Учебник подводной охоты на задержке дыхания

Барди Марко

Основы анатомии и человеческой физиологии

 

 

То, что значительная часть учебника посвящена анатомии и физиологии ныряльщика на задержке дыхания, может в первый момент смутить читателя, который ожидает, что мы будем в основном говорить о подводной охоте.

Более того, рассматриваемые темы могут показаться ему малоинтересными и побудить пропустить связанные с ними главы, чтобы поскорее перейти к последующим, в которых он сможет найти, безусловно, более захватывающие детали.

Однако автор надеется, что этого не произойдет — это стало бы большой ошибкой! Ведь невозможно как следует объяснить и понять задержку дыхания, не обратившись к сведениям об изменениях, происходящих в человеческом теле во время произвольного прерывания дыхания, разобраться, как во время погружения ведет себя организм ныряльщика на задержке, какими физиологическими процессами определяется его работа в столь непривычных условиях и т. д.

В результате задержки дыхания под водой происходят некоторые важнейшие и весьма радикальные изменения функций человеческого организма, позволяющие ему приспособиться к водной среде, «необычному театру» действия данного вида спорта.

 

Живые организмы

Каждый живой организм, принадлежащий к животному или растительному царству, для поддержания жизни нуждается в кислороде и пище: микроскопические базовые элементы, из которых он состоит, называемые «клетками», нуждаются в кислороде (O2), чтобы наилучшим образом использовать полученную пищу. Пища, в свою очередь, поступает посредством процесса питания в форме сахаров, липидов (жиров) и протеинов (белков).

На клеточном уровне питательные вещества — «топливо» — проходят через процесс метаболического сгорания, использующий кислород в качестве «вещества, поддерживающего горение», и имеющий целью производство энергии, необходимой для всех функций организма. Образующиеся в результате этого процесса отходы — продукты катаболизма и углекислый газ — впоследствии удаляются из клетки.

Цель циркуляции крови в организме — перенести к тканям и соответственно к клеткам, их составляющим, кислород и питательные вещества из воздуха и полученной пищи. Следовательно, кислород является основополагающим элементом, позволяющим клеткам человеческого тела восполнять свою энергию и поддерживать жизненные функции организма как во время покоя, так и при дополнительных энергозатратах во время движения, мышления и другой деятельности. Продукты катаболизма и CO2, переносятся в свою очередь посредством кровообращения к тем органам, которые затем должны будут их удалить, а это дыхательный аппарат для CO2, желудочно-кишечный тракт (посредством испражнения) для не переваренных остатков пищи, и мочевыводящие пути для продуктов катаболизма ассимилированной пищи и других веществ.

 

Клетка

Клетка — это основной структурный элемент всех живых организмов, будь то животные или растения.

Она состоит из совокупности органелл и структур, отделенных от внешнего мира мягкой мембраной (плазматическая мембрана), обладающей свойствами избирательной проницаемости.

Клетка имеет микроскопические размеры и бывает разной формы в зависимости от прилегающих клеток и, прежде всего, в зависимости от своих функций; обычно каждая ткань состоит из клеток определенной формы.

Внутри плазматической мембраны, в желеобразном протеиновом веществе (цитоплазма) находится сразу несколько маленьких структур, разделенных между собой мембранными отсеками, у каждой из них весьма определенное назначение, важное для жизни клетки и ее репродукции.

Митохондрии — это особые органеллы клеток, внутри которых происходят дыхательные и энергетические процессы. Гладкий эндоплазматический ретикулум занимается синтезом липидов, тогда как шероховатый эндоплазматический ретикулум участвует в синтезе и транспортировке белков. В аппарате Гольджи происходит созревание белков и их подготовка для секреции во внешнюю среду.

Ядро, отделенное от цитоплазмы ядерной оболочкой, представляет генетическое наследие клетки, поскольку содержит ДНК (дезоксирибонуклеиновую кислоту).

Продолжительность жизни клетки бывает разной, и в некоторых случаях равна продолжительности жизни организма, как, например, у нервных клеток. Иные же клетки быстро разрушаются (красные кровяные тельца, клетки кожного покрова или эпителий).

Процесс репродукции клеток называется митозом.

 

Ткани

Высокоорганизованная совокупность клеток образует ткань. Элементы клеток, составляющих определенную ткань, похожи между собой как по форме, так и по своей структуре, они также предназначены для выполнения одной и той же функции.

Ткани можно разделить на 4 большие группы:

• эпителиальная ткань;

• мышечная ткань;

• соединительная ткань;

• нервная ткань.

Кожный покров и слизистые оболочки. выстилающие внутренние полости тела, относятся к эпителиальным тканям, так же как и железы, состоящие из эпителиальных клеток с функцией секреции.

Мышечная ткань — это основная составляющая мускулатуры; в зависимости от типа волокон и своей специфической функции она подразделяется на гладкую, поперечнополосатую и сердечную.

Отличительной особенностью мышечных клеток являются миофибриллы. белковые волокна, способные преобразовывать химическую энергию в энергию кинетическую, генерирующую движение.

К соединительным тканям относятся наполняющие и поддерживающие: они входят в состав костной ткани, хрящевой ткани, волокнистой части сосудов. К соединительной ткани относят также кровь и лимфу.

Для этой ткани характерно присутствие межклеточного вещества (матрикс), которое может быть достаточно жидким и придает большую прочность ткани. К примеру, в костной ткани матрикс представлена солями кальция, которые обеспечивают твердость и прочность костям; в крови матрикс — это плазма,

чья текучесть обуславливает типичную для крови способность к перемещению и транспортировке.

Нервная ткань состоит из высокоспециализированных клеток, имеющих столь исключительные характеристики, что эту ткань можно назвать самой «аристократической» в человеческом теле. Через ее «терминалы» поступает вся информация, обеспечивающая жизнь организма, и, как мы впоследствии убедимся, она также является основой для осуществления некоторых физиологических функций адаптации во время погружения на задержке дыхания.

 

Сердечно-сосудистая система

Погружение на задержке дыхания сильно воздействует на сердечно-сосудистую систему, в которой в результате перепада давления происходят изменения некоторых базовых физиологических процессов, проявляющиеся в процессе погружения.

Адаптация динамики кровообращения позволяет ныряльщику достигнуть на задержке дыхания таких глубин, которые еще в середине 50-х годов считались запрещенными из-за предполагаемого сдавливания грудной клетки (thoracic squeeze), которое, как считалось, должно было произойти при давлении более 4 Атм (-30 м).

На самом деле, еще задолго до 50-х годов, эпохи рекордов Команданте Раймондо Буше, Эннио Фалько и Альберто Новели один греческий ловец губок по имени Йоргос Хагги Стати, сам того не зная, установил рекорд погружения на задержке дыхания, нырнув для подъема якоря военного корабля Итальянского Морского Флота на глубину 77 метров.

4 августа 1913 года флагманский крейсер «Regina Margherita» при попытке встать на стоянку в заливе Пегадиа у острова Скарпанто в Эгейском море потерял якорь на упомянутой глубине. Когда новость распространилась по острову, появился некий ловец губок весьма хилого телосложения. Вот как его описывает судовой врач Др. Джузеппе Музенго:

В результате осмотра выявлена значительная эмфизема легких, верхняя часть грудной клетки не достигла больших размеров, она выпуклая и твердая. Сердцебиение тихое, но регулярное. Частота пульса 80–90 ударов в минуту, дыхательный ритм — 20–22 вдоха в минуту. Слух — пониженный в связи с полным отсутствие одной из барабанных перепонок и повреждением второй. Результат испытания на задержку дыхания в обычных условиях едва достигает 40 секунд. Во время операции по подъему якоря оставался под водой от 1:30 до 3:35 минут.

На четвертый день после серии «тренировочных» погружений на глубины 60–84 м охотнику за губками удалось найти якорь, прикрепить к нему веревку и таким образом обеспечить его подъем. Можно отметить, что для погружений он использовал технику почти идентичную той, что используют современные спортсмены-фридайверы соревнующиеся в категории No Limits: камень весом около 15 кг, привязанный к веревке.

 

Система кровообращения

 

Состоит из совокупности кровеносных сосудов и сердца. Ее можно сравнить с гидравлической системой замкнутого цикла, в которой сердце одновременно выполняет функцию нагнетательного и всасывающего насоса для системы сосудов, артерий и вен, имеющих разные характеристики и пропускную способность, что позволяет жидкости, т. е. крови, циркулировать внутри этой системы.

Кровеносная система выполняет различные функции:

— питательную, поскольку переносит содержащие энергию вещества во все части тела;

— очищающую, поскольку собирает частицы отходов, которые затем будут выведены через почки;

— защитную, поскольку некоторые ее клетки предназначены для защиты организма от внешних агентов, переносчиков болезней.

В человеке кровеносная система разделена на 2 части: большой и малый круг. Первый отвечает за снабжение кровью всех частей тела, тогда как второй наполняет легкие.

Как мы впоследствии увидим, и большой и малый круг сходятся в сердце, которое с помощью своих сокращений вырабатывает энергию, необходимую для циркуляции крови по всему организму.

Кровеносные сосуды образованы соединительной и мышечной тканью; с точки зрения строения у них у всех есть общий элемент — внутренняя оболочка, которая называется tunica intima. От центра к периферии толщина сосудов уменьшается, а их количество увеличивается; они различаются по типу переносимой крови:

— артерии: переносят от центра (сердца) к периферии кровь, насыщенную кислородом, чтобы доставить этот важнейший для поддержания жизни элемент ко всем органам и тканям. Различают артерии большого, среднего и малого диаметра, а также артериальные капилляры. Артерии имеют наружную эластичную мембрану (tunica externa), среднюю мышечную оболочку (tunica media) и внутреннюю мышечную оболочку (tunica intima);

— вены: переносят от периферии к сердцу кровь, обедненную кислородом (O2) и насыщенную углекислым газом (CO2), который образуется в результате клеточного метаболизма и удаляется в процессе нового поглощения кислорода кровью на легочном уровне кровообращения (гематоз). У вен менее плотные стенки, чем у артерий, и в них встречаются образования клапанного типа нижних перегородок, которые предотвращают отток крови;

— капилляры: представляют особой конечные ответвления артерий и вен. Их стенки состоят лишь из одного слоя клеток. Именно на этом уровне происходят самые важные процессы газообмена и энергообмена.

 

Сердце

Это анатомическая структура, состоящая из особых мышечных волокон (сердечная мышечная ткань), придающих ей специальные свойства сжимаемости.

Оно находится в центре грудной клетки между грудиной и позвоночником и имеет форму сжатого кулака. Внутри сердце имеет четыре полости: правое предсердие и желудочек и левое предсердие и желудочек. Снаружи оно покрыто мембраной, называющейся перикард, она имеет внешнюю волокнистую часть, напрямую контактирующую с диафрагмой и легкими, и внутреннюю серозную часть, состоящую из двух «листков», нижний из которых (эпикард) прямо контактирует с сердцем; между двумя листками находится серозная жидкость.

Правые камеры сердца отделены от левых посредством сплошной перегородки: межжелудочковая перегородка разделяет правый и левый желудочки, а межпредсердная перегородка разделяет правое и левое предсердия.

Правый отдел сердца — это так называемый венозный отдел, поскольку венозная кровь из всех частей тела поступает по верхней полой вене и нижней полой вене и достигает правого желудочка, а затем через атриовентрикулярный клапан (или трехстворчатый) проходит в правое предсердие, откуда выталкивается в легкие по легочной артерии.

Из легких, насытившись кислородом, кровь возвращается в сердце, в левый желудочек, через двустворчатый, или митральный, клапан проходит в левое предсердие, чтобы затем пройти по аорте и распределиться по всему человеческому телу.

Резюме

— Большой круг кровообращения, начинается из левого предсердия и заканчивается в правом желудочке, проделав длинный путь для снабжения кровью даже самых отдаленных тканей; Малый круг кровообращения. начинается в правом предсердии, проходит через легкие и заканчивается в левом желудочке, проделывая таким образом более короткий путь, чтобы насытить венозную кровь кислородом;

— Нормальный сердечный ритм. нормальная частота пульса — 70–80 ударов в минуту, но она может превышать 100 ударов при физической нагрузке;

— Сосуды. это коммуникации, по которым протекает кровь; они служат для доставки кислорода ко всем клеткам тела и удаления из них углекислого газа и продуктов катаболизма. Они бывают разного размера и типа.

— Артерии. имеют толстые стенки (3 слоя), поскольку обычно испытывают значительное кровяное давление; это сосуды, по которым кровь течет от сердца к периферии. Обычно это кровь, обогащенная кислородом;

— Вены. также покрыты тремя слоями, но их стенки более тонкие, поскольку обычно они подвержены более низкому кровяному давлению. Их назначение — вернуть кровь, насыщенную углекислым газом, от периферии к сердцу;

— Капилляры. это очень маленькие сосуды (как волоски), и их стенки минимальной толщины, поскольку они должны быть прозрачными для газов, обеспечивая обмен кислорода и углекислого газа;

— Кровь. состоит из жидкой части и форменных элементов. Количество крови варьирует от 4 до 6 литров (во взрослом мужчине весом 70 кг примерно 5,5 литров крови). Она имеет множество функций (защита от инфекций, внутренний гемостаз, доставка питательных веществ к клеткам, вывод из тканей токсичных веществ, поддержание температуры тела, передача химических сообщений), но главной является перенос кислорода к клеткам. Состав жидкой части крови, которая называется плазмой, схож с составом морской воды; это сложный раствор, содержащий, в том числе, сыворотку и фибриноген. Сыворотка состоит из воды на 91–93 % и протеина. Фибриноген — это важный для коагуляции крови белок. Форменные элементы крови представлены красными кровяными тельцами (эритроциты), белыми клетками крови (лейкоциты) и кровяными пластинками (тромбоциты). Число эритроцитов составляет 4–5 млн. на кубический миллиметр крови. Это особые клетки, содержащие гемоглобин, железосодержащий белок, связывающий кислород и обеспечивающий его транспортировку к различным тканям. Он также удаляет из них CO 2 . Количество лейкоцитов — 6–8 тыс на кубический миллиметр крови; они бывают разных типов (нейтрофилы, эозинофилы, моноциты, базофилы, лимфоциты) и служат, главным образом, для защиты от инфекций. Тромбоциты — это особые клетки, которые вместе с веществом, называемым фибрином (вырабатываемым фибриногеном) обеспечивают свертывание крови, образуя коагулянт, и блокируя таким образом возможные кровотечения при порезе стенок кровеносного сосуда.

 

Сердечные сокращения

Все перемещение крови в системе кровоснабжения происходят благодаря особому свойству сердечной мышцы — ритмичному сокращению ее волокон.

Побуждением для сердечных сокращений являются непроизвольные и полностью автономные нервные импульсы; они ритмично следуют друг за другом, распространяясь по всей сердечной мышце. Импульсы зарождаются в особой структуре сердечной мышцы, находящейся в правом желудочке; она называется синоатриальный узел. Затем они поступают в атриовентрикулярный узел, расположенный в нижней части межжелудочко-вой перегородки, откуда импульс быстро распространяется вниз по проводящим волокнам, образующим т. н. пучок Гиса, который расходится на две ветви, идущие в правое и левое предсердия.

 

Кровь

Здесь мы имеем дело со свойствами самой настоящей «жидкой ткани» высокой специализации, связанной со всеми частями тела. Она имеет жидкую часть — плазму, и твердую часть, которую образуют форменные элементы крови: красные кровяные тельца, белые клетки крови и кровяные пластинки.

Красные кровяные тельца, которые также называются эритроцитами, это самые многочисленные клетки крови, составляющие 45 % ее общего объема. Они имеют характерную форму двояковогнутых дисков; их численность колеблется около 5.000.000 на мм3; именно эритроциты придают крови характерный красный цвет в связи с присутствием в них железосодержащего белка — гемоглобина. который и выполняет функцию траспорт-ного агента кислорода ко всем частям тела. Две вогнутые стороны увеличивает поверхность, через которую может происходить обмен газами, а также облегчают захват молекул O2 (кислорода) и CO2 (углекислого газа); этот фактор очень важен во время погружения на задержке дыхания.

Белые кровяные тельца, которые также называются лейкоциты из-за их характерного белого цвета, который можно увидеть под микроскопом, имеют функцию защиты организма от патогенных факторов. Эти клетки, число которых около 6 000 — 8 000 на мм3, можно разделить на две группы: полиморфноядерные гранулоциты, называемые так из-за характерных крупных сегментированных ядер и специфической зернистости цитоплазмы, и агранулоциты, клетки, не имеющие специфической зернистости и содержащие простое несегментированное ядро. К ним относятся лимфоциты и моноциты.

Кровяные пластинки — тромбоциты — это мельчайшие клеточные элементы крови, их число в крови 200 000–300 000 на мм3 крови. Тромбоциты выполняют важнейшую функцию — приводят в действие процесс свертывания крови, когда на внутренней стенке кровеносных сосудов появляются изменения (ранения или пузырьки газа); при контакте с такой поверхностью начинается высвобождение веществ-катализаторов химических реакций, приводящее к «прилипанию» кровяных пластинок друг к другу и последующей коагуляции крови.

 

Дыхательная система

 

Погружение на задержке дыхания в значительной степени обусловлено теми эффектами, которые давление оказывает на обмен дыхательными газами в альвеолах легких и на физиологию дыхания в целом.

Поэтому совершенно очевидно, насколько важно знать анатомию дыхательной системы, чтобы понимать физические и физиологические процессы, лежащие в основе дыхательной адаптации во время погружения на задержке дыхания.

Дыхательная система — это совокупность органов, задача которых гарантировать с помощью дыхательных процессов поставку кислорода и удаление углекислого газа из всех частей тела. Кислород — это «горючее», необходимое для осуществления всех энергетических процессов в человеческом организме; его значение для поддержания жизни было отмечено еще в 1777 году Антуаном Лавуазье, который, говоря о составе атмосферного воздуха, определил кислород как «portion d’air minemment respirable» (часть воздуха, предназначенная для дыхания).

Дыхательная система делится на две совершенно различные анатомические части: верхние дыхательные пути и легкие.

 

Верхние дыхательные пути

Состоят из носовой полости, носовых пазух, глотки, гортани, трахеи и больших бронхов; их назначение — направить воздух извне в легкие, очистив его от случайных вредных частиц, согрев его до температуры тела и увлажнив его.

Нос является важной частью дыхательной системы. Наружная часть носа имеет две ноздри.

За ноздрями следуют носовые пазухи, внутри которых находится ряд структур, крайне важных для занятий погружениями на задержке дыхания. Действительно, пазухи напрямую соединены со средним ухом, поэтому анатомически это самая важная зона для компенсации давления в ушах во время погружения.

В носовой полости берут свое начало носовые проходы, связывающие ее с около-носовыми пазухами; внутри этих проходов находятся толстые волоски (вибриссы), задача которых — очистить входящий при вдохе воздух от микроскопических частиц, потенциально опасных для расположенных ниже дыхательных органов.

За носовыми пазухами следует носоглотка, большой канал в форме воронки, относящийся к органам как дыхательной, так и пищеварительной системы. В конце глотки находится отверстие гортани и очень важный орган — надгортанник, работающий во время глотания в качестве клапана гортани.

За глоткой и гортанью следует трахея — прямая ниспадающая трубка, которая спускается в грудной отдел до 5-го позвонка, а затем делится на два главных бронха, правый и левый.

Трахея имеет особое строение, она образована серией хрящевых полуколец, соединённых плотной волокнистой соединительной тканью. На внутреннем покрытии трахеи много смешанных слизистых желез.

 

Легкие

Это парные органы, расположенные в центральной части грудной клетки; пространство, разделяющее легкие, называется средостением, внутри него расположены также трахея, пищевод, сердце и большие кровеносные сосуды (артерии и вены) грудного отдела; место прикрепления к легким легочных сосудов и бронхов называется воротами легких.

Основание легких покоится на диафрагме, как и апикальная часть сердца. Легкие имеют коническую форму с углублением посередине и покрыты двухслойной серозной оболочкой — плеврой; пространство, разделяющее два слоя, называется плевральной полостью, в которой присутствует немного жидкости, способствующей движению легкого при дыхании.

Правое легкое по объему чуть больше, чем левое, и разделено на три доли, соединяющиеся в районе ворот легкого. Левое легкое имеет только две доли.

Бронхи, распространяясь внутри легочной ткани, делятся сначала на долевые бронхи, направляющиеся соответственно в различные доли легких, затем, все более углубляясь в легочную ткань, они разветвляются на более тонкие отростки, дольковые бронхи, которые затем расходятся на концевые бронхиолы, дающие начало дыхательным, или альвеолярным, бронхиолам.

Из дыхательных бронхиол формируются альвеолярные ходы, завершающиеся легочными мешочками из 15–20 альвеол. Альвеола являются самой настоящей функциональной единицей дыхательной системы, на уровне которой происходит газообмен. Стенки альвеол смазаны специальной липопротеиновой жидкостью (т. е. состоящей из жиров и белков), которая предотвращает склеивание альвеолярных стенок и коллапс самих альвеол.

Кровеносная система осуществляет охват легких посредством разветвляющихся артерий и вен, переходящих в густую сеть капилляров, плотно контактирующих с альвеолами с помощью альвеолокапиллярной мембраны, в которой происходит обмен дыхательных газов, поэтому ее еще называют барьером воздух-кровь.

Легочная артерия, входя в легкие, разветвляется, и ее отростки следуют за отростками бронхов до уровня альвеол, где они образуют запутанную капиллярную сеть. В легочных венах происходит обратное движение, они несут к сердцу кровь, обогащенную кислородом, откуда она затем поступит во все отделы человеческого организма. Именно благодаря дыхательной системе кровь заново обогащается кислородом до нормального уровня, и в этом процессе задача альвеол и капилляров — отфильтровывать воздух и уравновешивать количество газов.

Дыхательное движение грудной клетки происходит в результате работы дыхательных мышц. диафрагмы и наружных межреберных мышц. Следовательно, это активный процесс. Выдох, происходящий в результате расслабления этих мышц, напротив, является пассивным процессом. Есть также дополнительные дыхательные мышцы, которые начинают принимать участие во вдохе при более резком или интенсивном дыхании. Во время спокойного дыхания диафрагма опускается на

2 сантиметра, а при глубоком — на 3–4 см.

Функционально легочный объем делится на.

— мертвое бронхо-трахеальное пространство. воздух, находящийся в носу, глотке, гортани, трахее, бронхах, бронхиолах;

— дыхательный объем (ДО). количество воздуха, используемое при нормальном вдохе;

— резервный объем выдоха (РОвыд). максимальное количество воздуха, которое мы можем выдохнуть после обычного выдоха;

— резервный объем вдоха (РОвд). это тот объём воздуха, который можно вдохнуть при максимальном вдохе после обычного вдоха;

— остаточный объем (ОО). объём воздуха, который остается в лёгких даже после максимального выдоха, и который может выйти только при коллапсе легких.

Все эти объемы образуют общую емкость легких. Дыхательный объем вместе с двумя резервными объемами образуют жизненную емкость легких. Нормальная частота дыхания составляет 16–20 вдохов-выдохов в минуту.

 

Физиология дыхания

 

Дыхание состоит из двух фаз: вдох и выдох. Во время вдоха сокращаются мышцы диафрагмы и межреберные мышцы. Диафрагма прогибается вниз, надавливая на органы брюшной полости и увеличивая объем грудной клетки; в результате сокращения межреберных мышц раздвигаются ребра, способствуя еще большему расширению грудной полости. В обычных условиях давление внутри альвеол во время вдоха становиться чуть меньше, чем атмосферное, примерно на -3 мм ртутного столба. Эта разница в давлении заставляет воздух поступать внутрь дыхательных путей, и таким образом уравновешивается. При выдохе происходит обратный процесс: давление в альвеолах увеличивается относительно атмосферного давления на +3 мм ртутного столба, что приводит к выходу содержащегося в них воздуха наружу.

Если на поверхности подводник выполняет произвольную гипервентиляцию, во время усиленного выдоха давление внутри альвеол может увеличиться до +100 мм ртутного столба, а при вдохе оно может упасть до -80 мм ртутного столба. Эти числа объясняют нам, почему вход и выход воздуха из легких напрямую зависит от соотношения показателей атмосферного давления и давления внутри альвеол. Так, например, когда атмосферное давление превышает альвеолярное, воздух будет переходить из области с большим давлением (внешняя) в область с меньшим давлением (альвеолы); и наоборот, если альвеолярное давление больше атмосферного, воздух будет выталкиваться из альвеол наружу.

 

Рефлекторная регуляция дыхания

Автоматизм дыхания регулируется клетками центральной нервной системы, объединенными в группы; это так называемые дыхательные центры, расположенные в определенных зонах мозга: в бульбарной части продолговатого мозга и варолиевом мосту.

Бульбарный дыхательный центр разделен на два отдела: инспираторный центр и экспираторный центр, отвечающие соответственно за вдох и выдох; оба они воспринимают химические импульсы, связанные с концентрацией в крови углекислого газа (CO2).

В варолиевом мосту находятся два других дыхательных центра: апнеустический центр и пневмотаксический центр, которые выполняют свои определенные функции в рефлекторной регуляции дыхания и имеют основополагающее значение для погружений на задержке дыхания.

Действительно, апнеустический центр — это отправная точка инспираторного импульса, тогда как пневмотаксический центр — это орган, в котором берут свое начало тормозящие импульсы бульбарного инспираторного центра.

Мозговые дыхательные центры: бульбарный дыхательный центр устанавливает дыхательный ритм и чувствительно реагирует на любое увеличение количества CO2, отвечая ускорением дыхания до 6–7 раз.

 

Химическая регуляция дыхания

Основная задача дыхательной системы — поддерживать в норме уровни содержания CO2 и O2 в крови для обеспечения жизненных функций. Изменение парциального давления этих газов в организме непосредственно влияет на частоту и глубину дыхания.

Из двух этих газов наибольшее влияние на процесс дыхания, несомненно, имеет CO2, поскольку изменение именно его концентрации в крови вызывает реакцию дыхательных центров.

Действительно, при любом изменении концентрации CO2 в крови, будь то увеличение или уменьшение, происходит стимуляция бульбарных химических рецепторов. приводящая к раздражению одного из двух центров в варолиевом мосту (апнеустиче-ского или пневмотаксического), которые в свою очередь посылают импульсы в один из бульбарных центров (инспираторный или экспираторный).

Из всего вышесказанного становится ясно, что увеличение концентрации CO2 в крови приводит к стимуляции дыхания (возбуждается апнеустический центр и посылает импульсы бульбарному инспираторному центру, который стимулирует дыхание). Поскольку под водой невозможно сделать вдох, увеличение CO2 в крови вызывает диафрагмальные сокращения, характеризуемые серией напряжений и расслаблений мышц диафрагмы — очевидный сигнал тревоги, обозначающий достижение предела задержки дыхания.

Уменьшение содержания CO2 в крови, как при гипервентиляции, может отсрочить появление дыхательного стимула, поскольку, как было сказано ранее, в бульбарный инспираторный центр импульс поступает только при определенном повышенном уровне концентрации этого газа, достижение которого при гипервентиляции запаздывает, потому что в начале задержки дыхания содержание CO2 в крови сильно занижено. Следовательно, гипервентиляция задерживает сигнал тревоги, используемый организмом для предупреждения о достижении предела задержки. Опасность заключается в том, что, прежде чем уровень CO2 поднимется достаточно для стимуляции дыхания, уровень кислорода может упасть ниже критического уровня. По этой причине гипервентиляция категорически запрещается; коротко говоря, она значительно понижает в организме уровень защиты и возможность предупреждения об опасности.

У ныряльщика на задержке дыхания сигналом к подъему является ощущение «кислородного голодания» — дисапноэ, появляющееся вследствие повышения уровня CO2 в крови, которое приводит к раздражению бульбарных химических рецепторов (это особые рецепторы, чувствительные к химическим изменениям крови) с целью стимуляции дыхательного центра для нового вдоха. Чтобы продлить задержку дыхания, подводник иногда сдерживает первые признаки дисапноэ, но это может привести к опасным последствиям, особенно, если подводник, как это обычно бывает, гипервентилирует легкие, ошибочно полагая, что увеличивает таким образом свой запас кислорода.

На самом деле гипервентиляция приводит к уменьшению CO2 в альвеолах и крови, что, как мы впоследствии увидим, повышает риск гипоксии (чрезмерное уменьшение парциального давления PpO2) и вызывает у человека гипоксический обморок.

В нормальных условиях перепады парциального давления O2 и CO2 в крови и в альвеолярном воздухе способствуют прохождению O2 из легких в кровь, и CO2 из крови в легкие. Во время погружения увеличение давления внутри легких способствует распространению O2, но и препятствует выходу CO2. Действительно, на глубине 10 метров внутрилегочное давление таково, что CO2 перемещается в обратном направлении: из легких в кровь, а не из крови в легкие. На глубине запас

O2 в легких уменьшается гораздо быстрее, чем на поверхности, и одновременно повышается PCO2. Таким образом, сигнал к всплытию появится с запозданием относительно реального остатка кислорода, а это может вызвать у неопытного подводника, плохо знающего собственные возможности, иллюзию, что можно и дальше задерживать дыхание.

Во время всплытия давление газа быстро падает, как в легких, так и в крови. При уменьшении давления O2 до гипоксичного уровня у подводника может произойти потеря сознания с последующим обмороком и возникновением риска утопления.

Опасность еще больше увеличивается, если на поверхности подводник делал гипервентиляцию, поскольку, как мы уже видели, эта методика дает лишь небольшое увеличение парциального давления кислорода, а по большей части происходит значительное понижение парциального давления углекислого газа. Это приводит к последующему запаздыванию стимуляции дыхательных центров, дающих сигнал тревоги о приближении предела задержки дыхания, который позволяет вовремя вернуться на поверхность для дыхания.

После того, как мы получили самые общие представления о физиологии дыхания и об изменениях, происходящих во время погружения, пришло время проанализировать действие физических законов во время погружений как на задержке дыхания, так и с аквалангом.

 

Физические законы и погружение

 

Термином флюид обычно называют как жидкость, так и газ; оба они обладают одним и тем же свойством — принимать форму сосуда, в котором они находятся, а различаются по характеристикам «сжимаемости» и занимаемого объема. Действительно, если жидкости несжимаемы и занимают вполне определенный объем, то газы сжимаемы и стремятся занять все имеющееся пространство. Это помогает нам понять механику диффузии газов во время погружения.

Давление (p) равно соотношению силы (F) к площади поверхности (A) на которую воздействует эта сила.

p = F/A

Когда человеческий организм подвергается давлению окружающей среды, превышающему атмосферное, в нем происходят физиологические изменения, зависящие главным образом от некоторых физических законов, учитывающих изменения давления и касающихся газов, присутствующих в атмосфере Земли. Знание этих физических законов поможет лучше понять физиологические изменения в организме.

Слой воздуха, окружающий Землю, оказывает на нее давление под воздействием сил гравитации, равное давлению 760 мм ртутного столба на 1 см2 площади. Это давление обозначается термином атмосфера (Атм), и фактически равняется 1 кг/см2. Действительно, упомянутый ртутный столб оказывает на свое основание давление весом 1033,2 г, что равно давлению толщи воздуха на уровне моря на каждый см2. Следовательно, можно с большой точностью утверждать, что 1 атмосфера равна 1 кг/см2.

Поскольку 1 Атм равняется весу столба воды высотой 10,33 м на 1 см2, при погружении под воду давление увеличивается примерно на 1 Атм с каждыми 10 метрами глубины. Следовательно, на поверхности давление равно 1 Атм, на глубине 10 метров — 2 Атм, на 20 метрах — 3 Атм и т. д.

Из всего вышесказанного ясно, что давление, которое испытывает тело, погруженное в воду, является суммой атмосферного давления (P Атм) и давления водяного столба, находящегося над этим телом (P гидростатическое).

ATA = P Атм + P гидростатическое

Таким образом, становится понятно, что объект, погруженный на глубину 10 м подвергается давлению, равному 2 АТА или 2 кг на см2, то есть это означает, что при погружении давление пропорционально глубине.

Теперь важно рассмотреть теорему Паскаля, которая гласит, что «давление, оказываемое на жидкость (флюид), находящуюся в сосуде, передаётся жидкостью (флюидом) одинаково во всех направлениях и на стенки сосуда».

Очевидно, что давление внутри жидкости не всегда одинаково во всех ее частях, но увеличивается с глубиной.

Погружение под воду? будь оно на задержке дыхания или при помощи дыхательного оборудования, вызывает в человеческом организме изменение некоторых важных функций. Это временные и полностью обратимые при всплытии изменения, связанные как с переменой давления окружающей среды, так и с физическими законами, регулирующими отношения газа и крови.

Если не принимать во внимание отдельные несчастные случи, например, травмы, ранения, и т. п., то для всех форм клинических осложнений в подводном плавании главным патогенным фактором является взаимосвязь между изменением давления окружающей среды и поведением газов, растворенных в крови в гипербарических условиях (под давлением).

Из всего, что было сказано выше, очевидно, что знание газовых физических законов и механизмов диффузии газов в крови и тканях имеет фундаментальное значение для понимания физиологических явлений адаптации организма к водной среде.

 

Газ в воздушных путях

В обычных условиях человек дышит через нос, если только для этого нет препятствий, например, искривления носовой перегородки, полипов или текущих воспалительных процессов.

На уровне носовых проходов находится механический барьер для проникновения в дыхательные пути посторонних частиц, который образован вибриссами, слизистой оболочкой и ресничньми клетками эпителия. Кроме того, серозные выделения благодаря своему бактерицидному и очищающему действию также являются препятствием для проникновения вредных и любых других бактерий.

Другими крайне важными функциями носовой полости являются увлажнение и согревание дыхательных газов. При обычном дыхательном объеме в течение

24 часов через данную полость проходит около 10 000 литров воздуха, который с помощью густой сети сосудов слизистой оболочки методично согревается до температуры 37 °C. Только представьте, перепады температуры окружающей среды в 25 градусов приводят к изменению температуры дыхательных газов не более, чем на 1 градус.

Процесс увлажнения происходит посредством экссудата слизистой оболочки. В течение 24 часов объем назальной секреции составляет 1000 мл, которые почти полностью используются для увлажнения воздуха, в результате на бронхо-альвеолярном уровне его относительная влажность достигает 95 %.

Перепады температуры влияют на способность воздуха насыщаться водяными парами, а именно, чем больше согревается воздух, тем легче происходит сатурация (насыщение). Таким образом, мы видим, что носовая полость и воздушные пути выполняют функции согревания и увлажнения вдыхаемых газов.

 

Газовые физические законы

Закон Бойля-Мариотта устанавливает зависимость между объемом и давлением газа; он гласит: «для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная».

P x V = K

где K — постоянная величина.

Если интерпретировать этот закон, становится ясно, что любое увеличение давления приводит к пропорциональному уменьшению объема рассматриваемого газа. Например, у подводника, погрузившегося на 10 м (2 Атм), объемы газов уменьшаются наполовину по сравнению с их объемами на поверхности (1 Атм), и наоборот, если тот же подводник всплывает с глубины 10 м на поверхность, давление уменьшается, и объем газов удваивается.

С практической точки зрения это показывает, как во время задержки дыхания по мере спуска в глубину парциальное давление кислорода постепенно увеличивается и, следовательно, вызывает временное и обманчивое улучшение альвеолярного газообмена, но в момент всплытия происходит обратный эффект, а именно, из-за падения гидростатического давления парциальное давление кислорода также начинает быстро уменьшаться, а если оно падает ниже определенного уровня, то происходит гипоксический обморок.

Чтобы продемонстрировать все вышеизложенное, приведем классический опыт с воздушным шариком, который надувается на поверхности и погружается под воду на глубину 10 м; на этой глубине его объем уменьшится вдвое, а если с 10 м мы отпустим шарик к поверхности, мы убедимся, что его объем постепенно увеличится и на поверхности вернется к первоначальному.

Закон Дальтона тесно связан с законом Бойля-Мариотта и гласит: «давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов».

Ptot=p1 + p2 +… + pn

Парциальное давление каждого газа, входящего в газовую смесь, можно определить путем умножения общего давления Ptot на процентное содержание газа (%г) и деления полученного результата на сто.

Pp = (Ptot x %г) / 100

Пример: подсчитаем парциальное давление азота (N) в воздухе на уровне моря, зная, что его процентное содержание равно 78 %:

Pp N = (760 mm Hg x 78) / 100 = 592,8 mm Hg

В соответствии с вышеизложенным, можно сказать, что давление любого газа, входящего в смесь газов, прямо пропорционально его процентному содержанию в этой смеси.

В подводной среде закон Дальтона оказывается одним из основополагающих для дыхательных смесей и их компонентов при погружении с автономным дыхательным аппаратом. При задержке дыхания этот закон особенно важен в том, что касается артериального парциального давления кислорода. Уместно напомнить, что всякий раз, когда Pp кислорода превышает условное значение в 1.7 Атм (1292 мм рт. ст.) этот газ начинает оказывать токсический эффект на человеческий организм. Дыхание чистым кислородом перед погружением крайне опасно! Если же Pp кислорода падает ниже 60 мм рт. ст., начинает проявляться гипокси-ческая дыхательная недостаточность из-за измененного состава воздуха; падение PpO2 ниже 50 мм рт. ст. вызывает острое кислородное голодание мозга и появление гипокси-ческого обморока (синкопе, или black out).

Закон Генри касается растворимости газа в жидкости в зависимости от давления, которое он оказывает, и поэтому регулирует транспортировку кислорода к тканям в гипербарических условиях. при постоянной температуре количество (Q) растворенного газа в данной жидкости и/или ткани прямо пропорционально давлению этого газа над раствором.

Q = KPgas (K = константа Генри)

 

Повышенное давление и транспортировка кислорода

Обычно в артериальной крови на 100 мл содержится 20 мл O2. Большая его часть вступает в химическое взаимодействие (связывается) с гемоглобином крови, превращая его в нестойкое химическое соединение — оксиге-моглобин. Венозная кровь на 100 мл обычно содержит около 14 мл O2, и это означает, что потребность тканей в к2ислороде достигает 6 мл O2 на 100 мл крови. Вот почему, как указыва2лось ранее, при давлении кислорода ниже 60 мм рт. ст. организм начинает проявлять признаки кислородного голодания.

В соответствии с законом Генри с увеличением парциального давления O2 увеличивается и количество O2, растворенного в крови, и таким образом человеку, дышащему 100 % кислородом под давлением 3 Атм, не потребуется гемоглобин для его транспортировки, поскольку количество растворенного в крови кислорода намного превышает 6 мл на 100 мл крови. При таком абсолютном давлении количество растворенного в плазме O2 достаточно, чтобы обеспечить потребности организма.

Перенасыщение тканей кислородом и/или нормализация pO2 является целью гипербарической кислородной терапии. Использование такой терапии оказывается важным для лечения некоторых клинических случаев, связанных с погружениями на задержке дыхания, которые хорошо знакомы ловцам жемчуга во Французской Полинезии на острове Туамоту под названием «Таравана».

 

Газообмен в легких

Задача дыхательной системы — доставлять O2 к тканям человеческого тела и обеспечивать удаление CO2 для поддержания должного химического равновесия в тканях и крови. Газообмен происходит через стенки легочных альвеол и называется гематозом. Для правильного осуществления этого процесса необходимо, чтобы соотношение между кровяной перфузией на территории легких и альвеолярной вентиляцией оставалось нормальным. Действительно, изменения этого соотношения, связанные с анатомическим и/или структурным и/или функциональным дефицитом, являются абсолютным или относительным противопоказанием к погружениям как на задержке дыхания, так и с аквалангом. Этот газообмен происходит двумя различными физическими способами транспортировки материи: диффузия и конвекция.

Резюме

С помощью изучения физических законов мы поняли, что при погружении на задержке дыхания некоторые процентные значения газов могут резко меняться в зависимости от внешнего давления. И здесь самой важной является ситуация, возникающая при глубоком погружении на задержке дыхания, во время которого из-за гидростатического давления при спуске вниз парциальное давление кислорода повышается до уровней, при которых не может возникнуть гипоксии; однако затем во время всплытия, наоборот! парциальное давление столь быстро падает, что может оказаться ниже минимума, приводя к ситуации гипоксии и потери сознания (синкопе). Синкопе может возникнуть не только по этой причине. Важно понимать, что чрезмерное затягивание задержки дыхания также является опасным, и не только по причине увеличения парциального давления углекислого газа, но прежде всего из-за слишком быстрого понижения парциального давления кислорода при всплытии. Это объясняет, почему глубину нужно завоевывать метр за метром, год за годом, постоянно учитывая все физиологические изменения, физические законы и различные элементы риска, о которых мы будем говорить впоследствии

Газообмен посредством диффузии происходит между альвеолами и легочными капиллярами, между капиллярами и клетками, тогда как обмен с помощью конвекции идет между легочным капилляром и системным капилляром или между атмосферным воздухом и альвеолой.

В легочной физиологии «диффузией» называется скорость, с которой газ распространяется в жидкости и/или органической ткани. Эта скорость диффузии зависит от целого ряда переменных, связанных с площадью мембраны обмена и разницей между парциальными давлениями газов с обеих сторон этой мембраны.

Скорость диффузии CO2 в 20 раз больше, чем O2.

 

Нервная система

Нервная система — это жизненно важный компонент человеческого организма; она образована совокупностью анатомических структур, предназначенных для приема и передачи импульсов, их «распознаванию», выработке соответствующих реакций, и для окончательной переработки и хранения.

Нервную систему вполне можно сравнить с компьютером, оснащенным периферийными устройствами (органы, системы и устройства ввода данных), проводами (нервы) и блоком управления (мозг), способным распознавать различные виды поступающей к нему информации, обрабатывать ее, каталогизировать и хранить.

Главной структурной единицей нервной системы является нейрон — нервная клетка с особыми характеристиками, отличающими ее ото всех остальных клеток в организме.

Нейроны состоят из трех основных частей: нервного тела, одного обычно длинного отростка, аксона, и нескольких коротких — дендритов. Аксон предназначен для проведения нервных импульсов от тела клетки к периферии, тогда как по дендритам они поступают в тело клетки.

В нашем теле существует около 100 млрд. нейронов, которые делятся на три типа:

— двигательные нейроны, передающие нервный импульс от мозга к периферийным органам, к мускулам или железам, где он преобразуются в рефлекторное действие;

— сенсорные нейроны, принимающие импульс от периферийных рецепторов, например, кожного покрова, и передают его в центральную нервную систему;

— интернейроны, которые являются связующим центром между двигательными или сенсорными нейронами и вышестоящими структурами, представляя собой важнейшее звено системы.

Нейроны располагаются рядом друг с другом, не имея при этом прямого контакта. Действительно, каждый нейрон отделен от следующего небольшой зоной — синоптическим пространством, в котором при поступлении нервного импульса выделяется определенное химическое вещество — ацетилхолин, который выступает проводником для передачи электрических импульсов от одного нейрона к другому.

Для сбора информации нейроны посредством дендритов и аксона сообщаются между собой и с другими типами клеток, распространяя электрический импульс, который впоследствии трансформируется в конкретное действие.

 

Организация нервной системы

 

Нервная система имеет очень сложную структуру. Различаются:

— центральная нервная система: состоит из головного мозга и спинного мозга;

— периферическая нервная система: состоит из спинномозговых и черепномозговых нервов;

— вегетативная, или «автономная», нервная система: контролирует «автоматические» функции и состоит из симпатического и парасимпатического отделов.

Кора больших полушарий головного мозга имеет борозды и извилины. В коре больших полушарий расположены мозговые центры — зоны коры головного мозга; каждая из них выполняет определенные функции контроля в организме.

Мозговые центры делятся на чувствительные — сенсорные, — воспринимающие и обрабатывающие информацию от органов чувств (исходящую от внешних и внутренних раздражителей), и двигательные — организующие движения человека. Согласованная работа этих центров дает возможность своевременно и точно нормализовывать состояние организма и приспосабливаться к меняющимся условиям внутренней и внешней среды.

Повреждение какой-либо зоны головного мозга, например, в результате гипоксии или декомпрессионного заболевания, может привести к ее «отключению», вызывая потерю определенного вида чуствительности или выпадение определенных функций, носящее временный или постоянный характер.

 

Мозжечок

Этот орган расположен внутри черепной коробки, в затылочной ее части, и образован двумя полушариями мозжечка. Он отвечает за функции равновесия и координации движений..

 

Продолговатый мозг

По сути, является продолжением спинного мозга и имеет схожую с ним структуру. Если посмотреть на него в разрезе, серое вещество принимает характерную форму буквы «Н» с более короткими и толстыми передними ветвями. Передние ветви — рога — являются моторными корнями спинальных нервов; задние рога являются чувствительными корнями. Именно здесь пересекаются восходящие и нисходящие пути головного и спинного мозга.

Повреждения головного мозга в результате декомпрессионного заболевания (ДЗ) происходят именно в этой области и почти всегда сопровождаются параличом конечностей (параплегия или тетраплегия) и потерей чувствительности.

 

Периферическая нервная система

Представлена двенадцатью парами черепно-мозговых нервов и спинномозговыми нервами.

Двенадцать пар черепно-мозговых нервов, с представительством в головном мозге, иннервируют, в основном, область лица и шеи (11 пар), и лишь одна пара иннервирует внутренние органы. По своим функциям черепно-мозговые нервы выполняют следующие функции.

— моторная, произвольные и непроизвольные движения;

— чувствительная, все типы ощущений (боль, холод, тепло, прикосновение и т. д.);

— смешанная, моторная и чувствительная вместе.

Анатомические области и специальные функции, относящиеся к компетенции черепно-мозговых нервов.

1-ая пара, обонятельный нерв. распространяется в слизистой оболочке носа (зона обоняния), где распознает все импульсы обонятельного типа;

2-ая пара, зрительный нерв. его окончания находятся в сетчатке глаза, и он передает в мозг зрительные ощущения, захваченные глазными яблоками;

3-ая пара, глазодвигательный нерв. отвечает за большую часть движений глаза, иннервирует почти все внешние мышцы глаза;

4-ая пара, блоковый, или «патетический», нерв. моторный нерв глаза;

5-ая пара, тройничный нерв. смешанный нерв, общесенсорный и моторный; отвечает за чувствительность лица и иннервирует жевательные мышцы. В результате его сенсорной функции возникает явление «Рефлекс Дайвинга» — реакция на холодную воду рецепторов тройничного нерва в лобной окологлаз-ной и скуловой частях;

6-ая пара, отводящий нерв. моторный нерв, иннервирующий наружную прямую мышцу глаза;

7-ая пара, лицевой нерв. имеет простую сенсорную функцию (принимает импульсы от вкусовых рецепторов языка) и более важную моторную функцию, поскольку иннервирует мимические мышцы, отвечающие за различные выражения лица; его паралич часто возникает в случае эффекта Таравана, особенно с правой стороны, а также в случаях гипотермии (лицевой паралич от холода);

8-ая пара, преддверно-улитковый нерв. сенсорный нерв, состоящий из двух отростков. кохлеарного (относящийся к улитке) и вестибулярного. Передает сигналы от внутреннего уха в мозг, обеспечивая также регулирование равновесия;

9-ая пара, языкоглоточный нерв. смешанный нерв, распространяющийся в глотке и языке. Его моторная функция обеспечивает движения мышц задней стенки глотки, которые крайне важны для компенсации давления в полости среднего уха; его сенсорная функция относится к глотке, губам и языку, и отвечает за вкусовые ощущения; он также распространяется в каротидной железе, где передает импульсы секреции, связанные со слюноотделением;

10-ая пара, блуждающий нерв: смешанный нерв, общесенсорный и моторный. Регулирует движения и функции сердечных мышц и других внутренних органов грудной клетки и брюшной полости, например, желудка, кишечника, диафрагмы, легочной мускулатуры и желчного пузыря. Блуждающий нерв играет главную роль в приспособлении к задержке дыхания, поскольку отвечает за изменения сердечного ритма и сокращений диафрагмы. Его стимуляция, например, с помощью усиленного повторения приема Вальсалва, может вызвать опасное замедление пульса и даже привести к остановке сердца.

11-ая пара, добавочный нерв: исключительно моторный, иннервирует некоторые мышцы шеи (грудиноключично-сосцевидную и частично трапециевидную), гортани и мягкого неба, а затем объединяется с блуждающим нервом;

12-ая пара, подъязычный нерв: только моторный, обеспечивает движения языка при жевании, глотании и фонации.

Спинномозговые нервы выходят из спинного мозга и разделяются на два направления: сенсорные (чувтвительные) и моторные (двигательные) которые объединяются с пучками, идущими от близлежащих нервов, и образуют нервные сплетения, из которых берут свое начало периферические нервы.

Спинной мозг условно делится на 4 отдела:

шейный отдел, откуда берут свое начало 8 нервов, идущих к шее, плечам и верхнему грудному отделу, среди них диафрагмальный нерв, иннервирующий диафрагму;

грудной отдел, из него выходят 12 пар нервов, идущих к плечам и торсу;

поясничный отдел, к которому относятся 5 нервов, иннервирующих торс, брюшную полость, бедра, ноги и ступни;

крестцовый отдел, из него также выходят 5 нервов, ветви которых распределяются по мышцам и внутренним органам таза и задней области бедер, образуя большой седалищный нерв — самый длинный нерв в человеческом теле, доходящий до ступней.

 

Вегетативная, или автономная, нервная система

Деятельность вегетативной нервной системы направлена на поддержание относительно стабильного состояния внутренней среды организма, например, постоянной температуры тела или кровяного давления, соответствующего потребностям организма. Она осуществляет бессознательную регуляцию функций внутренних органов, таких, как частота сердечного ритма, потоотделение, слюноотделение и т. д.

В этой системе различают две совершенно противоположные по направленности действия части: симпатическая нервная система и парасимпатическая нервная система. Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма. Обе системы при этом действуют координированно, и их нельзя рассматривать как антагонистические.

Симпатическая нервная система образована серией нервных узлов, которые размещены с обеих сторон позвоночника и соединены со спинным мозгом посредством моторно-сенсорного волокна. Наиболее важными ее функциями являются:

— усиление мозговой деятельности и метаболизма;

— расширение легких;

— расширение зрачков;

— увеличение потоотделения;

— повышение частоты и силы сердечных сокращений;

— повышение кровяного давления (сужение кровеносных сосудов);

— стимуляция надпочечников, которые, выделяя норадреналин, поддерживают эти функции.

Парасимпатическая нервная система состоит из волокон, отходящих от головного и спинного мозга. Большинство парасимпатических волокон присоединяются к блуждающему нерву (10-ая пара черепно-мозговых нервов), иннервирующему легкие, сердце, желудок, кишечник, печень, желчные и мочевыводящие пути. Ее основные функции:

— сужение зрачка и фокусировка на объектах с помощью зрения;

— увеличение выделений в носовой полости, слюноотделения и слезотечения;

— повышение моторики и секреции кишечника;

— снижение частоты и силы сердечных сокращений;

— понижение кровяного давления;

— регуляция деятельности желчных и мочевыводящих путей.

Места пересечения и объединения симпатических и парасимпатических нервов называются сплетениями (так, например, солнечное сплетение совместно с блуждающим нервом парасимпатической системы контролируют всю брюшную полость, включающую желудок, желчные пути, диафрагму).

 

Пирамидный путь

Самый мощный моторный (двигательный) путь. Берущие свое начало в гигантских пирамидных клетках коры головного мозга, пирамидные пути обоих полушарий совершают перекрест на уровне продолговатого мозга и далее идут в составе спинного мозга и спинномозговых нервов, иннервируя скелетные мышцы через периферические нервы.

 

Компенсация нарастающего давления при погружении в полостях человеческого тела

«Компенсацией» называется естественное или вызванное человеком явление, позволяющее выравнять давление газа между внешней средой и полостями тела (ухо, синусные полости, легкие и т. д.)

Возьмем, к примеру, 2 баллона со сжатым воздухом, связанные между собой закрытым вентилем и содержащие определенное количество воздуха, разное в каждом из баллонов. Пока температура остается постоянной, а вентиль закрытым, давление в баллонах останется неизменным, но как только мы откроем вентиль, начнется переход воздуха из баллона с большим давлением в баллон с меньшим давлением, пока давление в них не уравновесится, т. е. пока два баллона не компенсируются.

То же самое происходит, когда мы компенсируем давление в ушах. Мы это делаем таким образом, чтобы гидростатическое давление, которое испытывает барабанная перепонка снаружи, было выравнено путем добавления воздуха в среднее ухо через трубные полости.

В других полостях, содержащих воздух (пазухи, пищеварительный тракт, легкие), компенсация происходит самопроизвольно.

Нельзя забывать, что воздушное пространство внутри маски также требует компенсации во избежание так называемого «эффекта присоски».

Давайте подробнее остановимся на том, как выполняется компенсация барабанной перепонки.

Чтобы было легче это сделать, для начала исследуем анатомические структуры слухового аппарата.

Анатомически ухо подразделяется на наружное, среднее и внутреннее.

Наружное ухо состоит из ушной раковины и внешнего слухового прохода, предназначенных для улавливания звуков; в конце оно завершается барабанной перепонкой — это волокнистая мембрана, являющаяся границей между наружным и средним ухом.

Среднее ухо состоит из внутренней поверхности барабанной перепонки, барабанной полости и височной полости, внутри которой находятся три миниатюрные косточки, из-за своей формы называемые молоточек (прилегающий к барабанной перепонке), наковальня и стремя (основание которого вставлено в овальное окно). К молоточку и стремени прикреплены две мышцы, сокращения которых изменяют положение косточек и, следовательно, напряжение барабанной перепонки, влияя таким образом на передачу звука. Среднее ухо связано с глоткой посредством евстахиевой трубы — это дренажный проход среднего уха, позволяющий воздуху проникать в барабанную полость для компенсации давления на барабанную перепонку.

Внутреннее ухо — самая сложная структура; она состоит из нескольких полостей (костного лабиринта) и различных мембранных структур (мембранный лабиринт), погруженных в жидкость — перилимфу. Внутреннее ухо сообщается со средним через овальное окно. Оно является местом нахождения двух важнейших структур. органа слуха (улитка) и органа равновесия (вестибулярный аппарат).

Из всего вышеизложенного очевидно, что любое изменение давления окружающей среды неизбежно отразится на поверхности мембранной перепонки, выгибая ее до предела прочности, если только не выполнить компенсацию с внутренней стороны и не установить необходимое равновесие.

Компенсацию можно выполнить, создав различными способами давление в задней части гортани, которое нагнетет воздух в евстахиевы трубы и, соответственно, в барабанную полость. Если этого не делать регулярно для уменьшения эффекта давления при возрастании глубины, то есть не поддерживать в барабанной полости тот же уровень давления, что имеется с внешней стороны перепонки, произойдет перерастяжение мембраны, за которым последует ее разрыв. Если компенсацию выполнить не удается, лучше всплыть на несколько метров и повторить попытку.

Эти явления могут обнаруживаться и на небольших глубинах; действительно, уже на глубине двух метров барабанная перепонка испытывает давление 200 г на см2.

Теперь изучим некоторые «приемы компенсации». Прием Вальсалва получил свое название по имени врача XVIII века Антонио Мария Вальсалвы, который использовал его для лечения гнойного отита. он протыкал барабанную перепонку пациента и заставлял его выполнять сильный выдох при закрытом рте и носе, чтобы воздух вытолкнул через ухо наружу гнойные выделения. Для выполнения этого приема нужно зажать пальцами ноздри и с силой выдохнуть воздух из легких в нос, который, будучи закрыт, направит воздух в евстахиевы трубы и среднее ухо для выравнивания гидростатического давления на барабанную перепонку. Этот способ может быть достаточно опасным, особенно на определенных глубинах, поскольку вызывает заметное увеличение давления во всех воздушных путях; в результате стимуляции блуждающего нерва замедляется сердцебиение, и затрудняется возврат венозной крови к сердцу. Это также наиболее инстинктивный прием, им пользуются начинающие подводники.

Прием Марканте-Одалиа немного сложнее приема Вальсалва, но зато создает меньше рисков для подводника; он также известен как прием Френцеля, командующего Люфтваффе (воздушные силы гитлеровской Германии), который во время Второй Мировой Войны экспериментировал с этим способом, чтобы противостоять быстрым перепадам давления при выполнении сложных воздушных маневров.

Упражнение: зажимаем пальцами нос, чтобы изолировать носоглотку от внешней среды, а чтобы изолировать ее от дыхательных путей, приподнимаем язык к небу, как при глотании; таким образом, объем воздуха, находящийся в этом небольшом пространстве, сжимается (следовательно, увеличивается давление) и проталкивается в евстахиевы трубы, где он выровняет внешнее гидростатическое давление на барабанную перепонку.

Прием Тойнби, открытый Джозефом Тойнби, который первым идентифицировал классическое пощелкивание, производимое открыванием евстахиевых труб при глотании, состоит в сглатывании при закрытом рте и носе. Таким образом, мышечные волокна задней части глотки сокращаются, оттягивая вниз и открывая отверстия евстахиевых труб, что позволяет воздуху из глотки пройти в среднее ухо.

Упражнение: хороший способ проверить, каким методом компенсации вы пользуетесь, приемом Вальсава или Марканте-Одалиа, — это ненадолго погрузиться, задержав дыхание, на глубину 1 метра без воздуха в легких.

Если вы можете выполнить компенсацию даже без воздуха в легких, очевидно, что вы правильно освоили технику Марканте-Одалиа, поскольку давление нагнетается на уровне глотки и неба. Если же компенсировать давление не удается, значит вы привыкли пользоваться приемом Вальсава.

 

Спонтанная компенсация

Некоторым людям повезло — у них происходит спонтанная (самопроизвольная) компенсация. Иными словами, им не нужно выполнять никаких действий: компенсация происходит естественным способом благодаря особой форме и эластичности евстахиевых труб, обеспечивающих в результате проход воздуха. На практике, с увеличением давления на грудную клетку сжатый воздух автоматически стремится к выравниванию во всех полостях, компенсируя также соответствующее увеличение давления на барабанные перепонки. Компенсация придаточных пазух носа при отсутствии патологических изменений происходит одновременно с компенсацией среднего уха.

 

Баротравмы барабанной перепонки

 

Теперь исследуем причины затруднения компенсации, вплоть до разрыва барабанной перепонки:

— недостаточная или неэффективная компенсация, зачастую бывает у новичков, является результатом неверного или неточного ее выполнения. Если вам плохо знакомы способы выполнения компенсации, рекомендуем потренироваться под наблюдением профессионалов, чтобы избежать печального опыта самоучек;

— запоздание выполнения компенсации — это одна из самых частых причин баротравмы уха. Является следствием ошибочного убеждения многих подводников, что компенсацию нужно выполнять, только когда появляется ощущение натяжения или даже боли в ухе;

— воспалительные или анатомические изменения в ухе, т. е. воспалительные процессы, затрагивающие евстахиевы трубы (насморк, аллергический ринит, вазомоторный ринит, носовой полипоз, и т. д.) и приводящие к невозможности или затруднению компенсации; в последнем случае может произойти запоздание выполнения компенсации с последующей баротравмой перепонки. Избыток выделений, как бывает при банальном насморке, может привести к сужению отверстия евстахиевой трубы и, как следствие, к сверхвысокому давлению в барабанной полости — а значит, и на внутреннюю поверхность барабанной перепонки,

— во время всплытия («обратный блок»). Если отверстие евстахиевой трубы слишком узкое, все больше возрастающее внутреннее давление отразится на барабанной перепонке, растягивая ее, а потом и разрывая. Действительно, неприятное давление на перепонку можно почувствовать и во время всплытия. В таком случае следует выполнить обычный прием компенсации, как и во время спуска, чтобы открыть проходы евстахиевых труб и позволить воздуху выйти из среднего уха;

— серные пробки: наличие серных пробок во внешнем слуховом проходе создает разницу между давлением в среднем ухе и давлением в этом внешнем слуховом проходе, что в редких случаях может привести к разрыву барабанной перепонки. По этой и по всем вышеперечисленным причинам рекомендуется ежегодно и перед началом занятий подводным плаванием проверять состояние слухового аппарата, проходя медицинский осмотр.

 

Симптоматика

Разрыв барабанной перепонки всегда сопровождается небольшим кровотечением, резкой болью, чувством оглушения, а иногда потерей сознания (это большая опасность для подводника, ныряющего в одиночку). Стимуляция органов равновесия холодной водой вызывает дезориентацию, потерю равновесия и головокружение, что значи-тельныо осложняет подъем на поверхность.

Перепад температуры в области лабиринтов внутреннего уха, являющийся следствием затопления среднего уха (из-за разрыва барабанной перепонки), часто приводит к неудержимой рвоте и невозможности оставаться в вертикальном положении.

При разрыве перепонки, вызванном затруднением выхода воздуха из полости труб, вначале появляется «распирающее» ощущение, за которым следует острая боль и зачастую повторяющиеся приступы рвоты.

В зависимости от тяжести выделяют два типа разрыва барабанной перепонки:

— обширный разрыв: длинные рваные раны с прогнозируемыми тяжелыми последствиями;

— локализованный разрыв: сначала неправильной формы, а в последующие дни — округлой.

После оказания медицинской помощи выздоровление обычно происходит в течение нескольких месяцев, но в наиболее тяжелых случаях может понадобиться «тимпанопластика» — восстановительная хирургия барабанной перепонки.

 

Лечение

Лечение предусматривает прием анальгетиков (парацетамола). Если боль не проходит, необходим визит к доктору, который пропишет антибиотики, противовоспалительные средства и средства от насморка.

 

Предупреждение

Как и во всем, предупреждение — это лучший способ избежать неприятностей. Поэтому необходимо выполнять следующие указания.

— избегать погружений во время воспалительных процессов в верхних дыхательных путях;

— прекратить погружение, если компенсация оказывается затруднительной уже на первых метрах;

— избегать натяжения барабанной перепонки, компенсируя разницу давлений часто и с первых же метров погружения;

— избегать ненужных и, помимо того, опасных попыток компенсации при отсутствии внешнего давления (например, на суше или на постоянной глубине после уже выполненной компенсации), которые вызывают прилив крови в евстахиевы трубы и следующую за этим закупорку;

— если возникли затруднения при выполнении компенсации в уже начатом погружении, необходимо всплыть на меньшую глубину и повторить прием до его успешного выполнения, а если это не поможет, то прервать погружение;

— не реже раза в год проходить медицинский осмотр.

В заключение хотим подчеркнуть, что лучший способ предотвратить баротравму барабанной перепонки — это хорошо овладеть хотя бы одним приемом компенсации и всегда точно его выполнять.

 

Альтернобарические головокружения

Альтернобарические головокружения возникают из-за увеличения давления в среднем ухе во время всплытия в связи с затруднением спонтанной «декомпенсации», то есть если отток воздуха через евстахиевы трубы затруднен.

Причиной этого нарушения обычно бывают воспалительные процессы слизистой оболочки носа и/или слуховых проходов, которые могут вызвать частичную блокировку дренажа среднего уха с удержанием воздуха в слуховых полостях; на этапе всплытия этот воздух по закону Бойля увеличивается в объеме и начинает надавливать на лабиринтные структуры, что приводит к головокружениям.

Обычно эти ощущения проходят сами в течение нескольких минут, или даже секунд, но они потенциально опасны, поскольку у подводника происходит потеря равновесия, и если он находится под водой на задержке дыхания, то может пережить весьма неприятный опыт.

В случае альтеробарических головокружений рекомендуется проконсультироваться с врачом-отоларингологом, чтобы проверить внутренние анатомические структуры и, при необходимости, назначить соответствующее лечение для снятия отечности.

Чтобы избежать альтернобарических головокружений, следует отказаться от погружений при наличии воспалительных процессов в верхних дыхательных путях. Кроме того, рекомендуется прервать погружение, если возникают проблемы с компенсацией.

 

Баротравма лица

 

Эта проблема возникает из-за присасывания обтюратора маски к лицу в результате воздействия давления на объем воздуха, содержащегося внутри этой маски. Она может произойти во время спуска, когда воздух в подмасочном пространстве уменьшается в объеме (P x V=константа). Поэтому помимо воздушных полостей внутри тела нужно также компенсировать давление внутри маски, чтобы избежать «эффекта присоски», которая также называется баротравмой лица.

Действительно, в соответствии с законом Бойля-Мариотта объем воздуха внутри маски сжимается во время спуска, вызывая самое настоящее «засасывание» мягких тканей лица, находящихся под маской.

Чтобы избежать этой проблемы, достаточно, чтобы подводник, спускаясь ко дну, выдыхал в подмасочное пространство через нос небольшое количество воздуха, которое скомпенсирует внешнее давление.

Во время всплытия воздух, находящийся внутри маски, расширяется и автоматически выходит из-под бортиков.

Однако с точки зрения техники погружения на задержке дыхания, подводнику полезно научиться забирать обратно часть лишнего воздуха, выходящего из-под маски во время всплытия.

Эффект присоски при отсутствии компенсации вызывает у подводника болевые ощущения в области глаз и носа, которые иногда сопровождаются носовым кровотечением.

После всплытия внешний вид подводника сразу же расскажет о невыполненной компенсации в маске: кожа лица будет покрыта точечными кровоподтеками, а в конъюнктиве глаза также будут заметны кровоизлияния, которые придадут глазам характерный «подбитый» вид.

Эта баротравма обычно легко проходит, не оставляя последствий, тем не менее рекомендован медицинский осмотр.

В самых тяжелых случаях возможны более серьезные повреждения глаза, например, кровоизлияние в сетчатку глаза, сопровождающиеся резкой потерей зрения (вплоть до слепоты на один или оба глаза).

 

Лечение

Речь идет о патологии со спонтанным разрешением. Могут помочь примочки с физиологическим раствором и нанесение противоотечных и противовоспалительных мазей. Перед возобновлением занятий подводным плаванием рекомендуется посещение окулиста.

 

Синусопатия баротравматическая

Это инцидент, вызванный перепадами давления в синусовых пазухах и в содержащих воздух полостях лица, не поддающихся деформациям. Причину такой синусопатии следует искать в анатомических или основанных на воспалении изменениях, препятствующих нормальной спонтанной компенсации, что приводит к потере равновесия между давлением в этих полостях и во внешней среде.

 

Анатомия носовых проходов и придаточных пазух носа

Внутренняя часть носа поделена с помощью носовой перегородки на две полости — носовые проходы; они связаны с внешней средой посредством ноздрей, а с носоглоткой — посредством носовых отверстий.

Внутри каждого носового прохода находятся три костных выступа, покрытых слизистой оболочкой.

Внутренняя поверхность носа и придаточных пазух покрыта слизистой оболочкой, в точности такой же, что покрывает трахеи и бронхи; внутри носа также находится множество слизистых желез секреции, чья задача — производство слизистых выделений.

Выделения из носа переносятся снаружи вовнутрь благодаря волнообразному движению особых волосковых клеток.

В носовых проходах и в верхней части носовой перегородки мы имеем другую ткань, содержащую множество нервных окончаний, которые обеспечивают человеку чувство обоняния.

Придаточные пазухи носа — это система полостей, находящихся внутри лицевой части черепа; при нормальных условиях она сообщается с носовыми проходами посредством маленьких канальцев (отверстий), расположенных в нескольких миллиметрах друг от друга в зоне, называемой «средний носовой ход».

Разделяют:

— 2 лобные пазухи, у разных людей они бывают разного размера, а в редких случаях они могут даже отсутствовать;

— 2 пазухи решетчатой кости: расположены между двумя глазницами на уровне основания носа; решетчатая кость — это одна из костей черепа, находящаяся между носовыми полостями, глазницами и основанием черепа (анатомическая зона, на которую опирается нижняя часть переднего мозга).

— 2 верхнечелюстные пазухи (гайморова полость): располагаются по сторонам от носа и представляют собой наибольшие по объему синусные полости;

— 1 клиновидная пазуха: зачастую она оказывается поделена внутренними перегородками на две или более полости.

 

Баротравма придаточных пазух носа

 

Является следствием изменений в придаточных пазухах (лобных, гайморовых, решетчатой кости). Истинную причину баротравмы пазух носа следует искать не в самих придаточных пазухах, а в препятствии для частичного оттока выделений и блокировании воздухообмена вследствие закупорки естественных дренажных путей (отверстий) этих пазух, которые нуждаются в постоянном сообщении с носовыми проходами и, таким образом, с окружающей средой.

Баротравма придаточных пазух носа часто случается во время спуска, поскольку слизистая оболочка, устилающая пазухи, сильно испещрена сосудами и подвержена всасыванию при относительном понижении давления, что в результате образует пустоту внутри пазухи, вызывая воспаление, отек стенок и кровотечение.

Этому способствуют следующие факторы:

— закупорка носа (из-за ринитов, насморка, синусита);

— полипоз или гипертрофия носовых тканей;

— искривление добавочных носовых хрящей;

— местные раздражения (гиперсекреция, табакоз);

— злоупотребление сосудосуживающими препаратами для носа.

 

Симптоматика

Во время спуска: настолько сильная боль, что подводник вынужден прервать погружение и всплыть. После всплытия боль частично стихает.

Во время всплытия: иногда может возникнуть боль, обычно вследствие использования сосудосужающего спрея для носа, действие которого уменьшилось за время погружения.

 

Лечение

Рекомендуется проводить под контролем врача отоларинголога, который назначит лечение противоотечными и отхаркивающими аэрозолями в сидячем положении, а также прием противовоспалительных средств.

 

Баротравма легких

Одним из самых серьезных несчастных случаев, которые могут произойти с подводником, является баротравма легких. Она характерна для аквалангистов и возникает вследствие чрезмерного расширения газов в легких при слишком быстром, случайном или экстренном всплытии.

Объем легких нормального человека в среднем составляет 5 литров на поверхности при атмосферном давлении.

Задача регулятора дыхательного аппарата — обеспечивать подводника воздухом под давлением окружающей среды.

К примеру, возьмем подводника, находящегося на глубине 40 метров, и соответственно, под давлением в 5 Атм. В его легких будет находиться.

5 литров x 5 Атм = 25 литров воздуха

Если во время всплытия подводник задержит дыхание (произвольно или непроизвольно), объем газа в легких, в соответствии с законом Бойля-Мариотта, расширится до 25 литров. Учитывая, что легкие не слишком эластичны (менее чем на 10 %), увеличение объема дыхательных газов неизбежно приведет к разрыву стенок альвеол и попаданию пузырьков газа в кровообращение. Эти пузырьки в основном попадают в сердце и ткани головного мозга, приводя к травматической газовой эмболии.

Разрыв легких обычно случается в районе ближайших к поверхности 10 метров, где перепады давления наиболее существенны.

При разрыве легких происходит резкое нарушение дыхания вплоть до его остановки.

Возможна и другая причина нарушения и остановки дыхания — из-за спазма гортани в результате.

— слишком быстрого всплытия;

— паники;

— термического стресса;

— предыдущих заболеваний (бронхит);

— выполнения приема Вальсалвы при всплытии.

 

Причины нарушения и остановки дыхания

 

Нарушения могут проявиться уже во время подъема на поверхность или в течение 5 минут после всплытия, в отличие от декомпрессионного заболевания, которое развивается только после окончания погружения.

Существуют две причины остановки дыхания.

1) легочная — в связи с разрывом альвеолярных стенок и выходом воздуха в плевральную полость, «отслоением» легкого от плевры и образования пневмоторакса. Воздух может также попасть в средостение, что приведет к пневмомедиастинуму, в брюшину с образованием пневмопери-тонеума или под кожу, вызывая подкожную эмфизему и болезненную тяжесть в груди. К другим симптомам относятся. затрудненное дыхание с ощущением «нехватки воздуха»; сухой и поначалу раздраженный кашель, который затем сопровождается кровавой мокротой (кровь, смешанная со слизью), свидетельствующей о разрыве альвеол; учащенный пульс (150–200 ударов в минуту); падение артериального давления.

2) мозговая — основной причиной является развитие острой мозговой недостаточности, вследствии попадания пузырьков газа через альвеолы в кровеносное русло, а далее в мозг и, как следствие, закупорки кровеносных сосудов. (Церебральная Газовая Эмболия). В результате появляются следующие симптомы: потеря сознания, внезапная слепота (амавроз), внезапная и полная глухота (острое болезненное ослабление слуха), моноплегия (паралич одной конечности), гемиплегия (паралич одной стороны, противоположной поврежденной зоне мозга), приступ судорог, остановка сердца и дыхания.

Практически всегда баротравма легких

— это проблема при погружении с аквалангом, но в редких случаях она может коснуться также и ныряльщика на задержке дыхания. Например, если подводник, погрузившийся на задержке дыхания, на глубине подышит из регулятора аквалангиста. Как мы уже выяснили, во время всплытия объем газа увеличивается, и, если не выдыхать воздух из легких во время всплытия, возникает серьезная опасность разрыва легких. Следовательно, нужно совершенно определенно избегать дыхания из альтернативных источников воздуха, если только не возникнет крайней необходимости, а в таком случае, что бы там ни было, необходимо выдыхать воздух во время всплытия. Для этого достаточно выпускать минимальное количество воздуха изо рта, и если давление в легких слишком возрастет, по этому, уже открытому, узкому пути воздух всегда сможет выйти и в большем количестве. Важно знать, что таким образом можно, так сказать, оставить запасный выход. Риск существует даже на небольшой глубине, например, в бассейне всего на 4 или 5 метрах. Уже случалось, когда в виде игры, чтобы подольше остаться под водой, некоторые ныряльщики на задержке дыхания дышали из регулятора аквалангиста, а при всплытии не выпускали лишний воздух, в результате происходил разрыв легких с серьезными последствиями. Рекомендуется никогда этого не делать, даже ради игры или любопытства, в любом месте и на любой глубине.

 

Лечение

Лечение данной патологии состоит из:

— нормобарической кислородной терапии;

— сердечно-легочной реанимации (СЛР);

— быстрой госпитализации на машине скорой помощи;

— дренажа пневмоторакса (осуществляется только медицинским персоналом);

— гипербарической кислородной терапии.

 

Прогноз

Речь идет о безусловно драматическом и серьезном происшествии, не исключающем внезапную смерть.

Быстрая транспортировка в барокамеру может положительно сказаться на состоянии пострадавшего, приводя к быстрой регрессии неврологических симптомов, которые иначе могут приобрести хронический характер с медленным и неполным излечением.

Относительно легкие случаи также нуждаются в строгой врачебной проверке, так как через какое-то время в результате воспалительных процессов возможно появление острых легочных и/или неврологических осложнений.

 

Предупреждение

Несколько полезных советов, чтобы избежать этого неприятного происшествия:

— всегда выдыхайте во время всплытия (только для ныряльщиков с аквалангом);

— избегайте погружений при наличии дыхательных патологий (бронхит, эмфизема);

— не предлагайте подышать сжатым воздухом ныряльщику на задержке дыхания;

— не дышите сжатым воздухом во время погружения на задержке дыхания.

 

Заключение

Разрыв легких — это несчастный случай при занятии подводным плаванием с крайне тяжелыми последствиями, но его можно легко избежать, если хорошо знать данную патологию и как следует подготовиться к управлению экстренной ситуацией.

 

Баротравма зуба

Поскольку эта проблема относится к группе баротравм, она может возникнуть на этапах как погружения, так и всплытия. Баротравма может поразить как зубы, имеющие видимый кариес, или мертвые зубы, так и внешне здоровые зубы, имеющие скрытые кариозные полости, заболевания зуба или некачественную пломбу с внутренней воздушной полостью. Причем болевые ощущения могут появляться как во время, так и спустя несколько часов после погружения.

Во время спуска на глубину могут возникнуть болевые ощущения в результате циркуляторных изменений в пульпе зуба, являющихся следствием самого погружения. Точно так же могут проявиться последствия компрессии в пульпе или верхушке корня зуба, где было выполнено неправильное пломбирование. В результате возникает классическая зубная боль, которая распространяется и на соседние зубы.

Это же относится к большинству заболеваний зубов (пульпит, гранулема, пародонтит), обычно протекающих бессимптомно, но которые могут резко и неожиданно проявиться, когда человеческое тело оказывается под воздействием повышенного давления.

Ну а во время всплытия может возникнуть серия расстройств, которые независимо затрагивают как здоровые, так и кариозные, залеченные или подлежащие лечению зубы. Обычно боль возникает на вполне определенной глубине (около 10 метров), и она утихает, если вновь погрузиться глубже. Иногда боль, которая поначалу прошла, вновь возвращается в более сильной и резкой форме через несколько часов после погружения.

Чаще всего баротравму получает кариозный или плохо залеченный зуб. В процессе погружения в зубные полости с кровью попадают микропузырьки воздуха. Таким образом, небольшое количество газа оказывается заключенным в полость зуба и, расширяясь (закон Бойля-Мариотта) при снижении давления во время всплытия, может сломать зуб (в зоне наименьшего сопротивления — месте, наиболее пораженном кариесом), вытолкнуть пломбу или вызвать сильную боль в связи с давлением на пульпу.

Открытые для лечения и временно зацементированные зубы могут самым настоящим образом «взорваться» из-за захваченного и расширившегося во время всплытия воздуха.

Эта проблема чаще всего возникает у тех, кто занимается глубокими погружениями на гелиокислородной смеси.

Еще одна крайне опасная возможная ситуация — это локальная эмболия полости зуба. В этом случае наибольшему риску также подвергаются кариозные или плохо вылеченные зубы.

Резкое повышение давления газов в полости зуба приводит к компрессии пульпы, сильной боли и некрозным явлениям (отмирание клеток).

Причину попадания газов в пульпар-ную полость кариозного или леченного зуба следует искать в его многократном предшествующем травмировании (термическом, в результате пломбирования или кариеса), которое привело к некоторого рода дегенерации клеточных элементов пульпы (липидная дистрофия).

При увеличении липидных компонентов ткани количество растворенного в них азота пропорционально увеличится и, следовательно, в конце погружения может вызвать местную эмболию.

Из всего вышеизложенного становится ясно: чтобы во время погружения избежать повреждений зубов, следует периодически проходить стоматологический осмотр для выявления возможных очагов воспаления, кариеса и хрупких элементов, которые наиболее подвержены термическому и гипербарическому воздействию.

Если у вас во время погружения возникла одна из вышеперечисленных проблем, рекомендуется пройти лечение у специалиста, чтобы впоследствии не пришлось провести много времени в «сухом режиме»!

 

Брюшная или желудочная баротравма («водолазные колики»)

Это редкая патология, способная вызвать неприятные ощущения во время всплытия. Их можно частично уменьшить, снизив скорость всплытия, чтобы позволить лишним газам покинуть кишечный тракт через одно из его естественных отверстий или перейти в полость, растяжение которой не вызывает беспокойства.

Эта проблема часто возникает, если перед погружением пить газированные напитки или есть пищу, которая способствует газообразованию, а также у новичков, которые при дыхании глотают воздух, проталкивая его в пищеварительную систему.

 

Зрение и подводное плавание

 

Погружение под воду приводит к значительным изменениям в органах зрения, как под воздействием прямых эффектов гидростатического давления, так и из-за разницы в показателе преломления воды и воздуха.

 

Анатомия глаза

Глаз можно сравнить с оснащенной системой линз фотокамерой, которая обеспечивает автоматическую фокусировку изображения, его запечатление на пленку и передачу по кабелю в центр проявки. Роговая оболочка и кристаллик представляют собой систему линз, сетчатка — это фотопленка, а зрительный нерв является связующим проводом.

Глазное яблоко находится под прозрачной пленкой — роговой оболочкой, которая, в свою очередь, покрыта прозрачной мембраной, или конъюнктивой. За роговой оболочкой находится радужная оболочка; пространство между роговой и радужной оболочками называется передней камерой глазного яблока, оно заполнено внутриглазной жидкостью — стекловидным телом, функция которого заключается в переносе кислорода и питательных веществ к структурам глаза, а также в удалении продуктов метаболизма. Количество ее определяет внутриглазное давление, которое в норме постоянно. Стекловидное тело постоянно обновляется; скорость его формирования около 2 мм3/мин, и на полную замену уходит около 100 минут. В этом же месте находится радужная оболочка, имеющая по середине отверстие для зрачка; это цветная часть глаза, видимая снаружи через роговую оболочку. Самая внутренняя часть — это сетчатка, состоящая из серии нервных клеток, располагающихся в девяти слоях, от самого нижнего из которых отходит глазной нерв. В заднем её полюсе находится небольшое углубление — центральная ямка — наиболее чувствительный участок сетчатки, в котором содержатся только колбочки. Место на сетчатке, где нет ни палочек, ни колбочек, называется слепым пятном; оттуда из глаза выходит зрительный нерв.

Веки защищают глаз от внешнего воздействия: в их тканях находятся волокна круговой мышцы глаза, обеспечивающей открывание и закрывание глаза. Внутренняя поверхность века покрыта конъюнктивой, которая образует слезный мешок, содержащий слезную жидкость и сообщающийся с носослезным протоком.

Слезная жидкость производится слезными железами, она увлажняет и обеспечивает скольжение внешних структур глаза.

 

Зрение в погружении

У человека способность адаптации зрения во время погружения под воду очень ограничена, поскольку вода имеет иной показатель преломления, чем воздух.

Именно по этой причине необходимо использовать маску, позволяющую поместить между глазом и водой слой воздуха, который вернет подводнику возможность видеть, но с небольшими изменениями, которые мы сейчас и рассмотрим.

Во время погружения световые лучи, прежде чем достигнуть зрительных органов, претерпевают некоторые изменения вследствие того, что им приходится преодолевать различные среды. В результате предметы кажутся примерно на 30 % больше и на 25 % ближе, чем в реальности.

Без использования маски зрение подводника становится дальнозорким, обманчивым и несфокусированным. Цвета и контрастность объектов под водой также претерпевают изменения, поскольку вода является барьером для солнечного света. На глубине 5 метров остается 25 % света с поверхности. На 15 метрах — уже 12 %. На 40 метрах уже практически темно, поскольку там всего 3 % света с поверхности. Эти данные, безусловно, усредненные, поскольку вода может иметь различную степень прозрачности. Вода поглощает инфракрасную (тепловую) часть солнечного спектра (красный цвет) примерно на 10 метрах, а на глубину 30 метров проходят только самые короткие лучи, с доминированием голубого и зеленого цвета. Красный цвет превращается в черно-синий.