ДНК. Однако прошло около 80 лет, прежде чем было установлено, что носителем генов является не белок, а ДНК. Это было сделано в опытах с пневмококками. В 1928 г. Ф. Гриффитс впервые осуществил трансформацию (превращение) невирулентных пневмококков в вирулентные. Он заразил белых мышей смесью живых, но не образующих капсул невирулентных пневмококков с убитыми капсульными вирулентными пневмококками. В организме мышей бескапсульные пневмококки превратились в капсульные, вызвали их заболевание и смерть. Механизм такой трансформации оставался неясным в течение 16 лет. В 1944 г. О. Эйвери, К. Мак-Леод и М. Мак-Карти осуществили трансформацию бескапсульных пневмококков в капсульные in vitro. Они добавили к культуре бескапсульных пневмококков ДНК, выделенную из капсульных пневмококков, в результате чего бескапсульные превратились в капсульные и стали вирулентными для мышей. Так впервые убедительно было доказано, что носителем единиц наследственности (генов) является ДНК. Через 9 лет после этого, в 1953 г., Ф. Крик и Дж. Уотсон определили структуру гена, основанную на двойной спирали ДНК. Это открытие позволило понять, каким образом ген выполняет свои три фундаментальные функции: 1) непрерывность наследственности – благодаря полуконсервативному механизму репликации ДНК; 2) управление структурами и функциями организма – с помощью генетического кода, использующего запас всего из четырех букв (оснований): А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин); 3) эволюцию организмов – благодаря мутациям и генетическим рекомбинациям. Работами Ф. Крика, M. Ниренберга, С. Очоа и Х. Кораны к 1966 г. генетический код был полностью расшифрован. Он характеризуется следующими основными свойствами:

1. Код триплетный. Это означает, что кодон (функциональная единица, кодирующая аминокислоту) состоит из трех букв (оснований).

2. Код неперекрывающийся, т. е. соседние кодоны представлены отдельными самостоятельными триплетами.

3. Код вырожденный, т. е. каждая аминокислота кодируется более чем одним кодоном.

4. Число триплетов, которые не кодируют ни одной аминокислоты, т. е. «бессмысленных», мало – всего три из 64.

5. Последовательность расположения кодонов в гене определяет последовательность расположения аминокислотных остатков в полипептидной цепи, кодируемой данным геном.

6. Код универсален, т. е. все живые существа используют один и тот же код для записи генетической информации. Это служит прямым доказательством единства происхождения живой материи. Полный словарь РНК-аминокислотного кода представлен на рис. 41.

Рис. 41. Генетический код

Одновременно с расшифровкой генетического кода происходило и изучение механизмов, с помощью которых осуществляется реализация генетической информации, заключенной в генах. Было обнаружено, что биосинтез белка осуществляется на особых структурах – рибосомах, а информация к ним от генов поступает через особых посредников – матричные РНК (мРНК), расположение кодонов в которых и несет программу сборки аминокислот в полипептидную цепь. Было установлено также, что хромосома состоит из особых функциональных единиц – оперонов, и в общих чертах были выяснены механизмы, с помощью которых регулируется их работа. В результате всех этих исследований стало очевидным, что генетическая система обладает уникальными свойствами, во многом обусловленными двунитевой структурой молекулы ДНК. Эти свойства заключаются в способности генетической системы к: 1) самоудвоению с помощью механизма саморепликации; 2) самовыражению (экспрессии) с помощью регулируемого синтеза мРНК; 3) самообновлению с помощью мутаций, рекомбинаций и транспонируемых элементов; 4) самозащите (самоисправлению) с помощью механизмов ревизии, репарации, супрессии и др.

Примечательно, что все эти функции контролируются специальными собственными генами соответствующей генетической системы. Исключительное значение, которое принадлежит генам в происхождении и эволюции жизни, диктует необходимость дать этому понятию определение.

В узком и специальном понимании ген представляет собой структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи. Но это определение не очень точно, так как существуют гены не только ДНКовые, но и РНКовые. Кроме того, некоторые гены вирусов и эукариот состоят из экзонов (кодирующих участков) и интронов (нетранслируемых участков). Например, сборка полных генов иммуноглобулинов и рецепторов Т-лимфоцитов происходит в результате сложной внутригенной рекомбинации в эмбриональном периоде. Кроме того, в одном и том же фрагменте ДНК может быть по крайней мере два гена с разными рамками считывания. Следовательно, структура гена сложнее, чем ранее предполагалось. Он не всегда является строго ограниченным и пространственно фиксированным участком хромосомы. Так называемые транспонируемые генетические элементы способны в интактной форме перемещаться из одного генома в другой. Наконец, для функционирования структурных генов требуется участие особых регуляторных генетических элементов – регуляторов, операторов, промоторов и т. п. Однако гены – это структуры, свойственные только живой материи. Поэтому в определении понятия гена следует исходить из той фундаментальной роли, которую он играет в живой материи.

Ген представляет собой универсальную организующую структурную единицу живой материи, которая, благодаря содержащейся в ней закодированной информации, обеспечивает единство и многообразие всех форм существования жизни, ее непрерывность и эволюцию. Ген является единственным носителем и хранителем жизни, а его продукт – белок – определяет способ и форму существования жизни (А. И. Коротяев). Любой объект природы, имеющий набор собственных генов, следует рассматривать как живой организм. В связи с этим главным критерием, отличающим живое от неживого, является наличие у живого собственной генетической системы. Именно она обусловливает ту целесообразность поведения живых существ, которая отличает их от неживых систем. С этих позиций жизнь можно определить как форму существования всех объектов природы, обладающих собственными геномами, которые и определяют многообразие организмов, их наследственность и эволюцию (А. И. Коротяев). В основе единства и многообразия форм жизни лежит единство генетического кода и многообразие геномов живых существ. Под генетической системой понимают совокупность всех генов данного живого существа, характеризующуюся определенным уровнем структурной организации и особенностями экспрессии, т. е. реализации заложенной в генах информации. В соответствии с этим можно выделить следующие основные этапы эволюции генетической системы: кодон → ген → оперон → геном вирусов и плазмид → хромосома прокариот (нуклеоид) → хромосомы эукариот (ядро).

Очень часто, говоря о генетической системе, употребляют термин «геном». Под геномом понимают всю совокупность нуклеотидов, содержащихся в хромосоме или в наборе хромосом данного индивидуума. Объем генома у представителей различных царств жизни очень сильно варьирует. Именно от объема генома, который определяет возможное количество генов, и зависит степень сложности структурной организации данного индивидуума и, соответственно, уровень и характер проявления им своей жизни.

Под генотипом понимают всю совокупность имеющихся у данного существа индивидуальных генов. У плазмид, вирусов и бактерий бQольшая часть нуклеотидов ДНК входит в состав генов, поэтому размеры геномов у них выражают либо в молекулярной массе соответствующей геномной нуклеиновой кислоты, либо в количестве нуклеотидных пар, содержащихся в геномной нуклеиновой кислоте, либо в количестве имеющихся у них генов. Все эти значения сопоставимы, так как в среднем каждый ген состоит примерно из 1000 пар нуклеотидов, а вес одного нуклеотида ДНК составляет около 500 дальтон. Например, геном вируса гепатита В представлен двунитевой ДНК с м. м. 1,6 МД. Этот вирус имеет самое маленькое число генов среди возбудителей заболеваний человека. Его геном состоит всего из четырех генов (S, C, P и X). Геном вируса – возбудителя СПИДа представлен двумя идентичными молекулами РНК, которые состоят из 9213 нуклеотидов, образующих 9 генов. Геном бактериофага φХ174 состоит из 9 генов, у бактериофага Т4 – из 200 генов, у F-плазмиды – из 90 генов (94,5 тысяч пар нуклеотидов); у хламидий – из 400 – 600 генов, у риккетсий – из 1000 генов. Хромосома E. coli имеет молекулярную массу 2,8 ⋅ 109 дальтон и содержит около 4,3 тысяч генов.

ДНК большинства растений и животных состоит из нескольких миллиардов пар нуклеотидов. Отличительная черта их геномов состоит в наличии в составе хромосомной ДНК помимо кодирующих последовательностей структурных генов некодирующих последовательностей и большого объема так называемых повторяющихся последовательностей нуклеотидов. На долю повторяющихся последовательностей, функция которых не известна, приходится от 10 до 70 % всего генома; у млекопитающих эта доля составляет в среднем 30 – 50 %.

Общий объем ДНК (генома) варьирует у разных ветвей эукариот. Геном человека составляет около 3 ⋅ 109 нуклеотидных пар (н. п.). Этого количества достаточно для образования 3,0 ⋅ 106 генов. В действительности же, согласно последним данным, генотип человека содержит около 30 000 – 35 000 генов, многие их которых уже картированы. Следовательно, понятия «геном» и «генотип» не равнозначны.

Под фенотипом данного индивидуума понимают всю совокупность реализованных у него генетически детерминированных признаков, т. е. индивидуальное проявление генотипа. При изменении условий существования фенотип (например, у бактерий) изменяется при сохранении генотипа.

 

Особенности генетики бактерий

Генетическая система бактерий имеет по крайней мере четыре особенности, присущие только этим организмам:

1. Хромосомы бактерий (и соответственно плазмид) располагаются свободно в цитоплазме, не отграничены от нее никакими мембранами, но связаны с определенными рецепторами на цитоплазматической мембране. Поскольку длина хромосомы (у E. coli около 1,6 мм) во много раз превышает длину бактериальной клетки (1,5 – 3,0 мкм в среднем), хромосома особым компактным образом в ней упакована: молекула хромосомной ДНК находится в суперспирализованной форме и свернута в виде петель, число которых составляет 12 – 80 на хромосому. Петли в центре нуклеоида объединяются за счет связывания ДНК с сердцевинной структурой, представленной молекулами особого класса РНК – 4,5S РНК. Такая упорядоченная упаковка обеспечивает постоянную транскрипцию отдельных оперонов хромосомы и не препятствует ее репликации. Возможно, что петли упакованной хромосомы способствуют компартментализации рибосом.

2. Хотя бактерии являются гаплоидными организмами, т. е. имеют один набор генов, содержание ДНК у них непостоянно, оно может при благоприятных условиях достигать значений, эквивалентных по массе 2, 4, 6 и даже 8 хромосомам. У всех прочих живых существ содержание ДНК постоянное, и оно удваивается (кроме вирусов и плазмид) перед делением.

3. У бактерий в естественных условиях передача генетической информации происходит не только по вертикали, т. е. от родительской клетки дочерним, но и по горизонтали с помощью различных механизмов: конъюгации, сексдукции, трансдукции, трансформации.

4. У бактерий очень часто помимо хромосомного генома имеется дополнительный плазмидный геном, наделяющий их важными биологическими свойствами, нередко – специфическим (приобретенным) иммунитетом к различным антибиотикам и другим химиопрепаратам.

Содержание ДНК у бактерий зависит от условий их роста: при благоприятных условиях оно возрастает до величин, соответствующих массе нескольких хромосом. Это уникальное свойство бактериального генома. Биологическое значение его состоит в том, что, регулируя содержание копий своих генов (а оно будет определяться количеством копий синтезируемых хромосом), бактерии одновременно приспосабливают скорость своего размножения к условиям роста. Наряду с увеличением содержания ДНК у бактерий в этом случае существенно возрастает и количество рибосом. Благодаря этому создаются необходимые условия для транскрипции и трансляции (а у бактерий они происходят одновременно) нескольких копий генов одновременно, возрастает суммарная скорость биосинтеза всех субклеточных и клеточных структур и соответственно скорость размножения бактерий. Время клеточного цикла бактерий сокращается от нескольких часов до 20 – 30 мин. Скорость размножения определяет возможность накопления в окружающей среде большого запаса клеток данного вида. Это и является причиной существования бактерий в природе многие миллионы лет. Возможность регулировать скорость собственного размножения – одно из главных условий, обеспечивающих выживание бактерий в окружающей среде, а следовательно, и сохранение вида в природе.

 

Особенности репликации бактериальной ДНК

У бактерий различают следующие типы репликации ДНК: вегетативную, конъюгативную, репаративную и стабильную. Вегетативная репликация хромосомной и плазмидной ДНК обусловливает передачу генетической информации по вертикали, т. е. по наследству – от родительской клетки дочерним. Она контролируется соответственно хромосомными и плазмидными генами. Конъюгативная репликация осуществляется при конъюгативном способе обмена генетическим материалом и контролируется только плазмидными генами. При конъюгативной репликации происходит достройка нити ДНК, комплементарной нити, передаваемой от донора реципиенту. Репаративная репликация является механизмом, посредством которого осуществляется устранение из ДНК структурных повреждений или заключительный этап генетической рекомбинации. Эти процессы контролируются хромосомными и плазмидными генами. Стабильная репликация так названа потому, что происходит независимо от наличия или отсутствия синтеза белка.

Вегететивная репликация. Репликация ДНК у бактерий начинается со строго фиксированного сайта хромосомы – оriC. Он включает в себя участки с так называемыми ДНК-боксами и расположенными между ними короткими последовательностями. Оба элемента примыкают к гену dnaA. У B. sublilis на oriC расположено 15 ДНК-боксов, с которыми связывается продукт гена dnaA. Это и служит сигналом для действия ДНК-хеликазы. Репликация имеет полуконсервативный характер, идет одновременно в двух направлениях и заканчивается также в строго фиксированной точке – terminus. Поскольку цепи ДНК антипараллельны (если одна нить начинается с 5'-конца, другая – с 3'-конца), а ДНК-полимераза III осуществляет синтез ДНК только в направлении 5' → 3', репликация происходит своеобразно (рис. 42): на одной из расплетенных нитей – «прямой», или лидерной, или ведущей, – она идет непрерывно, а на другой – отстающей – ДНК-полимераза III должна возвращаться, чтобы наращивать нить тоже в направлении 5' → 3', прерывисто, через образование сегментов Оказаки, длиной у бактерий около 1000 нуклеотидов (у эукариот – около 200 – 300 нуклеотидов).

Синтез каждого сегмента Оказаки происходит последовательно через следующие стадии (рис. 43):

1. Раскручивание нитей ДНК.

2. Расплетение (разделение нитей).

3. Стабилизация однонитевых участков.

Рис. 42. Схематическое изображение репликации ДНК прерывистой (отстающей) и непрерывной (ведущей) цепей

4. Формирование праймосомы. Праймосома – мультиферментный комплекс, в который входят фермент ДНК-праймаза и ряд других белков.

5. Синтез с участием ДНК-праймазы (англ. prime – подготавливать) затравочной РНК. Затравочная РНК необходима для синтеза каждого сегмента Оказаки потому, что сама ДНК-полимераза не способна инициировать синтез ДНК, для этого ей нужна специальная затравка, роль которой и выполняют короткие, длиной не более 10 нуклеотидов, фрагменты РНК, комплементарные ДНК-матрице.

6. Синтез сегмента Оказаки.

7. Вырезание затравочной РНК и замещение ее дезоксирибонуклеотидами, комплементарными основаниям ДНК-матрицы.

8. Сшивание сегмента Оказаки с предсуществующей нитью ДНК с помощью лигазы.

9. Суперспирализация вновь синтезированных участков нитей ДНК.

10. Ревизия ДНК-полимеразой вновь синтезированного фрагмента ДНК – нет ли ошибочного включения нуклеотидов.

Если произошла ошибка, то ошибочно включенный нуклеотид с частью этой нити вырезается и образовавшаяся брешь заполняется правильными нуклеотидами. Благодаря такой ревизии процент ошибок при репликации ДНК не превышает 1 ⋅ 10– 9.

Скорость репликации ДНК у E. coli при температуре 37 °C соответствует включению 2 ⋅ 103 пар нуклеотидов в 1 с. Участок хромосомы, в котором происходит разделение нитей и начинается репликация, имеет форму вилки, последовательно продвигающейся вдоль хромосомы. При благоприятных для роста бактерий условиях, когда еще не закончился один цикл репликации, могут возникать вторичные и третичные репликативные вилки, благодаря чему в клетке и происходит увеличение массы ДНК и числа копий хромосом.

Рис. 43. Схематическое изображение состава и функционирования компонентов репликативного комплекса

В осуществлении процессов репликации ДНК участвует целый комплекс ферментов, образующих единую структуру – реплисому. Наиболее важные из них указаны на рис. 43. Генетический контроль репликации ДНК осуществляется большим количеством генов (у E. coli не менее 25), локализованных в самой ДНК; это процесс саморегулируемый. Комплекс генов обеспечивает строгую временну́ю и пространственную координацию функционирования ферментов, участвующих в репликации.

 

Глава 10

Особенности регуляции выражения генетической информации у бактерий

В отличие от вегетативной репликации, цель которой – обеспечить передачу по наследству всех генов и которая происходит последовательно от начала до конца хромосомы, выражение генетической информации, т. е. работа генов, подчиняется другой цели, а именно – осуществлению за короткий срок жизненного цикла клетки. Поскольку он включает в себя множество биохимических реакций, сопряженных между собой, это предполагает хорошо согласованную во времени работу генов. Такая их согласованность возможна лишь при определенном жестком и четком управлении ими. Действительно, как было давно установлено, основной структурнофункциональной единицей хромосомы является оперон. Он представляет собой группу структурных генов-цистронов, физически сцепленных друг с другом и с геном-оператором, который управляет их выражением. В состав оперона, как правило, входят структурные цистроны, определяющие синтез ферментов, которые участвуют в цикле связанных между собой биохимических реакций. Ген-оператор управляет одновременно всей группой структурных генов, которые образуют оперон, иначе говоря, оперон функционирует как самостоятельная единица. В свою очередь, оперон или их группа находится под управлением одного гена-регулятора. Так возникает более сложная структурно-функциональная единица – регулон. Регулон представляет собой систему, состоящую из гена-регулятора и одного или нескольких оперонов, находящихся под контролем одного гена-регулятора.

Важным структурным элементом оперона является промQотор – область, с которой взаимодействует РНК-полимераза. В составе оперонов могут быть и различные другие регуляторные элементы – энхансеры, аттенуаторы, терминаторы и т. п.

Энхансер (англ. enhance – усиливать) – генетический элемент, усиливающий транскрипцию оперона.

Аттенуатор (англ. attenuate – разрежать, разбавлять) – генетический элемент, ослабляющий работу оперона. Аттенуатор – последовательность нуклеотидов, расположенная между промоторным операторным участком оперона и его первым структурным опероном; она кодирует лидерную РНК, ее длина около 150 пар нуклеотидов.

Терминатор (англ. terminate – заканчивать) – особый участок в структуре аттенуатора (лидерной последовательности), от которого зависит образование участка мРНК, блокирующего синтез лидерной РНК перед началом первого структурного гена соответствующего оперона.

Очень важным для понимания того, как регулируется выражение генетической информации, содержащейся в хромосоме, является вопрос о том, в какой последовательности работает оперон. До 1960-х гг. предполагали, что транскрипция сопряжена с репликацией, поскольку для той и другой необходимо разделение нитей. В соответствии с этой моделью транскрипция начиналась из той же точки, что и репликация, и осуществлялась последовательно вдоль всей ДНК. В 1969 г. А. И. Коротяевым было постулировано и обосновано положение о том, что репликация и транскрипция идут независимо друг от друга, поскольку скорости их не сопоставимы, и поэтому каждый оперон имеет равную возможность для своего выражения в ходе жизненного цикла клетки – гипотеза равновероятностного выражения оперонов. Образно говоря, хромосому клетки можно сравнить с пианино. В хромосоме гены располагаются последовательно один за другим, контролируя разные реакции. У пианино клавиши располагаются также последовательно – в соответствии с нотами и октавами. Законченное музыкальное произведение создается не путем последовательного извлечения звуков вдоль клавиатуры, а путем их избирательной композиции. Выбор композиции – это и есть произведение. Точно так же для того, чтобы в клетке осуществлялось такое сочетание биохимических процессов, которое бы приводило к образованию законченных продуктов-белков, необходим правильный выбор соответствующих генов, ибо совокупность биохимических реакций, ведущих к синтезу необходимого продукта (продуктов), – это и есть законченное произведение «генетического пианино». Партитура этих произведений написана эволюцией живой материи.

Классическим примером организации и работы оперона служит модель лактозного оперона. Лактоза – дисахарид, она состоит из галактозы и глюкозы, соединенных β-галактозидной связью. Поэтому фермент, разрушающий эти связи, получил название β-галактозидазы. Лактозный оперон (рис. 44) содержит гены, которые контролируют синтез ферментов, участвующих в превращении лактозы: β-галактозидазу (z), галактозидпермеазу (y) и тиогалактозидтрансацетилазу (a). Ген-оператор (о) управляет одновременно выражением всей группы этих генов. В его составе содержится промотор (р), с которым взаимодействует РНК-полимераза. Лактозный оперон содержит 5500 нуклеотидных пар, в том числе: область о + р – 50 нуклеотидных пар; цистрон z – 3700 нуклеотидных пар; цистрон y – 900 нуклеотидных пар; цистрон a – 900 нуклеотидных пар.

Рис. 44. Схема функционирования lac-оперона:

1 – работа оперона блокирована репрессором; 2 – оперон активно работает, молекулы репрессора инактивированы индуктором

Работа оперона находится под негативным контролем гена-регулятора (i), который контролирует синтез белка-репрессора. Белок-репрессор имеет м. м. около 150 – 200 кД. Он состоит из четырех субъединиц, имеющих м. м. 38 кД. Репрессор имеет два активных участка: с одним из них взаимодействует индуктор (лактоза или ее структурный аналог), а с помощью другого он прикрепляется к оператору. В отсутствие лактозы белок-репрессор связывается с оператором и блокирует выражение этого оперона. Когда в среде появляется лактоза, она связывается со вторым активным участком репрессора, это приводит к изменению его конформации по типу аллостерического эффекта, и он становится неактивным, репрессия оперона снимается, происходит активный синтез ферментов.

Негативный контроль работы лактозного оперона хорошо объясняет сущность феномена индукции: нет индуктора – оперон молчит, его работа заблокирована. Появился индуктор – оперон разблокирован и активно работает.

В основе другого феномена – феномена репрессии – лежит тот же принцип регуляции. Однако в репрессируемой системе ген-регулятор контролирует синтез апорепрессора, т. е. неактивного репрессора. Апорепрессор также имеет два активных центра: один – для взаимодействия с метаболитом (корепрессором), а другой – для специфического связывания с геном-оператором. Апорепрессор становится активным и подавляет работу оперона лишь после взаимодействия с соответствующим корепрессором (метаболитом).

Типичным примером репрессируемой системы является система синтеза ферментов пути образования триптофана у E. coli (рис. 45). В отсутствие триптофана апорепрессор неактивен и не блокирует работы триптофанового оперона. При избыточном содержании триптофана в среде, в которой размножается E. coli, он, выполняя роль корепрессора, связывается с апорепрессором и вызывает его аллостерическое превращение в активный репрессор. Последний связывается с геном-оператором, что и приводит к прекращению дальнейшей транскрипции структурных цистронов этого оперона и подавлению синтеза ферментов. Особенностью триптофанового оперона является наличие в нем между промоторно-операторным участком и его первым структурным цистроном особой последовательности приблизительно из 150 пар нуклеотидов, получившей название лидерной последовательности, или аттенуатора. Роль аттенуатора состоит в регуляции активности РНК-полимеразы. Суть феномена аттенуации заключается в том, что даже при незначительном избытке триптофана в клетке транскрипция оперона большинством молекул РНК-полимераз преждевременно обрывается в области аттенуатора (его терминатора). По мере же снижения концентрации триптофана все больше и больше молекул РНК-полимераз «проскакивают» этот участок и становятся способными транскрибировать весь оперон. Наоборот, при большом избытке триптофана его молекулы переводят апорепрессор в корепрессор, и транскрипция оперона подавляется. Следовательно, при наличии аттенуатора синтез ферментов может происходить как по правилу «все или ничего», так и по типу «больше – меньше». Аттенуаторы обнаружены и в других оперонах, осуществляя более экономичную их регуляцию.

Рис. 45. Функционирование триптофанового оперона:

а – аттенуатор; о – оператор; р – промотор

Помимо негативных, существуют и позитивные механизмы контроля выражения генетической информации. Они были обнаружены при изучении арабинозного оперона у E. coli (рис. 46). Этот оперон включает три гена – araA, araB, araD (1 мин), кодирующих синтез ферментов, и три гена – araE (61 мин), araF, araG (45 мин), кодирующих транспортные белки. Они расположены в разных участках хромосомы и образуют три самостоятельных оперона, один из которых состоит из трех сцепленных структурных генов (araBAD).

Выражение всех оперонов контролируется геном araC, расположенным рядом с проксимальным концом araBAD-оперона и отделенным от него общей регуляторной областью. Продукт гена araC – аллостерический белок, который может существовать в двух альтернативных конформациях: Р1 – сам белок; Р2 – белок в комплексе с арабинозой. Белок Р1 является репрессором для всех оперонов (araBAD, araE и araG). Белок Р2 в результате взаимодействия с арабинозой изменяет свою конформацию (аллостерический эффект) и выступает в качестве активатора araBAD-оперона. Следовательно, продукт гена araC осуществляет как негативную, так и позитивную регуляцию транскрипции.

В регуляторной области имеются следующие участки: промотор; инициатор (с ним связывается Р2); участок, с которым связывается белок-активатор катаболизма (БАК) в комплексе с цАМФ и оператор (место связывания Р1). При наличии в среде арабинозы Р1 связывается с ней и превращается в активатор Р2. Поэтому комплекс БАК – цАМФ присоединяется к соответствующему участку ДНК. В результате этого Р2 стабильно связывается с инициатором и стимулирует присоединение к промотору все новых молекул РНК-полимеразы, а последние осуществляют многократную транскрипцию araBAD-оперона и соответственно происходит многократная трансляция. При отсутствии арабинозы или при ее полном потреблении Р2 возвращается в репрессорную форму Р1 и блокирует оператор.

Рис. 46. Модель негативно-позитивного контроля выражения L-арабинозной системы.

Цифры обозначают число пар нуклеотидов в генах

Система позитивного контроля является необходимым атрибутом координированного управления различными оперонами. Так, например, в арабинозной системе пермеазный ген (araE) пространственно разобщен со всеми остальными генами. Если он является частью какого-то другого оперона (оперона Х), он требует позитивного контроля в форме активатора (Р2), чтобы вывести его из-под контроля, осуществляемого опероном Х.

Таким образом, благодаря сочетанию механизмов индукции и репрессии, негативного и позитивного контроля выражения генетической информации, обеспечивается определенная координация между различными функциональными группами оперонов.

В конце XX в. был обнаружен еще один механизм регуляции передачи генетической информации. Он получил название РНК-интерференция (RNA-interference), или РНК-и, а проще назвать этот процесс контролем, или цензурой потока генетической информации с помощью двухцепочечной РНК, поскольку именно такую, «цензорную» функцию выполняет двухцепочечная РНК.

Еще в начале 80-х гг. XX в. в опытах с E. coli было установлено, что введение в клетку синтетических фрагментов одноцепочечной РНК может приводить к блокированию некоторых генов. В 1997 г. американские ученые Эндрю Файер (Andrew Z. Fire) и Крэйг Мелло (Craig C. Mello) с группой соавторов в опытах с червем Caenorhabditis elegans установили, что такое блокирование генов происходит значительно эффективнее, если вводить короткие фрагменты не одно-, а двухцепочечной РНК. (Статья об этом открытии была опубликована в журнале «Nature», Vol. 391, 19 February 1998, pp. 806 – 811). К. Мелло дал этому феномену название «РНК-интерференция». Механизм РНК-интерференции пока полностью не изучен и заключается, по-видимому, в следующем. При попадании в клетку молекулы двухцепочечной РНК индуцируют работу группы ферментов, которые разрезают РНК на очень короткие фрагменты, затем расплетают их на отдельные нити и с помощью этих нитей удаляют из мРНК соответствующие участки. В результате этого содержащаяся в них информация утрачивается и не доходит до рибосом. Этот механизм оказался универсальным. Им владеют все живые существа от бактерий до млекопитающих. С помощью этого механизма прицельного блокирования (генной цензуры), осуществляемого РНК-и, разрушается попавшая в организм чужеродная генетическая информация (например, различных вирусов) и контролируется работа собственных генов, т. е. подавляется работа тех из них, в которых возникли опасные мутации, или вырезаются и уничтожаются транспозоны, которые могут вызвать опасные мутации. За открытие этого фундаментального механизма регуляции переноса генетической информации Э. Файер и К. Мелло в 2006 г. были удостоены Нобелевской премии в области физиологии и медицины. Эти исследования помогут разработке более эффективных способов профилактики и лечения тех заболеваний, от которых в настоящее время умирает больше всего людей, а именно: сердечно-сосудистых, онкологических и вирусных (в том числе ВИЧ-инфекции и гепатитов).

 

Глава 11

Формы обмена генетическим материалом у бактерий

Помимо основного механизма передачи генов – по наследству (по вертикали), у бактерий существуют следующие формы обмена генетическим материалом по горизонтали, т. е. между отдельными особями в популяции клеток: трансформация, трансфекция, трансдукция, конъюгация и сексдукция.

Трансформация – перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чужеродной ДНК. Трансформация может быть спонтанной или индуцированной. Индуцированная (искусственно получаемая) трансформация происходит при добавлении к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре. Спонтанная трансформация происходит в естественных условиях и проявляется в возникновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вследствие их лизиса или в результате активного выделения ДНК жизнеспособными клетками-донорами. Как спонтанная, так и индуцированная трансформация сводится, по сути, к поглощению трансформирующей ДНК и образованию рекомбинантов, причем спонтанная трансформация может происходить в результате взаимного обмена ДНК. Эффективность индуцируемой трансформации во многом зависит от физиологического состояния клеток-реципиентов. Они должны находиться в состоянии своеобразной компетентности для этого процесса. Предполагается, что в фазе компетентности происходят значительные изменения поверхностных слоев клетки, которые способствуют поглощению ДНК. В частности, аутолитические ферменты клетки растворяют клеточную стенку в тех участках, где происходит ее синтез. При этом мезосомы через образовавшиеся отверстия соприкасаются с внешней средой, адсорбируют и втягивают внутрь клетки трансформирующую ДНК, где она и вступает в рекомбинацию с ДНК реципиента. В результате этого образуется мерозигота, клетка делится, и ее потомки наследуют признаки, полученные от донора и реципиента. Однако в других случаях поглощенные фрагменты ДНК разрушаются нуклеазами клетки-реципиента, и трансформации не происходит. Ее эффективность зависит также от размеров трансформирующей ДНК: высокомолекулярная ДНК поглощается труднее, чем менее крупные ее фрагменты. Способность к трансформации обнаружена у ряда родов бактерий, но, по-видимому, роль ее в обмене генетическим материалом среди бактерий в естественных условиях менее существенна, чем роль других механизмов. Дело в том, что у многих бактерий имеются особые системы рестрикции и модификации. Эти системы модифицируют свою ДНК (чаще всего путем ее метилирования) и разрушают чужеродную ДНК, если она подобным образом не модифицирована, с помощью особых ферментов – рестрикционных эндонуклеаз.

Эффективность метода генетической трансформации во много раз повышается в том случае, если смесь ДНК и трансформируемых клеток с помощью специального прибора подвергнуть обработке электрическим импульсом. Метод электротрансформации является универсальным, он применим к любым видам бактерий. С помощью этого метода осуществлена трансформация более 100 видов бактерий, и он может стать важным инструментом получения ценных рекомбинантных штаммов бактерий.

Трансфекция – вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой.

С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки)

вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактериальными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

Трансдукция – перенос генетического материала от клетки-донора клетке-реципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

Неспецифическая трансдукция – случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

Специфическая трансдукция осуществляется только умеренными фагами, обладающими способностью включаться в строго определенные участки хромосомы бактериальной клетки и трансдуцировать определенные гены.

Механизмы неспецифической и специфической трансдукции описаны в главе 47.

Конъюгация – это процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и реципиента. Процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном (англ. transfer – перенос). Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление поверхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками. Донорные ворсинки представляют собой длинные (1 – 20 мкм) тонкие трубчатые структуры белковой природы с внутренним диаметром около 3 нм. Число донорных пилей у каждой F+-клетки невелико и, очевидно, соответствует числу копий конъюгативной плазмиды в клетке. Донорные ворсинки обнаруживают с помощью донорспецифических фагов, которые, адсорбируясь на них, проникают в клетку и вызывают ее лизис. Для каждой группы конъюгативных плазмид существуют свои донорспецифические фаги. Ворсинки выполняют следующие функции: 1) с их помощью устанавливается контакт между донорной и реципиентной клетками; 2) они облегчают перенос нити ДНК (она, вероятно, протаскивается через ворсинку); 3) стягивают спаривающиеся клетки, что повышает эффективность конъюгации.

Процесс конъюгации протекает через следующие стадии: установление контакта между донором и реципиентом, протаскивание нити ДНК от донора к реципиенту, достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке и рекомбинация между переданной хромосомой (ее фрагментами) и хромосомой клетки-реципиента, размножение мерозиготы и образование клеток, несущих признаки донора и реципиента.

Сущность поверхностного исключения заключается в том, что под контролем traгенов синтезируются белки наружной мембраны, препятствующие (исключающие возможность) проникновению в клетку, несущую плазмиду, другой, но близкородственной ей плазмиды, или подавляющие конъюгативную репликацию ее ДНК.

Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим примером конъюгативной плазмиды является половой фактор, или F-плазмида (F – англ. fertility – плодовитость). Эта плазмида представляет собой двунитевую кольцевидную молекулу ДНК, состоящую из 94,5 тыс. п. н.

Главная функция этой плазмиды – контроль конъюгации у бактерий кишечной группы. Ее tra-оперон содержит больше тридцати генов, которые контролируют процесс конъюгации. Эта плазмида может как находиться в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором F--клетка (клетка, лишенная F-плазмиды) превращается в F+-клетку (клетку, содержащую F-плазмиду). F-плазмида может интегрироваться в определенные участки бактериальной хромосомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки. При этом одна из нитей ДНК хромосомы в месте интеграции F-плазмиды разрезается, и ее 5'-конец через донорный мостик начинает протягиваться в клеткуреципиент. Репликация ДНК в этом случае протекает по принципу «крутящегося кольца» (рис. 47). Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкается с рецептором клеточной мембраны клетки-реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, образуя агрегаты спаривания. Предполагают, что нить ДНК в процессе конъюгации протаскивается через канал донорной ворсинки. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, полная хромосома. С помощью F-плазмид частота переноса генов между бактериями существенно возрастает. Поэтому клетки, у которых F-плазмида интегрирована в хромосому, обозначают как клетки Hfr (Hfr – англ. high frequency recombination – клетки, обеспечивающие высокую частоту рекомбинаций).

Рис. 47. Конъюгационный перенос бактериальной ДНК

В некоторых случаях интегрированная в хромосому F-плазмида может из нее исключаться и, подобно умеренному фагу, «выхватывать» из хромосомы ее ген или даже целую группу генов. Такая плазмида, содержащая в своей ДНК часть генов хромосомы клетки, называется F'-плазмидой.

Сексдукция – перенос генетического материала между бактериальными клетками, осуществляемый F'-плазмидой с помощью механизма, аналогичного специфической трансдукции.

 

Глава 12

Генетические рекомбинации у бактерий

Заключительным этапом при любой форме обмена генетическим материалом является рекомбинация между привнесенной ДНК и хромосомой клетки-реципиента. Если переносится одна нить ДНК, то она вначале достраивается комплементарной ей нитью; рекомбинируют между собой только двунитевые ДНК. Различают общую рекомбинацию, сайт-специфическую рекомбинацию и рекомбинацию, контролируемую транспонируемыми элементами. Общая рекомбинация происходит между гомологичными ДНК. Сайт-специфическая рекомбинация происходит за счет наличия специфических участков у рекомбинируемых молекул ДНК. Ее примером является специфическая рекомбинация между умеренным фагом λ и хромосомой E. coli. Как в бактериальной хромосоме, так и в ДНК фага λ имеются специфические участки (attB и attP соответственно), между которыми и происходит сайт-специфическая рекомбинация. Общая и сайт-специфическая рекомбинация контролируется геном recA.

Рекомбинации, осуществляемые транспонируемыми элементами, тоже являются сайт-специфическими, но специфичность этих сайтов связана с особыми нуклеотидными последовательностями, и эта форма рекомбинации не зависит от recA-гена.

Главным генетическим детерминантом всех путей рекомбинации является ген recA. Его повреждение полностью исключает возможность образования рекомбинантов. Основной способ recA-рекомбинации осуществляется с участием продуктов генов recB и recC (они кодируют синтез эндонуклеазы V). В случае мутации по recB и recC выход рекомбинантов составляет около 20 % от rec+. Однако эти мутации могут быть исправлены путем супрессии в двух генах: sbcA- и sbcB-. Супрессии sbcA– открывают дополнительный путь рекомбинации через ген recE (его продукт – экзонуклеаза VIII). Супрессии sbcB- реализуют рекомбинации через ген recF (структурный ген экзонуклеазы I). Таким образом, генетический контроль рекомбинаций носит сложный характер.

Изучение его механизма – одна из центральных задач молекулярной генетики. Особый интерес представляет изучение механизма гомологической рекомбинации. Это определяется перспективами развития молекулярной медицины. Одной из важнейших стратегических задач, поставленных перед программой «Геном человека», является обнаружение изменений первичной структуры ДНК, которые приводят к нарушению функции генов и, как следствие этого, к развитию наследственных заболеваний человека. Идеальным методом лечения их является генотерапия, основанная на замене поврежденного («больного») гена здоровым. Такая замена может быть осуществлена только с помощью гомологической рекомбинации, механизмы которой у бактерий и эукариот, очевидно, во многом сходны. У бактерий выявлены два способа такой рекомбинации, осуществляемых двумя типами рекомбиназ: АТФ-зависимым белком RecA и АТФ-независимой ренатуразой. Соответственно, и у эукариот обнаружены АТФ-зависимые и АТФ-независимые ДНК-трансферазы, среди которых найдены белки, функционально сходные с RecA-белком бактерий.

Решающая роль в гомологической рекомбинации у бактерии, как указано выше, принадлежит гену recA. Его продукт – белок RecA c м. м. 38 кД – выполняет ряд уникальных функций: 1) прочно связывается с одиночными нитями ДНК; 2) способствует высвобождению разорванной нити из двойной спирали ДНК; 3) одновременно может присоединяться и к двойной спирали ДНК, и к одиночной нити и удерживать их вместе; 4) обладает свойством ДНК-зависимой АТФазы. Благодаря этому свойству обеспечивается серия конформационных изменений, которые обусловливают превращение трехнитевого комплекса с неспаренными основаниями в трехнитевый комплекс со спаренными основаниями. С помощью этой реакции происходит прямое комплементарное взаимодействие между одиночной нитью ДНК и двойной спиралью – главное событие в процессе рекомбинации. Энергия гидролиза АТФ RecA-белком используется последним для продвижения одиночной нити вдоль двойной спирали ДНК с целью нахождения того ее участка, который имеет гомологичную последовательность нуклеотидов, необходимую для замыкания водородных связей, т. е. для спаривания.

Для объяснения механизма гомологической рекомбинации предложены разные модели. В соответствии с наиболее популярной моделью, рекомбинация инициируется с помощью однонитевого разрыва в одной из двух гомологичных молекул ДНК, вызываемого эндонуклеазой, которая кодируется генами recB и recC. Образующийся при этом конец (3'– или 5'-конец) однонитевой ДНК (онДНК) атакует двойную спираль другой молекулы ДНК, отыскивая в ней гомологичный участок, и образует временную трехнитевую структуру (рис. 48, 1). В результате спаривания атакующей молекулы онДНК с комплементарной нитью другой молекулы ДНК происходит выталкивание ее освобождающейся нити (рис. 48, 2), которая в свою очередь спаривается с комплементарной нитью другой молекулы ДНК. Во время этих событий часто наблюдается удаление некоторого количества нуклеотидов, репарация образующейся бреши и лигирование ДНК, но в конечном счете образуется (рис. 48, 3) предсказанная Р. Холидеем полухиазма (греч. chiasmos – расположение в виде греческой буквы Х – хи). Парными стрелками указаны места «разрешения» полухиазмы (см. рис. 48, 3). Разрешение в одном варианте (полые стрелки) приведет к обмену фрагментами онДНК между спаривающимися молекулами ДНК, в другом (черные стрелки) – к полному кроссинговеру на уровне двунитевых ДНК.

В случае обмена с перекрещиванием нитей обе гомологичные спирали ДНК после начального этапа спаривания удерживаются вместе благодаря перекрестному обмену нитями из имеющихся четырех – по одной нити от каждой спирали. Структура, образующаяся при этом, обладает двумя важными свойствами:

1. Точка обмена между двумя гомологичными спиралями, т. е. место, где скрещиваются две их нити, может быстро мигрировать по спирали. Этот процесс получил название миграции ветвей. Миграция может значительно увеличивать области спаривания между двумя взаимодействующими нитями, изначально принадлежавшими разным молекулам ДНК.

2. Эта структура, благодаря вращению составляющих ее элементов относительно друг друга, может находиться в различных изомерных формах. Изомеризация изменяет положение двух пар нитей: две ранее перекрещивающиеся нити становятся неперекрещивающимися, и наоборот. Для прекращения процесса спаривания в каждой из двух нитей должен произойти разрыв. Если он произойдет до изомеризации, то у каждой спирали будет заменена только одна из нитей и только на коротком отрезке. Если же разрыв произойдет после изомеризации, наступит полный кроссинговер.

Рис. 48. Образование полухиазмы Холидея при асимметричном характере инициирования рекомбинации (по В. А. Ланцову):

1 – однонитевый разрыв в одной из двух гомологичных молекул ДНК; 2 – выталкивание высвобождающейся при спаривании нити ДНК и спаривание последней с комплементарной нитью другой молекулы ДНК; 3 – образование полухиазмы

Фермент ренатураза (33 кД) кодируется у E. coli геном recE. Он относится к классу «гомологических ДНК-синаптаз», которые, в отличие от RecA-белка, не обладают ДНК-трансферазной активностью и не зависят от АТФ. Эти белки участвуют в реакциях гомологической рекомбинации, индуцированных двунитевыми разрывами ДНК.

Ген recA участвует не только в процессе рекомбинации, его продукт необходим для пострепликативной репарации, индукции профага, клеточного деления и ряда других жизненно важных для бактерий функций. Рецессивные мутации в этом гене неизбежно отражаются на всех этих функциях, поэтому они получили название SOS-функций, а их совокупность объединена в единую SOS-систему (англ. SOS – сигнал бедствия: save our souls – спасите наши души или save our ship – спасите наш корабль).

Выражение любой SOS-функции зависит от активности продукта recA-гена. SOSсистема срабатывает после любых воздействий на ДНК агентами, которые повреждают ее структуру, или нарушают нормальный процесс ее репликации, или нарушают другие функции. Поэтому recA-гену принадлежит ведущая роль в обеспечении самозащиты генетической системы бактериальной клетки.

 

Глава 13

Молекулярные механизмы изменчивости бактерий. Организация геномов

 

Бактерии в силу относительной простоты их организации и короткого срока жизни подвергаются изменчивости быстрее, чем многие другие организмы. В основе их изменчивости лежат мутации и генетические рекомбинации, особенно протекающие с участием транспонируемых элементов.

Мутации – изменения в генотипе, которые стабильно наследуются. Мутации могут быть спонтанными или индуцированными. Спонтанные мутации возникают без каких-либо специальных воздействий, они происходят в результате ошибок при репликации и репарации. Средняя частота спонтанных мутаций составляет около 1 ⋅ 10-6 (одна мутантная клетка на 1 млн клеток).

Индуцированные мутации происходят с гораздо большей частотой, они возникают в результате воздействия различных мутагенов. К ним относятся физические и химические факторы, повреждающие ДНК (ионизирующая радиация, УФ-облучение, различные аналоги оснований ДНК, алкилирующие соединения, акридины, антибиотики и т. п.). Молекулярные механизмы спонтанных и индуцированных мутаций одинаковы. Точечные мутации могут быть обусловлены заменой оснований, выпадением (делецией) основания или появлением дополнительного основания (вставки). Различают простую замену оснований, или транзицию, при которой пурин заменяется на пурин, а пиримидин – на пиримидин, и сложную, или трансверсию, при которой происходит замена пурина на пиримидин или наоборот. Точечные мутации могут иметь три последствия: замена одного кодона на другой, а стало быть, одной аминокислоты на другую;

сдвиг рамки считывания, что приведет к изменению целой серии последовательностей аминокислотных остатков; возникновение «бессмысленного» кодона (УАГ, УГА, УАА), что приведет к прекращению трансляции в данной точке. В результате таких точечных мутаций синтез белка может быть полностью заблокирован за счет «бессмысленного» кодона, либо будет синтезироваться измененный (неактивный) белок, что приведет либо к утрате какого-то фенотипического признака у мутанта, либо, реже, к появлению у него нового признака. Получение индуцированных мутаций (мутантов) – один из основных способов изучения генетики микроорганизмов.

Эффекты мутаций могут быть устранены либо путем репарации поврежденного участка гена, либо с помощью супрессорных мутаций, т. е. мутаций в других генах, устраняющих или нейтрализующих эффект первичной мутации. Помимо точечных мутаций, нарушение генома может быть следствием протяженных делеций, инверсии (поворот сегмента хромосомы на 180°) или транслокации (перемещение участка хромосомы из одной позиции в другую). Все это также будет приводить к изменению и нарушению различных функций клетки (организма).

Судьба мутантных организмов зависит от степени сохранения их жизнеспособности. Мутации у микроорганизмов, связанные с приобретением лекарственной устойчивости, придают им важные селективные преимущества в условиях повсеместного применения антибиотиков и различных других химиопрепаратов.

Известно, что многие белки близки по своим функциям и аминокислотной последовательности. Поэтому вполне вероятно, что они могли возникнуть от какого-то единственного предкового гена в результате процессов его дупликации и дивергенции. Возникновение новых генов путем дивергенции также играло важную роль в эволюции организмов.

Большая роль в изменчивости бактерий и других организмов принадлежит так называемым транспонируемым генетическим элементам, т. е. генетическим структурам, способным в интактной форме перемещаться внутри данного генома или переходить от одного генома к другому, например от плазмидного генома к бактериальному и наоборот. Различают три класса транспонируемых элементов: IS-элементы, транспозоны и эписомы.

IS-элементы, или вставочные последовательности (англ. insertion sequence), имеют обычно размеры, не превышающие 2 тыс. пар оснований, или 2 кб (килобаза – тысяча пар оснований). IS-элементы несут только один ген, кодирующий белок транспозазу, с помощью которой IS-элементы встраиваются в различные участки хромосомы. Их обозначают цифрами: IS1, IS2, IS3 и т. д.

Транспозоны (Tn) представляют собой более крупные сегменты ДНК, фланкированные инвертированными IS-элементами. Транспозоны также способны встраиваться в различные участки хромосомы или переходить от одного генома в другой, т. е. ведут себя как IS-элементы, но помимо генов, обеспечивающих их транспозиции, они содержат и другие гены, например гены лекарственной устойчивости.

Очень часто транспозоны содержатся в составе R-плазмид. Транспозоны обнаружены в геномах плазмид, вирусов, прокариот и эукариот, поэтому с их способностью переносить гены из одного генома в другой связывается исключительно важная роль, которую играют транспозоны и вообще транспонируемые элементы в эволюции живой материи. Транспозоны, как и IS-элементы, обозначают порядковым номером: Tn1, Tn2, Tn3 и т. д.

Эписомы. К эписомам относятся еще более крупные и сложные саморегулирующиеся системы, содержащие IS-элементы и транспозоны и способные реплицироваться в любом из двух своих альтернативных состояний – автономном или интегрированном – в хромосому клетки-хозяина.

К эписомам относят различные умеренные лизогенные фаги; они отличаются от всех других транспонируемых элементов наличием собственной белковой оболочки и более сложным циклом репродукции. Собственно эписомы – это вирусы, обладающие, подобно другим транспонируемым элементам, способностью в интактной форме переходить из одного генома в другой.

Таким образом, природа использовала все возможности, вытекающие из особенностей структуры ДНК, для эволюции живой материи: мутации генов, их дупликации, генетические рекомбинации и мобильность некоторых генетических элементов.

 

Хромосомная карта бактерий

Хромосомы бактерий, как правило, имеют кольцевидную структуру. Исключение составляют Borrelia burgdorferi и некоторые фитопатогенные бактерии – у них хромосомы линейные. Гены во всех хромосомах располагаются линейно, и их последовательность можно установить. Это позволит создать генетическую энциклопедию бактерий и других организмов, т. е. связать все жизненные процессы с конкретными генами. Хромосомную карту у E. coli начали составлять, изучая время переноса генов при конъюгации, которую прерывают через разные промежутки времени. Поэтому локализацию генов на хромосоме определяют в минутах их переноса от 0 до 100 мин (время полного переноса хромосомы у E. coli). За начало переноса условно принято положение гена thr (треонинового оперона). Определение локализации генов на хромосоме называется их картированием, а их расположение – хромосомной картой, масштаб которой выражается в минутах (рис. 49). К 1961 г. у E. coli было картировано 60 генов, а к 1988 г. – уже более 1000. Одновременно проводилось картирование генов и у других микроорганизмов.

Рис. 49. Сокращенная хромосомная карта E. coli K-12

 

Изучение организации геномов

В настоящее время изучение геномов не ограничивается только картированием генов, стало возможным изучать последовательность расположения нуклеотидов в составе любого гена. Решающими шагами на пути к решению этой проблемы явились применение особых ферментов – рестрикционных эндонуклеаз – и разработка метода клонирования генов.

Рестрикционные эндонуклеазы (рестриктазы) – ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они распознают и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 – 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций). Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов.

Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи липких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.

Метод клонирования состоит в том, что выделенный фрагмент ДНК (ген) с помощью технологии создания рекомбинантных молекул вводится в состав самореплицирующейся генетической структуры. Чаще всего для этого используются плазмиды или вирусы. При использовании плазмид в качестве векторов для клонирования молекулы плазмидной ДНК разрезают рестриктазой, а затем сшивают с фрагментом ДНК – геном, который подлежит клонированию, т. е. накоплению. Затем такие гибридные плазмиды выделяют из клеток и, обрабатывая той же рестриктазой, вырезают из них копии исходного гена. Таким способом можно получить большое количество любого гена. Уже разработаны технологии производства трансгенных растений и животных и даже клонирования животных. Однако использовать эти достижения, конечно, нужно, только если они не причинят ущерба здоровью человека и благополучию человечества.

Последовательность расположения нуклеотидов в клонированном фрагменте ДНК изучают с помощью особой технологии секвенирования, суть которой состоит в одновременном разрезании специфическими агентами четырех образцов одной и той же ДНК по каждому из четырех оснований (А, Т, Ц и Г) с последующим разделением образующихся фрагментов в геле. С помощью этой методики можно определить полную нуклеотидную последовательность (НП) любого гена, а на основе генетического кода – аминокислотную последовательность соответствующего белка. Разработка и совершенствование методов клонирования и секвенирования позволяют изучить геном любого организма, в том числе и человека. Ранее всего был изучен геном бактериального вируса φХ174. Он состоит из 5400 нуклеотидов и содержит 9 генов. Высочайшая эффективность созданного природой генетического кода видна из следующего сопоставления. Вирус φХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500 000 страниц!

Уже полностью изучена н. п. хромосомных ДНК у более чем сотни микроорганизмов, включая Escherichia coli, Yersinia pestis, Mycobacterium tuberculosis и др. Хромосома E. coli К-12 состоит из 4 639 000 п. н. (4288 генов), из них на кодирующую часть генома приходится 88,6 %. У других бактерий доля кодирующей части генома варьирует от 85 до 91 %. Средний размер гена – 1 к. б., у E. coli – 0,951 к. б. Хотя на некодирующие НП приходится малая часть генома, роль их, в особенности IS-элементов, транспозонов и т. п., в некоторых генетических процессах очень велика. Есть в геноме бактерий и «серые дыры», т. е. НП с неизвестной функцией. Большая чать оперонов у E. coli состоит не более чем из 3 генов, лишь 6 % оперонов состоят из 4 и большего числа генов. В хромосомах разных видов бактерий обнаружены гены-гомологи, т. е. гены с идентичной последовательностью нуклеотидов. Идентичные (=гомологичные) гены у разных видов называют ортологами. Например, около 1000 генов Bacillus subtilis имеют ортологов в геноме E. coli. Наличие ортологов – доказательство общности происхождения видов.

Для изучения генома человека, которое началось в 80-х гг. ХХ в., была создана международная организация по изучению генома человека – HUGO (англ. Human Genome Organization – Организация генома человека). Ее основная задача – определить последовательное расположение всех нуклеотидов (а их около 3 ⋅ 109 пар) во всех 23 парах хромосом – была успешно решена к концу 2000 г. Предстоит теперь выяснить функции всех генов, молекулярные основы наследственных и иных болезней, связанных с нарушением работы генов, и определить пути лечения таких болезней, в том числе с использованием методов генной инженерии. Рано или поздно генотерапия станет вполне реальной. Полное осуществление программы «Геном человека» – новое блестящее достижение науки в области биологии и медицины.

 

Глава 14

Плазмиды бактерий как наипростейшие организмы

 

Впервые обнаруженные у E. coli генетические элементы, которые передавались у нее по наследству во внехромосомном состоянии, получили название просто генетических факторов. Раньше всего были обнаружены Col-фактор (фактор, контролирующий у E. coli синтез бактерицидных белков, А. Грациа, 1925) и F-фактор (фактор, контролирующий примитивный половой процесс у бактерий – конъюгацию, У. Хэйс, 1953). Интерес к этим факторам сильно возрос после того, как в 1963 г. японский ученый Т. Ватанабе сообщил, что передача множественной лекарственной устойчивости у дизентерийных бактерий происходит также при участии независимых от хромосомы генетических элементов, названных R-факторами (англ. resistance – устойчивость). В 1976 г. всем подобного рода генетическим элементам было дано название плазмид и следующее определение: «Плазмида (экстрахромосомный генетический элемент) представляет собой репликон, который стабильно наследуется в экстрахромосомном состоянии». Однако это определение обходит вопрос о том, являются ли плазмиды организмами или нет, оно оставляет открытым вопрос о месте плазмид в живой природе.

Поскольку плазмиды имеют собственные гены, которые наделяют их специфическими наследственными признаками и способностью к размножению, они должны быть несомненно отнесены к живым организмам. Плазмиды обладают большим сходством с вирусами, поэтому их следует объединить с ними в одно царство в качестве самостоятельного класса. С вирусами их объединяют следующие общие фундаментальные признаки: 1) подобно вирусам, плазмиды не имеют собственной белоксинтезирующей системы; 2) как и у вирусов, у них нет собственной системы мобилизации энергии; 3) плазмиды, как и вирусы, не способны к росту и бинарному делению, они размножаются путем воспроизведения себя из собственного генома (путем саморепликации его); 4) плазмиды, подобно вирусам, являются абсолютными внутриклеточными паразитами.

Вместе с тем плазмиды существенным образом отличаются от вирусов, и поэтому они должны рассматриваться как самостоятельная, обособленная от вирусов группа организмов. Главные отличия плазмид от вирусов следующие:

1. Геном плазмид представлен только двунитевой ДНК, у вирусов же имеется более 10 вариантов РНК– и ДНК-геномов. Правда, у некоторых грамположительных бактерий плазмиды существуют не только в виде двунитевых молекул ДНК, но и в виде однонитевых. Однако каждая из них соответствует одной из двух нитей плазмидной ДНК (на долю таких однонитевых молекул приходится не более 1/3 общего количества копий плазмиды), и в результате репликации, происходящей по типу «крутящегося кольца» (см. главу 11), однонитевая молекула превращается в двунитевую молекулу плазмидной ДНК.

2. Плазмиды, в отличие от вирусов и других микроорганизмов, вообще не имеют никакой оболочки. Они представляют собой «голые» геномы. Это их главная биологическая особенность.

3. В связи с отсутствием белковой оболочки размножение плазмид происходит только путем саморепликации их ДНК и не требует синтеза структурных белков и процессов самосборки.

4. Средой обитания вирусов являются клетки бактерий, растений и животных. Средой обитания плазмид – только бактерии.

5. Плазмиды обладают системами генов, которые наделяют их способностью к самопереносу или к мобилизации на перенос из клетки в клетку.

6. Плазмиды и вирусы отличаются друг от друга и по тем последствиям, к которым приводит инфицирование ими клеток. Заражение вирусами в большинстве случаев приводит к подавлению функционирования клеточного генома. Вирулентный вирус размножается в клетке и вызывает ее гибель или нарушает нормальное функционирование (при персистировании). Только умеренные фаги при лизогенизации бактерий наделяют их дополнительными свойствами.

В отличие от вирусов, плазмиды, проникая в бактериальную клетку, не размножаются в ней бесконтрольно и не подавляют функции бактериальной хромосомы, а сосуществуют с ней и сами контролируют образование числа возможных своих копий на хромосому клетки. В отличие от вирусов, плазмиды не только не вызывают гибели клеток, которые являются для них естественной средой обитания, а, наоборот, очень часто наделяют их важными дополнительными (селективными) свойствами. Это основное принципиально важное биологическое различие между плазмидами и вирусами. Зараженная вирусом клетка ценой собственной жизни способствует размножению вирусов. Плазмиды, наоборот, своим присутствием обеспечивают размножение бактерий в неблагоприятных для них условиях (например, в присутствии химиопрепаратов) и, спасая от гибели бактерии, обеспечивают собственное существование.

По уровню молекулярно-генетической организации плазмиды занимают еще более низкое, по сравнению с вирусами, место в иерархии живой материи. С учетом всех этих обстоятельств им можно дать следующее общебиологическое определение: плазмиды – наипростейшие организмы, лишенные оболочки, собственных систем синтеза белка и мобилизации энергии и представляющие собой особый класс абсолютных внутриклеточных паразитов, наделяющих своих бактерий-хозяев полезными для них свойствами (А. И. Коротяев).

В соответствии с теми свойствами, которыми плазмиды наделяют своих носителей, их подразделяют на различные группы (табл. 4).

У бактерий очень часто обнаруживают криптические плазмиды, т. е. плазмиды, функции которых еще не установлены. Поэтому классификация их, несомненно, будет уточняться. Уже сейчас известны плазмиды, контролирующие различные факторы патогенности бактерий (факторы адгезии, инвазии и т. п.).

Существуют два основных способа определения плазмид у бактерий:

1) биологический – по тем дополнительным признакам, которыми они наделяют своего хозяина;

2) биофизический – по выявлению плазмидных ДНК.

Для изучения биологии плазмид и их молекулярно-генетической организации широко используют различные генетические методы, методы клонирования, выделения чистых плазмидных ДНК, определения их молекулярных масс, составление рестриктограмм путем разрезания различными эндонуклеазами и определения размеров получаемых фрагментов, а также секвенирования. Сами по себе плазмиды, благодаря их относительно малым размерам и способности к саморепликации, часто используются в качестве векторов для клонирования различных генов и их последующего изучения.

Все известные плазмиды представляют собой кольцевидные суперспирализованные молекулы двунитевой ДНК, размеры которых варьируют от 1,5 до 200 МД и более (от 1500 до 400 000 пар нуклеотидов). Однако чаще всего встречаются плазмиды с м. м. 3 – 6 или 50 – 70 МД.

Таблица 4

Классификация плазмид по свойствам, которыми они наделяют своих носителей

В соответствии с размерами плазмидной ДНК ее молекулярно-генетическая организация характеризуется определенным уровнем сложности. Чем больше молекулярная масса, тем больше и сложнее набор генов, тем многообразнее функции плазмид. Они несут гены саморепликации; гены, контролирующие самоперенос или мобилизацию на перенос; другие гены, определяющие специфические функции самой плазмиды.

Кроме того, в ДНК плазмид могут быть гены, которые наделяют клетку-хозяина многими другими свойствами. Очень часто эти гены интегрируются в плазмидную ДНК в виде транспозонов, поэтому молекулярно-генетическая организация плазмид, особенно высокомолекулярных, очень сложна. Часть генетической карты одной из наиболее часто используемых для изучения генетики плазмид – плазмиды рКМ101, представлена на рис. 50. Для плазмид как живых существ характерны следующие свойства, частью присущие только им и контролируемые их специфическими генами:

1. Саморегулируемая репликация. Эта функция свойственна всем живым организмам. В составе плазмидных ДНК имеются фиксированная точка ori (точка начала репликации) и соответствующие гены, контролирующие репликацию. Репликация мелких плазмид требует, очевидно, дополнительного участия генов клетки-хозяина.

2. Явление поверхностного исключения. Этот механизм не позволяет проникнуть в клетку, уже содержащую плазмиду, другой родственной ей плазмиде. Поверхностное исключение обеспечивается синтезом под контролем генов плазмиды особых белков наружной мембраны, которые препятствуют установлению контакта этой клетки с клеткой, несущей такую же плазмиду, или подавляют конъюгативный метаболизм ДНК этой плазмиды.

Рис. 50. Молекулярная организация плазмиды pKM101. Конъюгативная плазмида pKM101 IncN-группы является производной плазмиды R46, у которой утрачена область генов, контролирующая устойчивость к антибиотикам. Широко используется для изучения механизмов генетической регуляции плазмидных функций

3. Явление несовместимости. Суть его заключается в том, что две близкородственные плазмиды не могут стабильно сосуществовать в одной клетке, одна из них подвергается элиминации (удалению).

4. Контроль числа копий плазмиды на хромосому клетки. Различают малокопийные (1 – 4 копии) и многокопийные плазмиды (12 – 38 копий, например у плазмиды R6K). Наличие собственных генов репликации позволяет плазмиде осуществлять последнюю независимо от каких-либо событий хромосомной репликации или клеточного цикла клетки-хозяина.

Информация, необходимая для осуществления репликации плазмиды, обычно заключена в небольшой участок ее ДНК, получивший название основного, или базового, репликона. У малокопийных плазмид он состоит из 2,0 – 2,5 т. п. н., а у многокопийных – из 1 т. п. н. Система, которая регулирует репликацию, контролирует также и число копий, и явление несовместимости. Этот контроль осуществляется путем саморегуляции процессов транскрипции и трансляции генов репликации, опосредуемой продуктами их собственных генов: «антисмысловыми» РНК и особыми белками.

5. Контроль стабильного сохранения плазмид в клетке-хозяине (контроль стабильного поддержания).

6. Контроль равномерного распределения дочерних плазмид в дочерние бактериальные клетки. Последние две функции тесно взаимосвязаны. Природные бактериальные плазмиды стабильно сохраняются в клетке-хозяине. Это указывает на то, что их распределение между дочерними клетками происходит не рандомически, т. е. не по принципу случайности, а существует генетический механизм контроля не только репликации, но и равномерного распределения (сегрегации) вновь синтезированных плазмид при клеточном делении. Гены, осуществляющие этот контроль, независимы от системы контроля репликации. Более того, эти гены даже взаимозаменяемы у разных плазмид без утраты своих функций. Функции стабильного поддержания и равномерного распределения опосредуются различными механизмами. Взаимосвязь этих функций с жизнью клеткихозяина настолько важна для плазмид и клеток, что клетки, утратившие плазмиду, погибают. Плазмида «вынуждает» клетку-хозяина даже ценой собственной жизни обеспечивать ее воспроизводство и распространение по вертикали и горизонтали. У F-плазмиды обнаружены гены типа hok (англ. host killing – убивающие хозяина), продукты которых вызывают быструю гибель клетки, утратившей плазмиду (в содержащих плазмиды клетках действие этих продуктов репрессировано другим геном плазмиды). Следовательно, носительство плазмид для клетки-хозяина становится генетически необходимым, благодаря этому обеспечивается существование плазмид как организмов.

7. Способность к самопереносу (у конъюгативных плазмид).

8. Способность к мобилизации на перенос (у неконъюгативных плазмид).

9. Способность наделять клетку-хозяина дополнительными важными для него биологическими свойствами, способствующими выживанию бактерий, а следовательно, и плазмид в природе.

Жизненный цикл плазмид складывается из двух главных процессов: вегетативной (или конъюгативной) репликации и равномерного распределения между дочерними клетками. Оба эти процесса относительно независимы друг от друга и контролируются специфическими системами плазмид. Однако вегетативная репликация плазмид и распределение их между дочерними клетками скоординированы с клеточным делением так, что дочерняя клетка стабильно получает необходимое число копий данной плазмиды.

 

Распространение плазмид

Плазмиды распространяются среди бактерий двумя способами: путем передачи от родительской клетки дочерним клеткам в процессе клеточного деления, т. е. по вертикали, и путем переноса между клетками в популяции бактерий независимо от клеточного деления, т. е. по горизонтали. Существует несколько генетических механизмов переноса плазмид между бактериальными клетками:

а) путем трансформации;

б) с помощью трансдуцирующих фагов;

в) путем мобилизации на перенос с помощью конъюгативных плазмид;

г) с помощью механизма самопереноса, контролируемого системой генов, объединенных в tra-оперон.

В зависимости от наличия или отсутствия этого оперона плазмиды делятся на конъюгативные и неконъюгативные. Основную роль в широком распространении плазмид играет механизм конъюгационной передачи.

Системы tra-оперонов у разных конъюгативных плазмид имеют определенное сходство, что свидетельствует о том, что они возникли, очевидно, из одного общего предшественника. Однако у разных конъюгативных плазмид они существенно различаются как по количеству tra-генов, так и по характеру их локализации (рис. 51; см. рис. 50). Наиболее подробно система tra-оперона изучена у F-плазмиды, которая является наиболее типичным представителем конъюгативных плазмид. Ее главное биологическое назначение у энтеробактерий – обеспечение их донорными функциями. Именно F-плазмиды контролируют у них конъюгативный обмен генетическим материалом. F-плазмида состоит из 94,5 тыс. пар нуклеотидов и имеет около 90 генов (см. рис. 51). Система tra-генов у F-плазмиды имеет следующий состав: oriT finO traO traM finP traJ traY traA traL traE traK traB traP traV traW traC traU traN traF traQ traH traG traS traT traD traI traZ.

Рис. 51. Генетическая карта F-плазмиды

Область oriТ – точка начала переноса F-плазмиды при конъюгации. Гены traY – traZ (21 ген) образуют оперон переноса. Область traJ finP traM traO finO участвует в регуляции транскрипции и конъюгативного метаболизма ДНК плазмиды; traО – оператор для гена traJ (белок TraJ участвует в позитивной, а белок FinP вместе с finO – в негативной регуляции tra-оперона). Продукты генов traT и traS опосредуют поверхностное исключение. В системе tra-генов F-плазмиды три самостоятельных оперона: traY – traZ, traJ finP и traM.

 

Классификация плазмид

В основу современной классификации плазмид положено такое их уникальное генетическое свойство, как несовместимость – неспособность родственных плазмид стабильно сосуществовать в одной клетке. Она проявляется после проникновения плазмиды в клетку, уже содержащую близкородственную ей плазмиду.

Плазмиды, несовместимые друг с другом, но совместимые с другими, объединяются в одну Inc-группу (англ. incompatibility – несовместимость); Inc-группа соответствует биологическому виду в других группах организмов. Плазмиды энтеробактерий разделены на 39 Inc-групп (табл. 5).

Многочисленными наблюдениями установлено, что плазмиды, относящиеся к одной и той же Inc-группе, обладают многими общими признаками, в то время как плазмиды, принадлежащие к разным Inc-группам, существенно отличаются по свойствам. В частности, плазмиды одной и той же группы имеют сходную молекулярную массу, высокую степень гомологии ДНК, показывают одинаковые или очень сходные рестриктограммы при обработке их соответствующими рестриктазами. Плазмиды одной и той же группы наделяют клетку способностью синтезировать морфологически подобные и серологически родственные донорные ворсинки, которые не только служат аппаратом конъюгационного переноса плазмид, но и являются специфическими рецепторами для донорспецифических фагов. Такие фаги прикрепляются либо к кончикам ворсинок, либо по их сторонам и вызывают лизис плазмидсодержащих клеток. О близком родстве плазмид, принадлежащих к одной и той же Inc-группе, свидетельствует также изучение их физических и генетических карт. В частности, области репликации плазмид, относящихся к одной и той же Inc-группе, также очень сходны структурно и функционально. Поскольку внутри Inc-групп выявляется тесное филогенетическое родство между ее членами, группа несовместимости как таксономическая единица приравнивается к такой категории как вид. Принадлежность выявленных плазмид к той или иной Inc-группе определяется с помощью метода ДНК-зонда; донорспецифических фагов, а также путем конъюгации бактерий, несущих прототипные плазмиды, с бактериями, несущими исследуемую плазмиду, и последующего установления факта их сосуществования (совместимости) или вытеснения одной из них (несовместимости). Обязательным условием для последнего метода является наличие селективных признаков у каждой из скрещиваемых бактерий – хозяев этих плазмид. Селективными являются признаки, которыми плазмида специфически наделяет клетку-хозяина.

Таблица 5

Inc-группы, выявленные среди плазмид энтеробактерий

 

Медицинское и общебиологическое значение плазмид

Значение плазмид для медицины состоит в том, что они контролируют синтез различных факторов патогенности у многих видов бактерий, в том числе у возбудителей чумы, сибирской язвы, иерсиниозов, дизентерии, эшерихиозов и др. Не вызывает сомнения, что возникновение диареегенных кишечных палочек (энтеротоксигенных, энтеропатогенных, энтероинвазивных и др.) является следствием приобретения ими плазмид, которые наделяют их факторами адгезии, инвазии и способностью синтезировать термолабильные и термостабильные энтеротоксины. Наличие в природе таких плазмид (особенно с широким кругом хозяев) может стать причиной образования новых вариантов патогенных бактерий.

Не менее важную роль играют R-плазмиды. В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штаммов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее время они играют ведущую роль в эпидемиологии инфекционных болезней, и от их распространения во многом зависит эффективность антибиотико– и химиотерапии, а в итоге – здоровье и жизнь людей.

Общебиологическое значение плазмид заключается в том, что они выполняют по крайней мере три важнейшие функции для бактерий, обеспечивая одновременно существование как бактерий, так и собственное. Во-первых, они контролируют у бактерий обмен генетическим материалом. Во-вторых, контролируя синтез факторов патогенности, они обусловливают благоприятные возможности для размножения патогенных бактерий в естественных для них условиях (в организме животного и человека), а следовательно, для сохранения этих видов в природе. В-третьих, плазмиды являются уникальным биологическим средством самозащиты бактерий, так как они обеспечивают их приобретенным и наследуемым специфическим иммунитетом против различных химических (лекарственных и иных веществ) и других агентов.

Таким образом, представляя собой особую группу наиболее просто организованных живых существ, плазмиды сохраняются в природе благодаря взаимовыгодным отношениям, сложившимся между ними и бактериями. Бактерии для них – естественная среда обитания, а они для бактерий – дополнительные свободно циркулирующие между ними геномы с наборами таких генов, которые благоприятствуют сохранению бактерий в природе.