Если сумма S наращивается со скоростью r, то после t периодов начисления сложных процентов значение этой суммы равно

S (1 + r)t

Сумма удвоится, когда (1 + r)t = 2. Чтобы решить это уравнение, необходимо взять натуральный логарифм обеих его частей. Натуральный логарифм — это логарифм с основанием е, который обозначается как ln. Таким образом

ln (1 + r)t = ln 2

Что сводится к

t ln (1 + r) = ln 2

Следовательно,

Когда r имеет небольшое значение, то ln (1 + r) ≈ r, стало быть, это уравнение можно записать так:

Что эквивалентно

Если r — скорость, выраженная в дробном виде, то обозначим через R скорость в процентном выражении. В таком случае необходимо умножить числитель и знаменатель в дроби t на 100

Следовательно, количество периодов начисления сложных процентов t, необходимых для удвоения суммы, составляет 69 разделить на темпы роста в процентах R.

Поскольку число 72 легче делится на другие числа, чем 69, в правиле 72 чаще всего используется именно это число, хотя значение 69 было бы точнее.