Ядерные излучения и жизнь

Барабой Вилен Абрамович

Киричинский Борис Романович

Глава 7. Радиация в космическом пространстве

 

 

Лучи из мировых глубин

О существовании таинственных космических лучей стало известно сравнительно недавно. В начале нынешнего столетия с целью изучения особенностей радиоактивности горных пород Земли ученые стали исследовать интенсивность ионизации воздуха у земной поверхности. И выяснилось, что до определенной высоты ионизация воздуха падает с увеличением расстояния от Земли (что и следовало ожидать, если источник радиации - земная почва и горные породы). Но с определенного уровня интенсивность излучения, вызывающего ионизацию, начинает быстро расти и на больших высотах во много раз превышает уровень ионизации на поверхности Земли. Например, на высоте 9 км она выше, чем на уровне моря, в 10 раз.

Пришлось сделать вывод, что лучи, вызывающие ионизацию воздуха на больших высотах, имеют не земное, а космическое происхождение; они и получили название космических лучей. Так возникла еще одна интереснейшая научная проблема: что собой представляют космические лучи по физической природе? Как они возникли? Где находится источник (или источники) их образования? Каковы их роль в природе и действие на земную жизнь? До недавнего времени решение всех этих вопросов имело сугубо теоретическое значение, представляло интерес лишь для астрономов и специалистов в области ядерной физики и физики элементарных частиц. Но вот человечество вступило в эру освоения космического пространства. И космические лучи из сугубо научной проблемы стали проблемой непосредственной практики полетов за пределы земной атмосферы, одной из реальных опасностей, угрожающих смелым обитателям нашей планеты, ограничивающих возможности освоения космоса. Даже при полетах современных реактивных самолетов следует учитывать влияние космической радиации. На высоте 15 км за их счет доза облучения увеличивается. За 1 час полета это увеличение составит примерно 0,5% годовой дозы, получаемой за счет естественного фона. Однако время, проводимое на такой высоте пассажирами самолета, невелико, и увеличение фона не может иметь значения для их здоровья.

Задача исследования космических лучей была достаточно сложна. Ведь земную поверхность надежно защищает от космических "неприятностей" атмосфера, толстый покров которой поглощает губительные для жизни на Земле коротковолновые ультрафиолетовые, рентгеновские, гамма-лучи и космическое излучение. Пришлось ученым в погоне за космическими пришельцами подниматься на самолетах, воздушных шарах, карабкаться на высокие горы и поднимать за собой громоздкую и сложную научную аппаратуру.

Выяснилось, что космические лучи - это потоки материальных частиц, таких же, как и те, из которых построено вещество Земли и всей Солнечной системы. На 85% состоят они из протонов-положительно заряженных ядер водорода, самого легкого элемента. Основную массу остатка составляют альфа-частицы - ядра следующего за водородом элемента гелия, стоящего на втором месте в таблице Менделеева. На долю более тяжелых ядер приходится примерно 1,5 - 1,6% общего числа космических частиц. Среди них различают легкие ядра с атомным номером 3 - 5 (ядра лития, бериллия, бора), средние - с номером 6 - 9 (углерод, азот, кислород, фтор), тяжелые - с атомным номером 10 - 20 и сверхтяжелые - с номером свыше 20. На долю последних приходится всего около 0,1 % излучения.

Рис. 20. Схема образования вторичных космических частиц при попадании в атмосферу первичной частицы космического излучения

Двигаясь по бесконечным космическим просторам, эти частицы разгоняются, достигают скорости, близкой к скорости света, и несут с собой колоссальную энергию, превышающую 1020 эв. Чтобы представить себе более наглядно величину этой энергии, достаточно сказать, что она во много миллионов раз больше энергии, генерируемой в самых мощных ускорителях частиц, созданных руками человека. Врываясь в земную атмосферу, такая частица постепенно теряет свою энергию, растрачивая ее на многочисленные столкновения с молекулами воздуха. Осколки молекул, оказавшихся на пути космической частицы, приобретая часть ее энергии, сами становятся факторами ионизации, разрушая другие атомы и выбивая из них электроны и другие частицы. Первичная частица космического излучения, как правило, не достигает поверхности Земли. Но о ее появлении в пределах земной атмосферы свидетельствует лавина вторичных частиц, образовавшихся в результате ионизации атмосферных газов (рис. 20). По количеству и составу вторичных частиц, по площади лавины можно в какой-то степени судить и об энергии первичной частицы.

Существование "ливней" вторичных космических частиц было открыто советским ученым Д. В. Скобельцыным, исследования которого положили начало систематическому изучению физики космических лучей. Для изучения ливней вторичных частиц космических лучей создаются специальные системы. На площади в несколько десятков квадратных километров располагается большое количество счетчиков заряженных частиц, соединенных между собой так, что они срабатывают только при одновременном попадании в них множества частиц.

Поскольку в земных условиях ученые еще не научились получать столь высокие энергии частиц, они с успехом пользуются гигантским природным ускорителем, разгоняющим космические лучи, и для целей изучения строения вещества. Именно с помощью космических лучей удалось открыть существование таких элементарных частиц, как мю- и к-мезоны, некоторые виды гиперонов. "Характер" и "биографию" элементарных частиц ученые узнают по следам - трекам, оставляемым ими в фотопластинках, которые физики поднимают в верхние слои атмосферы с помощью шаров-зондов, стратостатов, ракет, самолетов, искусственных спутников Земли.

В среднем интенсивность космического излучения за пределами земной атмосферы составляет, по расчетам ученых, около 2 частиц на 1 см2 в секунду. Эта величина почти не зависит от времени суток, времени года и практически постоянна. Поскольку Земля совершает движения вокруг своей оси, вокруг Солнца, которые не влияют на интенсивность космического излучения, приходится сделать вывод, что лучи эти приходят к Земле отовсюду из мирового пространства с примерно одинаковой интенсивностью; А если так, то вряд ли их основным источником может быть Солнце.

Загадка происхождения космических лучей продолжает волновать ученых и сегодня, хотя многое для ее решения уже сделано. Прежде всего была выяснена роль Солнца. Она оказалась очень небольшой. Солнце главным образом ответственно за наблюдающиеся время от времени повышения интенсивности излучения, связанные со вспышками на Солнце. О них речь идет в следующем разделе.

Но, быть может, и другие звезды нашей Галактики излучают потоки частиц, которые и создают в совокупности космические лучи? Ученые проверили и это предположение. Оказалось, что если бы все звезды Галактики излучали с такой же силой, как наше Солнце, суммарная интенсивность космических лучей была бы в сотни раз меньше наблюдаемой в действительности. Кроме того, Солнце и другие "спокойные" звезды излучают частицы с меньшей энергией и иным составом, чем частицы космического излучения.

Пришлось допустить, что в пределах нашей звездной системы существуют гораздо более мощные источники космического излучения. Успехи радиоастрономии и других новых методов исследования мирового пространства позволили обнаружить основных "виновников" образования космических лучей. Ими оказались так называемые "сверхновые" звезды.

Тысячелетиями светит из необозримых мировых глубин крохотная звездочка, разглядеть которую можно лишь в самые мощные телескопы. И вдруг происходит чудо: на ее месте в просторах Вселенной вспыхивает новая звезда, свет которой может на какое-то время сравниться с блеском Солнца. Мы можем лишь догадываться о масштабах гигантской космической катастрофы, породившей такую звезду (ее-то и называют "сверхновой"). Ведь яркость ее свечения внезапно возрастает во многие миллиарды раз. Только поэтому свет сверхновой звезды, отделенной от нас расстоянием в тысячи световых лет, приближается по интенсивности к свечению Солнца - нашего ближайшего звездного соседа.

Свыше 900 лет назад, в 1054 г., произошла вспышка сверхновой, которая была столь велика, что звезду легко можно было видеть днем, о чем и сообщают китайские и японские летописи. А в наши дни на месте вспыхнувшей когда-то сверхновой ученые увидели так называемую Крабовидную туманность, отделенную от нас расстоянием в 4500 световых лет. За 900 лет, прошедших с момента взрыва, приведшего к образованию сверхновой (точнее, с момента, когда жители Земли увидели ее вспышку), массы выброшенного взрывом звездного вещества образовали оболочку туманности, которая и сегодня удаляется от ядра взорвавшейся звезды со скоростью 1000 км/сек. Такие-то космические катастрофы и являются основным поставщиком космических лучей в пределах нашей Галактики, где вспышки сверхновых происходят, по подсчетам ученых, каждые 10 - 100 лет.

Однако существует еще один возможный источник космического излучения, расположенный за пределами нашей Галактики. В последние годы ученые, открыли возможность еще более грандиозных космических катастроф, чем взрывы сверхновых: это взрывы галактических ядер - центральных, особенно плотных областей невероятно далеких звездных систем. Возникающие при таких взрывах потоки особенно тяжелых частиц, несущих колоссальную энергию, способны преодолевать гравитационные и магнитные поля своих Галактик, выходить в межгалактическое пространство и после блужданий в пространствах Вселенной достигать Солнечной системы. Возможно, что наиболее тяжелые космические частицы, обладающие максимальной энергией, имеют внегалактическое происхождение.

 

Солнечный ветер, солнечные пятна, солнечные вспышки

Солнце - ближайшая к нам звезда. Наша Земля, как известно, не более чем пылинка, порхающая вокруг светильника. Поэтому все происходящее на Солнце имеет к нам, землянам, самое непосредственное отношение. И прежде всего нас касается все, что связано с солнечным светом. Ведь он - важнейшее условие возникновения, развития и постоянного существования жизни на Земле, источник энергии синтеза всех органических веществ (фотосинтеза), превращающейся затем и в энергию мышечного движения, и в биение человеческой мысли, в улыбку девушки, и в открытие ученого. Всего одна двухмиллиардная часть солнечного излучения достигает Земли. Значительный процент этих лучей к тому же рассеивается, излучаясь обратно в мировое пространство, поглощается атмосферой. И все же оставшегося количества солнечного тепла достаточно, чтобы согреть Землю, превратить ее в уютную колыбель человечества.

Какое же гигантское количество энергии выбрасывает ежесекундно в безмолвные пространства космоса Солнце? По подсчетам ученых, оно составляет 3,7 · 1026 джоулей в секунду; этой энергии достаточно, чтобы растопить и довести до кипения слой льда вокруг Земли толщиной более 1000 км. Ни один из известных науке источников энергии, кроме процесса термоядерного синтеза тяжелых ядер из более легких, не в состоянии обеспечить постоянную выработку столь значительных количеств энергии.

Солнце, как, впрочем, и другие звезды, и представляет собой гигантский термоядерный реактор, в недрах которого ядра водорода, сливаясь, образуют ядра гелия, а последние в свою очередь - ядра углерода. Запасов топлива у нашего светила, по расчетам астрономов, вполне достаточно, чтобы обеспечить стабильное свечение еще не менее чем 5 - 6 млрд. лет. Ежесекундно в топке солнечного реактора сгорает 5 млн. т вещества. Чтобы Солнце уменьшилось вдвое, при этих темпах понадобилось бы 6 тыс. млрд. лет.

Если температура поверхности Солнца близка к 6 тыс. градусов, то в глубинах его она достигает 20 - 100 млн. градусов. Лучистая энергия, постоянно образующаяся в недрах Солнца, не может непосредственно пробиться наружу. Постоянно поглощаясь и вновь излучаясь веществом Солнца, сжатым гигантским гравитационным давлением, эта энергия достигает, наконец, такого сравнительно разреженного слоя солнечной материи, который уже не поглощает полностью идущий из глубин лучистый поток, хотя сам еще светится достаточно ярко. Этот-то слой, называемый фотосферой, и образует блестящую поверхность Солнца, четкие контуры солнечного диска.

Солнце излучает не только видимый глазом свет, но и более высокоэнергичные кванты ультрафиолетовых, рентгеновских и гамма-лучей, обладающие гораздо более сильным фотохимическим и биологическим действием. Эти лучи поглощаются атмосферой, а при космических полетах оболочка корабля также надежно от них защищает.

Иначе обстоит дело с корпускулярным излучением Солнца, с потоками частиц солнечного вещества. Наблюдения солнечной поверхности, ведущиеся постоянно, обнаруживают неспокойный, буйный характер нашего звездного соседа. Его видимая поверхность - фотосфера - находится в непрерывном движении, постоянно бурлит. В разных участках солнечного диска над ним возвышаются более или менее яркие волокна (флокгулы), язычки (спикулы) и еще более крупные выступы - протуберанцы, выступающие на многие тысячи километров над фотосферой, достигающие следующих слоев - хромосферы и солнечной короны. Все это местные извержения солнечного вещества, источники выброса его в окружающее пространство. Часть выброшенного вещества падает затем обратно на Солнце под влиянием притяжения. Потоки же вещества, достигшие скорости, превышающей 619 км/сек (вторая космическая скорость у поверхности Солнца), двигаются по радиусам во все стороны от Солнца, последовательно пересекая орбиты планет Солнечной системы.

Поскольку такие выбросы в больших или меньших размерах происходят на Солнце постоянно, создается постоянный поток вещества, главным образом протонов, от Солнца к Земле и далее в мировое пространство. Этот поток, названный "солнечным ветром", несет со скоростями 300 - 4000 км/сек к Земле около 1014 - 1015 г/сек протонов. Благодаря солнечному ветру концентрация вещества в межпланетном пространстве в сотни раз выше, чем за пределами Солнечной системы. Часть протонов солнечного ветра захватывается гравитационным полем Земли и входит в состав так называемых гравитационных поясов. Но о них - в следующем разделе.

Таким образом, верхние слои земной атмосферы подвергаются постоянной бомбардировке. Порывы солнечного ветра пополняют атмосферу легколетучим водородом, вызывают ее ионизацию. Земной поверхности протоны солнечного ветра не достигают; их энергия слишком мала для этого.

Однако время от времени солнечную поверхность потрясают бури, куда более грандиозные, чем самые большие из выбросов протуберанцев.

Возникновение таких катастроф странным образом связано с другими необычными явлениями, наблюдающимися на поверхности Солнца, - с пятнами. На ярком солнечном диске они кажутся темными, потому что их температура на 1100 - 1200° С ниже температуры фотосферы. Дно пятна лежит ниже поверхности фотосферы на 1000 - 1400 км. В области пятна более холоднее вещество поднимается из глубин и растекается по поверхности, медленно вращаясь. Направление этого вихревого движения в северном полушарии Солнца - по часовой стрелке, в южном - против.

Самое интересное свойство солнечных пятен состоит в том, что они представляют собой как бы полюса гигантских магнитов, расположенных по радиусам Солнца и скрытых в его глубинах. Напряженность их колоссальных магнитных полей (2 - 5 тыс. гаусс) в тысячи раз выше напряженности общего магнитного поля Солнца. И пятна, и сопутствующие им мощные магнитные поля - проявления гигантских термоядерных процессов, происходящих в недрах нашего светила.

Появление пятен на Солнце подчиняется строгой закономерности. Периоды максимума пятен повторяются каждые 11 лет. В эти периоды наблюдаются и особенно крупные пятна - до 100-230 тыс. км в поперечнике. Пятна диаметром более 40 тыс. км уже видны невооруженным глазом. Между максимумами солнечной активности пятен мало или нет совсем. Максимумы характеризуются не только большим количеством особенно крупных пятен; время от времени в тех местах солнечной поверхности, где конфигурация пятен особенно причудлива, а перепады магнитных полей особенно велики, происходят вспышки. Это - гигантские взрывы, продолжающиеся 15-30 секунд или несколько более. Яркость вспышки в максимуме может превышать яркость фотосферы в несколько раз; солнечный диск на ее фоне кажется темным. Температура солнечной материи в месте вспышки достигает 10 - 15 тыс. градусов и излучает она в несколько раз больше световой энергии, чем равный по площади участок фотосферы. Наиболее коротковолновое гамма-, рентгеновское и ультрафиолетовое излучение возрастает особенно сильно.

Наиболее серьезный результат солнечной, или хромосферной, вспышки - выброс в мировое пространство со скоростью 1 - 4 и более тыс. км в сек. масс солнечного вещества, быстро летящих частиц, главным образом протонов с энергией 100 млн. электрон-вольт и более, до 10 млрд. эв, а также электронов.

Рис. 21. Динамика солнечной активности (сплошная линия) и кривая заболеваемости дифтерией (штриховая линия). Вертикальная линия - момент начала профилактических прививок против дифтерии

Магнитные возмущения и бури, яркие полярные сияния, нарушения радиосвязи, радиошумы и помехи - вот наиболее частые спутники хромосферных протонных ливней, достигающих атмосферы Земли. Отличие этих потоков от обычного солнечного ветра не только количественное: протоны солнечных вспышек несут несравненно большую энергию, обладают большей проникающей способностью и вызывают при взаимодействии с веществом более значительные разрушения. Наиболее мощные и высокоэнергичные хромосферные потоки способны вызвать в атмосфере серьезные, хотя и непродолжительные, сдвиги, отражающиеся и на земной поверхности, и на биосфере (рис. 21).

 

Радиационные пояса Земли

Если хромосферные вспышки как-то связаны с изменениями, аномалиями солнечных магнитных полей, то магнитное поле Земли - виновник возникновения и существования околоземных радиационных поясов. Протоны и электроны солнечного ветра и хромосферных вспышек, движущиеся сквозь земную орбиту прочь за пределы Солнечной системы, частично захватываются магнитным полем Земли и начинают двигаться внутри "ловушки", вдоль магнитных силовых линий по винтовой, спиральной траектории. Другим источником заряженных частиц являются нейтроны (довольно быстро распадающиеся на протон и электрон), выбитые из атомов воздуха космическим излучением.

Двигаясь вдоль силовых линий земного магнитного поля и попадая в приполюсных районах в области с повышенным магнитным полем - так называемые "магнитные зеркала", - заряженные частицы отражаются от них и начинают двигаться в обратную сторону. Земля, таким образом, представляет собой гигантскую "магнитную ловушку", способную накапливать заряженные частицы.

Рис. 22. Схема радиационных поясов Земли. а - внутренний пояс, б, в - внешние пояса

Существование радиационных поясов Земли стало известно лишь после полетов советских и американских искусственных спутников Земли со специальной аппаратурой. Так называемый внутренний радиационный пояс расположен на высотах от 400 до 7 - 10 тыс. м над земной поверхностью (над областью магнитного экватора). По направлению к полюсам толщина внутреннего пояса и его высота над земной поверхностью постепенно уменьшаются. Над районами с повышенным магнетизмом, так называемыми магнитными аномалиями, пояс опускается ниже, до высот 320 - 350 км. Максимальная интенсивность радиации наблюдается на высотах 3,4 - 3,5 тыс. км. Основную массу частиц внутреннего радиационного пояса составляют протоны с энергиями главным образом 10 - 100 Мэв - миллионов электрон-вольт; максимум - 600 Мэв. Частицы с большей энергией земным магнитным полем не захватываются и не удерживаются. Средняя концентрация протонов во внутреннем радиационном поясе (на высоте 3,5 тыс. км) равна примерно 20 тыс. протонов, проходящих через 1 см2 в 1 сек. Кроме протонов, в состав внутреннего пояса входят электроны с энергиями 20 - 100 тыс. эв. (кэв) и в количестве примерно 10 млн. в 1 сек. (через 1 см2).

На более значительных расстояниях от земной поверхности (12 - 50 тыс. км) расположен еще один, внешний радиационный пояс, называемый еще электронным, поскольку содержит он преимущественно эти частицы с энергией 400 - 500 кэв (рис. 22). По направлению к полюсам высота этого пояса уменьшается особенно резко; кроме того, границы пояса подвижны и зависят от солнечных и иных магнитных возмущений.

Наконец, еще дальше от поверхности Земли, на высотах 50 - 75 тыс. км существует третий - самый внешний радиационный пояс, также состоящий из электронов, однако энергия их еще ниже и составляет в среднем всего 200 эв.

Незримый многослойный покров радиационных поясов в высоких широтах, прилегающих к магнитным полюсам, образует отверстия - это области входа и выхода магнитных силовых линий Земли. При выборе трасс будущих космических полетов ученые вынуждены учитывать существование радиационных поясов Земли и их толщину.

 

Космические лучи и жизнь на Земле

Космические лучи, в том числе и корпускулярные потоки солнечных вспышек, даже не достигая непосредственно земной поверхности, вызывают косвенно, за счет появления ливней вторичных частиц, увеличение числа ионизаций в приземном слое, в том числе и в биосфере. Поэтому мы можем утверждать, что излучения из космоса - составная часть естественного радиоактивного фона Земли, в условиях которого возникла и сформировалась земная жизнь, что космические лучи, как и другие компоненты радиоактивного фона, были и являются поныне мутагенными факторами, одной из причин изменчивости органических форм и в конечном счете - двигателями эволюции живого на Земле.

Если в среднем для Земли радиоактивность воздуха в приземном слое составляет 0,1 - 0,12 р в год, то на долю космических лучей из этого количества приходится около 0,03 - 0,04 р в год. Существенных колебаний интенсивности этого излучения за исторически сравнительно короткие промежутки времени не происходит. Лишь хромосферные вспышки на Солнце вносят небольшие вариации в величину потока космических лучей, достигающего Земли.

Но жизнь на Земле, по подсчетам ученых, существует 3 - 4 млрд. лет. За такой срок интенсивность космического излучения могла меняться более существенно, а это оказало бы серьезное влияние на развивающуюся земную жизнь. Исследовав эту возможность, советский астроном И. С. Шкловский показал, что за время жизни на Земле интенсивность жесткого космического излучения могла возрастать в десятки раз при вспышках сверхновых. В пределах Галактики такие вспышки происходят в среднем раз за 10 - 100 лет. Влияние на земную жизнь может оказать лишь вспышка сверхновой, происшедшая в относительной близости от Земли, на расстоянии порядка 10 - 20 световых лет. По подсчетам И. С. Шкловского, такие вспышки могут возникать примерно раз в 750 млн. лет. Это значит, что на протяжении достаточно долгой биографии Земли, а также жизни на ней, появление соседки - сверхновой - могло произойти по крайней мере один-два раза.

Что произошло бы в этом случае? Образовавшаяся вокруг сверхновой туманность, расширяющаяся со скоростью нескольких тыс. км в секунду и уносящая с собой массы звездного вещества и в том числе мощные потоки частиц высокой энергии, через 10 тыс. лет достигла бы Солнечной системы. В последующие несколько десятков тысячелетий Земля вместе со всей Солнечной системой оставалась бы погруженной в эту туманность, где плотность первичных космических лучей в десятки, а местами и в сотни раз выше обычной.

Такое длительное и значительное увеличение радиационного фона не могло бы не оказать серьезного влияния на земную жизнь. Особенно сильное потрясение должны были пережить долгоживущие органические формы. Если для удвоения частоты мутаций у микроорганизмов, водорослей, простейших многоклеточных требуется увеличение радиоактивного фона в сотни и тысячи раз, то для человека и других высокоразвитых и длительно живущих организмов доза радиации, удваивающая частоту мутаций, составляет что-то около 1 р в год. Иными словами, вспышка сверхновой в космических окрестностях Земли могла бы привести к гибели наиболее долгоживущих органических форм и к общему ускорению мутационного процесса.

И. С. Шкловский полагает, что повсеместная на Земле гибель гигантских пресмыкающихся в конце мелового периода могла быть вызвана вспышкой сверхновой. Серьезным подтверждением этой гипотезы было бы доказательство одновременной в течение десятка тысячелетий гибели динозавров на всей Земле. К сожалению, современные методы оценки возраста ископаемых остатков пока недостаточно точны для этих вычислений.

Что касается более ранних этапов развития жизни на Земле, то значительное возрастание радиоактивного фона могло бы сыграть роль толчка, дополнительного двигателя эволюции или даже фактора, стимулировавшего само возникновение жизни на Земле.

 

Космические лучи и жизнь на других планетах

Человечество пока не располагает точными фактами и доказательствами существования жизни вне Земли. Разнообразные гипотезы, существующие ныне, опираются на более или менее достоверные аналогии, предположения и относительно небольшое количество фактов. Одна из существующих ныне гипотез была впервые сформулирована еще в 1907 г. шведским химиком Сванте Аррениусом. Он предположил, что жизнь на Земле не возникла из неживого, а была занесена из других миров в виде спор микроорганизмов. Ведь известно, что такие споры могут без вреда переносить космический холод и вакуум мирового пространства, а световое давление, открытое и доказанное нашим соотечественником профессором П. Н. Лебедевым, могло бы явиться тем "двигателем", который облегчил бы ничтожным частичкам живого осуществление грандиозных космических путешествий.

Теория С. Аррениуса никем не была опровергнута. Но возражения главным образом философского характера сделали ее малопопулярной. Между тем гипотеза Аррениуса ни в коей мере не противоречит положениям материалистической философии, ибо не отвергает материальной природы жизни.

В последние годы гипотеза Аррениуса была подкреплена новыми данными. По расчетам американского астронома Сагана, световое давление может "помочь" частицам (в том числе и живым) покинуть планету и даже целую планетную систему, если размеры этих частиц будут в пределах 0,2 - 0,6 мк. Такие малые размеры имеют вирусы и споры. Следовательно, споры в принципе могут покидать пределы родной планеты и под влиянием светового давления путешествовать в межпланетном и даже межзвездном пространстве.

Но на пути путешествующих "молекул живого" наряду с холодом и вакуумом встает еще одно, весьма существенное препятствие - космическая радиация, как корпускулярная, так и квантовая (ультрафиолетовые и рентгеновские лучи). Насколько серьезно это препятствие? Если ультрафиолетовые и мягкие рентгеновские лучи, в силу своей малой проникающей способности, могут полностью поглощаться оболочкой спор и не причинять им существенного вреда, то проникающая корпускулярная радиация безусловно достигает живой протоплазмы и действует на нее. Очевидно, по достижении определенной суммарной дозы радиации споры-путешественницы погибают. Таким образом, космическое излучение ограничивает во времени, а значит, и в пространстве, возможности "опыления" безжизненных планет живой космической пылью.

По расчетам Сагана, выброшенные за пределы земной атмосферы споры уже через несколько недель могут достигнуть орбиты Марса, а через несколько лет - орбиты Нептуна. Для достижения соседних звездных систем может понадобиться несколько десятков тысяч лет. Трудно сказать, как далеко могут долететь споры земных микроорганизмов, гонимые солнечным ветром. Во всяком случае устойчивость некоторых из них к действию радиации столь велика, что путешествие внутри Солнечной системы, по-видимому, осуществимо.

Окончательно принять или отвергнуть гипотезу Аррениуса можно будет только тогда, когда люди получат прямые данные о наличии и особенностях жизни на Луне, Марсе и других планетах. И не исключено, что там мы встретимся со старыми, хотя немного и изменившимися, земными знакомыми.

 

Покорение космоса и лучевая опасность

Необъятные просторы космоса таят лучевую опасность не только для крохотных частиц земной жизни. "Земля - колыбель человечества, но нельзя вечно жить в колыбели", - эти слова К. Э. Циолковского оказались пророческими. Мы живем в такое время, когда человечество начинает покидать свою земную колыбель.

Дети Земли, люди, как и все живое, приспособлены к жизни в земных условиях. За пределами плотных слоев земной атмосферы их ожидают совершенно непривычные, несовместимые с жизнью, экстремальные условия: космический холод и мрак, отсутствие кислорода и атмосферы вообще, повышенная гравитация при взлете и посадке и невесомость все остальное время полета. Чтобы выжить в этих условиях, космонавты захватывают с собой частицу родной земной колыбели - космический корабль, защищающий их и от холода, и от вакуума, и от других опасностей. Немалое значение имеют наземная тренировка, тренировочные полеты и т. п.

Радиация - космические лучи, протоны солнечных вспышек, радиационные пояса земли - одно из наиболее труднопреодолимых препятствий на пути освоения космоса. Конечно, герметическая оболочка космического корабля, оберегающая его обитателей от космических температур и вакуума, в какой-то мере защищает и от радиации. Смертоносное ультрафиолетовое и рентгеновское излучение Солнца полностью поглощается оболочкой корабля. Несколько иначе обстоит дело с корпускулярными потоками. Наиболее высокоэнергичные из них, и прежде всего более тяжелые частицы космических лучей, свободно пронизывают оболочку корабля, расходуя при этом лишь часть своей энергии и несколько замедляясь.

Однако действие их на находящихся внутри корабля космонавтов при этом не слабеет, а может даже несколько усиливаться. Замедление тяжелых частиц приводит к увеличению линейных потерь энергии и, следовательно, к увеличению биологического эффекта.

Попытаемся сопоставить и оценить размер возможной опасности для здоровья космонавтов трех основных источников радиации в заатмосферном пространстве.

Проще всего обстоит дело с радиационными поясами Земли, поскольку космические корабли будущего, направляющиеся к Луне, Марсу, Венере, будут преодолевать их в течение нескольких минут, или десятков минут, при взлете и посадке. Наиболее реальную опасность представляют протоны внутреннего радиационного пояса. С учетом того обстоятельства, что протонное излучение при одинаковой ионизирующей способности может вызывать более значительный биологический эффект (ОБЭ - относительная биологическая эффективность - больше 1), доза радиации в отсутствие защиты может достигать в области внутреннего радиационного пояса 190 - 200 бэр/час (бэр - биологический эквивалент рентгена). В условиях защиты оболочкой корабля доза может достигать 10 - 50 бэр/час. Это означает, что более 2 - 3 часов в области максимума внутреннего радиационного пояса космический корабль задерживаться не должен. По-видимому, в реальных условиях космические корабли преодолевают и будут преодолевать эту область за значительно более короткий срок.

Что касается электронов внутреннего и внешнего радиационных поясов, то преодолеть оболочку космического корабля они не в состоянии. Зато при их ударе об оболочку и торможении возникает так называемое тормозное гамма-излучение, обладающее высокой проникающей способностью. Вклад этого тормозного излучения в суммарную дозу радиации при прохождении радиационных поясов не превышает, по-видимому, 10%.

В целом можно утверждать, что опасность, создаваемая радиационными поясами Земли, не является непреодолимой и может быть сведена к минимуму с помощью сравнительно несложных мероприятий. Наиболее эффективное из них состоит в том, что космический корабль будет быстро проходить опасную зону; возможны и траектории космических полетов, направленные в обход поясов, через высокоширотные, приполярные области. Конструкция оболочки корабля может быть построена с учетом требований радиационной безопасности, что в то же время не противоречит и общим задачам. По-видимому, наиболее эффективна слоистая защита, включающая металлическую оболочку и слой полиэтилена.

Одним словом, современная наука и техника располагают достаточными средствами для преодоления опасности, создаваемой радиационными поясами Земли. Тем не менее их существование необходимо учитывать при создании более или менее длительно существующих обитаемых космических станций. Сейчас уже ясно, что создавать их на высоте 1000 км над поверхностью Земли, как предполагал К. Э. Циолковский, нельзя. Очевидно, их придется располагать на высотах до 500 км или выше 10 - 15 тыс. км.

Гораздо более серьезную проблему составляет существование первичного космического излучения. Оболочка корабля, как уже сказано, не является препятствием для наиболее жесткой части этого излучения - тяжелых частиц. При определенных условиях она даже способствует увеличению биологической эффективности этих лучей (несколько замедляя частицы и увеличивая удельную плотность производимой ими ионизации). На этом основании приходится сделать вывод, что физическая защита от действия первичного космического излучения неэффективна.

Но нужна ли эта защита? Быть может, интенсивность космических лучей столь невелика, что их действием можно пренебречь? Как теперь установлено, это, к сожалению, не так. Доза радиации, которую космонавты будут получать за счет космического излучения за пределами атмосферы, примерно в два-три раза выше допустимой дозы облучения в земных условиях, при работе с источниками излучения и радиоактивными изотопами. Но благодаря высокой биологической эффективности наиболее тяжелой части космических лучей их воздействие на организм космонавта будет еще несколько сильнее. И все же превышение допустимой дозы радиации в случае первичных космических лучей галактического происхождения не настолько велико, чтобы ограничить возможность космических полетов на Луну, а также к Венере и Марсу. Согласно расчетам ученых, при полетах вокруг Луны и обратно космонавты получают суммарную дозу около 0,5 р, т. е., примерно столько же, сколько при производстве простейшего рентгеновского исследования - рентгеноскопии. Лишь при более длительных полетах, продолжающихся многие месяцы и годы, постоянное воздействие космической радиации может оказать более или менее серьезное воздействие. Очевидно, для таких полетов следует продумать и эффективные меры защиты, в том числе и химической, поскольку физическая, как уже сказано, неэффективна.

Наибольшую опасность для здоровья и даже жизни космонавтов при полетах в околоземном пространстве представляет корпускулярное излучение солнечных хромосферных вспышек. При особенно мощных солнечных вспышках потоки протонов бывают настолько плотными, что доза радиации за пределами атмосферы и в условиях отсутствия защиты достигает тысяч рентгенов в час, т. е. превышает абсолютно смертельную для человека дозу. Правда, оболочка корабля поглощает значительную часть быстрых частиц и ослабляет энергию других, но взамен возникает тормозное рентгеновское и гамма-излучение, так что доза радиации внутри корабля все же может оказаться очень высокой. Кроме того, многое зависит и от масштабов вспышки. При особо мощных вспышках возникают наиболее высокоэнергичные частицы, способные преодолевать оболочку корабля, что, естественно, увеличивает их опасность для космонавтов.

Каковы же меры борьбы с лучевой опасностью в космосе? Преодолима ли она? Не ограничивает ли она дальность полетов в космосе и время пребывания в нем людей?

Меры борьбы различны, поскольку существуют различные виды радиационной опасности. Что касается радиационных поясов Земли, то их преодоление не составляет очень больших трудностей. Оболочка космического корабля существенно ослабляет их потенциальную опасность. Время пребывания космического корабля в пределах наиболее опасного внутреннего радиационного пояса весьма ограничено, и доза радиации, получаемая при его прохождении, мало отличается от допустимой. Но ее можно избежать, если рассчитать трассу полета таким образом, чтобы корабль покидал плотные слои атмосферы в высоких широтах, в районе расположенного над геомагнитным полюсом окна в радиационных поясах Земли. Стационарные же космические станции, очевидно, следует располагать вне пределов радиационных поясов, т. е. ниже 400 - 500 км или выше 10 - 20 тыс. км над земной поверхностью.

Наилучшим способом защиты от излучения солнечных вспышек явилось бы совершение космических полетов в период между вспышками. Реализация этой возможности упирается в эффективность и надежность прогнозирования вспышек. Наиболее безопасны в этом смысле годы спокойного Солнца, когда число пятен на его поверхности минимально, а вспышки редки. Таковы будут 1971 - 1975 гг., но и в годы высокой солнечной активности космические полеты могут и должны продолжаться.

Астрономическая служба Солнца СССР, США и некоторых других стран, осуществляющая постоянное за ним наблюдение, позволила изучить некоторые закономерности возникновения вспышек и тем самым с известной степенью надежности предсказывать место и время их возникновения. А это, разумеется, облегчает задачу планирования и обеспечения безопасности полетов. Надо иметь в виду, что не всякая вспышка опасна: от места ее возникновения на солнечном диске зависит направление корпускулярных потоков, и лишь при определенных локализациях вспышек эти потоки направляются в сторону земной орбиты.

Наконец, и при самых неблагоприятных условиях в распоряжении космонавтов будет минимум несколько часов от момента возникновения и регистрации вспышки до момента, когда потоки протонов достигнут корабля. За эти часы космонавты могут успеть посадить корабль на Землю, укрыть его в тени Луны либо принять другие меры защиты.

На случай, если все эти мероприятия окажутся недостаточными, в конструкции корабля заранее предусматриваются способы физической защиты. Первая линия обороны при всех условиях - это оболочка космического корабля, во много раз ослабляющая мощность потока солнечных корпускул и его опасность для космонавтов. Сложное внутреннее оборудование корабля, многочисленные приборы, панели, кресла и т. п. конструируются и компонуются так, чтобы максимально оградить космонавта, его наиболее чувствительные органы от губительного излучения. Это - своеобразная вторая линия обороны. Наконец, в кораблях, предназначенных для полетов к Луне и другим планетам, будут создаваться специальные миниатюрные радиационные убежища, где космонавты смогут переждать опасные часы, предоставив управление кораблем автоматике, а специальные приборы известят их, когда опасность снизится до минимума. Такова третья линия обороны от лучевой опасности, также имеющая чисто физическую природу.

Оборона, таким образом, строится надежная. И все же потребность в дополнительной защите есть. Она удовлетворяется с помощью химических и биологических противолучевых средств, применение которых совершенно необходимо для защиты от первичного космического излучения при дальних полетах (ввиду неэффективности физической защиты), от тормозного излучения и частично от протонных потоков.

Химическая защита в этих условиях неизбежно приобретает ряд особенностей, связанных с длительным непрерывным действием сравнительно малых доз радиации, с неравномерным облучением тела космонавта, так как разные его области в различной степени экранированы. Кроме того, при разработке средств химической защиты приходится учитывать, что на организм космонавта действуют и другие факторы космического полета: повышенная гравитация при взлете и посадке, невесомость, шум и вибрация, психологические факторы и т. п. Необходимо, чтобы средства химической защиты, ослабляя действие радиации, в то же время хотя бы не усиливали вредного действия других факторов полета. Все это достаточно усложняет задачу.

И тем не менее многочисленные эксперименты, поставленные в земных лабораториях и при полетах экспериментальных животных, убеждают, что задача эта разрешима и что в арсенале средств защиты космонавта от действия радиации будут состоять и радиозащитные препараты. Это и хорошо известные нам уже серу-содержащие вещества - цистамин, АЭТ и другие - и аминосоединения типа серотонина, 5-метокситриптамина, способные повысить устойчивость организма на период опасности при солнечных вспышках. Это вещества, вызывающие длительное повышение радиационной устойчивости (комплексы витаминов и т. п.). Ученые нашей страны и за рубежом ведут большую работу в этой области. К сожалению, пока ее результаты нельзя признать удовлетворительными.

Все сказанное до сих пор относилось к космическим полетам в пределах Солнечной системы, в основном к ближайшим планетам. Но ведь человечество не остановится и на этом. Правда, еще не созданы двигатели, способные придать кораблю скорость, близкую к световой (а это необходимо для полета к другим звездным системам), не разработаны и соответствующие конструкции кораблей. Но в наш век разрыв между самой необузданной фантазией и реальностью невелик и все сокращается. Попробуем же заглянуть в завтра.

Как отразятся на человеке околосветовые скорости полета и какова будет в этом случае лучевая опасность? Что касается скорости, то сама по себе она не окажет существенного влияния: на человека воздействует не скорость, как таковая, а ускорения; в корабле, завершившем разгон, люди не будут испытывать неудобств, связанных со скоростью. Что же касается ускорений, то для их преодоления весьма важны предварительный отбор и тренировка космонавтов, совершенствование конструкции кресел, костюмов, в частности, применение гидравлических капсул-кресел, о которых писал еще К. Э. Циолковский.

А как же радиация? В корабле, летящем с субсветовой скоростью, создадутся совершенно особые условия. Космическое пространство, при всей его пустоте, содержит от одной до десяти частиц в каждом кубическом метре. При столкновении с космическим кораблем каждая такая частица будет вести себя так, как будто это она летит с околосветовой скоростью. Самая мощная оболочка не будет достаточным препятствием для потока встречных частиц, пронизывающих корабль насквозь. Ничто живое не сможет существовать в таких условиях.

Значит ли это, что межзвездные полеты принципиально невозможны? Будем осторожны с прогнозами. История науки знает немало примеров того, как самые, казалось бы, бесспорные предвидения опрокидывались прогрессом науки и техники. Возможно, межзвездные и галактические корабли будущего будут вооружены сверхмощным магнитным полем, отклоняющим в стороны поток встречных частиц; быть может, полезным в этом отношении окажется лазерный луч. Да и наука не стоит на месте. Пройдет десяток лет, и космонавтика - одна из самых молодых и перспективных отраслей человеческой деятельности, шагнет так далеко вперед, что наши сегодняшние сомнения окажутся почти наверняка несерьезными, а трудности - преодолимыми.

И все же лучевая опасность остается одним из самых серьезных препятствий на пути освоения космического пространства, и чем дольше человек будет находиться вне Земли, тем важнее будет защитить его от радиационной угрозы.