Вселенная в электроне

Барашенков Владилен Сергеевич

Глава I

 

 

Пять ступеней вглубь

Ступень молекул, ступень атомов... Сегодня известно пять таких ступеней, пять этажей мироздания. Что находится на самых нижних из них? Есть ли что-нибудь еще глубже? Куда ведет эта лестница — в бездну бесконечного или же, в конце концов, мы спустимся в самый нижний этаж, в подземелье, где спрятаны главные тайны нашего мира?

Какие законы управляют миром? Каждый этаж — удельное княжество, монастырь со своим собственным уставом или же это — рядовая губерния единого государства с обязательным для всех общим законом? Как устроено это государство — по принципу монархии, когда где-то глубоко в недрах материи есть самый главный Первоэлемент, или же по законам демократии с равноправными гражданами-частицами на каждом этаже?

Итак, как устроен и из чего состоит наш мир в самых глубинных его слоях?

А как туда заглянуть, с помощью какого микроскопа? Может быть, там прячутся «атомы пространства» — последние неделимые далее «пузырьки», внутри которых больше уже ничего нет?

Масса вопросов, один сложнее другого. Попытаемся ответить хотя бы на некоторые из них. Вступим на первую ступеньку лестницы, ведущей в недра материи.

 

Кто первым сказал «а»?

Знаменитый греческий ученый Фалес жил 2600 лет назад. Немногие свидетельства о его жизни, которые дошли до нас сквозь толщу тысячелетий, говорят, что это был общительный, жизнерадостный человек отменного здоровья, сочетавший занятия наукой со спортом. Он не раз завоевывал олимпийские призы. И умер он на стадионе от солнечного удара, когда в почтенном 78-летнем возрасте аплодировал соревнованию олимпийцев.

Фалес долго прожил в Египте, стараясь проникнуть в тайны жрецов. Его знания по геометрии и астрономии поражали современников. Особенно после того, как он предсказал полное солнечное затмение. Это явление, когда солнце становится черным диском и наступает ночь среди бела дня, даже сегодня порождает подсознательный страх у многих людей. Можно представить, какое волнение и ужас вызывало оно две-три тысячи лет назад!

Но главная заслуга Фалеса в том, что он первым поставил вопрос об исходных элементах мира. Он раньше всех увидел лестницу, ведущую в глубь вещества.

Последующие двести лет греческие мудрецы, их называли философами — любомудрами, принимали за первичные различные вещества и процессы. Чаще всего это были вода (ей отдавал предпочтение и сам Фалес), воздух, земля, огонь. С современной точки зрения, весьма наивные попытки. Седобородые греческие мудрецы топтались на верхней площадке структурной лестницы, пытаясь ощупью найти ее ступени.

Приборы, которыми располагали греки, были очень примитивны. Главными из них были весы да еще сосуды для измерения объемов. Даже плохонькая физическая лаборатория какой-нибудь маленькой нынешней школы показалась бы им фантастической. Основным оружием древнегреческих ученых была логика. Оказывается, если иметь острый глаз и светлую голову, то уже самых обычных явлений окружающей жизни достаточно, чтобы получить важные выводы о глубинных свойствах вещей.

Это сделали последователи Фалеса — Левкипп и его ученик Демокрит. Они пропустили ступеньку молекул и сразу шагнули на ступень атомов.

Когда спрашивают, кто первым открыл атом, ответ всегда вызывает удивление. Его сначала придумали, почти на две с половиной тысячи лет раньше, чем открыли. Это случилось в небольшом, как теперь говорят, заштатном, греческом городке Абдеры. Хотя, по преданию, жители этого городка издавна почитались за простофиль и недотеп, этого нельзя сказать об их знаменитых согражданах Левкиппе и Демокрите. О первом известно мало. Труды Левкиппа не сохранились, его имя лишь изредка упоминается в книгах древних ученых. О Демокрите известно значительно больше. Он происходил из очень богатой семьи, но, как повествует легенда, все оставшееся ему наследство растратил на путешествия и учебу.

Растратить наследство в Древней Греции считалось одним из самых тяжких преступлений и каралось изгнанием. Однако когда на суде Демокрит зачитал свой труд, где излагалась идея атомов, жители Абдер — представьте себе! — не только простили его, но даже наградили деньгами, оценив его труд суммой, большей чем потерянное наследство!

С Демокритом связана масса легенд. Рассказывают, что даже смерть его была необычной. Столетним старцем, почувствовав ее приближение, он, чтобы не портить праздника своим родным, сумел продлить свою жизнь, вдыхая запах горячих хлебов.

Слово «атом», точнее «атмон», было известно задолго до Левкиппа и Демокрита. В переводе с греческого оно означает «неделимое». Так греки называли и букву алфавита. По Левкиппу и Демокриту, атомы — буквы материальной азбуки природы, бесконечное число твердых, неделимых далее частичек. Подобно семенам растений, атомы могут быть различной формы: они круглые, пирамидальные, плоские и так далее. Поэтому и состоящий из них мир неисчерпаемо богат в своих свойствах и качествах. Цепляясь друг за друга крючками и крючочками (такие крючочки есть и у семян растений), атомы образуют твердые тела. Атомы воды, наоборот, гладкие и скользкие, поэтому она растекается и не имеет формы. Атомы вязких жидкостей обладают заусеницами. Воздух — это пустота, в которой носятся отдельные редкие атомы. Даже у огня, учил Демокрит, есть свои атомы. Они острые и колючие, поэтому огонь и жжется.

Американский физик Ричард Фейнман, много сделавший для нашего понимания глубинных этажей микромира (об этом еще пойдет речь ниже), как-то заметил, что если бы Земле грозила гибель и нужно было бы предельно кратко закодировать наше самое главное и ценное научное достижение, он выбрал бы слово «атом». В нем огромный информационный заряд.

Атомистика Левкиппа и Демокрита предлагала простое наглядное объяснение многим непонятным тогда фактам: почему от прикосновений верующих стирается позолота и «худеют» руки статуй богов, почему мел остается мелом, как бы тонко его ни истолкли, как распространяются запахи. Ведь иногда стоит только коснуться какого-либо вещества, и его запах много часов, а то и дней, сохраняется на руках и одежде. Подобных загадок было много. Конечно, их можно было объяснить и по-другому, поэтому древнегреческая атомистика — это только предположение, гениальная гипотеза. Для того чтобы превратить ее в строгий научный вывод, потребовалось почти двадцать пять веков.

В средние века, когда место науки заняла слепая вера в то, что ответы на все вопросы содержатся в святом писании, атомистику причисляли к изобретениям дьявола. Сторонников атомного учения преследовали еще в XVII веке. В 1624 году в Париже был издан специальный декрет, грозивший смертной казнью за устное или письменное распространение этого учения.

Права гражданства атому вернули лишь в начале прошлого века в связи с успехами быстро развивавшейся химии. Без этого нельзя уже было разобраться в разнообразии химических реакций. Главную роль в восстановлении прав атома сыграл английский химик Джон Дальтон. Он же воскресил и стал широко использовать в своих трудах забытое греческое слово «атом».

Атомная теория Дальтона не была простым повторением древнегреческой атомистики. В новой теории число различных типов атомов хотя и велико — много десятков (на сегодняшний день известно 109 различных атомов), но все же не бесконечно, как у Демокрита. Дальтон нашел много фактов, убедивших ученых в том, что атомы — это неделимые частицы ограниченного числа наипростейших веществ — химических элементов. Все остальные вещества состоят из тесно связанных больших и малых групп атомов — молекул. Они могут быть самыми различными — от одноатомных молекул металлов до страшно сложных, состоящих из десятков тысяч атомов белковых молекул. Это самая первая ступенька структурной лестницы, атомы — следующая.

 

Анатомия атома

В 1869 году внимание ученого мира было обращено к холодным и строгим шпилям Петербурга. Оттуда пришла сенсационная новость: 35-летний профессор Петербургского университета Д. И. Менделеев установил, что между атомами существует связь, которая проявляется в периодичности их свойств. Это было выдающимся открытием. И не только потому, что теперь можно было пересчитать все типы атомов, существующие в природе, в том числе и еще не открытые. Периодический закон Менделеева подсказывал, что в природе должно быть что-то еще более простое и первичное, чем атомы, то, что является причиной и порождает периодичность атомных свойств. Другими словами, должна быть следующая, заатомная ступенька. Неделимый атом должен делиться на части!

К такому выводу приводили и некоторые другие наблюдения. Так, было известно, что под действием высокого напряжения металлы испускают отрицательные электрические заряды. Московский физик А. Г. Столетов обнаружил, что такие заряды (их стали называть электронами) выбиваются из металлов лучами света. Все это наводило на мысль, что электроны входят в состав атомов. А отсюда сразу следовал другой вывод: в атоме есть положительно заряженная часть — ведь в целом-то вещество не имеет заряда, оно нейтрально.

Англичанин Дж. Томсон считал, что по своему строению атом похож на круглую булку с изюмом: положительно заряженное тесто с изюминками — электронами. За три года до конца XIX века Томсон измерил массу электрона. Оказалось, что он почти во столько же раз легче атома водорода, самого легкого из всех атомов, во сколько Земля легче Солнца. Возможно, именно эта аналогия навела француза Ж. Перрена на мысль о том, что атом устроен наподобие Солнечной системы — в центре тяжелое ядро с положительным электрическим зарядом, вокруг вращаются планеты — электроны. Статья Перрена, увидевшая свет в первый год нового, XX века, так и называлась: «Ядерно-планетарное строение атома».

Какая из этих двух моделей правильная — булка с отрицательно заряженным изюмом или микроскопическая солнечная система, — решили опыты Эрнста Резерфорда. Он первым потрогал, а лучше сказать — прощупал, атом с помощью альфа-частиц.

Альфа-частицы — это ядра атомов гелия. Они испускаются распадающимися атомами радия и, попадая на экран из светящегося материала, вызывают вспышки — маленькие искорки в тех местах, где частицы столкнулись с экраном. Точно так же экраны наших телевизоров светятся под действием пучка электронов. Так вот, пролетая сквозь атомы, альфа-частицы испытывают на себе действие их электрических полей, траектории частиц искривляются, и вместо одного светящегося пятнышка, которое оставил бы нерассеянный пучок альфа-частиц, на экране возникает россыпь искорок. При этом если экран установить в стороне, противоположной направлению движения первичного пучка, то на нем тоже иногда вспыхивают искорки — как будто некоторые альфа-частицы сталкиваются с чем-то очень тяжелым и отскакивают в обратном направлении, как горошины от стального бильярдного шарика. Роль такого шарика играет атомное ядро. Победила планетарная модель Перрена. «Это было похоже на то, — вспоминал впоследствии Резерфорд, — как если бы я увидел 16-дюймовый снаряд, отскочивший от листка газетной бумаги!» (В опытах Резерфорда в качестве атомной мишени использовалась тонкая фольга.)

Зная число слабо рассеянных и число отскочивших назад альфа-частиц, можно вычислить размеры атома. Результат получился ошеломляющим: если сравнивать с горошиной, то атом в сто миллиардов раз меньше, а его ядро еще в несколько десятков тысяч раз мельче. Можно сказать и по-другому: если бы атом вдруг вырос до размеров куриного яйца, его ядро сравнялось бы по величине с микробом. Ну а само куриное яйцо стало бы в несколько раз больше нашей соседки Луны! Это означает, что окружающие нас тела и мы сами состоим в основном из... пустоты.

Герои научно-фантастического романа Георгия Гуревича «Темпоград» нашли способ сжиматься до размеров муравья. Человеческий волос выглядел для них длиннющей толстой змеей, а пыльца цветов — шарами величиной с арбуз. Воздух, который кажется нам прозрачным и чистым, оказался заполненным массой плывущего в нем мусора, подобно грязной реке в половодье. Это была поразительная картина! Но еще больше путешественники в микромир удивились, когда уменьшились до размеров атома. Их поразила пустота, царящая в мире. Даже плотный кусок железа оказался практически пустым. Лишь редко-редко, по одной на несколько кубических метров (в масштабе уменьшившихся путешественников), в нем расположены мелкие, едва различимые глазом пылинки — атомные ядра. Электронов вообще не видно — они в тысячи раз меньше ядер. Но вот если бы кто-то из путешественников попытался поднять ядро-пылинку, он был бы поражен его тяжестью: спичечная коробка такого вещества весит столько же, сколько средней величины гора! В исчезающе малом объеме ядра заключена практически вся масса атома, на электроны приходятся лишь сотые доли процента. Плотность ядерного вещества в десять триллионов раз превосходит плотность железа.

 

Внутри ядра

После того как Резерфорд «разглядел» в недрах атома его крошечное ядрышко, многим казалось, что наконец-таки наука достигла самого дна природы — глубже этого уже ничего нет. Но прошло всего каких-то двадцать лет и был открыт нейтрон — частица по всем своим свойствам такая же, как ядро атома водорода — протон, но только без электрического заряда. Нейтральный протон. Физикам открылась еще одна, теперь уже четвертая по счету, ступенька в глубинах микромира.

Назвать протоном ядро самого легкого и маленького по величине атома предложил все тот же Резерфорд. Этот термин он образовал от греческого слова «протос» — первый. Одновременно это напоминает протеин — простейший белок, основу, из которой построены клетки всех живых организмов. Резерфорд был уверен, что ядра тяжелых атомов тоже каким-то образом должны быть связаны с протоном. В имени его нейтрального собрата, нейтрона, отражено основное отличительное свойство этой частицы — отсутствие заряда. Она не отталкивается электрическим полем ядра и, как нож в теплое масло, проникает внутрь атомных ядер, разваливая их на части или образуя новые ядра. Нейтрон оказался чрезвычайно удобным «щупом» для зондирования внутренности ядер. После его открытия ядерная физика двинулась вперед семимильными шагами.

В известной сказке А. Толстого длинноносый Буратино и его друзья открыли волшебную дверь в каморке папы Карло маленьким золотым ключиком, который мудрая черепаха Тортила нашла в глубоком илистом пруду. Для физиков таким сказочным золотым ключиком стал нейтрон, с его помощью им удалось отомкнуть кладовую атомной энергии. Но это уже совсем другая история...

Вернемся, однако, к атомному ядру. Вскоре после открытия нейтрона два теоретика, немец Вернер Гейзенберг — тот самый, кто позднее руководил работами по созданию атомной бомбы в фашистской Германии, — и советский физик Дмитрий Дмитриевич Иваненко — ныне он профессор Московского университета — выдвинули гипотезу о том, что атомное ядро состоит из протонов и нейтронов. Согласно их теории, оно по внешнему виду напоминает плод граната с тесно прижавшимися друг к другу ягодками-частицами. В ядре водорода таких частиц всего одна — один-единственный протон, в ядрах тяжелых элементов — например, в свинце или уране — их уже более двух сотен. Опыты блестяще подтвердили эту теорию. Но оставалось загадкой, какие силы так крепко связывают в ядерные капли заряженные и нейтральные частицы.

Чтобы понять, в чем тут дело, нам придется вернуться назад, к началу нашего века.

 

Мезонный бадминтон

Шел 1905 год. В России бушевал шторм революции. В студенческих аудиториях бурлили сходки. Профессора университетов уходили в отставку, протестуя против жестоких расправ царя с рабочими и студентами. А в далекой спокойной Швейцарии Альберт Эйнштейн, молодой и мало кому известный сотрудник патентного бюро, напечатал в журнале статью, в которой доказывал, что свет — это поток частиц. Незадолго до этого он закончил учебу, но, не найдя лучшей работы, ему пришлось временно стать чиновником.

Его статью мало кто принял всерьез. Идею о том, что свет состоит из отдельных частичек-корпускул, высказывал еще великий Ньютон, но опыты не подтвердили его гипотезы и в течение двух последующих столетий ученые не сомневались в волновой природе света. О том, что свет, радиоизлучение, тепловое излучение нагретых тел — все это разновидности электромагнитных волн, можно было прочитать в любом учебнике физики. А из статьи Эйнштейна вытекало, что световые частицы одновременно имеют свойства волны и корпускулы. Это частицы, которые движутся по волновым законам. Когда энергия невелика, на первый план выступают их волновые свойства. Образно говоря, они в этом случае чувствуют себя нетвердо, их движение неровно и запутанно, как у пьяного. Наоборот, набрав энергии, они приобретают уверенность, и их поведение тогда мало чем отличается от потока быстрых электронов.

Частицы света похожи на двуликого Януса: с одной стороны — частица, с другой — волна! Это нелегко себе представить, недаром даже самые лучшие физики отказывались признать теорию Эйнштейна. Однако опыты приносили ей все новые и новые подтверждения, и постепенно она завоевала всеобщее признание. Частицы электромагнитного поля назвали фотонами от греческого слова «фотос» — свет.

Когда заряженные частицы взаимодействуют друг с другом, они обмениваются фотонами — как будто играют в бадминтон. Одна частица испускает воланчик-фотон, вторая его ловит и отбрасывает обратно. Чем частицы ближе одна к другой, тем живее идет игра и тем сильнее их взаимодействие. Воланчик — фотон — мелькает так быстро, что между партнерами протягивается что-то вроде связывающего их ремня. Правда, он не сплошной, но это неважно — ведь и обычный ремень при большом увеличении, как мы видели выше, состоит в основном из пустоты!

Но вот нейтрон в такой бадминтон не играет. У него нет заряда, и фотоны он просто не замечает. Ему нужны какие-то другие воланчики.

Во что играют внутри ядра нейтроны, первыми начали изучать советские физики Д. Д. Иваненко и И. Е. Тамм (Игорь Евгеньевич Тамм впоследствии стал академиком, одним из ведущих физиков нашей страны). Но прежде чем говорить об их идее, следует познакомиться еще с двумя важными событиями, которые произошли в физике почти одновременно с открытием нейтрона.

В реакции испускания ядром электрона была обнаружена таинственная пропажа. Суммарная энергия ядра и электрона после реакции всякий раз оказывалась меньше энергии исходного нераспавшегося ядра. Чуть-чуть меньше, но и это недопустимо, так как закон сохранения энергии должен выполняться точно. Энергия не может исчезать без следа или возникать из ничего — иначе можно было бы построить вечный двигатель. Вот и пришлось физикам из двух зол выбирать меньшее: или признать, что не верен закон сохранения энергии, или допустить, что энергию уносит какая-то неведомая неуловимая частица, не имеющая электрического заряда. С такой гипотезой выступил швейцарский теоретик Вольфганг Паули. Частицу назвали нейтрино — нейтрончик.

На другой стороне Атлантического океана американский физик Курт Андерсон изучал космические лучи с помощью прибора, который называется камерой Вильсона. Это плотно закрытый сосуд, заполненный насыщенными парами спирта. Такой пар находится в крайне неустойчивом состоянии. Стоит только внутри занимаемого им объема образоваться какой-либо неоднородности, как вокруг нее сразу же начинают конденсироваться капельки тумана. Проходя сквозь камеру, заряженная частица своим электрическим полем повреждает электронные оболочки атомов, однородность среды нарушается, и там, где прошла частица, остается след — сконденсировавшаяся струйка тумана, толщина и плотность которой зависит от массы частицы. Похожее явление можно наблюдать, когда высоко в безоблачном небе пролетает реактивный самолет. За ним тянется ровный белый след. Это те же капельки тумана, которые сконденсировались на молекулах газов и частичках топлива, выбрасываемых моторами самолета. Наверное, каждый не раз видел такой след в небе. Тонкие белые полосы, они особенно хорошо смотрятся ранним утром или вечером, когда их освещают косые лучи солнца.

Если камеру Вильсона поместить еще и в магнитое поле — например, между полюсами сильного электромагнита, — то траектории частиц изогнутся, положительных — в одну сторону, отрицательных — в другую. (Вспомним правило буравчика для направления электрического тока в магнитном поле!) Это позволяет установить знак заряда частицы. Одна из стенок камеры стеклянная, и сквозь нее хорошо видно, что происходит внутри. Такой метод исследования космических лучей разработан советским ученым Д. В. Скобельциным. Им и воспользовался американский физик.

Неожиданно для себя Андерсон обнаружил тонкие, выходящие из одной точки следы, похожие на букву Л с загнутыми ножками. Одну половину буквы «рисовал» электрон, вторую — точно такая же частица, но с зарядом противоположного знака. Положительный электрон. Андерсон назвал его позитроном — от греческого слова «позитро», то есть положительный.

Далее мы еще много раз будем говорить об удивительных близнецах-братьях электроне и позитроне. Многие их тайны не разгаданы до сих пор. Но сейчас нам важно только одно: сам факт существования в природе положительно заряженных частиц — позитронов.

Основываясь на этом факте и на гипотезе Паули о нейтрино, Д. Д. Иваненко и И. Е. Тамм предположили, что частицы внутри ядра обмениваются не только фотонами, но еще и парами частиц, то есть могут испускать и поглощать сразу по два воланчика — электрон и нейтрино или позитрон и нейтрино. Испустив позитрон и нейтрино, или, наоборот, поглотив электрон и нейтрино, протон становится нейтроном. Соответствующим образом ведет себя и нейтрон, он становится протоном.

Может возникнуть вопрос: а зачем нужна пара частиц, разве протон и нейтрон не могут обмениваться одним электроном или позитроном? Нет, не могут. Это им строго-настрого запрещено. Дело в том, что частицы, подобно маленьким волчкам, безостановочно вращаются вокруг своей оси. И вращение их одинаковое, различие лишь в направлении — слева направо или справа налево. Отрываясь от протона или нейтрона, рождающаяся частица может унести с собой их вращение, а это невозможно — невращающихся протонов и нейтронов не существует. Когда же испускается пара частиц, они могут вращаться в противоположных направлениях и тогда в сумме пара никакого вращения не уносит.

Теория внутриядерных сил, разработанная Иваненко и Таммом, на некоторое время стала главным событием физики. Однако более детальные расчеты вскоре показали, что испускание двух воланов происходит слишком редко и образуемых ими «ремней» (точнее было бы сказать — тоненьких ниточек!) недостаточно, чтобы скрепить ядро.

Тем не менее идея объяснить внутриядерные силы бадминтоном каких-то новых частиц выглядела очень привлекательной. Это одна из тех идей, которые играют роль теоретического трамплина. Молодой японский теоретик Хидеки Юкава пошел дальше по этому пути. Он решил атаковать задачу с тыла — предположил, что протоны и нейтроны обмениваются какой-то еще неизвестной нам частицей, и путем сравнения расчетов с опытом попытался установить ее свойства. У него получилось, что эта частица должна быть в двести — триста раз тяжелее электрона, а частота ее испускания и поглощения в процессе бадминтона раз в тысячу больше, чем для фотона. Бадминтон, когда вместо размеренной игры с легким электромагнитным воланчиком партнеры с огромной быстротой перебрасываются тяжелым валуном!

Частица, с массой в двести раз большей массы электрона, вскоре действительно была обнаружена в космических лучах. Ее назвали мезоном, опять воспользовавшись греческим корнем. «Мезо» по-гречески означает «средний». Средний между электроном и протоном.

Используя греческие корни для своих терминов, физики отдают дань уважения первым ученым-атомистам.

Итак, молекулы и атомы скреплены электромагнитными силами. Именно эти силы играют здесь роль «строительного цемента». Внутри ядер действуют в тысячу раз более мощные мезонные силы. Поэтому ядра намного плотнее атомов. Грубо говоря, в триллион раз. Для сравнения напомним, что плотность воздуха и железа различается всего лишь десять тысяч раз, а здесь — триллион!

 

Вокруг таблицы Менделеева

Задержимся еще немного на ступени атомных ядер. Здесь много интересного.

Как известно, число протонов в ядре оказалось равным номеру химического элемента в периодической таблице, составленной более ста лет назад Д. И. Менделеевым. Ядра с одинаковым числом протонов могут быть «нагружены» различным числом нейтронов. Такие ядра и соответствующие им химические элементы принято называть изотопами, то есть «равнорасположенными» (находящимися в одной и той же клетке таблицы), от сочетания слов «изо» — равный и «топ» — положение. Изотопы почти не различаются по своим химическим свойствам, но, как правило, сильно отличаются по ядерным. Например, один изотоп может быть равнодушным к блуждающим вокруг него нейтронам, а другой, наоборот, жадно их поглощает, увеличивая свою массу.

Чем больше в ядре протонов, тем сильнее они его распирают — ведь все они имеют одинаковый положительный заряд. Когда их становится слишком много, мезонные «ремни» не выдерживают, рвутся, и ядро распадается. Поэтому таблица Менделеева обрывается где-то недалеко за сотым элементом. Самый устойчивый изотоп ядра с номером 94 (это плутоний, из которого делают атомные бомбы) живет в среднем около двадцати пяти тысяч лет. 101-й элемент, менделевий, распадается, прожив пятьдесят — шестьдесят дней. А последний, самый тяжелый, известный сегодня элемент с номером 109 существует всего лишь доли секунды.

Охотиться на новые элементы очень непросто. В дебрях ядерных реакций они рождаются считанными единицами. Рождаются и тут же исчезают. Единственное, что успевают сделать физики, — засечь время их жизни от рождения до распада да еще попытаться заметить какие-нибудь следы цепочки радиоактивных превращений, в конце которой образуется новый элемент. Это все равно, как если бы охотник старался определить, какого зверя он встретил в лесу, по редким царапинам на коре дерева да скорости, с какой неведомый зверь перебежал поляну.

Здесь часто бывают ошибки и много споров. Появляется сообщение об открытии нового элемента, а физики из другой лаборатории утверждают, что это всего лишь новый изотоп давно известного ядра. Споры длятся долгие годы, иногда десятилетия.

Скептики шутят, что поиск новых элементов напоминает ловлю черной кошки в темной комнате, когда неизвестно, сидит она там или давно уже сбежала. И тем не менее найдено уже 109 достоверно подтвержденных элементов!

Могут спросить: а зачем это нужно? Ну будет изготовлен (синтезирован, как говорят физики) еще один элемент, живущий сотую долю секунды? Дорогостоящий научный спорт, погоня за рекордами?

Расчеты говорят, что в окрестностях 112-й клетки таблицы Менделеева, по-видимому, существует «остров стабильности». Внутриядерные частицы собираются там в особо устойчивые группы. Такое иногда бывает — добавляется в нужных местах несколько подпорок, и разваливающаяся конструкция становится вдруг устойчивой. Но больше добавить нельзя — упадет.

Как долго живут сверхтяжелые ядра на «острове стабильности», точно неизвестно. Возможно, годы или десятки тысяч лет, как плутоний, а может, найдутся такие, которые вообще не будут распадаться. Такие ядра были бы прекрасным ядерным горючим. Они на пределе устойчивости, поэтому стоит задеть их слегка нейтрону в атомном реакторе, как они распадутся с выделением большой энергии. Концентрированное топливо для звездолетов, компактные атомные батареи для судов и самолетов да мало ли что еще! Исследования продолжаются.

Однако не только остров стабильности манит ученых. В природе нет ядер, которые состояли бы только из одних нейтронов. Если известные нам стабильные ядра нагружать нейтронами, они становятся неустойчивыми. Но это — когда нейтронов мало. Если собрать вместе сразу много десятков нейтронов, то такие нейтронные капли, возможно, станут устойчивыми и не будут распадаться. У теоретиков есть некоторые основания так думать.

Интересно, какими свойствами будет обладать нейтронное вещество? Может, на этом пути удастся создать аккумуляторы нейтронов и сверхпрочную нейтронную броню — непробиваемую защиту от любых излучений?

Вокруг таблицы Менделеева уйма интересных дел и заманчивых возможностей.

 

Брызги материи

Полвека назад, перед второй мировой войной, физики знали шесть частиц. Четыре основных частицы-кирпичика: протон, нейтрон, электрон, позитрон, и две вспомогательных частицы-воланчика: фотон и мезон.

Кстати, с мезоном произошла занятная путаница. Когда его обнаружили в космических лучах, физиков удивило, насколько легко он проходил сквозь толстые железные и свинцовые болванки. Оставалось загадкой, каким образом столь слабо взаимодействующая частица может связывать протоны и нейтроны в ядрах. Ответ был найден уже после войны. Оказалось, что существуют два вида мезонов: один — слабовзаимодействующая, похожая на электрон частица, ее-то и открыли в предвоенные годы, а другой — предсказанный Юкава несколько более тяжелый, сильновзаимодействующий мезон. Физиков сбила с толку близость масс этих частиц. Чтобы их различать, им в качестве ярлыка-этикетки присвоили греческие буквы μ (мю) и π (пи) и стали называть мю- и пи- мезонами.

Была еще седьмая частица — нейтрино. Точнее, гипотеза о частице-невидимке, которая взаимодействует с веществом так слабо, что успевает пройти не только сквозь весь земной шар, но и сквозь всю толщу Солнца и не поглотиться. Она не оставляет никаких следов в окружающем веществе. Эту частицу никто не наблюдал, но в ее пользу говорили многие косвенные данные.

В том, что физики довольно быстро поверили в нейтрино, важную роль сыграл авторитет ее изобретателя Вольфганга Паули. Знаменитый физик-теоретик еще при жизни стал легендой. Человек весьма трудный в общении, он был очень требователен к своим ученикам и сотрудникам и не всегда считался с мнением коллег, тем более что в его собственных работах ошибки были крайне редки. Среди физиков ходит много смешных историй и анекдотов, связанных с именем Паули. Его знакомые шутили, что присутствие Паули действует не только на физиков, но и на их приборы — как и физики, они начинают волноваться и сбиваться. Однажды был подготовлен розыгрыш. Большие настенные часы в зале, где предполагалось выступление Паули, с помощью электрического реле соединили с дверью. Ожидалось, что когда Паули ее откроет (а он был человеком пунктуальным), часы «испугаются» и встанут. Но этого не случилось — неожиданно отказало реле.

— Этого и следовало ожидать, — смеялись в зале, — сработал «эффект Паули»!

Четверть века физики вынуждены были мириться с тем, что в их рассуждениях и расчетах присутствует невидимка. Поймали ее в опытах, выполненных уже после второй мировой войны, когда появились мощные источники нейтрино — атомные реакторы.

Пока шла война, физикам было не до частиц. Они разрабатывали радары, аппаратуру для обнаружения вражеских подводных лодок, занимались атомным оружием и массой других неотложных дел. Но после войны в различных странах — в Советском Союзе, Западной Европе, в США — стали один за другим создавать мощные ускорители, способные разгонять протоны и электроны до гигантских энергией. Ускоренные частицы дробили атомные ядра, и среди осколков физики то и дело находили «золотые крупинки» новых, неизвестных дотоле частиц.

Брызги материи! Некоторые из них обладали настолько неожиданными свойствами, что пришлось учредить особую категорию «странных частиц». Сегодня многие из них хорошо изучены и уже не выглядят странными, но это название к ним прочно прилипло, как прилипает иногда к человеку смешная детская кличка.

А далее открытия посыпались, как из рога изобилия. Редкий месяц не приносил какой-либо новой частицы. Открывая очередной номер физического журнала, можно было с уверенностью сказать, что там речь идет еще об одной частице. Теперь частиц несколько сотен. Для их обозначения давно уже не хватает ни греческого, ни латинского алфавитов. Некоторые частицы известны просто под номерами: А1, А2 и так далее. Даже специалисты толком не знают, сколько открыто частиц, — много!

В Калифорнии группа физиков-экспертов собирает, проверяет и анализирует все сообщения об открытии новых частиц. Это очень важная и нужная работа, так как иногда случается, что частицу открывают одновременно в нескольких институтах. Ее измеренные в опыте параметры чуть-чуть различаются, она получает разные названия, и возникает путаница. Эксперты составляют сводку всех частиц — достоверно открытых и тех, относительно которых остаются еще некоторые сомнения. Это толстенькая брошюра в несколько десятков страниц.

И вот что важно: если не считать частиц-кирпичиков протона, нейтрона и электрона, то перечисленных в этой брошюре частиц нет ни внутри ядра, ни в атоме. Они каждый раз заново рождаются в ядерных реакциях. Пословица говорит: лес рубят — щепки летят. Но щепки — это кусочки того, что уже было. Частицы же, как искры при ударе топора о металл, образуются в процессах столкновений.

В древнем мифе рассказывается о рождении богини Афродиты из морской пены. Неистовый ветер ударил волну о берег, и из вспыхнувшей радуги брызг и белой шипящей пены ступила на берег богиня красоты. Рождение частиц происходит не менее эффектно, но не из пены, а из энергии, точнее, из массы, связанной с энергией. Движущаяся частица весит больше неподвижной, поскольку кинетическая энергия движения тоже имеет массу. За счет этой массы и образуются новые частицы.

Большие ускорители как раз и создаются для того, чтобы разгонять частицы до такой скорости, чтобы их энергии было достаточно для рождения новых.

Электроны, протоны, мезоны и другие частицы принято называть элементарными. Если атомы и их ядра можно разделить на более простые части, то с элементарными частицами это не удается. В любых известных сегодня реакциях эти частицы лишь переходят друг в друга — взаимопревращаются. Если в одной реакции, например, при распаде родились более легкие частицы, то в другой, наоборот, образуются тяжелые. Никаких более простых «кусков» от частиц не отщепляется. В то же время из них, как из кирпичиков конструктора, можно построить весь окружающий мир во всей его красоте и разнообразии.

Ступень элементарных частиц необычайно богата своим содержанием. Каких только здесь нет пород, гибридов и монстров! Некоторые из них следует рассмотреть поближе.

 

Зоопарк в микромире

Представим себе, что мы гуляем в таком зоопарке. Слева небольшая аллея лептонов с клетками легких частиц, справа длиннющая, уходящая за горизонт аллея со множеством загонов для массивных частиц-адронов. (Снова греческие корни: «лепто» — легкий, мелкий и «адро» — тяжелый, крупный.)

Ряд адронов начинается с наших знакомцев — протона и нейтрона. Они настолько похожи по своим свойствам, что физики считают их двумя состояниями одной и той же частицы — нуклона. Когда у нуклона нет электрического заряда — это нейтрон, если же в результате каких-то взаимодействий он получит заряд — это будет уже протон.

Можно сказать, что у нуклона два лица — одно протонное, другое — нейтронное. Если прибегнуть к другой аналогии, то нуклон можно уподобить электрической лампочке. Когда она горит — это протон, выключена — нейтрон. Аналогия, конечно, далекая, но, в общем-то, правильная. И если уж следовать ей, то. пи-мезон придется сравнить с электрической лампочкой, имеющей три состояния: когда она горит красным светом — это мезон с положительным электрическим зарядом, если потушена — нейтральный мезон, а когда светит синим светом — это мезон с отрицательным зарядом. Пи-мезон — частица с тремя лицами. В заряженном состоянии она живет около стомиллионной доли секунды и распадается на мю-мезон и нейтрино. В нейтральном состоянии время ее жизни еще намного — в сто миллионов раз — меньше. Она почти мгновенно распадается на два высокоэнергетических фотона.

Рядом стоит клетка с ρ (ро)-мезоном. Он во всем похож на пи-мезон, тоже имеет три лица, только впятеро тяжелее и, кроме того, быстро вращается. Движется и вращается, как бы навинчивается на свою траекторию. Вот только живет ро-мезон очень мало, ничтожный миг — около 10-23 секунд. Это десятичная дробь с двадцатью двумя нулями после запятой. Распадаясь, ро-мезон превращается в два быстрых пи-мезона.

Недалеко от пи- и ро- мезонов помещается ω (омега)-мезон. Это нейтральная частица с массой, как у ро-мезона, и вдесятеро большим временем жизни. Она тоже — маленький вращающийся волчок. Распадается на три пи-мезона, которые с большой скоростью разлетаются в разные стороны.

С тройкой мезонов, обозначаемых греческими буквами π, ρ и ω, мы еще встретимся. Они играют важную роль в жизни протона и нейтрона.

Далее идут «странные частицы». Все они короткоживущие. Некоторые похожи на нуклон, их называют гиперонами. Другие — «странные мезоны». Когда эти частицы обнаружили, физики были удивлены тем, что они всегда рождаются парами, как будто не могут жить друг без друга. Поэтому их и назвали «частицами со странностью». Впрочем, вскоре нашлись еще более удивительные частицы, которые тоже рождаются парами. Их появление и «черты характера» были предсказаны теоретиками, и, когда их открыли, теоретики были так рады, что назвали их «прелестными».

Вслед за площадкой «прелестных частиц» мы видим множество загонов и клеток с очень тяжелыми адронами. В сравнении с нуклоном некоторые из них выглядят как бегемоты рядом с поросенком. Большинство из них такие неповоротливые, что, едва успев родиться, тут же на месте распадаются на более легкие частицы. Время жизни наименее устойчивых изображается десятичной дробью с более чем двумя десятками нулей после запятой. Оставим их пока в покое — все равно всех их не осмотреть — и перейдем на противоположную сторону аллеи. Там расположены античастицы.

Первой античастицей, с которой познакомились физики, был позитрон. Когда он сталкивается с электроном, вещество обеих частиц полностью переходит в излучение — в фотоны. Происходит аннигиляция — уничтожение. Такие полярные, взаимоуничтожающиеся частицы стали называть частицей и античастицей. Так в науку вошла идея антивещества.

Открытие античастиц принадлежит к числу тех сравнительно немногих научных достижений, которые приобретают самую широкую известность. Воображение людей поражает сама возможность полной трансформации вещества в излучение.

Когда хотят сказать о предельной степени разрушения чего-либо, часто используют глагол «испепелить». При аннигиляции электрона с позитроном не остается даже пепла. Все вещество — целиком, без остатка — превращается в электромагнитное поле и уносится в пространство. Взрыв атомной или водородной бомбы освобождает лишь несколько процентов запасенной в веществе энергии, при аннигиляции происходит стопроцентное освобождение энергии.

Антипартнера имеет не только электрон. Они есть у всех элементарных частиц. У протона есть антипротон, у нейтрона — антинейтрон и так далее. Это похоже на то, как в мире живых существ есть особи противоположного пола — мужские и женские. Правда, некоторые частицы — например фотон или нейтральный пи-мезон — в одном лице совмещают должность частицы и античастицы. Однако таких «двуполых» частиц мало. Как правило, частица и античастица сильно различаются по своим свойствам. У них противоположные электрические заряды, а если частица нейтральная — например как нейтрон, — то противоположными оказываются другие ее характеристики, в частности, направление вращения. Получается так, что природа отражена в своеобразном зеркале: с одной стороны — частицы, с другой, в «Зазеркалье», — античастицы. И все абсолютно симметрично. Две половинки — мир и антимир! В одном случае атомы построены из электронов, протонов и нейтронов, в другом — из позитронов, антипротонов и антинейтронов.

У писателя И. А. Ефремова есть фантастический рассказ о том, как в далеком космосе встретились посланцы двух биологических рас — одной, живущей на основе кислорода, и другой, основанной на фторе. Все очень похоже, но газ жизни одной расы — смертельный, разъедающий яд для другой. Даже их дыхание опасно друг для друга. То же самое было бы для существ, построенных из вещества и антивещества. Все физические законы, все краски их миров совершенно одинаковы; только от условия зависит, что назвать миром, а что — антимиром. Но при соприкосновении — аннигиляция, взрыв!

Правда, полное излучение вещества происходит не всегда. Так при аннигиляции нуклона с антинуклоном «сгорает» лишь часть вещества, другая его часть остается в виде мезонных осколков. Тем не менее даже с учетом несгоревших «шлаков» энергия антипротонного и антинейтронного взрывов в несколько тысяч раз больше энергии, выделяющейся при аннигиляции легких частиц — электрона и позитрона. Это самое мощное энерговыделение, которое мы умеем осуществлять в лабораторных условиях. Недаром писатели-фантасты часто используют антивещество в качестве горючего для звездолетов будущего. Килограммовый слиток такого вещества даст столько же энергии, сколько можно получить из нефтяного озера глубиной в несколько метров и диаметром около километра. Это означает, что всего несколько килограммов антивещества способны заменить все горючее, которое сжигается на Земле за год.

Конечно, эти килограммы антивещества надо еще изготовить — синтезировать из антипротонов и антинейтронов, а это очень сложная и энергоемкая задача. Пока ученые научились изготавливать лишь самые простые антиядра, состоящие из двух и трех античастиц: антидейтрон, антитритон и легкий изотоп антигелия. Несколько лет назад этот изотоп был получен в опытах на ускорителе протонов, построенном под Москвой, вблизи Серпухова. Синтез тяжелых антиядер — исключительно трудная задача. Правда, трудности здесь технического порядка, никаких принципиальных препятствий на этом пути нет. Возможно, что когда-нибудь изготовление антиядер станет такой же отраслью большой индустрии, как в наши дни производство кюрия и других трансурановых элементов.

Перейдем теперь на соседнюю аллею — к лептонам. Первыми мы встречаем здесь три почти одинаковые частицы: электроны, π-мезон, и τ-мезон. Различаются они лишь своей массой (мю-мезон в двести с лишним раз тяжелее электрона, тау-мезон — еще более тяжелая частица) да еще тем, что, в отличие от электрона, мю- и тау- мезоны радиоактивные, они распадаются на электрон и нейтрино. Правильнее было бы назвать их не мезонами, а тяжелыми электронами. До сих пор до конца неясно, зачем потребовалось природе несколько различающихся по весу «изданий» электронов.

Рядом с клетками электроноподобных частиц, как собачки у ног их хозяев, устроились три нейтрино. Их так и называют: нейтрино электронное, нейтрино мюонное и тау-нейтрино. Каждое из них рождается только вместе со своим хозяином, сопровождает его в реакциях и на соседей не обращает никакого внимания.

Масса нейтрино равна нулю. Все они, как фотон, «бестелесные» и никогда не стоят на месте. Их скорость всегда равна скорости света. Хотя в газетах сообщалось, что точными экспериментами у нейтрино обнаружена маленькая масса, контрольные опыты этого пока не подтвердили. Можно сказать, что нейтрино — это «черный свет». Сочетание противоречивое, но в физике бывает и не такое!

Когда семейство лептонов состояло всего из трех частиц — безмассового нейтрино, электрона, весящего почти в две тысячи раз меньше протона, и его «антибрата» позитрона, фамилия «лептоны» была точной характеристикой этих частиц. Однако после открытия мезонов мю- и тау-, которые в сотни раз тяжелее электрона, легкими их можно называть лишь условно. Названия «лептон» и «адрон» теперь стали чисто условными, фактически синонимами эпитетов «слабо»- и «сильновзаимодействующий». (Все лептоны взаимодействуют значительно слабее адронов.) Но такова уж сила привычки — физикам трудно отказаться от примелькавшихся выражений.

 

Продолжение осмотра — переулок монстров

Все клетки здесь пустые. Их обитателей еще только предстоит поймать. В разных странах этим занимаются большие отряды физиков, вооруженные самой совершенной техникой. Хотя клетки пусты, на каждой из них висит составленная теоретиками табличка с описанием веса, размеров и повадок чудовищ.

Вот над одной из клеток с толстыми прутьями крупная надпись: «Магнитный монополь». И ниже красными буквами: «Осторожно! Частица-убийца!!»

Это изолированный магнитный полюс. Южный без северного или северный без южного. Расчеты показывают, что такой полюс, находясь рядом с протоном, будет сливаться с ним в единую очень неустойчивую систему, которая практически мгновенно распадается на позитрон и мезоны, один или несколько. И среди осколков распада опять присутствует монополь, готовый к следующему «убийству» нового протона и так далее. Монополи разрушают (лучше сказать — разъедают) окружающее их вещество.

Но существуют ли в природе такие страшные частицы? Ведь хорошо известно, что, разрезав магнит, нельзя получить двух кусков с разными магнитными зарядами, каждый из кусков снова оказывается магнитом с двумя полюсами. Наверное, каждый из нас не раз проделывал подобный опыт. Даже в школьной «Физике» написано, что электричество имеет источники — заряды, а магнитных зарядов нет; магнетизм порождается токами, то есть опять-таки электрическими зарядами, только движущимися.

Все это так. Окружающее нас атомарное вещество действительно состоит лишь из электрических зарядов. Но может быть, частицы с магнитным зарядом удастся изготовить искусственно, например, с помощью ускорителей, как создают сегодня атомы антивещества? Или, возможно, такие частицы существуют где-то в далеком космосе, и нам следует иметь в запасе какие-то средства защиты на случай, если кусок магнитного вещества вдруг вторгнется в нашу родную Солнечную систему?

Впрочем, магнитные монополи могли бы сослужить нам хорошую службу. При разрушении протонов выделяется огромная энергия, и, будь в нашем распоряжении килограмм монополей, удалось бы удовлетворить все энергетические потребности человечества. Энергию можно было бы извлекать из любого вещества. Достаточно «поперчить» его щепоткой монополей. Это был бы действительно неисчерпаемый, бесконечный источник энергии! А хранить монополи можно было бы в «магнитных бутылках» — специальных ловушках, магнитное поле которых имеет форму бутылки и предохраняет содержащиеся в ней частицы от соприкосновения с окружающим веществом.

Понятно, как важно было бы «изловить» магнитный монополь. Физики-теоретики тщательно проанализировали условия, при которых он может родиться. Выяснилось, что эти условия не выходят за пределы известных нам физических законов и, в принципе, могут реализоваться в природе, однако частицы, несущие на себе магнитный заряд, должны быть необычайно тяжелыми — по меньшей мере в 1016 раз тяжелее протона. Массу протона надо увеличить в триллион раз и еще умножить на десять тысяч! Монополь весит больше бактерии и высится горой среди остальных элементарных частиц.

Конечно, ни один ускоритель не в состоянии породить такое «микрочудовище». Это не под силу даже самым высокоэнергетическим частицам космического излучения. Столь массивные объекты могли образоваться лишь в первые мгновения после рождения самой нашей Вселенной, когда ее температура и плотность были фантастически велики и энергии хватало, для рождения самых тяжелых частиц. Об этом мы подробно поговорим в следующей главе, а сейчас важно лишь запомнить, что, подобно сумчатым животным Австралии, где-нибудь в космосе могли сохраниться реликтовые магнитные частицы. Они очень редки, так как иначе было бы заметным их опустошительное действие в окружающем веществе. Но может быть, физикам повезет, и они когда-нибудь смогут воочию познакомиться с подобной частицей.

Пожалуй, мы несколько задержались возле клетки монополей, но уж очень необычны повадки этих «зверей»! Зато у следующей клетки остановимся лишь на минутку. Она приготовлена для максимона, еще одного монстра, вычисленного теоретиками. Это самая тяжелая элементарная частица из всех, какие только могут быть. Ее вес в сотни раз больше, чем у магнитного монополя, — что-нибудь около микрограмма. Как у крупной, видимой глазом пылинки. Такой мастодонт и элементарным-то называть как-то неудобно!

Максимон так тяжел, что под давлением своего веса проваливается сквозь дно любого сосуда и «прокалывает» Землю вплоть до ее центра, поэтому, как и для магнитного монополя, его клетка должна быть сделана из магнитных полей. Если, конечно, они на него действуют — ведь о свойствах максимона (эту суперчастицу предсказал советский академик М. А. Марков) известно очень мало. Честно говоря, пока физики не очень уверены в существовании такой сверхтяжелой частицы. Теоретические прогнозы не всегда оправдываются.

Наконец, у самого выхода из зоопарка элементарных частиц расположен загон для фаерболлов. По-английски «фаерболл» — огненный шар. Это что-то похожее одновременно на блуждающую шаровую молнию и на ослепительно яркий сгусток атомного взрыва. Только в микроскопических масштабах. По мнению некоторых физиков, такие фаерболлы образуются при столкновениях сильно разогнанных, обладающих очень большой энергией частиц. Образуются и почти мгновенно распадаются на более легкие частицы.

Скептики шутят, что фаерболл похож на знаменитое чудовище Несси из шотландского озера Лох-Несс. Говорят о нем давно, но до сих пор неизвестно, существует оно на самом деле или нет. Одни его видят, другие нет.

Может, фаерболлы вовсе и не элементарные частицы, а какие-то более сложные образования. Не зря их загон расположен у выхода из зоопарка...

 

Закрыто на учет

Итак, целая россыпь, сотни элементарных частиц! Как азноцветный бисер, на любой глаз и вкус! А если верить теории, то при слиянии любой пары частиц должна образоваться новая частица, поэтому число их вообще должно быть бесконечным. Расчет показывает, что частиц, которые в два-три раза тяжелее нуклона, должно быть сотни тысяч, а частиц с массой, впятеро большей, чем у нуклона, — уже сотни миллионов!

Трудно согласиться с тем, что природе действительно понадобилось такое огромное количество простейших «строительных деталей». Тем более, что весь мир можно скомпоновать всего из четырех таких деталей: электрона, нуклона, пи-мезона и фотона. Пи-мезоны нужны, чтобы «слепить» из нуклонов атомные ядра, а фотоны и электроны — для того, чтобы «сплести» ажурные конструкции атомов и молекул. Все остальные частицы кажутся просто лишними. Зачем они, если и без них можно обойтись?

Когда слышишь такой вопрос, невольно вспоминаешь, как неискушенный в деле человек пытается починить часы. У него всякий раз что-нибудь да остается — то винтик, то шайбочка. И хотя поначалу кажется, что все в порядке — часы идут, вскоре они почему-то ломаются. Так и с частицами. У природы нет лишних «деталей». Если назначение некоторых из них остается неясным, это говорит лишь об уровне наших знаний на данном этапе...

Отложим пока этот сложный вопрос до следующей главы. Там мы увидим, что многие, кажущиеся сейчас лишними, частицы нужны были на ранних этапах жизни Вселенной. Тогда без них просто нельзя было обойтись. Когда смотришь на россыпь частиц, первое, что хочется сделать, — это попытаться все-таки выделить какие-то «наиболее элементарные» частицы, из которых можно составить все остальные. Говоря словами американского физика Р. Фейнмана, который затратил много усилий на систематику элементарных частиц, такие попытки — что-то вроде детской игры в кубики, из которых нужно собрать целую картинку. Кубиков великое множество, и с каждым днем их становится все больше. Часть валяется в стороне и как будто бы не подходит к остальным. Как определить, что они из одного набора? Откуда известно, что вместе они должны составить цельную картинку? Полной уверенности нет, и это несколько беспокоит. Вселяет надежду лишь то, что у многих кубиков есть нечто общее: на всех нарисовано голубое небо, все они сделаны из дерева одного сорта.

Игрой в частицы-кубики занимались многие. Ей отдали дань самые известные и талантливые физики. И ничего не вышло: оказалось, что все частицы в равной степени элементарны. Среди них нет «более простых» и «более сложных».

Однако их можно разбить на семейства, и членов каждого из них рассматривать как различные состояния одной и той же частицы. (Вспомним еще раз об аналогии с лампочкой, которая меняет свой цвет!) Так были найдены семейства, состоящие из восьми и десяти частиц. Есть семейства, содержащие всего лишь по одной частице. Это мезоны-холостяки.

Семейства объединяются в более сложные группы — кланы. Физики называют такие семейства мультиилетами, а кланы — супермультиплетами (от слова «мульти» — много). Сегодня хорошо изучены супермультиплеты, состоящие из 35 и 56 частиц.

Кроме того, выяснилось, что часть короткоживущих частиц можно считать сильно нагретыми (физики говорят — возбужденными) состояниями остальных.

И самое главное — мультиплеты и супермультиплеты, оказывается, не являются полностью изолированными друг от друга, а связаны определенными родственными отношениями — правилами симметрии.

Если бы частицы, как людей, регистрировали в паспортном столе, то члены семьи-мультиплета имели бы общую фамилию. В кланс-супермультиплете были бы представлены разные фамилии, но у всех семей — общие предки. Сами кланы тоже имеют единых прапрародителей.

В целом получается что-то вроде периодической таблицы элементарных частиц, наподобие той, с помощью которой сто лет назад Менделеев навел порядок среди атомов химических элементов. И подобно тому как менделеевская система помогла открыть неизвестные ранее элементы, симметрия мультиплетов также предсказывает существование новых частиц.

Глубокий смысл таблицы Менделеева стал понятен лишь после того, как физика шагнула на новую ступень структурной лестницы — выяснила, что ядра атомов состоят из протонов и нейтронов. Можно предполагать, что и симметрия элементарных частиц получит свое объяснение после того, как будет открыт следующий ярус строения материи.

Физики нащупали такой ярус, и первые же шаги привели к сенсационным результатам.

 

Когда часть больше целого

Казалось бы, если частица элементарная, то она не должна иметь частей. Иначе какая же это элементарность, если есть более простые части! И вот первый сюрприз, который природа преподнесла физикам, состоял в том, что элементарная частица протон имеет части!

Когда рядом с протоном находится другой протон или нейтрон, он «играет» с ними в мезонный бадминтон. Если же протон одинок, он играет сам с собой — испускает пи-мезон и поглощает его обратно, снова испускает, ловит и так далее, — как жонглер в цирке. Наверное, все не раз наблюдали, как быстрое мелькание шарика создает впечатление, что вокруг жонглера их целое облако. Так и с протоном. Очень быстро испуская и поглощая обратно мезон, он тоже создает вокруг себя облако частиц. Время каждого отдельного акта испускания и поглощения очень мало, но благодаря многократным их повторениям возникает усредненная по времени пространственная размазка заряда и массы. Образно говоря, нуклон пульсирует, а еще лучше сказать — мигает. Вспыхнет «мезонным светом», погаснет, потом все повторяется заново и так без конца.

Вот как интересно получается: вокруг нас твердые, застывшие тела, а на микроуровне мир, как живой, там все дышит, пульсирует, вращается!

Испустив положительно заряженный мезон, протон превращается в нейтрон, а нейтрон после испускания отрицательного мезона становится протоном. Если же испускается нейтральный мезон, то протон остается протоном, а нейтрон — нейтроном. Во всех случаях пи-мезон, как часть, входит в состав протона и нейтрона.

Сам пи-мезон тоже окружает себя облаком частиц-мячиков. Он на короткое время испускает пару пи-мезонов. Почему именно пару, а не один мезон — это сложный вопрос, связанный с особенностями этой частицы. Для нас сейчас важно то, что пи-мезон не только состоит из частей, но что эти части не отличаются от целого. Мезон состоит из мезонов! Это все равно, как если бы из пчелиного улья вылетали не пчелы, а другие, подобные ему, ульи.

Более того, на очень короткое время мезон может превратиться в нуклон и антинуклон. Например, положительно заряженный мезон π+ — в протон и антинейтрон, нейтральный мезон π0 — в протон и антипротон и так далее. Тут уж часть намного больше целого. Получается как в сказке — кит на воде, а вода на ките! Это был второй поразительный сюрприз, преподнесенный природой физикам.

Сегодня известно, что все элементарные частицы имеют «мигающее» строение и содержат внутри себя различные типы легких и тяжелых частиц. Чем легче испущенная частица, тем дальше может она удалиться от центра, прежде чем будет поглощена обратно. Тяжелые частицы, наоборот, жмутся ближе к центру. Поэтому внутренняя центральная часть любой элементарной частицы (ее называют керном — сердцевиной) значительно более массивная и плотная, чем периферия, окраина.

Всякая элементарная частица окутана слоистым «облаком» или, как еще говорят, одета в «шубу» из рождающихся и быстро исчезающих частиц. Даже кванты света — фотоны и всепроникающие нейтрино — имеют свои «шубы». Вокруг них рождаются электроны и позитроны. Только это происходит весьма редко, и «шубы» у фотона и нейтрино необычайно «воздушные», почти эфемерные, как говорится, на рыбьем меху! Лишь на расстояниях, в тысячи раз меньших «шубы» протона, эти частицы приобретают нечто вроде тонкого «свитера», состоящего из мю-мезонов. Такую же тонкую и тесную «шубу» имеет и электрон.

Элементарные частицы, в свою очередь, тоже состоят из элементарных частиц. Получается единая крепко сплетенная сеть, где нет начала и конца, а все частицы одновременно являются и элементарными и сложными. Понятия простого и элементарного в современной физике не совпадают. И самое удивительное здесь то, что часть может быть больше целого. Ничего подобного еще никогда не встречалось. Известный советский физик-теоретик Д. И. Блохинцев как-то в шутку заметил: если атом уподобить органу, то элементарная частица — это аккордеон, рождающий не звуки, а музыкальные инструменты: то барабан, то скрипку, а иногда и большой концертный рояль!

В окружающем нас мире «больших», макроскопических, явлений это противоречит здравому смыслу, выглядит полнейшей бессмыслицей. Но в микромире такое возможно, природа устроена хитрее и изобретательнее любой человеческой фантазии.

Но как быть с законами сохранения массы и энергии? Ведь если протон, оторвав от себя увесистый «кусочек» в виде пи-мезона, остается тем же протоном, откуда взялся «материал» для мезона? Что-то тут не так, не может же, в самом деле, мезон возникнуть «из ничего»!

 

Энергетическая ванна

Противоречие, можно сказать, налицо. Особенно, когда мезон распадается на нуклон и антинуклон. Конечные частицы в этом случае весят в четырнадцать раз больше начальной. Чтобы понять, как это может быть, нам придется отправиться в далекое путешествие — снова в Древнюю Грецию, а точнее, в окруженный высокими стенами греческий город на юге Апеннинского полуострова, где жил знаменитый греческий ученый Архимед. Его интересовали не только глубокие теоретические проблемы, много времени он отдавал решению практических задач — конструировал подъемные механизмы, создавал военные машины для обороны города, а иногда занимался и более мелкими, но не менее трудными вопросами. Один из таких вопросов задал ему правитель города царь Гиерон. В благодарность за победу, одержанную его войском, царь решил пожертвовать богам золотой венец. Он отвесил мастеру необходимое количество золота, но когда тот принес изготовленную драгоценность, Гиерон — по преданию, очень скупой и жестокий человек — усомнился в его честности и повелел Архимеду придумать, как изобличить плута, не портя, однако, драгоценного венца. Архимед долго не мог сообразить, как справиться с таким необычным поручением. Но вот однажды, садясь в ванну, он заметил, что погруженное в воду тело заметно легчает. Искомое решение задачи четко предстало перед его умственным взором. Говорят, что с криком: «Эврика!» («Нашел!») — обрадованный Архимед среди бела дня голым бежал по городу к дворцу царя.

Эффект Архимеда — жидкость снизу давит на тело и компенсирует часть его веса. Об этом идет речь на уроках физики в седьмом классе. И вот оказывается, что этот «банный эффект» играет важную роль внутри элементарной частицы. Только место воды там занимает энергия. Образно выражаясь, «куски» частицы погружены в силовое поле взаимодействия — в своеобразную энергетическую ванну, и их масса уменьшается. Энергия взаимодействия внутри частицы имеет отрицательный знак — ведь для того, чтобы растащить притягивающиеся друг к другу части, надо затратить энергию. Она-то и компенсирует излишек энергии частей элементарной частицы.

Энергетическая «ванна» есть и в атоме. В нее «налита» энергия электромагнитного взаимодействия электронов с ядром. Оно в тысячи раз слабее сил, действующих внутри элементарных частиц, поэтому плотность энергии во внутриатомной «ванне» очень мала и погруженные в нее электроны почти не теряют в своем весе, так же, как мы, люди, в бассейне земной атмосферы.

Плотность энергии, которой наполнено ядро атома, значительно больше. Потеря веса здесь составляет уже проценты. А внутри элементарных частиц взаимодействие их частей настолько велико, что они как бы «растворяются» в энергии взаимодействия. Получается что-то вроде сильно разваренных ягод в густом варенье. На связь частей уходит значительное количество общей энергии и массы. В этом главное отличие элементарной частицы от атомного ядра и всех других микрочастичек, которые мы называем составными, хотя все они имеют сложное внутреннее строение.

Современную физику нельзя просто выучить, к ней надо еще и привыкнуть!

Но с лестницей, которая ведет в недра материи, происходит что-то странное. Атомы расположены глубже молекул, ядра глубже атомов, а вот в протоне уже все смешалось. Ступеньки налезают друг на друга, громоздятся... Уже и не скажешь сразу, спускаемся мы или топчемся на месте...

Когда какой-то вопрос или задача становятся слишком сложными и запутанными, полезно взглянуть на дело с несколько иной точки зрения. Это часто наводит на неожиданную мысль, и все упрощается. Именно так поступил Христофор Колумб с задачей о яйце. Говорят, однажды, привлеченный громкими голосами, он вошел в кубрик, где красные от возбуждения матросы на спор (ставка — увесистый столбик золотых монет) старались поставить яйцо на попа. Они поливали стол вином и маслом, мазали его салом, но яйцо падало. Колумб некоторое время наблюдал, потом легким ударом о стол смял скорлупу на конце яйца, и оно осталось стоять.

Попытаемся и мы подойти к поиску следующих ступеней структурной лестницы с новой стороны — с позиций эксперимента. Забудем, что протон элементарный, и попробуем просветить его какими-либо лучами, чтобы увидеть, «из каких элементов состоит элементарное». Возможно, это поможет нам разобраться в запутанной картине «одежек без застежек» внутри элементарных частиц.

 

Как заглянуть внутрь протона?

Величина самых мелких пылинок, которые мы еще можем разглядеть невооруженным взглядом, составляет около пятидесяти микрон (напомним, микрон — тысячная часть миллиметра). Это примерно половина толщины человеческого волоса. Те, у кого особо острое зрение, способны рассмотреть предметы и в полтора-два раза более мелкие.

Но это уже предел. Далее нужно использовать увеличительные стекла и микроскоп. С их помощью можно разглядеть детали размером вплоть до сотых долей микрона. Наглядно представить себе, что означают такие размеры, лучше путем сравнений. Микробы имеют величину от нескольких десятых микрона до одного микрона. Приблизительно таков же диаметр капелек жира в коровьем молоке. Частички табачного дыма в десять раз меньше, самые мелкие из них около сотой части микрона.

Объекты, меньшие сотых долей микрона, в оптический микроскоп увидеть нельзя, даже если снабдить его очень большими и сильными линзами. Дело в том, что такую величину имеет длина волны видимого света. Более мелкие предметы световые волны огибают, и мы их не видим, подобно тому как радиолокатор с большой длиной радиоволны не замечает перископ подводной лодки. Наше видение предметов основано на том, что они поглощают или рассеивают падающую на них световую волну — вообще как-то ее изменяют. Это изменение и фиксирует наш глаз. Если же волна огибает препятствие, как вода в ручье мелкий камешек, мы его просто не замечаем.

Чтобы заглянуть внутрь объектов, меньших нескольких сотых микрона, нужно использовать электронный микроскоп, в котором световой луч заменен пучком быстрых, или, как говорят физики, «жестких», электронов, а наш глаз — светочувствительным экраном или фотопластинкой. У электронного микроскопа увеличение приблизительно в тысячу раз больше, чем у оптического, и с его помощью можно увидеть (а точнее, сфотографировать) детали с размерами вплоть до десяти тысячных долей микрона (108 сантиметров). Таким путем удается рассмотреть даже отдельные крупные атомы. На фотографиях они похожи на густо намотанные окружности толстой паутины или на кружевную салфеточку, если рассматривать ее издали. Подобно световым частицам-фотонам, электроны обладают волновыми свойствами. Они тоже огибают мелкие предметы, и это как бы размазывает картину, делает ее расплывчатой и нечеткой. Образно говоря, электронный пучок при своем движении как бы немного дрожит, траектории частиц несколько размазываются, и. чтобы сфокусировать изображение, приходится использовать очень быстрые электроны, инерция движения которых способна превозмочь волновое дрожание пучка. (Поэтому такие электроны и называют жесткими.)

Почему электрон обладает волновыми свойствами — это сложный вопрос. Ответ на него дает квантовая механика. Позже нам еще предстоит большой разговор об этом, не будем забегать вперед. С точки зрения обычной школьной физики, волновые свойства электрона объяснить и понять довольно трудно, но в науке всегда приходится что-то принимать на веру, прячась за спасительной формулой: это следует из опыта. Иначе мы рискуем утонуть в деталях.

Рассказывают, что однажды французский математик Жан Д'Аламбер, устав от долгих попыток объяснить доказательство теоремы одному из своих учеников, воскликнул в отчаянии:

— Честное слово, эта теорема верна!

Реакция ученика была мгновенной:

— Месье, этого вполне достаточно! Вы — человек чести, я — тоже. Ваши уверения — самое лучшее доказательство!

Вот и мы давайте последуем примеру этих благородных людей и поверим пока на слово квантовой механике, тем более что опыт хорошо подтверждает ее выводы.

Итак, электронный микроскоп позволяет добраться до границы атомов. Если увеличить энергию электронов, сделать их еще жестче, тогда можно «просветить» и более мелкие объекты — атомные ядра и их «детали» — протоны и нейтроны. Для этого нужны ускорители частиц.

Это громоздкие и чрезвычайно сложные инженерные сооружения, создание которых сегодня под силу только крупным странам. Тем не менее, несмотря на их сложность, основной принцип действия ускорителей понять не трудно. По своему устройству они похожи на кольцевое метро, только вместо поездов по кругу бегут сгустки частиц. Удерживает их на круге магнитное поле, а в промежутках, на каждой станции, на них действует «подстегивающее» электрическое напряжение. Поезда метро на станциях останавливаются, а сгустки частиц, наоборот, получают здесь дополнительный толчок электрическим «хлыстом». Чем дольше крутится частица, тем больше ее энергия.

Ускоритель можно уподобить праще, которую воины когда-то применяли для метания камней: заложенный в нее камень (в данном случае сгусток частиц) раскручивается и с силой выбрасывается наружу.

Если убрать магнитное поле, ускоряемые частицы будут двигаться по прямой, это так называемый линейный ускоритель. Его размеры очень велики, так как частица проходит такой ускоритель только один раз, без возврата. И чтобы разогнаться до большой энергии, она должна пробежать большое расстояние с многими промежуточными станциями «подстегивания».

Академик В. И. Векслер, один из лучших советских специалистов по ускорителям, сравнивал циклический ускоритель с круглым манежем для лошадей, а линейный — с прямым треком ипподрома, вдоль которого лошадь, подгоняемая ударами шпор всадника, летит как стрела.

Понятно, что ускорять можно не только электроны, но и все другие заряженные частицы — например протоны, — и даже тяжелые ядра атомов. Однако легкие и очень маленькие электроны особенно удобны для «просвечивания» других, более крупных частиц.

Ускоритель частиц изобрели незадолго до второй мировой войны. Самый крупный в Европе создавался тогда в Ленинграде, в Радиевом институте. Уже в то время физикам было ясно, что эти машины — ключи к нижним этажам микромира. Строительство ускорителя потребовало создания мощных вакуумных насосов — ведь пучок частиц должен разгоняться в условиях почти полного вакуума, так как иначе столкновения с молекулами газа рассеят его задолго до конца ускорения. Потребовались особо сильные электромагниты, дистанционное управление, специальная защита, поскольку работающий ускоритель — источник смертельно опасных излучений. Целый комплекс проблем! Война помешала завершить строительство, но накопленный опыт помог в создании значительно большего ускорителя в Дубне. Здесь, на болотистом островке, отгороженном руслами трех рек — Дубны, Сестры и Волги, — в конце сороковых годов был получен пучок протонов с рекордной по тем временам энергией. Ранее такие высокоэнергетические частицы можно было встретить лишь в космических лучах. В газетах так и сообщалось: группе ученых (некоторые из них принимали участие еще в строительстве ленинградской машины) присуждена Сталинская премия за создание генератора космических лучей.

По сравнению с его высокоэнергетическими младшими братьями, построенными и строящимися в Советском Союзе, в США, в странах Западной Европы, первый дубненский ускоритель выглядит весьма скромно. Даже у его соседа — знаменитого дубненского фазотрона, построенного на несколько лет позднее, — энергия почти в пятнадцать раз больше. Однако «зрение» первого дубненского ускорителя было в свое время самым острым, почти в сто тысяч раз острее, чем у электронных микроскопов, и с его помощью физики впервые смогли «прощупать» расположение протонов внутри атомного ядра.

Но внутреннее строение самого протона этот ускоритель еще не чувствовал. Протон для него оставался точкой. Заглянуть внутрь этой частицы удалось лишь пять лет спустя, когда на Тихоокеанском побережье США, вблизи города Сан-Франциско, был построен мощный ускоритель электронов.

 

Партонная «икра»

Электронное «просвечивание» показало, что протон действительно не точка, а довольно крупный объект с радиусом, всего лишь в несколько раз меньшим радиуса легких атомных ядер. Это что-то около триллионной доли миллиметра — 1013 сантиметров.

Вещество в протоне, как и в атоме, сконцентрировано, главным образом, в его центральной части. Однако если атом состоит в основном из пустоты, то в протоне нет резкой границы между оболочкой и центральным остовом — керном. Атом своим строением напоминает Солнечную систему, а протон больше похож на планету с массивным центральным ядром и окружающей ее протяженной атмосферой. Радиус протонного керна всего лишь в несколько раз меньше размеров его мезонной «шубы».

Можно было ожидать, что аналогичное строение имеет и нейтрон. Простая модель, в которой нуклон жонглирует мячиком-мезоном, подсказывает, что окраинные области протона и нейтрона отличаются лишь знаком заряда: у протона там «танцуют» мезоны π0 и π+, у нейтрона — π0 и π. Опыт неожиданно показал совсем другое. Радиус облака электрических зарядов в нейтроне получился равным нулю! Иными словами, внутри этой частицы есть что-то такое, что полностью нейтрализует заряд мезонного облака, или... или не верна модель жонглирования, а это, в свою очередь, означает, что наши представления о строении элементарных частиц несправедливы в самой своей основе, и физикам придется начинать все заново. Было от чего прийти в волнение!

Результат опытов с нейтроном долго оставался загадкой. Для его объяснения предлагалось множество гипотез, физики разных стран съезжались на специальные конференции, чтобы сообща попытаться понять, в чем тут дело. Но «парадокс нейтрона» не поддавался их усилиям.

Разгадать загадку пытались и мы в Дубне. Непонятно, почему происходит нейтрализация заряженных «облаков» в нейтроне, но это, по существу, следующий вопрос, прежде нужно убедиться в том, что такие облака там существуют. Это можно сделать, если поместить нейтрон в сильное электрическое поле, тогда его положительные заряды сместятся в одну сторону, а отрицательные — в другую. Нейтрон растянется, из шарика превратится в гантель, что скажется на его взаимодействиях с атомными ядрами. Идея простая, но заметить растяжение нейтрона на опыте так и не удалось, этому мешали побочные эффекты.

Разгадка пришла после открытия тяжелых мезонов ро и омега. Как это уже не раз случалось в истории науки, природа в разнообразии своих законов оказалась куда более изобретательнее физиков. Выяснилось (кто бы мог подумать!), что при определенных условиях пи-мезоны могут как бы «слипаться», образуя новые короткоживущие частицы. Это как раз и есть омега- и ро-мезоны. Из таких быстро слипающихся и снова разваливающихся частиц-капель и состоит мезонная «шуба» нуклона. Одиночные мезоны встречаются в ней редко. В протоне условия благоприятствуют образованию заряженных мезонных «капель», в нейтроне — нейтральных, поэтому электроны и не чувствуют мезонной «шубы» нейтрона. Для них она прозрачна. Чтобы ее обнаружить, нейтрон надо «прощупывать» пучком жестких протонов, которые чувствуют мезонную «мякоть» нейтрона. Во всех взаимодействиях нейтрон ведет себя как частица с размазанной в пространстве массой и равным нулю радиусом распределения электрических зарядов.

Мы видим, что просвечивание электронами принесло много новых сведений о строении нуклонов, однако не внесло упрощения в картину, наоборот, она еще более усложнилась. Если вспомнить аналогию с жонглером, то можно было бы сказать, что он играет сразу с несколькими шариками, которые иногда слипаются в пары и тройки. Положение прояснилось лишь после того, как энергию электронов подняли настолько, что они стали чувствовать в нуклоне детали, которые вдесятеро меньше его диаметра.

Если бы протон представлял собой единую монолитную систему, состоящую из перекрывающихся частей, которые по своим размерам не уступают целому, то, согласно третьему закону Ньютона, величина импульса столкнувшегося с ним и отскочившего электрона давала бы сведения о скорости движения протона как целого. Это как в радиолокации — при слежении за летящим самолетом отраженный луч приносит сведения о его размерах и скорости. Оператор на экране видит четкую светящуюся точку. В опыте с рассеянием очень жестких электронов получилось иначе — вместо четкой точки на экранах приборов было видно размытое пятно. Правда, в опыте использовались не светящиеся экраны, как это делал когда-то Резерфорд при просвечивании атома, а более сложные регистрирующие приборы, но все равно после обработки с помощью ЭВМ их показания в виде точек и пятен можно вывести на экран телевизора. И они получались не такими, как это должно быть для монолитного нуклона.

В чем тут дело, первым понял американский физик Р. Фейнмаи. Его имя уже не раз упоминалось на страницах нашей книги. Среди коллег он известен своим веселым остроумием, и это часто помогает ему находить ответ на самые трудные вопросы, которые преподносит физикам эксперимент. Во время второй мировой войны он участвовал в расчетах американской атомной бомбы. Работы велись в строгом секрете, и в конце рабочего дня офицер безопасности запирал все материалы в стальной сейф с цифровым кодом. Фейнман каким-то образом сумел разгадать код, и однажды, открыв утром сейф, дежурный офицер поднял тревогу — в сейфе со сверхсекретными чертежами и расчетами лежал клочок бумаги, на котором было написано: «Угадай, кто?» От строгого наказания Фейнмана спасла лишь его репутация выдающегося ученого.

Так вот, анализируя результаты новых опытов по рассеянию электронов, Фейнман использовал аналогию с радиолокацией. Когда самолет или ракета разваливаются на куски, к оператору следящей радиолокационной станции приходит отражение от каждого из них — целый набор отраженных лучей, и вместо яркой точки он видит на экране размазанное световое пятно. В своей статье Фейнман привел пример с роем пчел: близорукий человек видит его как единый темный ком, а наблюдатель с острым зрением различает множество снующих насекомых. Таким образом, сделал вывод ученый, нуклон тоже является роем каких-то очень мелких частичек. Из них состоит его керн и мезонная «шуба». Эти частицы стали называть партонами — от английского слова «парт», то есть часть.

Теперь можно спросить: так все-таки что же такое нуклон — орешек-керн, одетый в толстую мезонную «шубу», или же комочек мелкозернистой партонной «икры»? Этот вопрос напоминает индийскую притчу о том, как слепцы пытались рассказать, что такое слон. Слепец, который находился возле его ноги, сказал, что слон похож на большое дерево. Второй ощупал хобот и заявил, что слон — толстая кожаная кишка. Третий же, потрогав хвост, стал уверять, что слон — это всего-навсего лишь маленькая змейка. Каждый из них был прав, но только частично: истинная картина, подобно мозаике, получается сложением всех их рассказов. Объекты микромира, их противоречивую сущность тоже нельзя отобразить одной картиТюй, они слишком сложны для этого. Наглядное представление о нуклоне — это набор многих отдельных картинок.

При крупномасштабном рассмотрении нуклон предстает перед нами как сгусток накладывающихся и проникающих друг в друга мезонов и более тяжелых элементарных частиц. При большем увеличении становится заметной мелкозернистая структура этих частиц, и нуклон выглядит как шарик, наполненный партонной «икрой».

В целом картина приобрела более привычные нам черты: нуклон состоит из маленьких частичек-партонов, подобно тому как атомное ядро складывается из меньших, чем оно само, нуклонов. Большее состоит из меньшего, части-кирпичики не похожи на слепленное из них целое. Ступеньки структурной лестницы выправились и снова пошли вниз.

Но на этом история с партонами не закончилась. Их открытию очень обрадовались теоретики, которые занимались классификацией в быстро разраставшемся зоопарке элементарных частиц. Они уже давно догадывались о существовании таких частиц, только называли их по-своему — кварками.

 

«Три кварка для мистера Марка!»

Выше уже говорилось, что элементарные частицы нельзя разделить на более и менее элементарные, все они равноправны. Однако их можно распределить по семействам, связанным между собой правилами родства. Так же, как в настоящем зоопарке, где звери распределены по родам, семействам, отрядам. Для элементарных частиц роль родственных связей играют правила симметрии: частицы укладываются в симметричные по своим свойствам группы. Сложные семейства, насчитывающие десятки частиц-членов, расщепляются на более простые подсемейства, те — на еще более простые. В целом получается таблица, которую можно назвать периодической системой элементарных частиц.

Самое простое семейство в ней, лежащее в основе всех других, занято частицей, имеющей три состояния. (Вспомним снова аналогию с электрической лампочкой, которая меняет свой цвет! Но вот что смущает: правила симметрии приводят к выводу, что заряд этой частицы (назовем ее пока частицей «икс») меньше, чем у электрона. В одном состоянии (лампочка горит белым светом) он составляет треть заряда электрона, в двух других (синий и красный цвет) — две трети. Однако дробных зарядов никто никогда не встречал. С давних времен хорошо известно, что электрический заряд всех тел всегда — целое кратное заряда электрона (нуль тоже целое число!).

Настораживают и другие характеристики икс-частицы. По одним свойствам ее следует считать нуклоном, по другим — мезоном. В некоторых отношениях она должна вести себя, как типичная странная частица, в других же аспектах она похожа на обычные, нестранные частицы. Все у нее не так, как у «нормальных частиц»!

В древних мифах упоминаются кентавр, получеловек-полулошадь и сфинкс — существо с лицом человека и с туловищем льва. Подобным фантастическим гибридом в глазах физиков выглядит и частица икс. Вообразите на минутку, что вы видите сфинкса, мирно пасущегося в стаде коров, или большого черного морского конька с зонтиком среди гуляющей по морскому берегу публики. Можно представить, как бы вы удивились! Вот так же встретило предсказанную теоретиками икс-частицу и большинство физиков — с недоверием и подозрительностью, а некоторые так просто с юмором, как очередной «загиб» досужих на выдумки теоретиков.

С другой стороны, если сложить три икс-частицы вместе, то в зависимости от того, какие состояния «иксов» выбраны для сложения, эта триада приобретает свойства протона, нейтрона или одной из более тяжелых частиц гиперонов. Невольно приходит мысль, что удивительные «иксы» как раз и являются теми первичными блоками-кирпичиками, из которых можно составить все другие частицы подобно тому, как из протонов и нейтронов складываются ядра всех химических элементов в таблице Менделеева.

Первыми эту идею выдвинули два американских теоретика — Мюррей Гелл-Ман и Джордж Цвейг. Они же придумали и название икс-частице — кварк.

О происхождении этого странного термина среди физиков в ходу две легенды. Согласно одной, он появился как шутка — в немецком языке слово «кварк» означает одновременно: «творог», «протоплазма» и... «чепуха». Поначалу придумавшие кварк теоретики с юмором относились к своему изобретению. Другая легенда утверждает, что это слово взято из романа Джойса «Поминки по Финнегану». В бредовом сне герой этого романа видит летящие за его кораблем чайки, которые человеческими голосами выкрикивают бессмысленную фразу: «Три кварка для мистера Марка!» Вот этим коротким гортанным словом из «области бреда» и воспользовались теоретики.

Когда кварки замелькали на страницах теоретических статей, многие ученые считали их всего лишь неким курьезом, временными строительными лесами на пути к более совершенной теории. Однако не успели физики оглянуться, как оказалось, что с помощью кварков очень просто и наглядно объясняются самые различные экспериментальные факты, а теоретические вычисления сильно упрощаются. Без кварков стало просто невозможно обойтись, так же, как, например, в химии нельзя обойтись без атомов и молекул.

В теории Гелл-Мана и Цвейга нуклон, гипероны и другие похожие на них тяжелые частицы состоят из трех кварков. Мезоны состоят из «слипшихся» кварка и антикварка. Последние — такие же «сердитые» родственники, как электрон и позитрон. Их электрические заряды отличаются знаком, а столкнувшись, они могут в пух и прах разнести друг друга — аннигилировать. Но это происходит не всегда. Иногда бывает так, что вместо взаимоуничтожения частица и античастица, как борцы на арене цирка, начинают кружиться одна вокруг другой. Образуется короткоживущая система, где частицы погружены в общую энергетическую «ванну».

С помощью «кваркового конструктора» можно построить всю таблицу элементарных частиц — иногда простым сложением, а иногда придавая дополнительное вращение «частям» уже построенных частиц. Исключение составляют упрямые лептоны, их никак не удается породнить с кварками. Почему это так, мы выясним позднее, а пока будем иметь дело лишь с адронами. Их намного больше, чем лептонов. (Если кто-то забыл, чем отличаются адроны от лептонов, полезно вернуться на несколько страниц назад и еще раз прогуляться по «зоопарку» частиц.)

Подобно тому как это было когда-то с периодическим законом Менделеева для химических элементов, кварковая систематика позволила вычислить параметры и предсказать поведение новых частиц, которые затем были открыты на опыте. Но сами кварки по-прежнему оставались чисто теоретическими объектами. О них много говорили и писали, но они упорно не хотели проявлять себя в опытах.

Вот тут-то и вышли на арену феймановские партоны. Оказалось, что внутри протона и нейтрона ровно по три партонных икринки и параметры их в точности такие, как у кварков. В частности, их заряд равен 1/3 и 2/3 электронного. Точнее, один тип партонов имеет заряд -1/3, два других +2/3. Три типа партонов — три состояния кварка. Стало ясно, что партоны и кварки — это одни и те же частицы. Теоретики и экспериментаторы пришли к ним с разных сторон.

Казалось бы, наконец-то удалось свести концы с концами. Однако счастье никогда не бывает полным, и в любой бочке меда есть своя ложечка дегтя. Физиков очень беспокоило то, что в свободном виде, так сказать, наяву, кварки никто не наблюдал, хотя с тех пор как их изобрели, прошло уже достаточно много времени. Почему кварки встречаются лишь связанными в пары и тройки? Получается так, что, подобно подпоручику Киже в известном рассказе Юрия Тынянова, кварки «присутствуют, но фигуры не имеют»! В чем же здесь дело? Может, мы в чем-то здорово ошибаемся и кварковый этаж природы устроен совсем не так, как мы его себе представляем?

 

Погоня за невидимками

Поиск свободных кварков стал одной из основных забот физиков. Не выяснив, в чем тут дело, нельзя было двигаться дальше, и на решение этой задачи была брошена вся мощь современной экспериментальной физики.

Самый характерный признак кварка — его дробный заряд, меньший заряда электрона. Вот за этот признак и ухватились охотники за невидимками.

Когда заряженная частица проходит сквозь вещество, она своим электрическим полем срывает часть электронов с оболочек атомов — ионизует их. Вдоль пути частицы выстраивается цепочка таких «ободранных» атомов. Физики называют их ионами. Чем больше заряд частицы, тем большее число ионов отмечает ее путь. Поэтому ионизационные следы кварков в веществе должны заметно отличаться от следов других частиц. Они менее плотные. Расчет показывает, что кварк с зарядом 2/3 образует в два с половиной раза меньше ионов, чем частица, обладающая единичным зарядом. А кварк с зарядом 1/3 — почти в десять раз меньше. Вот по таким «рыхлым», разреженным следам и можно надеяться отыскать кварк среди других элементарных частиц.

Плотность следа зависит также от массы частицы и ее скорости. Быстрая, легкая частица, подобно глиссеру на воде, должна оставлять лишь слабый, едва видимый след, а медленная и тяжелая, как ледокол во льдах, будет образовывать широкую полосу повреждений. Однако физики давно уже научились измерять массы и скорости частиц и в «чистом виде» выделять только ту часть ионизации, которая связана с различием зарядов частиц.

Конечно, сама по себе цепочка ионов вдоль пути частицы остается невидимой, подобно тому как невидимо изображение на непроявленной фотопленке. Чтобы увидеть ионизационные следы частиц, нужны особые условия или специальная обработка материала. Для этого можно воспользоваться, например, камерой Вильсона в магнитном поле, с помощью которой полвека назад был открыт позитрон. Цепочка заряженных ионов выполняет в ней роль центров конденсации, вокруг которых «проявляется» след частицы в виде полоски тумана. Магнитное поле изгибает ее. Радиус изгиба зависит от величины электрического заряда частицы, а направление изгиба — от его знака.

Вместо пересыщенного пара, который применяется в камере Вильсона, можно использовать перегретую жидкость с температурой немного выше точки кипения. Она мгновенно вскипает вдоль траектории ионизующей частицы и отмечает ее гирляндой мелких пузырьков — как в стакане с нарзаном. Чем сильнее заряжена частица, тем больше образуется таких пузырьков.

След частицы можно сделать видимым также с помощью фотопластинок, подобных тем, что применяются в обычном фотоателье, только фотослой у них нужно приготовить по специальному рецепту — он должен быть чрезвычайно высокочувствительным, чтобы реагировать даже на очень слабые ионизационные повреждения. Химически ионы значительно более активны, чем неповрежденные атомы, поэтому проявитель сильнее всего действует на те участки фотослоя, которые повреждены частицами (или светом), и в результате получается отчетливая фотография следов.

Есть и другие способы «проявить» ионизационные следы частиц. Однако ни в одном из таких экспериментов дробных электрических зарядов обнаружить не удалось. Их искали среди потоков частиц, рождающихся в ядерных реакциях на ускорителях, искали в космических лучах..- И... ничего, никаких следов кварков!

Одно время физики думали, что «вышелушить» кварки из протонов и нейтронов мешает их очень большая масса. Плавая в энергетической «ванне» внутри нуклона, они становятся гораздо легче, и, чтобы превратиться в свободные тяжелые кварки, им нужно здорово «поправиться». Этого нельзя сделать без усиленного энергетического «питания», поэтому выбить кварк из нуклона, вдоволь «накормив» его энергией, может лишь сильно разогнанная частица. А поскольку кварки в опытах не рождаются, это означает, что мощности современных ускорителей еще недостаточно, и поймать кварк, возможно, удастся только в далеком будущем. Вывод очень пессимистический.

Правда, есть еще один источник высокоэнергетических частиц-снарядов — космические лучи. Там встречаются частицы с энергией в тысячи и даже миллионы раз большей, чем дают ускорители. Казалось бы, уж они-то должны разбивать нуклонные «орешки» на кварки! Тем более обескураживающей была для физиков неудача всех попыток обнаружить эти частички.

Может быть, причина в том, что высокоэнергетических «снарядов» в космических лучах крайне мало и редкие случаи рождения кварков просто ускользают от внимания наблюдателей?

 

Кварки вокруг нас

Космические частицы очень высокой энергии действительно весьма редки, но зато выбитые ими кварки должны постепенно накапливаться в веществе нашей планеты — ведь, однажды образовавшись, кварк уже не может исчезнуть. Он не способен распасться на обычные частицы, так как заряд-то у него дробный, а дробь, как ни крути, нельзя превратить в целое. Если кварк поглотится протоном или нейтроном окружающего вещества, то при этом снова образуется объект с дробным электрическим зарядом — еще один тип кварков, только несколько более тяжелых. Кварковое вещество неуничтожимо, точнее, почти неуничтожимо, так как исчезнуть и превратиться в обычные частицы кварк все же может, когда он столкнется с антикварком и произойдет их аннигиляция, взаимоуничтожение. Однако вероятность таких столкновений для рассеянных по веществу кварков и антикварков чрезвычайно мала. А если к тому же учесть, что космические частицы бомбардируют нашу планету уже многие миллиарды лет, то за это время в земном веществе должно накопиться огромное количество кварков. Вот тут-то их и можно попытаться обнаружить.

Есть еще одна причина, почему окружающее нас вещество должно быть «нафаршировано» крупинками кварков. В следующей главе мы увидим, что когда-то, очень-очень давно, Вселенная была в раскаленном состоянии. Все частицы тогда двигались с большой скоростью и имели огромную энергию, кварки были свободными, несвязанными частицами. Потом Вселенная несколько остыла. Почему это произошло, опять-таки будет объясняться в следующей главе, сейчас нам важно лишь знать, что настало время, когда кварки стали слипаться в адроны. Сталкиваясь, они образовывали общую энергетическую «ванну», сразу теряли в ней вес, а излишнюю массу «выплескивали» в виде излучений, подобно тому как толстый человек расплескивает воду, садясь в наполненную до краев ванну. Кварки сливались в адроны, а разбить их обратно у окружающих частиц энергии уже не хватало. В раскаленной Вселенной они носились, как разъяренные пчелы вокруг разбитого улья, в остывшей они стали похожи на суетливых, но осторожных муравьев, снующих вокруг своей кучи из рыжих иголок. Так «сварилось» вещество нашего мира. Но отдельные кварки при этом могли, так сказать, замешкаться и оказаться в окружении одних адронов, не имея партнеров для слияния. Это похоже на известную детскую игру: ее участники бегают по площадке, не обращая внимания друг на друга, вдруг звучит сигнал, и каждый торопится объединиться с соседом в пару. А кто не успел — водит.

Заблудившиеся кварки-неудачники должны сохраниться до наших дней. Они до сих пор странствуют по миру в поисках своих «суженых».

Расчеты, выполненные академиком Я. Б. Зельдовичем и его коллегами, показали, что в каждой пылинке окружающего нас вещества с диаметром в тысячную долю миллиметра должно быть примерно по одному заблудившемуся кварку. К этому следует добавить еще кварки, рожденные космическими лучами. Концентрация получается очень высокой. Тем более что это в среднем, а на самом деле кварки могут распределяться очень неравномерно, и в некоторых веществах их концентрация может быть еще выше. Все это выглядело весьма оптимистично, и многие лаборатории мира с энтузиазмом взялись за ловлю свободных кварков. Началась буквально кварковая лихорадка. Кварки искали не только специалисты-физики, но и химики, инженеры и даже биологи. Многим казалось, что с помощью современной техники обнаружить кварки не сложнее, чем отыскать крупинку золота в куче золотоносного песка.

Был момент, когда казалось, что кварковая жар-птица уже в наших руках. Солидный американский физический журнал, а вслед за ним научно-популярные журналы и газеты объявили об открытии дробных зарядов. Однако «допрос с пристрастием» показал, что этот результат ненадежен и, возможно, обусловлен какими-то неучтенными особенностями эксперимента.

Сегодня, пожалуй, наиболее точный метод поиска кварков основан на том, что, блуждая в веществе, кварки с отрицательным электрическим зарядом будут прилипать к положительно заряженным атомным ядрам. Образуются «кварковые атомы», которые по своим свойствам несколько отличаются от обычных атомов. Этим можно воспользоваться для концентрирования и выделения «кваркового вещества».

Метод напоминает старый студенческий анекдот о том, как поймать льва в пустыне Сахара: надо растворить весь сахар в воде, тогда лев выпадет в осадок!

Были исследованы железные метеориты, различные минералы, морская вода, выбросы вулканов во время их извержений, лунный грунт и прочее. Были исследованы все экзотические уголки, до которых могли только добраться фантазия и руки физиков. Измерения были настолько точными, что если бы в десяти кубометрах воды (по объему это хотя и не целая Сахара, но весьма приличная цистерна!) содержались всего один-два кварка, то они были бы обнаружены. Точность фантастическая! Если бы такие возможности имели золотоискатели, они смогли бы легко обнаружить крупинку золота в песчаной горе размером с десяток Эверестов и даже больше.

И тем не менее все опыты оказались неудачными — кварков не обнаружили.

Это можно было бы понять, если допустить, что кварки не просто очень тяжелые, а чрезвычайно тяжелые частицы. Дело в том, что когда частицы «выкристаллизовывались» из первичного аморфного вещества юной Вселенной, тяжелым частицам это давалось труднее, первыми и в большем количестве «выпадали в осадок» легкие частички. (Мы опять несколько забегаем вперед, об этом пойдет речь в следующей главе, но что делать, многие разделы физики переплетаются и их нельзя расположить «голова в голову»!) Поэтому чем больше масса кварка, тем меньше их блуждает сегодня вокруг нас. В своих расчетах теоретики предполагали, что кварк в пять — десять раз тяжелее протона, а для того чтобы объяснить отрицательный результат опытов, необходимо допустить, что масса кварка в миллиарды миллиардов раз больше. Кажется невероятным, чтобы часть протона, его долька, весила в миллиарды миллиардов раз больше его самого, — гора Казбек внутри горошины!

Сегодня большинство физиков считает, что свободных, изолированных кварков в природе вообще нет. Кварки наглухо «заперты» внутри элементарных частиц, и никакими силами выбить их оттуда нельзя. Советский физик Я. Б. Зельдович одним из первых пришел к выводу, что в мире действует какой-то закон, который строго-настрого запрещает вылет кварков из адронов.

Но из чего же тогда сделаны «стенки» адрона, если ни один снаряд, даже самый высокоэнергетический, не может их разрушить?

 

Пленники резиновой «тюрьмы»

Опыты по зондированию нуклона доказали, что в центре элементарной частицы кварки почти не связаны взаимодействием и ведут себя как плавающие в воздухе надувные шарики. Если же кварки пытаются разойтись, то сразу же возникают стягивающие их силы. Другими словами, как самостоятельные частицы, кварки и антикварки существуют лишь в глубине элементарных частиц, а на их периферии кварки могут находиться лишь в форме связанных сгустков — например, в виде пи-мезонов.

Интересно получается: в атомах и в их ядрах сильнее всего связаны внутренние наиболее плотные слои, а вот кварковый каркас элементарных частиц, наоборот, наиболее жестко и крепко сцементирован на периферии. Недаром физики шутят о «центральной свободе» и «периферическом рабстве» кварков, а английский термин «кварковый конфайнмент» — буквально: «пленение кварков», «кварковая тюрьма» — встречается на страницах самых серьезных научных статей!

Хотя ни один снаряд не может расколоть адронные «орешки», было бы неверным считать, что их стенки тверды, как танковая броня или железобетонный колпак дота. Сквозь эти стенки глубоко внутрь протона и нейтрона проникают пучки зондирующих электронов, их пронизывают насквозь фотоны и нейтрино. И в то же время их не может преодолеть ни один внутренний кварк.

С первого взгляда неясно даже, как связать такие, казалось бы, несовместимые, взаимоисключающие особенности кваркового строения частиц. Тем не менее их можно понять с помощью весьма простой модели. Представим себе, что между кварками натянуто что-то вроде резиновых нитей. Когда кварки близко один от другого, нити провисают, и кварки чувствуют себя свободными — резинки не мешают их движению. Но как только кварки расходятся, нити натягиваются, и тем сильнее, чем больше расстояние между их концами. Кварки сразу оказываются спутанными «по рукам и ногам».

В старой вьетнамской сказке рассказывается о страшной змее, которую не смог убить ни один воин. У нее вместо хвоста была еще одна голова, а когда змею рассекали мечом, на месте разреза мгновенно вырастали новые головы, и вместо одной змеи к сражению были готовы уже две. Мезон похож на такую двухголовую змею, а нуклон — на клубок из трех змей. Если в один из кварков, находящихся внутри мезона, «выстрелить» быстрым электроном, этот кварк получит большой импульс и отскочит. Но его движение будет продолжаться лишь до тех пор, пока натяжение удерживающих резиновых нитей не возрастет настолько, что их энергии станет достаточно для рождения новой пары кварков. Не выдержавшая напряжения нить рвется, в точке разрыва выделяется накопившаяся энергия, и рождаются два кварка, точнее, кварк и антикварк с противоположными зарядами. (Сохранение электрического заряда — такой же строгий закон природы, как и закон сохранения энергии.) Антикварк и выбитый электроном кварк «слипнутся» и образуют мезон, а оставшийся кварк займет внутри частицы место выбитого кварка. И в результате все будет выглядеть так, как будто кварк остался на месте, и одновременно за счет энергии растянувшего нить электрона родился мезон — был один мезон, стало два!

Похожим образом ведет себя и нуклон. Каждый раз, когда пытаются выбить из него кварк, рождается новый мезон, а нуклон остается невредимым.

Теперь должно стать понятным, почему не удается расколоть нуклон на три кварка: сколько по нему ни бей, из него всякий раз будут вылетать целые частицы — адроны, а не их осколки — кварки и антикварки!

Модель резиновых нитей самая простая, но не единственная, используемая физиками для описания кваркового строения элементарных частиц. Есть еще модель пузыря с упругими, эластичными стенками, которым не дает сжаться давление кваркового газа. Правда, газовых частиц в таком пузыре всего лишь две или три, и говорить о газе здесь можно лишь с большой долей условности. В научных статьях эту модель часто называют также «кварковым мешком». Физики, которые ее разрабатывают, получили шутливое прозвище «мешочников». Есть и другие модели.

Конечно, все они представляют собой очень упрощенное, сильно усредненное описание реального положения дел. Мы еще только прикоснулись к кварковым явлениям. Пока это клубок противоречивых гипотез и фактов. Нечто похожее в физике уже было, когда создавалась теория атома. Тогда тоже было много различных наглядных моделей, с помощью которых ученые пытались если не объяснить, то хотя бы привести в систему новые факты. Физикам придется еще много потрудиться, чтобы превратить кварковые модели в такую же строгую теорию, какой является сегодня теория атома.

И первый вопрос, который здесь возникает: почему межкварковые силы не похожи на все другие? Электромагнитное взаимодействие, сила тяжести, мезонный бадминтон нуклонов — все они уменьшаются с увеличением расстояния. Вспомним закон Кулона или закон всемирного тяготения Ньютона: сила обратно пропорциональна квадрату расстояния. Расстояние увеличивается вдвое, сила уменьшается вчетверо. Ядерные силы уменьшаются еще быстрее. Такое поведение сил вполне понятно — чем дальше частицы, тем слабее они действуют друг на друга. А вот кварки почему-то предпочитают взаимодействовать издалека. Из чего же состоит «резиновый клей», стягивающий их в адронные капли?

 

«Глюонный клей»

Для физика такое заглавие звучит как «масляное масло», потому что слово «глюон» уже само происходит от английского «глу» — клей. Придумал частички-глюоны все тот же Ричард Фейнман. Он отвел им роль воланчиков в бадминтоне партонов — кварков. Другого способа организовать взаимодействие физика не знает. Ведь если частицы взаимодействуют, между ними должно что-то передаваться.

Глюоны очень похожи на частицы света — фотоны. У них тоже нет массы, и они движутся со скоростью света. Однако в отличие от зарядово-нейтральных фотонов, они «измазаны» зарядом. Фотон никакого нового электрического поля вокруг себя не создает. Наибольшую интенсивность поле имеет вблизи заряда — его источника, а далее оно постепенно рассеивается в пространстве и ослабевает. Глюон же своим собственным зарядом рождает новые глюоны, те, в свою очередь, — следующие и так далее. Происходит лавинообразное саморазмножение. Поэтому-то глюонное поле и не ослабевает, а, наоборот, возрастает при удалении от породившего его кварка. «Глюонный клей» напоминает тесто на дрожжах, его так же «распирает».

Если вернуться к наглядной картине бадминтона, то следует сказать, что отброшенный кварковой ракеткой глюон-воланчик сразу же начинает, как пеной, обрастать новыми глюонами, и в результате удаленные кварки обмениваются целыми комками воланчиков. Их связь становится более сильной. Это объясняет, почему «глюонный клей» обладает свойствами резины.

Каждый кварк утоплен в толстом комке глюонной резины. «Голыми», очищенными от клея, кварки становятся лишь в центре частицы. Зондирование центральных областей нуклона дало неожиданный результат: голые кварки — очень легкие объекты, их масса в сто раз меньше нуклонной. Оказывается, нуклон и другие элементарные частицы состоят в основном из глюонного клея. Шарики, наполненные глюонной «жидкостью», с маленьким пузырьком в центре!

Как и кварки, глюоны — вечные пленники. В лавинообразном образовании глюонной «пены» энергия начального глюона быстро делится на все более и более мелкие порции, и глюон «тает» — растворяется в комке рожденных им новых глюонов. Он не может уйти далеко от места своего рождения.

Тем не менее глюоны оставляют видимые следы. При столкновении с зондирующим электроном глюон иногда получает такой сильный толчок, что его энергии хватает не только на образование глюонной «пены», но и на рождение кварк-антикварковых пар. Эти пары сразу же слипаются в мезоны и вылетают в виде узкой, «кинжальной» струи частиц. Можно сказать, что получивший большой импульс глюон так резко тормозится на краю частицы, что его энергия струей «выплескивается» наружу. Узкие мезонные струи наблюдались во многих экспериментах.

Глюон — частица, изобретенная за письменным столом теоретика, однако сегодня нет сомнений в ее реальном существовании.

 

Аромат и цвет кварков

С тех пор как выдумали кварки, прошло уже четверть века, и их уже давно перестали считать «чепухой». Курьезный намек на это остался лишь в их названии. Для физика глюоны и кварки сегодня такие же привычные объекты, как атомы и молекулы.

Знаменитый французский математик Анри Пуанкаре как-то заметил, что всякой истине суждено одно мгновение торжества между бесконечностью, когда ее считают неверной, и бесконечностью, когда она становится тривиальной. Правда, кваркам до тривиальности еще далеко, они до сих пор преподносят сюрпризы.

Поначалу считали, что кварки имеют три состояния. Семейство трех братьев-близнецов. Фраза «Три кварка для мистера Марка» имела тогда прямой смысл. Два кварка нужны, чтобы построить нуклон и пи-мезон. Третий — для конструирования странных частиц. Вскоре, однако, были открыты «прелестные» и «очарованные» частицы, и для них пришлось ввести еще два кирпичика-кварка. А недавно был обнаружен шестой кварк. Эти три кварка значительно тяжелее своих собратьев, их масса больше нуклонной.

Теперь уже не три, а шесть кварков для мистера Марка! Чтобы различать, им присвоили номера — первый, второй и так далее. Однако это неудобно, поскольку все шесть кварков совершенно равноправны, и какой из них называть первым, а какой последним, зависит от конкретной задачи. Поэтому предложено считать, что все кварки обладают общим свойством — ароматом, но каждый из них пахнет по-своему. Шесть кварков — шесть запахов.

Конечно, кварк нельзя понюхать, и никакого аромата в обычном понимании у него нет. Это только удобный термин, такой же, как «странность», «очарование» или «прелесть», с помощью которых описывают определенные свойства частиц. Физики любят использовать необычные и поэтому легко запоминающиеся названия.

Иногда это приводит к забавным недоразумениям. Некоторое время мне пришлось работать в отделе, начальник которого весьма формально выполнял свои обязанности. Подчиненным это надоело, и вот однажды один из них среди прочего оборудования заказал пару оптических осей. (Оптическая ось, как известно, это — воображаемая линия, соединяющая фокусы линзы.) Наш начальник, по обыкновению, не глядя «подмахнул», заказ, а ответственный за поставку оборудования хозяйственник, доверяя авторитету нашего титулованного начальника, принял все за чистую монету. Понятно, что никаких оптических осей институт не получил.

— Мне предлагали, но толстоваты, отказался! — попытался вывернуться на отчетном собрании хитрец снабженец, но его слова утонули в громовом хохоте.

Не смеялся один начальник.

Ныне хозяйственник стал опытным, а лет двадцать — тридцать назад еще можно было выписать дефицитный растворитель для протирки тех же оптических осей или для смывания «ионных пятен» с экрана телевизора!

Испуская или поглощая глюон, кварк изменяет свой «цвет». Подобно снующим над цветами пчелам, глюоны «измазаны» пыльцой-зарядом. Сядет такая «пчела» на кварковый «цветок», и он сразу приобретает другой цвет, улетит — опять новый цвет, в зависимости от того, сколько и какой зарядовой «пыльцы» унесла глюонная «пчелка».

Кварковыи заряд «цвет» во многом похож на электрический. Он также может быть большим или маленьким, положительным или отрицательным (в последнем случае говорят, что цвет сменился антицветом). Но есть одно принципиальное отличие. Как бы ни изменялся электрический заряд, он всегда остается электрическим зарядом. Цветовой же заряд может изменить еще и свой цвет. Фактически это сразу три независимо изменяющихся заряда, которые к тому же могут еще и переходить один в другой. Цветные системы несравненно богаче по своим свойствам, чем электрические.

Попытайтесь представить себе, как изменился бы окружающий мир, если бы вдруг появились три типа электрических зарядов. Три сорта света и радиоволн, цветное электричество, разные типы атомов...

С открытием «цвета» микромир стал в наших глазах многограннее и ярче, но кварков теперь уже восемнадцать. Этот факт тоже начинает беспокоить — уж очень сложной становится «самая элементарная» частица. Видимо, в недрах микромира от нас скрыто еще что-то очень важное...

 

Упрямые лептоны

Есть еще одно беспокоящее обстоятельство. Кварки позволили навести порядок среди элементарных частиц, помогли понять, что творится внутри этих мельчайших капелек вещества. Однако лептоны остались в стороне — их нельзя «склеить» из кварков.

Три электронноподобных брата, e, π и τ с тремя собачками-нейтрино и шесть античастиц — три «антибрата» и три «антисобачки». Эти «упрямцы» стоят особняком от других элементарных частиц и не хотят иметь с ними дела — взаимодействуют слабо. Все они точечные, по крайней мере, раз в тысячу меньше остальных частиц. Такое впечатление, будто они сделаны из другого «теста»!

По размерам и по специфичности, выделенности своего поведения лептоны ближе к кваркам, чем к составным частицам — адронам. Ведь кварки тоже очень мелкие частички. Да и число лептонов — шесть — таково же, как число кварков в каждой цветной шеренге. Едва ли такое сходство случайно, в природе ничего не бывает «просто так»...

А что, если лептоны лежат на той же «сверхэлементарной» ступени структурной лестницы, что и кварки? Более того, может, они вообще близкие родственники?

На побережье лазурного Адриатического моря, вдали от крупных промышленных центров, расположен международный Институт теоретической физики. Он содержится на деньги многих государств, и работать туда приезжают ученые со всех краев света — от Японии до Америки. Обмен мнениями, споры, совместные расчеты — все это очень способствует работе теоретиков. Несколько лет назад два сотрудника этого института, его бессменный директор пакистанский физик Абдус Салам (недавно он избран членом Академии наук СССР) и английский теоретик Джордж Пати, выдвинули смелую гипотезу о том, что лептоны не самостоятельные частицы, а всего лишь четвертое цветное (точнее, бесцветное, белое) состояние кварка.

Этих физиков не смутило большое различие свойств частиц, объединенных ими в кварковое семейство, — «бестелесных», не имеющих электрического заряда и движущихся со скоростью света нейтрино, с одной стороны, и тяжелого шестого кварка с дробным зарядом и массой, больше нуклонной, — с другой. Электрические заряды лептонов 0 и 1, то есть 0/3 и 3/3, хорошо укладываются в один ряд с зарядами кварков:

0/3, ∓1/3; ∓2/3, ∓3/3.

Что же касается различия масс, то, по мнению Салама и Пати, это результат влияния окружающего фона. Ведь вокруг всякой частицы образуется облако испущенных ею частиц-воланчиков, которые экранируют частицу и изменяют ее свойства. Только такие заэкранированные, закутанные в облака частицы с измененными, или, как говорят физики, эффективными, свойствами и наблюдаются в опытах. Здесь мы снова встречаемся с эффектом Архимеда: внутри облака частица чувствует себя, как в ванне. А поскольку плотность и состав облака зависят от величины заряда и от других ее характеристик, вес членов кваркового семейства оказывается различным. Для одних ванна кажется наполненной водой, для других — вязким маслом, а для третьих — густым сиропом, в котором они полностью теряют свой вес и приобретают невесомость.

О том, что члены семейства-мультиплета могут иметь разные массы, известно давно. Например, заряженные пи-мезоны несколько тяжелее π0-мезона: распределенное вокруг них электрическое поле дает добавку к их весу. Однако все эти расщепления составляют проценты, а в кварк-лептонном семействе они очень великие — на малых расстояниях, в тысячи раз меньших размеров адронов, действуют более мощные силы, и энергетические «ванны» вокруг частиц оказываются весьма эффективными.

На самом деле, конечно, все обстоит значительно сложнее, даже специалистам-теоретикам здесь еще не все ясно, но в первом приближении картину можно «нарисовать» с помощью экранирующих облаков и энергетических ванн.

Новая теория сократила список независимых элементарных частиц, сделала их таблицу более стройной. Однако одного этого еще недостаточно для того, чтобы физики поверили в гипотезу о тесной связи кварков с лептонами. Ведь, по существу, новая теория лишь заменила один непонятный факт, «упрямство лептонов», другим — их «кровным родством» с кварками. Это все равно, что пытаться старую тайну объяснить с помощью новой загадки. Как говорит пословица: «Хрен редьки не слаще».

Можно придумать целую цепочку гипотез, где каждая следующая нужна лишь для оправдания предыдущей. Так однажды в наш институт пришло письмо, автор которого, десятиклассник, выдвигал гипотезу: раз все в природе развивается, то должны развиваться и частицы, поэтому нейтрино, электрон, протон и так далее — это одна и та же частица в разные периоды ее жизни. Чтобы объяснить, почему нет частиц, соответствующих промежуточным моментам времени, вводится еще одно предположение: время только кажется непрерывным, а на самом деле в нем есть прорехи, поэтому промежуточных моментов просто не существует. Дальше автор письма не пошел, но если пофантазировать, то цепочку гипотез можно продолжить. В институты приходит много подобных писем. Их общий недостаток — произвольность допущений. Современная физика (равно как и другие разделы знания) таких гипотез не признает, считает их ненаучными.

Но так было не всегда.

 

«Бритва Оккама»

Шесть с половиной веков отделяют нас от эпохи, когда жил Уильям Оккам — член Ордена нищенствующих монахов, человек очень образованный, выступавший с лекциями по богословию и логике. Это было время, когда наука играла роль робкой служанки церкви и ютилась на задворках монастырей и соборов. Главным «научным» доводом тогда было: «Это вытекает из святого писания», или просто: «Так угодно богу». Однако накапливались экспериментальные данные, люди все больше и больше узнавали об окружающем мире, и в среде ученых монахов голос слепой веры все чаще сменялся голосом разума: почему же все-таки так, а не иначе? К числу таких размышляющих монахов принадлежал и Оккам.

С портретного наброска в рукописи XIV века смотрит коротко остриженный, аскетического вида монах в рясе, с худым, продолговатым лицом и внимательными глазами. О его происхождении и юношеских годах мы знаем мало. Доподлинно известно лишь то, что первую часть жизни он провел в Англии, где его остроумные, часто язвительные, но всегда трудно опровергаемые выступления быстро принесли ему известность. Кончилось тем, что канцлер Оксфордского университета обвинил его в ереси и под стражей отправил в Авиньен — тогдашнюю резиденцию папы, где в ожидании суда Оккам долгих четыре года провел в заключении. Следствие тянулось, суд постоянно откладывали, а тем временем от Оккама обещаниями и угрозами старались добиться смирения и покаяния. Однажды ночью вместе с двумя другими узниками ему удалось бежать. На лошадях в большой спешке они добрались до побережья, где их ждала галера. Всю дальнейшую жизнь Оккам посвятил борьбе против папы.

В то время было обычным строить длинные схоластические рассуждения, цепляя одно предположение за другое. Для объяснений явлений природы привлекалось множество различных гипотез о всевозможных «тонких», не ощущаемых нами «флюидах», субстанциях и «сущностях». Понятно, что таким путем удавалось объяснить, а главное, согласовать со священным писанием все что угодно. В словесных дуэлях со своими противниками Оккам первым стал использовать в качестве оружия принцип: «Не следует с помощью большего делать то, чего можно достигнуть меньшей ценой», или более кратко: «Сущностей не следует умножать сверх необходимого». Этот принцип, как бритва, срезал слабо обоснованные доводы противников, позволяя вылущивать зерна истины. С тех пор «бритва Оккама» стала одним из основных принципов, краеугольным камнем научного исследования.

Второй краеугольный камень — обязательная проверка экспериментом. Были века, когда ученые не очень заботились о проверке своих теорий опытом. Доказательства на основе логических рассуждений считались более надежными и убедительными, чем эксперименты, всегда несколько неточные и зависящие от приборов. Например, крупнейший ученый древности Аристотель в своих трудах утверждал, что у женщин зубов меньше, чем у мужчин. Ему и в голову не приходило проверить это утверждение опытом, хотя он дважды был женат. Этот пример выглядит историческим анекдотом, но он правильно передает атмосферу пренебрежения к эксперименту, которая царила в науке в течение многих веков. В современной науке проверка экспериментом обязательна, опыт — главный судья. Какой бы логически стройной и замкнутой ни была теория, до тех пор, пока ее выводы не подтверждены на практике, она относится к разделу недоказанных гипотез. Если же теория такова, что ее выводы можно проверить опытом лишь когда-то в очень далеком будущем, то ученые подходят к ней с большой осторожностью.

 

Все вокруг радиоактивно!

Вернемся к гипотезе о кварк-глюонном родстве. Теория Салама и Пати была первой разведкой в этом направлении. Как говорил Гете, смелые мысли подобны передовым шашкам в игре — они гибнут, но обеспечивают победу! Сегодня физики отдают предпочтение другим, более совершенным вариантам теории. Но все они обладают общим недостатком: их предсказания и выводы можно проверить лишь при очень высоких энергиях, в миллиарды раз превосходящих то, что дают современные ускорители. Энергии космических частиц для этого также недостаточно. Даже у самых быстрых из них энергия в сотни раз меньше того, что нужно.

Казалось бы, кварк-лептонным теориям уготована участь пылиться в дальнем ящике письменного стола теоретиков. Есть такие теории, о которых говорят, что они «из области фантастики и, может, даже не научной»!

К счастью, природа оставила маленькую, как замочная скважина, щелку, через которую уже сегодня можно заглянуть в край сверхвысоких энергий.

В теориях, основанных на кровном родстве лептонов и кварков, пчелки-глюоны, перенося цветовую «пыльцу», могут сделать красный, синий или желтый цветок белым, то есть превратить его в лептон. Составная частица адрона, внутри которого произошло такое превращение — например протон, — сразу же распадется, поскольку частиц, состоящих из смеси лептонов и кварков, в природе нет. Подобной радиоактивности протона нет ни в одной другой теории, поэтому если ее обнаружат на опыте, это будет убедительным доказательством того, что лептоны и кварки — близкие родственники.

Правда, вывод о радиоактивности протона несколько пугает. Получается, что радиоактивно и с течением времени должно распасться все — все атомы мира. Оптимистической такую перспективу не назовешь!

Однако опасаться нам нечего. Расчет говорит, что протоны распадаются крайне редко. В стакане воды один распад происходит за десять тысяч лет, а чтобы распадалось по одному протону в сутки, нужен большой пруд, объемом со школьный спортзал. В теле человека за всю его жизнь, от рождения до смерти, в среднем распадается не более одного протона. Как видно, потери невелики. Пройдет неисчислимое количество лет, прежде чем убыль атомов в мире станет заметной.

Как же обнаружить такие сверхредкие события?

Прежде всего заметим, что у протона — положительный электрический заряд, поэтому при его распаде должна обязательно образоваться какая-то положительно заряженная частица, она распадается на более легкие частицы и так далее до тех пор, пока не образуется позитрон, которому распадаться больше уже не на что. Двигаясь в веществе, он столкнется с одним из атомных электронов и превратится (аннигилирует) в кванты света. Эти искорки света — сигналы о происшедших в веществе «протонных катастрофах». Засечь их труднее, чем найти иголку в стоге сена. Приходится наблюдать сразу за очень большим числом протонов, для чего используют огромные объемы прозрачной жидкости — иногда тысячи или даже десятки тысяч тонн — и много высокочувствительных детекторов света. Это можно сравнить с сетчатыми глазами гигантской стрекозы, застывшей в ожидании добычи. Чтобы исключить фон космических лучей, где есть свои позитроны, измерения выполняют глубоко под землей, например, в шахте для добычи золота в Южной Америке глубиной три километра или у нас на Кавказе в толще гор. А для того чтобы долгожданные искорки протонных распадов не затерялись в хаосе всевозможных случайных помех, применяются сложные системы электронной фильтрации регистрируемых сигналов.

Опыты продолжаются уже несколько лет, и, хотя ни одного случая распада протона до сих пор не обнаружено, физики не складывают оружия. Создаются установки еще большей величины, а некоторые из проектируемых выглядят просто фантастическими. Так, планируется строительство прибора с объемом в кубический километр. Куб со стороной, равной высоте почти двух Останкинских телевизионных башен! Такое циклопическое сооружение можно разместить лишь в толще океана или в глубоком озере, например в Байкале.

Поиск протонных распадов часто называют экспериментом века. Его успех будет веским доказательством того, что наши представления о глубинах микромира в целом правильны. Напротив, отрицательный результат прозвучит тревожным сигналом о том, что физики в чем-то крупно ошибаются, и тогда придется искать новую дорогу в недра микромира. Понятно, почему физики с таким интересом встречают все сообщения с «протонного фронта»! Да и не только физики, результат опытов очень важен также для астрономов и философов — ведь от его исхода зависят предсказания дальнейшей эволюции и судьбы окружающего нас мира.

 

«Великое объединение»

Слои «облаков», окружающие частицы, экранируют их заряды, поэтому, надевая «шубы», частицы изменяют не только свои массы, но и заряды. Другими словами, расщепление массы «голой» частицы при облачении ее в «шубу» должно сопровождаться распадом единого исходного взаимодействия на несколько отличающихся по своим свойствам типов. Можно думать, что четыре основных вида сил, действующих между частицами — очень сильные «цветовые», умеренно сильные электромагнитные, слабые силы всемирного тяготения (гравитация), очень слабые, проявляющиеся в распадах частиц, — как раз и есть проявление этого расщепления.

Если бы можно было заглянуть внутрь облачного покрова частиц — например, так, как это делают на планете Венера с помощью спускаемых на парашютах станций-зондов, — частица с различных высот выглядела бы заряженной по-разному. Именно так, всегда различно заряженными, видят друг друга сталкивающиеся частицы. Чем больше их энергия, тем глубже они проникают друг в друга и тем отчетливее ощущают «дыхание» их центральных неэкранированных зарядов. Поэтому можно ожидать, что с ростом энергии различные типы взаимодействий будут становиться все более похожими и при очень высоких энергиях сольются в одно-единое взаимодействие. Произойдет «великое объединение» всех сил природы.

Реальное положение дел несколько сложнее. Экранирующие облака образуются не только вокруг заряда, но и вокруг каждой частички-воланчика, которыми прощупывают друг друга сталкивающиеся частицы. Воланчик тоже превращается в целое семейство частичек-сестричек, различающихся фасоном своих «шубок». Если она очень тяжелая, воланчик переносит взаимодействие только на ультрамалые расстояния. Вдали от центра частицы такие воланы почти не встречаются, и связанное с ними взаимодействие проявляется там очень слабо. В других случаях воланы — «легко одетые» частицы, они способны далеко уйти от испустившего их заряда, и с их помощью происходит взаимодействие на больших расстояниях.

Тип взаимодействия, его свойства зависят от экранировки заряда и от его переносчиков — воланов. Лишь в глубине частицы, вблизи ее «обнаженного» заряда, где воланчики еще не успели полностью надеть свои «шубки», все типы взаимодействий становятся одинаковыми — сходятся воедино.

Не только строение, но и силы, связывающие «самые элементарные» частицы, лептоны и кварки, оказываются необычайно сложными. Простейшими точками эти частицы никак не назовешь!

Все действующие в природе силы можно представить в виде развесистого дерева, растущего из недр Вселенной. В обыденной жизни мы имеем дело с его многочисленными веточками и листьями. Углубляясь в микромир, мы сначала встречаемся с более крупными ветками, потом с сучьями и, наконец, с его стволом. Понять, что природа устроена таким образом, физикам было очень непросто. Ведь, например, сила тяготения двух электронов в миллиарды миллиардов раз меньше их электромагнитного отталкивания. Трудно поверить, что это — «ветви» одного дерева!

К идее «великого объединения» физики пришли совсем недавно — каких-нибудь пятнадцать — двадцать лет назад, хотя первый шаг в этом направлении был сделан очень давно, еще полторы сотни лет назад, английскими учеными Майклом Фарадеем и Джеймсом Максвеллом. Они жили в эпоху, когда наука, по существу, еще только приступала к детальному изучению окружающей природы и многие удивительные факты лежали буквально на поверхности, их можно было исследовать в любой маленькой лаборатории, тем более что для опытов не требовалось многоэтажного оборудования с десятками специалистов, как в современных институтах. В большинстве случаев было вполне достаточно нескольких стеклянных трубочек, куска сургуча и мотка медной проволоки. Просто поразительно, сколько замечательных открытий было сделано в то время и с помощью самых примитивных средств! В это золотое для физики время и была установлена связь трех издавна известных, но с первого взгляда таких различных по своей сути явлений — света, электричества и магнетизма. Фарадей обнаружил это на опыте, а Максвелл создал теорию.

В жизни и в характере этих людей было мало похожего. Фарадей, сын кузнеца и горничной, не закончивший даже начальной школы, с двенадцати лет вынужденный работать разносчиком газет, а затем подмастерьем мелкой печатной мастерской. Максвелл родился на сорок лет позже в аристократической шотландской семье и еще в юности получил блестящее образование. Майкл Фарадей отличался необычайным трудолюбием и целеустремленностью. Он в двадцать пять лет издал свою первую работу, а в тридцать три года был избран членом Лондонского королевского общества — для высокомерной и чопорной Англии факт удивительный. Наука для него была целью и смыслом жизни. Для Джеймса Максвелла, богатого и обеспеченного человека, научные изыскания не являлись источником существования. Они были лишь его увлечением. Он разбрасывался в своих интересах, брался за решение самых разнообразных задач. В статьях Фарадея нет ни одной математической формулы, Максвелл блестяще владел математикой и использовал в своей работе самые сложные ее разделы.

Общим у этих ученых было самое главное — глубокое проникновение в суть изучаемых физических проблем. Каждый из них не мог бы сделать того, что сделал другой. А вместе они создали электродинамику — науку, которой мы обязаны электростанциями и электромоторами, радио и телевидением и множеством других веществ, без которых трудно представить современную жизнь.

Фарадей первым открыл электромагнитное поле. Он доказал, что электричество и магнетизм — это два компонента единого целого: распределенного в пространстве поля. Если ранее считалось, что мир состоит только из вещества, то Фарадей добавил к этому новую сущность — электромагнитное поле, которое может быть «привязанным» к зарядам и токам, порождая действующие вокруг них силы, либо отрываться от них в виде светового излучения.

Мы уже знаем, что поле — это совокупность частиц-фотонов, движущихся по волновым законам. Ничего этого ни Фарадею, ни Максвеллу, понятно, не было известно. Они представляли себе поле в виде особых напряжений в заполняющем пространство эфире, чем-то вроде натянутых резиновых нитей и трубочек. Фарадей называл их силовыми линиями. Они стягивали или, наоборот, подобно пружинкам, расталкивали заряды и токи. Приближенная, но очень наглядная модель, хорошо имитирующая свойства электромагнетизма!

Следующий шаг на пути к «великому объединению» был значительно более трудным. Он был сделан лишь в середине 60-х годов XX века. Внимание физиков тогда привлекли слабые взаимодействия. Они обладали странной особенностью: для всех других сил можно указать промежуточное поле, кванты которого служат воланчиками в бадминтоне взаимодействующих частиц, а вот в распадных процессах частицы «разговаривают», так сказать, напрямую, без всяких посредников, толкая друг друга, как бильярдные шарики.

Естественно предположить, что в этом случае тоже происходит обмен воланчиками, но только такими тяжелыми, что весь процесс происходит на очень малых, еще не доступных нам расстояниях, а со стороны это выглядит, как будто частицы просто толкают друг друга. На больших расстояниях проявляется лишь «хвост» взаимодействия. Это объясняет, почему оно такое слабое. Сильным оно становится внутри лептонов и кварков.

Расчеты показали: если бы не большая масса промежуточных частиц, то такое взаимодействие по своим свойствам было бы очень похожим на электромагнитное. И вот трое физиков — Абдус Салам, Стив Вайнберг и Шелдон Глешоу — допустили, что фотон и тяжелые промежуточные частицы слабого взаимодействия — это одна и та же частица, только в различных «шубах». Разработанную ими теорию — ее стали называть «электрослабой», поскольку она, как частный случай, содержит электродинамику и старую теорию слабых взаимодействий — вскоре подтвердил эксперимент. В опытах на ускорителях были выловлены тяжелые воланчики электрослабого поля — три брата-мезона с массой, почти в сто раз большей протонной.

Создание теории электрослабого поля и экспериментальное открытие его тяжелых квантов было отмечено сразу двумя Нобелевскими премиями — самыми почетными международными наградами ученым.

В развитии науки бывают этапы, когда она летит вперед, как корабль с надутыми ветром парусами. Одна идея рождает другую, успех следует за успехом! Мощный прорыв в Страну Неизвестного! Не дожидаясь подхода тяжелой артиллерии эксперимента, теоретики атакуют опорные пункты, стараясь как можно дальше продвинуться в глубь неизвестного. В тылу остаются невыясненные детали, отложенные проблемы, болота сомнений. Все это потом, прежде нужно овладеть главными позициями, создать общую картину. О таком времени впоследствии вспоминают: «Золотой век»!

Такое счастливое время переживает теперь физика. Вдохновленные открытием электрослабого поля, теоретики с ходу сделали еще один шаг — объединили его с цветовым полем. Семейства фотона и трех его братьев-мезонов породнились с глюонами. Новая семья отвечает за перенос цвета и аромата, связывает кварковые и лептонные состояния. А самые смелые теоретики присоединили к объединенному полю еще и гравитацию — всемирное тяготение. Получилась чрезвычайно сложная теория, где на каждом шагу встречаются неожиданные пропасти, тупики и узкие скользкие тропы. Это область теоретических поисков и гипотез, полигон, где теоретики обкатывают свои творения. Здесь масса вопросов, мало ответов и много надежд.

 

На кухне у физиков.

Как открыть новую частицу?

Иногда это происходит случайно. Интересуются чем-то другим и неожиданно для себя натыкаются на новую, неизвестную ранее частицу. Как говорится, шел-шел и вдруг споткнулся о кошелек с золотом на дороге! Так был открыт позитрон, а в 50-х годах целое семейство странных частиц. Удивление физиков этим событием навечно запечатлено в их названии. Однако такое бывает редко. Как правило, частицы ищут по подсказке теоретиков, уже кое-что зная об их свойствах. Современный эксперимент слишком сложен и дорог, чтобы вслепую прочесывать дебри микромира, надеясь на удачу — авось, мол, повезет. Серьезный опыт сегодня стоит миллионы рублей и выполняется в течение нескольких лет. Это не пальба по площадям, а прицельный выстрел с закрытых позиций по цели с точно рассчитанными координатами.

Их расчет основан на теории, которую еще в прошлом веке создал французский математик Эварист Галуа. Ее основные положения он записал в ночь перед роковой дуэлью. На следующий день выстрел из пистолета оборвал жизнь двадцатилетнего ученого. Он умер, так и не узнав, что создал одну из самых замечательных математических теорий.

Галуа изучал симметрию среди элементов множеств. Что такое множество, теперь знают уже в начальной школе, а во времена Галуа этим занимались лишь немногие математики. Так вот, двадцатилетний Галуа вывел правила, на основании которых из элементов множества можно составить изолированные группы — семейства, члены которых симметричны. Когда совершается какое-либо преобразование множества (например, те, которые изучают в школе, — отражение, вращение, сдвиг и тому подобное), члены каждой из групп просто меняются между собой местами. Преобразование изменяет соотношения между элементами множества, а внутри семейств они остаются неизменными. Правилами Галуа сегодня и пользуются физики, чтобы находить семейства частиц — мультиплеты. Их члены — разные состояния одной и той же частицы. Как лампочка, вспыхивающая разным цветом, или что-то вроде кристалла, каждая грань которого — новое состояние. Именно так теоретики пришли к идее кварка. По правилам теории Галуа были вычислены мультиплеты адронов, и простейший из них был назван кварком.

Самое трудное — выявить симметрию. Обычно она сильно замаскирована расщеплением масс частиц. Здесь легко ошибиться. Поэтому всякий раз, когда в свойствах частиц удается найти новую симметрию, это бывает важным событием в физике. Последующее, как говорится, уже дело техники.

А когда параметры частицы определены, в игру вступает эксперимент. Бывает, что в рассчитанном месте частицу не находят, и теоретикам снова приходится садиться за расчеты: уточнять симметрию, вычислять новые мультиплеты, прикидывать, какой, легкой или тяжелой, должна быть частица, определять реакции, в которых вероятнее всего ее присутствие. Не зря говорят, что теоретик работает в основном на мусорную корзинку! Прежде чем будет получен результат, ему приходится опробовать и сопоставить кучу вариантов.

Теория в современной физике занимает исключительное место. Она строит мосты между островками разрозненных экспериментальных фактов и, выдвигая гипотезы, позволяет далеко уходить от них в область неизвестного.

 

Подведем итоги

Подсчитаем, сколько же теперь, после всех слияний и объединений, осталось у нас частиц.

Для построения адронов нужны три частицы: кварк, антикварк и глюон. Добавив к ним электрон, позитрон и фотон, построим все атомы (позитрон нужен, чтобы построить антивещество). Два тяжелых лептона и три нейтрино нужны для объяснения распадов частиц. Наконец, чтобы слить атомы в большие макроскопические тела, требуется еще квант поля тяготения — гравитон.

Итак, семь частиц-кирпичиков, столько же «антикирпичиков» и три склеивающих частички. Весь мир из семнадцати частиц!

В электрослабой теории число склеивающих частиц остается неизменным, так как три тяжелых брата-мезона и фотон — одна семья — частица. Зато число кирпичиков сокращается: электрон и нейтрино рассматриваются, как два состояния одной и той же частицы, то же для мю- и тау-мезонов. Вместо шести лептонов стало три. Однако для внутренней согласованности теории пришлось допустить, что в природе существует еще один тип частиц — несколько напоминающих пи-мезон, но подобно глюонам обладающих свойствами саморазмножения и самосклеивания. Их называют хиггсонами, по имени английского теоретика П. Хиггса, который первым начал изучать их свойства. Хотя хиггсоны еще не обнаружены на опыте, большинство физиков не сомневается в их существовании. В следующей главе мы увидим, что они играют чрезвычайно важную роль в эволюции Вселенной, и это еще больше повышает интерес к этим частицам.

В целом число частиц сократилось на пять единиц — с семнадцати до двенадцати.

Объединение электрослабого и сильного взаимодействий уменьшило число частиц до семи. Остались кварк (лучше сказать, лептокварк), антикварк, увеличивший число своих состояний глюон, гравитон и несколько (скорее всего, три) хиггсонов.

Если не считать хиггсовых частиц, число которых пока еще зависит от конкретного варианта теории, то после «великого объединения» всех четырех типов взаимодействий остаются только три частицы: частица-кирпичик, соответствующий ей «антикирпичик» и частица-волан.

Казалось бы, наконец-таки физика достигла самого дна природы: объединены все силы, число частиц сокращено до предела, создана и шлифуется единая теория. Природа, однако, любит сюрпризы. Внутри новой теории физики неожиданно обнаружили мину, готовую вдребезги разнести все надежды на построение «последней теории всех сил и взаимодействий».

Физические теории обладают замечательным свойством: их математические формулы не просто описывают опыт, а являются его обобщением, и поэтому их содержание всегда значительно богаче исходных экспериментальных данных. Они предсказывают новые факты и часто приводят к выводам, которые их создатели не ожидали. Так случилось и в этот раз. Из формул теории следует, что лептоны и кварки, по-видимому, состоят из еще более мелких «зернышек».

Час от часу не легче! Значит, опять новые частицы и новые виды взаимодействий? И все пошло по новому кругу?

Пока можно говорить лишь об идее. Свойства и число «зернышек» не известны, они изменяются от одного варианта теории к другому. Даже общепринятого названия у «зернышек» еще нет. Часть физиков использует приставку «пре» и называет их «прекварками», другие ученые говорят о пракварках (вспомним слова «прабабушка», «прадедушка»), а некоторые предпочитают словечко «преоны». Есть и другие названия.

Прачастиц, по-видимому, два или три семейства, каждое из которых состоит из нескольких «прасестер» и «прабратьев». Известно несколько наборов таких «мозаик», и пока не ясно, какому из них следует отдать предпочтение.

После надежд на построение единой всеобъемлющей теории результат весьма неожиданный и обескураживающий...

Впрочем, неожиданным он кажется лишь с первого взгляда. Если посмотреть внимательнее, то, напротив, он выглядит вполне естественным. Уж очень сложными стали семейства кварков и глюонов! Трудно поверить, что «самые элементарные» частицы характеризуются столь большим числом параметров. История науки говорит, что каждый раз, когда элементарный объект становился слишком сложным, в нем обязательно находили более простые составляющие. Так было с атомом, с его ядром, с элементарными частицами. Физика ступала на следующую ступень структурной лестницы, и картина упрощалась. По-видимому, это повторяется и в случае кварков. Простейшими их можно назвать лишь условно. У них целый гардероб «платьев», «пальто» и «шуб». Их простота подобна кажущейся простоте часов, которые мы носим на руке, — металлический кружок с двумя стрелками, только и всего, а если покопаться...

Салам и Пати первыми заметили, что параметры всех двадцати четырех членов кварк-глюонного семейства можно получить сложением трех преонов. Теперь и теория «великого объединения» подсказывает, что частица-кирпичик, а вместе с ней и склеивающая частица-волан являютмя составными. Число самых простейших снова стало расти.

 

Где же конец?

Прежде чем ответить на этот вопрос, выясним, каких наименьших расстояний может достичь эксперимент в ближайшем и отдаленном будущем. И вообще, делятся ли расстояния до бесконечности на все меньшие и меньшие или же, может быть, в природе существуют какие-то первичные «атомы» пространства, дальше которых уже больше ничего нет? Ведь есть же минимальные порции энергии — кванты, почему же не может быть геометрических квантов — атомов пространства и времени?

Как мы уже знаем, размеры протона и других адронов — 10-13 сантиметров, то есть около триллионной доли миллиметра. Самые маленькие пространственные интервалы, которые можно сегодня исследовать с помощью ускорителей частиц, в тысячу раз мельче. Для этого сталкивают два пучка частиц — один навстречу другому. Энергия относительного движения разогнанных навстречу друг другу частиц так велика, что размазка их траекторий из-за волнового дрожания меньше 10-16 сантиметров. По сравнению с протоном такие расстояния все равно что маковое зернышко рядом с футбольным мячом.

Конечно, для этого не строят двух ускорителей, «бьющих» пучком протонов в лоб друг другу. Делают по-другому. Ускоренные протоны, порция за порцией, «закачивают» в окруженное магнитным полем вакуумированное кольцо. Сильное магнитное поле загибает траектории частиц и удерживает их на круговой орбите. А когда частиц в кольце накопится достаточно много, поле выключают, и пучок частиц «выстреливает» навстречу основному пучку из ускорителя. Иногда «накачивают» сразу два кольца, которые разряжаются протонным зарядом навстречу друг другу.

В недалеком будущем на этом пути удастся достичь расстояний порядка 10-17 сантиметров, то есть в десять тысяч раз меньше протона. В Советском Союзе и в других странах проектируются и уже создаются необходимые для этого ускорители. Но это, по-видимому, близко уже к пределу. Современные ускорители — циклопические установки стоимостью в сотни миллионов и даже в миллиарды рублей, а дальнейшее углубление в микромир требует просто фантастических сооружений. Чувствуется, что здесь нужны какие-то принципиально новые физические идеи.

Одна из таких новых идей принадлежит итальянскому физику Ферми. Он предложил использовать в качестве ускорителя... всю нашу планету. Ведь Земля создает вокруг себя магнитное поле, которое можно использовать для того, чтобы удержать на космической орбите пучок разгоняемых частиц. Ускорять частицы будут расположенные вдоль орбиты спутники с солнечными батареями. Вакуум в космосе обеспечен, поэтому пучок частиц без всякого рассеяния может обежать вокруг Земли огромное число раз, постепенно разгоняясь до гигантских энергий. В земных условиях основные затраты связаны с созданием магнитного поля и поддержанием вакуума в камере ускорителя, а в космосе все это бесплатно!

Но пока — это область научной фантазии, и единственным источником частиц сверхвысоких энергий остаются космические лучи. Среди частиц, входящих в их состав, встречаются такие, которые позволяют зондировать расстояния в десять миллионов раз меньше размеров протона. Плохо вот только, что космических частиц с такой высокой энергией крайне мало, и опыты с ними неточны. Тем не менее если позволить себе пофантазировать, то можно представить, что когда-нибудь в космосе будут созданы ловушки-накопители таких высокоэнергетических частиц, которые можно использовать для изучения их встречных столкновений, так, как это делается в опытах со встречными пучками на ускорителях. И вот тогда можно будет добраться до умопомрачительно малых расстояний порядка 10-25 сантиметров. Протон по сравнению с такими расстояниями выглядит, как орбита Земли по сравнению с тарелкой.

Как достичь еще меньших расстояний, пока совершенно неясно. Возможно, для этого потребуется какая-то ноная физика. Об этом можно лишь строить догадки. Во всяком случае, расстояния в 10-25 сантиметров еще очень далеки от «красной черты», проходящей где-то на уровне 10-33 сантиметров. Действующие там силы так велики, что пространство сворачивается в крохотные пузырьки. Это и есть геометрические кванты. Меньших расстояний в природе не бывает. На этом уровне пространство становится неустойчивым, похожим на пчелиные соты или на губку, состоящую из перекрывающихся пор-пузырьков. О сворачивающемся пространстве, как и почему это происходит, мы подробно поговорим в следующей главе.

А квант времени? Это интервал, за который свет успевает пробежать от одного края пространственного «атома» до другого, — 10-43 секунд. Самый краткий миг, который только может быть в природе, — ведь ничто не может пересечь пространственный «атом» быстрее света.

В промежутке между 10-16 и 10-33 сантиметрами, между уже достигнутым и самым малым, может разместиться бесконечное число различных форм и типов микрообъектов. На каждой ступени лестницы, ведущей в недра материи, мы находим множество новых свойств и новых физических объектов. Для их объяснения нам приходится спускаться на следующую ступень и так далее. Как метко заметил однажды французский ученый Пьер Буаст, границы науки похожи на горизонт: чем ближе к ним подходим, тем дальше они отодвигаются! Природа неисчерпаема в своем многообразии. Однако его нельзя представлять себе, как бесконечную, чисто механическую делимость, когда каждый элемент состоит из еще более мелких. Мы уже видели выше, что «более глубокое» — это не всегда «меньшее по размеру». Неверно думать, что природа устроена наподобие бесконечного ряда вложенных друг в друга колесиков, каждое из которых обязательно содержит внутри себя еще меньшее. Мир может быть устроен значительно хитрее!

Может случиться так, что, изучая микромир, мы будем встречаться со все большей и большей энергией, и конца не будет — круг, так сказать, замкнется: в микромире мы снова встретимся с объектами и явлениями макроскопического масштаба. Не исключено, что в недрах элементарных частиц природа спрятала вторые ворота в космос и «выйти к звездам» можно не только на ракетах, но и с помощью ускорителей. Правда, космические ворота микромира необычайно узкие и преодолеть их труднее, чем верблюду пролезть сквозь угольное ушко. Но трудно не значит невозможно!

Вот об этом и пойдет речь в следующей главе.