где рассказывается о загадке, вот уже сто лет не дающей покоя физикам, о поиске магнитных зарядов-монополей, о частицах-«убийцах», одно присутствие которых вызывает распад окружающего вещества
Недавно мне на глаза попался журнал с короткой заметкой, которая предварялась броскими, набранными жирным шрифтом фразами-анонсами: «Открыто магнитное вещество! Частица-монополь! Изолированный магнитный полюс!» Далее сообщалось о том, что сверхчувствительный прибор-анализатор, построенный в одном из американских университетов для поиска магнитных зарядов, зафиксировал импульс — след прошедшей сквозь прибор магнитной частицы.
Автор заметки, как ясно всякому специалисту, перестарался. На основании одного-единственного импульса еще нельзя сделать надежных заключений. Это могло быть и капризом аппаратуры. Как ни изощряйся, какие предосторожности ни принимай, такие капризы случались не раз прежде, случаются и в наши дни. Об открытии говорить рано, нужны подтверждения.
Нечто подобное как раз было несколько лет назад. На одной из международных конференций группа американских физиков сообщила, что высоко над землей, в космических лучах, им удалось обнаружить частицу, у которой вместо электрического заряда был магнитный. Сенсация быстро облетела все лаборатории мира. Сообщение американцев обсуждалось на семинарах и в рабочих кабинетах, в коридорах и в столовых. Еще бы если есть хоть одна такая частица, то почему не быть целому миру, в котором «все, как у нас», но электрические заряды заменены магнитными? Магнитные атомы, магнитные молекулы... Как в волшебном зеркале: все, что было электрическим, стало магнитным, а магнитное — электрическим. Может, и в нашем мире удастся создать когда-нибудь такое необычное «магнитное вещество»?
А потом все затихло. Оказалось, что результаты наблюдений можно объяснить без магнитных зарядов. Манящая дверь в волшебный магнитный мир так и не открылась.
Но возможен ли вообще такой мир? Откуда физики взяли, что между электрическими и магнитными свойствами природы должна быть симметрия?
Для того, чтобы ответить на эти вопросы, придется мысленно перенестись на 150 лет назад — в Англию позапрошлого века. Это было время бурного развития промышленности. По всей стране возникали фабрики и заводы со сложными (по тем временам, разумеется) станками и механизмами. Для их создания и совершенствования требовались научные изыскания. Важными становились разделы науки, еще недавно считавшиеся чисто кабинетными, не имеющими никакого практического значения. А это, в свою очередь, подталкивало ученых к исследованию новых явлений, тем более что физические приборы были еще очень просты, и любой человек со средствами, даже относительно скромными, мог создать домашнюю лабораторию, оборудованную на «уровне мировых стандартов».
Наверное, тогда и вошел в литературу образ гениального ученого-одиночки, ниспровергающего мировые законы в подвале своего дома. Как мало это похоже на современную науку! Ученые тогда, по существу, еще только приступали к детальному изучению окружающей природы, и их интересовало все. В поисках новых законов они сопоставляли и связывали явления, которые до того, казалось, не имели межу собой ничего общего. Исследования «на вольную тему», эксперименты для проверки «сумасшедшей» идеи — все это было обычным делом. И результаты часто бывали просто поразительными. Настоящий калейдоскоп открытий! Именно тогда была установлена связь трех явлений, на первый взгляд не имеющих между собой ничего общего: электричества магнетизма и света. Человечество обязано этим нескольким ученым, но прежде всего Майклу Фарадею.
Самое важное достижение Фарадея — открытие электромагнитного поля. Оказалось, что электричество и магнетизм — это две части единого целого — распределенного в пространстве поля. Если до того считалось, что мир состоит из вещества, то теперь к этому добавилась новая сущность — электромагнитное поле, которое может быть либо «привязанным» к зарядам и токам, порождая действующие вокруг них силы, либо отрываться от них в виде светового излучения.
Сотни опытов проделал Фарадей, изучая свойства открытого им электромагнитного поля и его взаимодействие с веществом. Целый каскад неожиданных догадок и остроумных гипотез! Можно только поражаться фантазии и изобретательности этого человека. И вот что интересно: каждый новый эксперимент свидетельствовал о замечательной симметрии электричества и магнетизма. Любому электрическому явлению всегда можно было, как в зеркале, найти соответствующее магнитное.
Когда знакомишься с поражающим воображение перечнем опытов, проделанных Фарадеем, может показаться, что он действовал методом слепого перебора вариантов, или, как грубовато говорят физики, «методом тыка», перебирая наугад различные комбинации. Но, это не так. Атмосфера смелых экспериментов, свойственная его времени, безусловно, наложила отпечаток на творчество ученого, однако в процессе своих опытов Фарадей сумел составить глубокие и в целом правильные представления о природе электромагнетизма. Эти представления и были тем внутренним компасом, которым он руководствовался при постановке все новых и новых экспериментов.
Правда, в статьях Фарадея нет ни одной математической формулы, его представления были наглядно-качественными, с помощью его силовых, линий и трубок трудно делать точные расчеты. Строгий математический вид электромагнитной теории придал другой великий английский физик — Джеймс Клерк Максвелл, родившийся на 40 дет позже своего предшественника, как раз тогда, когда тот сделал главное свое открытие — доказал, что магнетизм может превращаться в электричество.
Современникам новая теория казалась чрезвычайно сложной. Даже значительно позже, уже в начале нашего столетия, профессор Московского университета Станкевич говорил своим студентам: «Теперь мы переходим к новой главе нашего курса. Это теория Максвелла, которая настолько сложна, что лекционному изложению не поддается. Вы можете с ней познакомиться по моему монографическому курсу, а курс приобретите у швейцара Андрея. Переходим к следующей главе».
Физическим теориям свойственна одна замечательная особенность: если их математические формулы правильно отражают природу, то они не просто описывают некий опыт, а являются его обобщением; по этой причине их содержание значительно богаче исходных экспериментальных данных. Они предсказывают новые, неизвестные факты, экспериментальное подтверждение которых убеждает нас в правильности теории. Все это относится и к теории Максвелла. Вместе с механикой Ньютона она составляет фундамент физики. Правда, вскоре после eе создания ученые заметили удивительную особенность. Несмотря на то что электрическое и магнитное поля являются двумя равноправными половинками единого поля или, точнее, двумя сторонами одной модели и входят в уравнения теории Максвелла совершенно симметрично, полного равноправия электричества и магнетизма все же нет. Электричество имеет источники-заряды, а магнитных зарядов нет: магнетизм порождается токами, то есть опять-таки электрическими зарядами, только движущимися. Каждый школьник знает что, распилив магнит, он не получит двух кусков с разными магнитными зарядами — каждый кусок снова окажется магнитом с двумя полюсами. Другими словами, в природе встречаются только двухполюсные или как говорят физики, дипольные магнитные системы и нет изолированных полюсов-монополей.
Даже элементарные частицы, и те, подобно магнитной стрелке, имеют по два магнитных полюса. Ведь каждая из них окутана облаком испущенных ею виртуальных частиц. Их движение создает внутренние электротоки, и весь объект становится похожим на микроскопический электромагнит. Например, магнитные свойства протона обусловлены в основном током заряженных мезонов в его периферической оболочке. Электрон, правда, в этом смысле сложнее. Никаких внутренних частей у него не обнаружено, во всех опытах он проявляет себя как точечная частичка, и в то же время он магнит. Впрочем, у протона тоже есть небольшая часть магнетизма, которую не удается объяснить движением входящих в его состав зарядов. Некоторые физики связывают это с глубинной, кварк-глюонной структурой. Не исключено, впрочем, что магнитные свойства частиц имеют и более глубокие корни — где-то внутри самих глюонов и кварков.
Как бы там ни было, факт остается фактом: электрические заряды есть, а одиночные магнитные полюса никогда и нигде не наблюдались. Сразу же возникает вопрос: для чего природе потребовалась такая асимметрия, разве не проще было бы иметь два типа зарядов — электрические и магнитные? Почему природа не воспользовалась такой возможностью, а пошла по более сложному пути — ведь просто так ничего не бывает? Эта загадка уже давно не дает физикам покоя.
Может быть, это всего лишь свойство той части Вселенной, где мы живем, а в других ее областях, наоборот, есть магнитные, но нет электрических зарядов? А может, нас окружает совершенно симметричный нашему электромагнитный мир, только магнитные заряды-монополи мы по какой-то причине еще не обнаружили? По какой же?
На этот счет существует несколько гипотез. Но и о них чуть позже. А пока вернемся в Англию.
Первым проблему монополей стал всерьез исследовать английский физик Оливер Хевисайд. Ему удалось записать уравнения Максвелла в симметричном виде — с электрическими и магнитными зарядами. Однако его статья осталась почти не замеченной. Даже сегодня мало кто о ней слышал, хотя она на 40 лет опередила схожую с ней работу Дирака, с которой сегодня знакомы все физики. Сыграла, очевидно, свою роль репутация Хевисайда, как очень талантливого, но непонятного «кустаря-одиночки», чьи научные выводы, быть может, и верны, но выглядят не очень убедительно.
Хевисайд был действительно человек весьма оригинальный. Кажется невероятным, но, занимаясь расчетами, связанными с увеличением надежности телеграфных линий, с прокладкой кабеля через Атлантический океан, то есть имея дело с самыми передовыми по тому времени отраслями техники, Хевисайд впервые сел в автомобиль лишь в конце своей жизни (он умер в 1921 г.), да и то потому, что иначе нельзя было добраться до больницы. Гениальный чудак-отшельник, чьи открытия буквально озолотили телеграфные компании, Хевисайд жил и умер бедняком в одном из захолустных английских городков. Рассказывают, что, будучи избранным в члены Лондонского Королевского общества, самого почетного научного учреждения Великобритании, он не счел нужным хотя бы раз появиться на его заседаниях. Единственной его страстью была наука. Он не считал возможным тратить
время и силы на обоснование своих выводов, и научные журналы только и делали, что отвергали его статьи.
Полученные им результаты часто были необычайно остроумны, но пользоваться ими можно было с осторожностью, так как часто оставалось неясно, где они справедливы, а где нет.
Общественное мнение в науке значит очень много. В большинстве случаев оно защищает науку от скоропалительных гипотез и непроверенных фактов, но иногда и мешает признанию принципиально новых идей. К таким идеям принадлежало и то, о чем писал Хевисайд в статье про магнитные заряды.
Впрочем, не только Хевисайд размышлял о странной асимметрии электрических и магнитных зарядов. Пьер Кюри, открывший вместе со своей женой Марией Кюри-Склодовской радий, пытался экспериментально обнаружить магнитные заряды и их токи. Попытки его ни к чему не привели. В течение 20 лет австрийский ученый Эренхафт опубликовал в физических журналах более 50 статей, в которых доказывал, что в своих опытах он наблюдает магнитные заряды-монополи. Эренхафт наблюдал движение железных пылинок в магнитном поле. Когда пылинка освещалась сильным лучом света, ее движение изменялось так, как если бы свет выбивал с ее поверхности магнитный заряд. До сих пор непонятно, чем объясняется наблюдавшийся Эренхафтом эффект. А он не ошибался: его опыт был повторен другими физиками. Совсем недавно их еще раз повторили в Институте физики высоких энергий в Алма-Ате, и опять было замечено аномальное движение железных пылинок. Может быть, в эксперимент вкралась какая-то тонкая методическая погрешность? Во всяком случае опыты другого рода к открытию монополей не привели.
Конечно, может быть и так, что в каком-то одном, очень специфическом опыте монополь проявляется, а в других нет. Например, если опыт отличается большей точностью или в нем используются те свойства монополя, которые не сказываются в других экспериментах. К сожалению, опыты с железными пылинками не имеют преимущества ни в том, ни в другом отношении.
Но вернемся снова в Англию. Уж так получилось, что история монополя тесно связана с этой страной.
В 1931 г. к идее магнитных монополей пришел Поль Дирак, тогда двадцатидевятилетний теоретик из университета в Кембридже, получивший уже широкую известность благодаря выдвинутой им и блестяще подтвердившейся на опыте гипотезе об античастицах. Новая идея знаменитого физика сразу привлекла к себе внимание теоретиков и экспериментаторов. В отличие от Хевисайда Дирак был преувеличенно скрупулезен в обосновании своих выводов. Одно из его любимых выражений было такое: «Необходимо все хорошенько обдумать». Человек крайне немногословный, он старался выражать свою мысль как можно более лаконично и четко. Число статей и книг, написанных Дираком, невелико, но каждая из них стала классической.
Интересно, что по образованию Дирак был инженер, специалист по строительству гидроэлектростанций. После окончания института он не мог найти себе работу и вынужден был переквалифицироваться в физика-теоретика. По сравнению с профессией инженера это была не очень престижная специальность и денег сулила много меньше. Не знаю, потеряла ли что-нибудь от этого гидроэнергетика, но физика, несомненно, выиграла. Имя Дирака сегодня известно каждому, кто хотя бы немного соприкоснулся с квантовой физикой или просто читал о ней популярные статьи.
К идее монополей Дирак пришел, решая совсем другую задачу. Он старался понять, почему электрический заряд всегда принимает только дискретные значения, кратные заряду электрона. Масса, энергия, размеры макроскопических тел и микрочастиц могут быть любыми, никаких ограничений здесь нет, а вот их электрические заряды почему-то всегда пропорциональны заряду электрона и коэффициент пропорциональности — непременно либо целое число, либо нуль.
Этой закономерности, как мы уже знаем, не подчиняются кварки, заряд у них дробный — одна и две третьих заряда электрона. Но о кварках Дирак тогда еще ничего не знал. Если бы он выполнял свои расчеты в наше время, за минимальную порцию электричества ему пришлось бы принять не заряд электрона, а его треть — заряд кварка. Но дискретность зарядов остается экспериментальным фактом по-прежнему.
Размышляя о ее причинах, Дирак неожиданно обнаружил, что если в природе наряду с квантом электричества существует квант магнетизма, то в соответствии с теорией получается интересный парадокс: перемещая измерительный прибор по замкнутому контуру и выполняя измерения в одних и тех же точках, мы для некоторых величин при каждом повторном обходе будем получать новые значения, чего никогда не наблюдалось. Наоборот, во всех экспериментах наблюдаемые величины оказывались зависящими только от точек, в которых они измеряются, и ни от чего другого. Никакой «памяти о прошлом» у измеряемых величин нет. Казалось бы, этот парадокс — убедительное доказательство того, что никаких квантов магнетизма в природе быть не может.
И вот тут Дирак сделал важное открытие. Он заметил, что если величина электрического и магнитного зарядов такова, что их произведение равно целому или полуцелому числу, то все «неудобные» слагаемые в теоретических формулах, зависящие от числа обходов контура, обращаются в нуль. Получается, что гипотеза монополей не только делает теорию полностью симметричной по отношению к электричеству и магнетизму — на это обращал внимание еще Хевисайд,— но и приводит к квантованию электрического и магнитного зарядов. Иначе говоря, в природе возможны только такие заряды, которые удовлетворяют формуле Дирака.
По сравнению с теорией Хевисайда, которая в глазах современников выглядела необоснованной догадкой, теория Дирака была в высшей степени последовательна и сразу же получила признание. Однако ответить на вопрос, существуют в природе монополи или нет, она все равно не могла. Гипотеза монополей входила в нее как постулат. Верен он или нет, на это должен ответить эксперимент.
Вполне возможно, что никаких монополей в природе нет, ведь эти частицы потребовались Дираку лишь для того, чтобы объяснить дискретность зарядов, а она может иметь и другое происхождение. Не приходим ли мы здесь в противоречие со знаменитой бритвой Оккама, пытаясь объяснить «старую тайну при помощи новой загадки»? В средние века считалось позволительным строить длинные цепочки гипотез, где каждая последующая была нужна лишь для обоснования предыдущей. К этому прибегали особенно тогда, когда требовалось согласовать сложные явления окружающего мира с догмами священного писания. Английский философ и монах Уильям Оккам первым выдвинул принцип «не следует с помощью большего делать то, чего можно достигнуть меньшей ценой», и рекомендовал пользоваться им в качестве «методологической бритвы», срезающей излишние гипотезы и слабо обоснованные рассуждения. С тех пор бритва Оккама прочно вошла в методологию науки.
В современной физике этот принцип понимается несколько шире. Считается, что в мире может реализоваться любая возможность, которая не противоречит нашим основным представлениям о законах природы. Во всяком случае такую возможность следует во что бы то ни стало изучить, и если она существует лишь гипотетически, то это само по себе выглядит уже загадочным и, в свою очередь, нуждается в объяснении. Физика наших дней — наука математическая, и часто оказывается так, что в ее уравнениях бывают скрыты неожиданные возможности, приводящие к замечательным предсказаниям и к выдающимся открытиям. Примером такого предсказания и является гипотеза монополей Дирака.
Это та самая теоретическая возможность, которую невозможно упустить, мимо которой нельзя пройти. И неспроста она породила целую лавину исследований. Теоретики анализировали ее следствия, пытаясь обнаружить какие-либо противоречия, но так и не обнаружили, экспериментаторы в поисках монополей обшаривали все доступные им земные и космические материалы.
Естественно, монополь должен чем-то существенно отличаться от всех других частиц, иначе он попросту затеряется среди них и его можно прозевать. Среди его свойств должно быть что-то особенное, за что можно зацепиться при постановке эксперимента.
У монополя такое свойство есть. Из формул Дирака вытекает, что минимальная порция магнитного заряда по своей величине должна быть раз в 100 больше электрического заряда электрона, а раз так, то монополи должны сильно взаимодействовать с окружающим веществом. А это значит, что их можно сравнительно легко отделить от других, немагнитных частиц. К тому же, однажды родившись, монополь не может исчезнуть, так как магнитный заряд, как и электрический, сохраняется всегда. Исчезнуть монополь может, лишь столкнувшись с антимонополем, но вероятность такого события ничтожна. В этом отношении монополи подобны кваркам.
Один из способов обнаружить монополи — искать их следы в фотоэмульсии. У них должны быть очень «жирные» следы. Как раз такой необычно плотный след в стопке фотопластинок и пластиковых, пленок был обнаружен американскими физиками в опыте, о котором они рассказывали на международной конференции. На воздушных шарах они поднимали фотопластинки и пленки на большую высоту, почти в безвоздушное пространство, и там в продолжение нескольких суток все это облучалось в потоке космических лучей. Но скорее всего, это был след какого-то тяжелого иона — атома тяжелого элемента с ободранной оболочкой, который оставляет такой же плотный след в детектирующем материале. Исключить такую возможность американские физики не могли, и безжалостная бритва Оккама отсекла гипотезу обнаруженного ими монополя.
Монополи искали и среди частиц, родившихся на ускорителях. Такие опыты выполняются в хорошо контролируемых условиях, и точность здесь значительно выше, чем в космических лучах. Искали разными способами, используя самые совершенные и точные приборы, и ни намека на следы магнитных зарядов.
Пожалуй, наиболее точными были эксперименты, в которых раздробленные образцы различных материалов перемещались по оси соленоида. Если бы они содержали магнитные заряды, в катушке соленоида должен был бы возникнуть электрический ток (вспомним знакомый всем по школе знаменитый опыт Фарадея по превращению магнетизма в электричество!). Эксперимент проводили при очень низкой температуре, вблизи абсолютного нуля, когда металл соленоида становился сверхпроводящим и образовавшийся в нем ток должен был бы циркулировать практически неограниченное время. Многократно прогоняя исследуемый образец по оси соленоида, можно получить («накопить») значительный ток даже при очень малой концентрации монополей. Таким способом было обследовано множество минералов, выброшенное вулканами вещество земных недр, вода океанов, метеориты, много килограммов лунного грунта, даже контейнеры, в которых хранился этот грунт (может быть, в нем застряла часть монополей?). Если бы на 1028 атомов (несколько ведер) вещества приходилось всего только по одному монополю, их присутствие было бы замечено в этих экспериментах. Однако регистрирующие приборы молчали. Монополей не было ни в земном, ни в небесном веществе.
И все же утверждать, что, изолированных магнитных зарядов в природе не существует и все разговоры о магнитном веществе — ненаучная фантастика, было бы преждевременно. В сегодняшних ускорителях могут рождаться только такие частицы, которые не более чем в несколько сот раз тяжелее протона: для рождения более массивных частиц энергии недостаточно. Поэтому если монополи — очень тяжелые частицы, то в опытах на ускорителях они не могут образоваться. Монополи должны были бы рождаться под действием космических лучей, содержащих сверхвысокоэнергетические частицы. Но и здесь есть обстоятельство, которое мешает заметить рождающиеся монополи. Согласно теории магнитные частицы настолько сильно взаимодействуют с веществом, что растрачивают свою энергию почти сразу же после рождения, не успев далеко уйти от точки, где образовались. А поскольку закон сохранения заряда требует, чтобы монополи обязательно рождались парами — один с отрицательным, другой с положительным зарядом, — то, затормозившись, они скорее всего тут же аннигилируют и превратятся в обычные немагнитные частицы. Теория говорит, что в большинстве случаев это будут пучки жестких гамма-квантов.
Физики, изучающие космические лучи, в своих опытах не раз замечали узконаправленные вспышки очень интенсивного гамма-излучения. Вообще это можно было бы считать указанием на рождение и аннигиляцию монополей, однако имеются веские основания предполагать, что для рождения монополей не хватает энергии даже самых быстрых космических частиц.
Как бы там ни было, неудача всех попыток обнаружить следы магнитных зарядов охладила энтузиазм физиков. Ясно, что в природе есть что-то такое, что мешает осуществлению красивой идеи Дирака.
Когда разумно поставленная задача долго не находит решения, полезно взглянуть на всю проблему с совершенно иной точки зрения. Среди физиков популярен был когда-то анекдот о том, как решает задачу посредственный научный сотрудник. Задача была взята из истории зоопсихологии, представители которой а начале XX в. исследовали мышление обезьян. Там была, в частности, такая задача. Экспериментаторы прикрепили к
ветке дерева банан. Обезьяне требовалось достать его. Сначала она бросилась трясти дерево. Видит, не получается — крепко сидит банан. Подумала — схватила палку Опять неудача — коротка палка. Снова подумала — метнула камень и сбила банан. Дали ту же задачу научному сотруднику, замотанному разными планами и отчетами. Он тоже, не теряя времени, схватился за дерево — трясет, и чем дольше, тем с большим рвением. «Подумай», — подсказывают ему. «Некогда! — отвечает. — Работать надо!» Так до сих пор и трясет...
Проблема монополей приобрела «второе дыхание», когда на нее посмотрели с принципиально новой точки зрения — с позиций теории «великого объединения». Если ехать по одной из скоростных автострад из Нью-Йорка, то через час с небольшим добираешься до тщательно охраняемой местности, застроенной редкими зданиями похожими на цехи. Это Брукхейвенская лаборатория — один из основных атомных институтов США. В 50-х годах два сотрудника лаборатории Чженьнин Янг и Роберт Миллс изучали обобщение максвелловских уравнений, которое они надеялись использовать для описания нового класса частиц —подобных фотону, но в отличие от него несущих на себе электрический заряд. Так сказать, квантов заряженного света. Теория получалась на редкость стройной и изящной; усовершенствованием и интерпретацией ее математического аппарата занимались многие физики, до тех пор пока в конце 60-х годов эти исследования не привели к новой теории, объединившей электромагнитные и слабые силы (последние вызывают распад элементарных частиц и атомных ядер). Теперь-то мы знаем, что все это — проявление различных компонент одного и того же «электрослабого поля» которое в зависимости от условий воспринимается нами как электричество, магнетизм или как особое, слабое взаимодействие элементарных частиц. И вот тут гипотеза монополей неожиданно получила мощную поддержку.
Есть страшное явление природы — цунами. Далеко
в океане образуется необыкновенно устойчивая волна —изолированный всплеск, который, почти не изменяя своей формы и не растрачивая энергии, преодолевает огромные расстояния (в то время как обычная волна давным-давно успела бы угаснуть) и всю свою энергию одним ударом обрушивает на побережье. Такие события
иногда происходят у нас на Дальнем Востоке. В открытом море волна цунами плоская, заметить ее трудно, но энергия у нее колоссальная. У побережья, затормаживаясь, она вздымается метров на десять, а то и больше и разрушает причалы, смывает целые поселки.
Теория говорит, что это не простая волна, а особое самоподдерживающееся, нелинейное образование. Оказалось, что в результате возмущений, вызванных внешним воздействием, а при определенных условиях и под действием внутренних сил в электрослабом поле, как в океане, возможно образование особых всплесков-цунами. Первыми это явление обнаружили в своих расчетах советский физик А. М. Поляков и голландский Т’Хуфт. Они заметили, что каждое «полевое цунами» ведет себя в пространстве подобно частице, а также, что особенно важно, с каждым таким всплеском связан изолированный магнитный полюс, северный или южный. Другими словами, новая теория подтвердила гипотезу монополей! С математической точки зрения монополь — это особое решение полевых уравнений, а с физической — сгусток энергии, новая частица.
Правда, монопольные решения получаются не во всех вариантах электрослабой теории. Для них нужны весьма специфические условия, и в конечном счете опять-таки только эксперимент способен подтвердить, существуют монополи в природе или нет. Расчеты, например, показывают, что полевые цунами-монололи могут образоваться, лишь имея достаточно большую массу. Они должны быть приблизительно в 10 тысяч раз тяжелее протона, то есть весить чуть ли не столько, сколько молекула белка.
В сравнении с другими элементарными частицами они мамонты среди мышей. Но существуют ли они, эти мамонты, в природе?
Еще более удивительные частицы предсказывает теория «великого объединения», в которой электрослабое поле объединяется с сильным, ядерным. Эта теория — дальнейшее развитие идей Янга и Миллса, следующий шаг в построении единой теории поля. Хотя теория «великого объединения» еще весьма неопределенна, у нее много различных вариантов и плохо изученных возможностей, предсказание цунами-монополей получается почти в любом ее варианте.
Просто поразительно, как с разных сторон математический аппарат подсказывает нам идею магнитных частиц.
Монополи теории «великого объединения» — фантастически массивные частицы. Они по меньшей мере в 1016 раз тяжелее протона (умножьте массу протона на 10 тысяч триллионов!). Их масса больше, чем у бактерии! Их даже частицами называть неловко, а тем более элементарными. Конечно, ни один ускоритель не в состоянии породить такое «микрочудовище». Не под силу это и даже самым высокоэнергетическим космическим частицам. Столь массивные объекты могли выкристаллизоваться лишь из энергии первичного поля в момент рождения Вселенной, когда ее температура и плотность были фантастически велики и энергии хватало для рождения самых тяжелых частиц.
Конечно, скажет читатель, легко апеллировать к таинственному Биг Бэнгу: ведь о том, что происходило в те далекие времена, можно фантазировать как угодно. Все равно все сгорело... Но это не так. Криминалисты утверждают, что ни одно событие нашей жизни не уходит в прошлое, не оставив после себя следов, по которым многое можно восстановить спустя недели, месяцы, а иногда и годы. Космологи сродни криминалистам: они утверждают то же самое. Теоретические картины младенчества Вселенной — это не беспочвенные фантазии, хотя в них немало и гипотетического. У американского физика Стива Вайнберга, одного из авторов электрослабой теории, есть книга «Первые три минуты» (недавно она вышла в русском переводе), где очень хорошо рассказывается, как современная наука представляет себе развитие Вселенной, начиная с сотой доли секунды после начала Большого взрыва. Да, об этих секундах и минутах известно уже довольно много. Известно из анализа интенсивности и спектра реликтового излучения (инфракрасного излучения, образовавшегося во времена, когда Вселенная была еще очень горячей, распространившегося по всему ее объему и сохранившегося до наших дней), из сопоставления относительной распространенности водорода, гелия и других легких химических элементов, синтез которых начался сразу же после того, как Вселенная несколько остыла, и зависел от господствовавших в то время условий, и из некоторых других астрофизических данных и математических расчетов. Но вот что было с Вселенной в самые первые мгновения ее жизни, в тысячные и миллионные доли секунды, Вайнберг ничего сказать не мог. Еще 10 лет назад (книга его вышла в США в 1977 г.) это было сплошное белое пятно. Человеческого воображения не хватало, чтобы представить себе то, что там могло происходить.
Заглянуть в эту самую интригующую область нашей истории, вплоть до фантастически малых величин порядка 10-35 секунд, позволяет теперь теория «великого объединения». Это был мир первозданной плазмы, где еще не существовало элементарных частиц, а были только их составные части — первичные «кубики»-кварки и связывающее их поле сильного взаимодействия. Некоторые частички, находившиеся в этом огненном сиропе, возможно, несли магнитный заряд. Впрочем, какой это был заряд, сказать трудно. Температура была еще так велика, что в первые мгновения после своего рождения раскаленный мир оставался совершенно симметричным, любые его свойства проявлялись с равной вероятностью. Расщепление единого симметричного взаимодействия на электромагнитное, слабое, сильное — на те виды взаимодействий, которые действуют в современном мире,— произошло позднее, приблизительно через 10-14 — 10-13 секунд после начала расширения.
Расчеты показывают, что от тех давних «горячих денечков» нам в наследство должно было остаться довольно много тяжелых монополей. Сначала даже получалось, что монополей во Вселенной должно быть столько же, сколько протонов. Затем, при более детальном рассмотрении реакций в первичном огненном шаре, массу магнитного вещества пришлось уменьшить, но все равно она очень велика — на много порядков больше того, что следует из анализа экспериментальных данных.
По этим данным, кстати, выходит, что в пространстве рассеяно очень много невидимого нам вещества. Астрофизики называют его скрытой массой и утверждают, что эта масса не может превосходить массу светящегося, атомарного вещества более чем в 10 раз. Иначе масса Вселенной была бы больше критической и расширение пространства сменилось бы его сжатием. Если пренебречь вкладом в эту скрытую массу нейтронов, нейтрино и других нейтральных частиц, можно даже допустить, что невидимое вещество целиком состоит из монополей, а видимое, как давно известно,— из протонов. При этом масса всех монополей оказывается на порядок больше массы протона. Ну а если вспомнить, что по теории «великого объединения» каждый монополь весит столько, сколько 1016 протонов, то отсюда воспоследует, что в среднем во Вселенной на каждые 1015 протонов приходится не более одного монополя. Это несравненно меньше того, что предсказывает теория, но все же совсем немало. Чтобы ощутить эту величину, заметим, что в одном кубическом сантиметре вещества содержится приблизительно 1024 протонов, и значит, там должно быть около миллиарда монополей. Огромное количество!
Правда, это в среднем, если бы монополи распределялись равномерно. А они могут собираться в сгустки, концентрироваться в центре тяжелых планет или звезд, удерживаемые их гравитационным полем. Кроме того, астрофизики дают нам верхнюю оценку, на самом деле монополей, по-видимому, значительно меньше. По крайней мере в миллион раз. В противном случае они оказали бы очень сильное возмущающее влияние на магнитное поле Галактики, и оно имело бы совсем не ту структуру, которая наблюдается сегодня.
С точки зрения теории «великого объединения» открытие сверхтяжелых монополей имело бы исключительно важное, принципиальное значение. Этим была бы окончательно подтверждена правильность самой идеи «великого объединения», и теоретики могли бы с большей уверенностью рассматривать процессы, непосредственно связанные с Большим взрывом.
В последние годы во всем мире снова было выполнено много экспериментов по поиску сверхтяжелых монополей. Пока все опыты закончились неудачей. Учитывая чувствительность приборов, можно сказать, что в течение года каждый квадратный метр земной поверхности пересекает не более одного-двух монополей. Если бы их было больше, аппаратура бы их зафиксировала. Астрофизические оценки предсказывают в миллион раз меньший поток — несколько монополей на один квадратный километр. Это, конечно, осложняет дело.
Обнаружить предсказанные теорией «великого объединения» монополи невероятно трудно. Ко всему прочему, по меркам ядерной физики, большинство из них — довольно медленные частицы. Только такие «ленивые» частицы и могло удержать магнитное поле нашей Галактики, более энергичные давно уже успели ее покинуть и затеряться в безбрежных межгалактических просторах. Медленные же частицы ионизуют вещество слабо, и чтобы их заметить, нужны гигантские детекторы — в сотни, в тысячи раз больше существующих.
Сегодня много говорят об установке ДЮМАНД — глубоководном детекторе ливней, порождаемых слабо взаимодействующими частицами космического излучения. Это сложная система фотоумножителей, которая фиксирует едва уловимые световые импульсы, сопровождающие прохождение ливня частиц в морской воде. Размеры ДЮМАНДа — около кубического километра. Подумать только — куб с ребром в один километр! Оттого и предложено разместить эту сверхгигантскую установку в толще океана. На суше это было бы просто невозможно. Но даже ДЮМАНДа недостаточно, чтобы уловить слабое свечение, вызываемое сверхтяжелыми монополями.
Так обстоит дело со сверхтяжелыми магнитными частицами. Умеренно тяжелые монополи, которые предсказывает теория электрослабого взаимодействия, обнаружить еще труднее. Если они и существуют в природе, их концентрация по сравнению со сверхтяжелыми должна быть значительно меньше, и вот почему. Многие нейтронные звезды обладают сильным магнитным полем. Такое поле должно притягивать и разгонять падающий на звезду монополь до энергии, в сотни миллионов раз превышающей ту, которую можно получить в самых мощных современных ускорителях. Этой энергии достаточно, чтобы породить в плотном нейтронном веществе звезды интенсивный каскад новых монополей, которые, притягиваясь ее магнитными полюсами, будут компенсировать, «гасить» ее магнитное поле. А для этого, оказывается, достаточно всего лишь одного начального монополя. Наличие же у нейтронных звезд магнитных полей (астрофизики их наблюдают) свидетельствует как раз о том, что умеренно тяжелые монополи, предсказываемые теорией Полякова — Т’Хуфта, исключительно редки, настолько редки, что, по мнению некоторых ученых, за все время существования Земли вероятность ее столкновения хотя бы с одним космическим монополем не превысила нескольких шансов на миллион.
Этот вывод, по-видимому, зачеркивает все варианты теории электрослабого взаимодействия, которые предсказывают образование монополей: в этой теории они получаются слишком легкими. Каскадный механизм «тушения» магнитного поля нейтронных звезд не вступает в действие только в том случае, если массы монополей так велики, что энергии падающей на звезду первичной частицы не хватает для их множественного образования. Поэтому-то физики и считают, что, если монополи и существуют в природе, они должны быть чрезвычайно тяжелыми, о чем и говорит теория «великого объединения». Вот только число их согласно расчетам оказывается на много порядков больше, чем это нужно для объяснения астрофизических данных. Иными словами, эксперимент и теория пока согласуются плохо.
Однако неустранимого противоречия здесь все же нет. Ведь наши сведения об условиях, при которых протекали процессы в первые мгновения жизни Вселенной, еще весьма приблизительны. Некоторые физики доказывают, что условия в то время были таковы, что монополи стремились объединиться в группы, а это резко убыстряло процесс их аннигиляции и тем самым уменьшало их число. Есть и более радикальная идея: Биг Бэнгу предшествовала еще одна стадия развития Вселенной, в ходе которой сверхтяжелые монополи рассеялись по необозримо огромной области быстро раздувавшегося пространства. Биг Бэнг — это «взрывное нагревание» образовавшегося и уже медленнее расширяющегося мира. На этой стадии, как следует из расчетов, могли рождаться только умеренно тяжелые частицы.
Какой бы логически стройной и изящной ни была теория, ее следствия непременно должны быть подтверждены наблюдением или экспериментом. Иначе она останется гипотезой. Идея монополей возникла более полувека назад. Это очень большой срок для научной гипотезы. Обычно за такой срок гипотеза либо отбрасывается, либо подтверждается. Монополь — редкое исключение, он по-прежнему загадка. И вместе с тем это ключ к целому клубку проблем, связывающих два полюса наших знаний — физику элементарных частиц и космологию. Поэтому, несмотря на все трудности с экспериментами, интерес физиков к этой удивительной частице не только не ослабевает, а, наоборот, усиливается, тем более что теоретики открывают у монополя все новые и неожиданные свойства.
Недавно, например, было установлено, что монополь может служить эффективным ускорителем радиоактивного распада протонов. Согласно теории «великого объединения» протон — хотя и распадающаяся, но долгоживущая частица. Как мы уже говорили, живет он немыслимо долго: 1032—1033 лет. Но вот если рядом находится монополь, то протон мгновенно распадается на позитрон и мезоны, один или несколько. И что интересно, после этого «убийства» опять остается монополь, готовый к уничтожению следующего протона, и так далее. Точь-в-точь хорошо известный всем химикам катализ! Монополи разрушают окружающее их вещество. Такой вывод недавно был сделан теоретиками Института ядерных исследований из подмосковного научного городка Троицка.
При взаимодействии протона с монополем образуется необычная по своим свойствам неустойчивая система, распадающаяся на компоненты, среди которых есть монополь (магнитный заряд сохраняется!), но уже нет протона. Это уникальная реакция, подобных мы не знаем. Путь монополя в веществе должен быть отмечен цепочкой «протонных катастроф». Это подсказывает физикам новые подходы к поиску магнитных частиц. Трясти дерево в ожидании банана никто не собирается.
Можно усмотреть и более важное следствие протон-монопольного катализа. При распаде протона каждый раз выделяется значительная энергия, поэтому, будь в нашем распоряжении килограмм монополей (сегодня это, конечно, звучит сверхфантастично), физикам удалось бы удовлетворить все энергетические потребности человечества. Энергию можно было бы извлекать из любого вещества. Достаточно прикоснуться к нему монополем. Вот был бы действительно неисчерпаемый, бесконечный источник энергии. Космическим кораблям, а может, даже и самолетам, не пришлось бы брать с собой горючего. Звездолеты питались бы собираемой при полете космической пылью, а самолеты — просто воздухом! И никаких радиоактивных отходов, так как мезоны почти мгновенно бы распадались, а образующиеся в реакциях позитроны тут же аннигилировали в стенках реактора. Возникающее гамма-излучение нетрудно задержать поглощающими экранами. Чистая и безопасная атомная энергия!
Монополи можно было бы хранить в «магнитных бутылках» — специальных ловушках, магнитное поле которых действительно имеет форму бутылки и предохраняет содержащиеся в ней частицы от соприкосновения со стенками.
Пока это — только мечта. Но если законы природы ей не противоречат, рано или поздно наука ее осуществит.
Правда, есть и пугающий аспект проблемы: что произойдет, если хотя бы один монополь ускользнет из «бутылки»? Неуправляемый распад планеты? Загнать монополи обратно в «бутылку» потруднее, чем джинна в кувшин. Впрочем, надо сначала их найти...
Вот куда заводит, казалось бы, чисто теоретический вопрос о симметрии электричества и магнетизма! В физике всегда так: даже самые абстрактные проблемы рано, или поздно находят практическое применение. И в каждом таком приложении есть как положительные, так и отрицательные стороны. Такова диалектика природы и научного знания, диалектика жизни.