Развитіе нормальнаго пріема умноженія
Намъ, привыкшимъ къ опредѣленному порядку умноженія, представляется чѣмъ-то страннымъ, что могутъ существовать еще другіе способы; настолько мы сжились съ своимъ. А между тѣмъ ихъ очень много, и ни въ какомъ другомъ дѣйствіи не встрѣчается такого большого разнообразія, какъ въ умноженіи. Въ старину всякій авторъ выбивался изъ силъ, чтобы дать отъ себя какое-нибудь измѣненіе или улучшеніе. Мы приведемъ всего 27 способовъ, не ручаясь, конечно, за то, что здѣсь они всѣ безъ остатка; весьма возможно, что есть и еще, скрытые въ тайникахъ книгохранилищъ, разбросанные въ многочисленныхъ, главнымъ образомъ, рукописныхъ сборникахъ. Мы начнемъ съ современнаго нормальнаго способа и постепеино перейдемъ къ тѣмъ, которые болѣе всего отъ него уклоняются.
1. Авторомъ нашего нормальнаго способа умноженія многозначнаго числа на многозначное слѣдуетъ считать Адама Ризе, популярнаго нѣмецкаго педагога (1492–1559). Въ его рукахъ онъ получилъ послѣднюю отдѣлку и завершеніе, и теперь онъ считается самымъ удобнымъ. Главное отличіе способа Адама Ризе заключается въ томъ, что разряды всѣхъ чиселъ и множимаго, и множителя, и произведенія стоятъ одинъ подъ другимъ въ одномъ вертикальномъ столбцѣ; благодаря этому сразу видно, къ какому разряду принадлежитъ извѣстная цифра, и, слѣд., сбиться въ этомъ почти нельзя. Между тѣмъ, разстановка разрядовъ бываетъ самымъ труднымъ мѣстомъ при умноженіи, въ чемъ вы, читатель, убѣдитесь, когда просмотрите остальные способы. Среди нихъ есть и болѣе скорые, но нѣтъ ни одного такого, который представлялъ бы менѣе возможности сбиться. Примѣра на первый способъ мы продѣлывать не будемъ, такъ какъ всякій самъ сумѣетъ его придумать и рѣшить. Скажемъ еще разъ: нашъ настоящій нормальный порядокъ умноженія болѣе всего напоминаетъ вычисленіе по колоннамъ абака, настолько выдержано въ немъ подписываніе однихъ и тѣхъ же разрядовъ въ вертикальномъ столбцѣ.
2. Первый способъ непосредственно образовался изъ второго, отъ котораго отличается такою особенноетью: мы теперь не пишемъ лишняго нуля у второго неполнаго произведенія, двухъ нулей у третьяго и т. д., потому что ставимъ десятки подъ десятками, сотни подъ сотнями, и не боимся сбиться; но прежде всѣ эти лишніе нули писались аккуратно: мы теперь ясно видимъ, что нули безполезны, но математики до Адама Ризе не рѣшались ихъ отбрасывать и считали ихъ по большей части совершенно необходимыми. Этотъ второй способъ имѣлъ у итальянскихъ математиковъ особое названіе «per castellucio». Примѣръ:
Для начинающихъ учиться умноженію не худо и теперь приписывать нули къ произведеніямъ множимаго на десятки, сотни и т. д. Тогда дѣтямъ понятнѣе будетъ, что для умноженія, въ нашемъ случаѣ на 90, необходимо умножить на 9 и считать полученное число за десятки. А потомъ, когда дѣти поймутъ это и нѣсколько привыкнутъ, можно нули выпускать и пользоваться чистымъ первымъ способомъ.
3. Третій пріемъ составленъ Петценштейнеромъ, нѣмецкимъ математикомъ XV вѣка. Въ немъ множимое и произведеніе пишется по нашему, а множитель выходитъ изъ вертикальныхъ колоннъ и ставится сбоку, справа наискось. Расположеніе такое:
Какой смыслъ и какая цѣль въ подобномъ подписываніи множителя сбоку? Объ этомъ догадаться не трудно. У насъ въ примѣрѣ взято двузначное число 97, а иногда случается вмѣсто него брать трехзначное, четырехзначное и т. д.; тогда легко бываетъ забыть, на какія цифры мы уже умножали, и на какія осталось умножать; чтобы не забыть, Петценштейнеръ и пишетъ каждую цифру при своемъ произведеніи. Еще ранѣе его Радульфъ Лаонскій († 1131) предлагалъ, впрочемъ на абакѣ, особенные кружки изъ дерева или изъ камня, чтобы приставлять ихъ къ тѣмъ разрядамъ множимаго и множителя, которые перемножаются. Надо сознаться, что Адамъ Ризе уступаетъ Петценштейнеру въ его заботахъ о множителѣ, и наши школьники по способу Адама Ризе нерѣдко пропускаютъ, особенно на первыхъ порахъ, цифры множителя. Для нихъ тоже не мѣшало бы на первое время, когда они еще учатся умиожать, пользоваться чѣмъ-нибудь въ родѣ бумажки, чтобы они могли закрывать тѣ раз-ряды, на которые еще не умножали.
4. Четвертый способъ принадлежитъ Кебелю, нѣмецкому ученому XVI вѣка. Множимое и множитель пишутся такъ же, какъ и у насъ, но въ произведеніи порядокъ подписыванія нарушается, и единицы отступаютъ вправо, вмѣсто того, чтобъ имъ стоять подъ единицами. Зачѣмъ это понадобилось Кебелю, и понять нельзя: нѣтъ въ зтой формѣ ни удобства, ни вообще какой-нибудь замѣтной цѣли; единственно, что тутъ можно думать, это то, что Кебель захотѣлъ изобрѣсти свой способъ и изобрѣлъ довольно неудачный.
Впрочемъ, на способѣ Кебеля учащіеся могутъ убѣдиться въ томъ, что неполныя произведенія можно подписывать какъ угодно, и не подъ разрядами производителей, лишь бы только выполнялось условіе, что единицы складываются съ единицами, десятки съ десятками, и т. д.
5. Пятый способъ отличается еще большей свободой въ подписываніи, въ немъ и отдѣльныя произведенія располагаются прямо другъ подъ другомъ, не обращая вниманія на то, что единицы оказались наискось отъ единицъ и десятки наискось отъ десятковъ; разумѣется, для отвѣта оно безразлично, складывать ли разряды вертикально или наклонно, лишь бы только не сложить единицъ съ дееятками; есть въ этомъ способѣ много оригинальности и пожалуй изящества, но мало удобства. Названіе его «per quadrilatero» и если перевести это выраженіе съ итальянскаго языка на русскій, то оно будетъ значить «способъ четыреугольника».
Прежде всего чертится рѣшетка; потомъ въ ней располагаются отдѣльныя произведенія такъ, что ихъ крайнія цифры стоятъ другъ подъ другомъ вертикально; сложеніе разрядовъ идетъ наискось, и цифры произведенія размѣщаются вправо и внизу; читать ихъ надо слѣва. Все это очень интересно, но для практическаго примѣненія мало годится. Это скорѣй ариѳметическое украшеніе, забава.
6. Всѣ предыдущіе пять способовъ требуютъ такого жъ основного порядка умноженія, какой и мы примѣняемъ всегда у себя; разница только въ подписываніи данныхъ чиселъ и искомыхъ: въ то время, какъ мы стремимся все расположить въ вертикальныхъ колоннахъ, Петценштейнеръ выноситъ множителя на сторону, Кебель отступаетъ съ произведеніемъ вправо, а по способу «четырехуголъника» разряды пишутся въ діагональномъ направленіи, т.-е. наискось; но вездѣ умноженіе начинается неизмѣнно съ низшихъ разрядовъ. Теперь мы обратимся къ случаямъ, когда оно начинается съ высшихъ разрядовъ, а не съ низшихъ. Это бываетъ и у насъ, но только при томъ условіи, если не приходится перечеркивать и исправлять написанныхъ цифръ. А цифръ не бываетъ, во-первыхъ, при устномъ счетѣ и, во-вторыхъ, при выкладкахъ на счетахъ. Поэтому въ обоихъ этихъ случаяхъ удобно начинать умноженіе съ высшихъ разрядовъ, тѣмъ болѣе, что и выговариваніе чиселъ и откладываніе ихъ на счетахъ идетъ все съ высшихъ разрядовъ. Но письменное умноженіе начинать съ лѣвой руки неудобно, потому что, если, напр., мы умножимъ десятки и запишемъ ихъ и потомъ перейдемъ къ единицамъ, то отъ умноженія единицъ могутъ получиться еще десятки, и намъ придется написанную цифру десятковъ стирать и замѣнять новой.
Далеко не безразлично, съ какихъ разрядовъ множимаго начинать письменное дѣйствіе, съ высшихъ или низшихъ. Послѣднее удобнѣе. Что касается множителя, то въ сущности одна привычка заставляетъ насъ начинать съ единицъ, потому что можно съ такимъ же правомъ умножать сперва на высшіе разряды множителя и потомъ постепенно переходить къ низшимъ, лишь бы вѣрно подписывать произведенія, т.-е. десятки подъ десятками, а единицы подъ единицами. Покажемъ это на примѣрѣ:
Еще виднѣе въ многозначныхъ числахъ:
7. Седьмой способъ принадлежитъ Вендлеру и отличается отъ шестого единственно тѣмъ же самымъ, чѣмъ второй отъ перваго, именно лишними нулями на мѣстѣ десятковъ, сотенъ и т. д. Если вписать эти нули, то 33×4567 изобразится въ такомъ видѣ:
8. Восьмой способъ устный, встрѣчается у Брамегупты, ученаго индуса VII в. по Р. X. Онъ совершенно сходенъ съ нашимъ устнымъ пріемомъ, да такъ и доджно быть, потому что индусы, главнымъ образомъ, изобрѣтали и совершенствовали устный счетъ, они были первыми спеціалистами въ этомъ родѣ вычисленій; они вычисляли отдѣльныя произведенія въ умѣ, писали ихъ строкой и потомъ складывалн. Лишнимъ, на нашъ взглядъ, могло бы показаться развѣ то, что множимое переписывается нѣсколько разъ, именно столько разъ, сколько разрядовъ во множителѣ.
9. Девятымъ пріемомъ умноженіе производится тоже сначала на десятки, а потомъ на единицы; если бы были сотни, то, конечно, сперва на сотни. Умноживши на десятки, произведеніе подписываютъ точно такъ же, какъ это сдѣлали бы и мы, но съ единицами идегь иначе.
Когда мы умножимъ 456 на 7, то получимъ 3192. Изъ нихъ 319 десятковъ помѣщаемъ внизу, во второй строкѣ, подъ тѣми цифрами, какія соотвѣтствуютъ имъ по значенію, а 2 единицы вверху, рядомъ съ 4 десятками, прямо подъ единицами множителя, въ виду того, что это мѣсто ничѣмъ не занято. Подобная система писать цифры какъ можно выше, на свободныхъ мѣстахъ, проявляется у многихъ авторовъ, какъ это мы увидимъ впослѣдствіи; порядокъ этотъ довольно безвредный, потому что, гдѣ бы ни писать, лишь бы написать вѣрно подъ своимъ разрядомъ: но онъ можетъ оказаться и неудобнымъ тогда, когда счетчикъ собьется: тогда очень трудно разобраться въ рядѣ цифръ, найти, какая изъ нихъ принадлежитъ къ какому произведению, и исправить ошибку. Этотъ девятый способъ приписывается Апіану (XVI в.).
10. Въ предыдущихъ 4 способахъ дѣйствіе начиналось съ высшихъ разрядовъ множителя, и въ этомъ только, главнымъ образомъ, и заключалась ихъ особенность; цифры подписывались почти такъ же, какъ у насъ, и вообще большого измѣненія противъ нормальнаго порядка не было. Но теперь мы перейдемъ къ болѣе грубымъ и старымъ пріемамъ, въ которыхъ уклоненій отъ нашего уже гораздо больше. Отличіемъ ихъ является полная механичность, безъ всякаго вычисленія въ умѣ; составители зтихъ пріемовъ держатся слишкомъ невысокаго мнѣнія о понятливости и сообразительности своихъ учениковъ, ничего не довѣряютъ устному счету и рекомендуютъ все записывать, даже до мелочей, и притомъ по опредѣленнымъ, точно установленнымъ формамъ. Напримѣръ, когда умножаются десятки, то къ ихъ произведенію нельзя прямо прибавить тѣхъ десятковъ, которые получились отъ единицъ, а надо написать отдѣльно и сложить ихъ въ самомъ концѣ, когда всѣ мелкія умноженія будутъ выполнены. Эти тяжеловѣсные, громоздкіе способы въ настоящее время всѣми оставлены, и никому въ голову не придетъ ими воспользоваться, между тѣмъ, въ XV–XVII столѣтіи, въ эпоху наиболѣе усиленной работы надъ ариѳметикой, когда индусская система проникла и въ народъ, и въ школу, эти способы были ходячими и общепринятыми. Сейчасъ они не имѣютъ никакой цѣны, потому что требуютъ много лишняго письма и лишняго времени для вычисленій, мы же ихъ приводимъ съ тою цѣлью, чтобъ показать, изъ какихъ первоначальныхъ и несовершенныхъ формъ образовались наши болѣе совершенныя.
Вотъ способъ Штейнмеца (XVI в.). Примѣръ:
Шестью семь 42, такъ и пишемъ; пятью семь 35, пишемъ 5 десятков подъ 4 десятками, а три сотни вверху подъ сотнями, потому что там мѣсто есть свободное; четырежды семь 28, пишемъ 8 сотенъ подъ 3-мя, а двѣ тысячи на свободном мѣстѣ тысячъ въ верхней строкѣ. Вообще стараемся писать цифры какъ можно выше, гдѣ только есть свободное мѣсто для извѣстнаго разряда. Отдѣльныя произведенія располагаются, какъ видимъ, строками, которыя, чѣмъ ниже, все короче, и получается фигура, похожая на треугольникъ, такъ что и самый способъ носитъ названіе треугольника. Послѣдніе его слѣды встрѣчаются въ учебникахъ еще въ XVII столѣтіи.
11. Умноженіе треугольникомъ имѣетъ не одну форму, а нѣсколько, въ зависимости отъ того, начинать ли дѣйствіе съ высшихъ разрядовъ или низшихъ, или даже какихъ-нибудь промежуточныхъ, писать ли цифры какъ можно выше или какъ можно ниже. Если начинать умноженіе съ высшихъ разрядовъ, то образуется такая фигура:
12. По двѣнадцатому способу умноженіе треугольникомъ начинается съ какого-нибудь средняго разряда. Конечно, зто безразлично для произведенія, если только мы не собъемся въ порядкѣ цифръ и не пропустимъ чего-нибудь и не возьмемъ лишняго. Умножимъ сперва 5 дес. на 97, потомъ 4 сотни и, наконецъ, 6 единицъ.
Треугольникъ можно бы повернуть основаніемъ внизъ и вершиной вверхъ. Тогда фигура получится красивѣе. Особенно она хороша при длинныхъ многозначныхъ числахъ, когда очертаніе треугольника выдѣляется яснѣе.
13. Стоило только математикамъ попасть на одну геометрическую фигуру, на треугольникъ, и они принялись изобрѣтать всевозможныя формы: уголъ, ромбъ и т. д. Наперерывъ, одинъ передъ другимъ, школьные педагоги въ Германіи и Италіи ХVІ—XVII вѣка стали предлагать хитроумные, фигурные способы, въ которыхъ не имѣлось въ виду удобства, а требовалось только представить что-нибудь новое и замысловатое. Нѣкоторые педагоги получили даже своеобразную извѣстность въ этомъ направленіи. Такъ итальянецъ Тарталіа училъ въ своей школѣ 8 способамъ; столькимъ же училъ и Лука-де-Бурго; но вычислять по нимъ они своихъ учениковъ не заставляли, кромѣ одного способа или двухъ, и приводили остальные только по установившемуся обычаю или изъ хвастовства.
Расположеніе угломъ достигалось благодаря тому, что произведеніе простыхъ единицъ отодвигалось вправо, а остальные разряды писались симметрично вверху и внизу. Вотъ форма угла при умноженіи 456 на 97.
Первое произведеніе 36 составилось изъ множителей 4 и 9, второе — изъ 5 и 9, третье — изъ 6 и 9. Такимъ образомъ, мы помножили на десятки и начали дѣйствіе въ этомъ случаѣ съ сотенъ множимаго; далѣе умножаемъ на единицы, но ведемъ уже въ обратномъ порядкѣ, именно, начинаемъ съ единицъ множимаго и постепенно добираемся до его сотенъ.
14. Четырнадцатый способъ—ромба. Онъ еще замысловатѣе, чѣмъ предыдущіе. Нужна особенная внимательность, да и знаніе секрета, какъ составлять ромбъ. Если помножить 456 на 397, то ромбъ можетъ получиться слѣдующимъ путемъ. Вверху пишется произведеніе 4 сотенъ на 7 единицъ, подъ нимъ произведеиіе 5 десятковъ на 3 сотни и на 7 единицъ; въ длинной строкѣ помѣщается 4 с. × 3 с., 5 дес. × 9 дес. и 6 ед. × 7 ед.; далѣе располагаются и остальныя произведенія. Все это очень сбивчиво и неудобно, даетъ массу ошибокъ въ вычисленіи, которыя найти потомъ такъ нелегко, что лучше все бросить и сдѣлать снова. Съ непривычки дѣло долго не клеится, отвѣта не выходитъ, но, зато, въ концѣ ученикъ имѣетъ право похвастать: у него получился ромбъ.
15. До сихъ поръ мы подписывали отдѣльныя произведенія внизу подъ множимымъ и множителемъ, и на это, конечно, у насъ была причина, потому что всѣ люди начинаютъ писать съ верхней стороны листа и постепенно спускаются книзу, гдѣ мѣсто свободное, неисписанное. Но отвѣтъ получится одинаково вѣрный и въ томъ случаѣ, если, не жалѣя бумаги, мы начнемъ дѣйствіе пониже и оставимъ мѣсто для отдѣльныхъ произведеній выше производителей. Получится у насъ такъ:
Способъ этотъ указалъ Глареанъ въ ХIІ в. Вычисленіе начинается справа, съ низшихъ разрядовъ; отвѣтъ въ самомъ низу.
16. Шестнадцатый способъ очень сходенъ съ предыдущимъ и является его предшественникомъ по времени, такъ какъ образовался въ XV вѣкѣ. Его даетъ ученый арабъ Алькальцади изъ Андалузіи Особенность въ немъ та, что множимое переписывается нѣсколко разъ и притомъ столько разъ, сколько цифръ во множителѣ. И еще есть особенность: множитель не стоитъ подъ множимымъ, а располагается выше его; кромѣ того, отдѣльныя произведенія разсѣяны по разнымъ строкамъ.
Множимое, повидимому, передвигается за тѣмъ, чтобы не сбиться, какой разрядъ множить на какой. Впрочемъ, выгоды отъ этого передвиженія особенной не представляется.
17. Въ высшей степени искусственная запись встрѣчается у Баскары, индусскаго автора, жившаго въ XII вѣкѣ. Это та же рѣшетка, что и въ 5 способѣ, но только съ полными цифрами, безъ всякаго пропуска и сокращенія. У итальянцевъ она называлась «gelosia», по образцу фигурныхъ рѣшетокъ, бывшихъ въ окнахъ средневѣковыхъ теремовъ.
Множимое 456 мы пишемъ вверху, множителя 97 съ лѣвой стороны. Каждый разрядъ числа 456 множится на каждый разрядъ 97-ми. Всего образуется 6 отдѣльныхъ произведеній. Ихъ мы пишемъ полностью по клѣткамъ, такъ, чтобы всякое произведеніе стояло противъ тѣхъ разрядовъ, отъ которыхъ оно получилось; напримѣръ, шестью семь 42, ставимъ это число подъ 6-ю и притомъ въ верхней строкѣ, потому что множитель 7 стоитъ въ этой строкѣ съ лѣвой ея стороны, 2 помѣщаемъ въ верхнемъ правомъ углу клѣтки, а 4 десятка въ нижнемъ лѣвомъ. Такъ же ведемъ дѣйствіе и съ остальными разрядами. Чтобы получить отвѣтъ, стоитъ только сложить числа въ діагональномъ порядкѣ наискось: 2 единицы сносимъ, 5+4+4 = 13 десятковъ, изъ нихъ 3 пишемъ; 8+3+5+5+1 = 22 сотни; 2 пишемъ; тысячъ будетъ 2+6+4+2=14, 4 пишемъ и, наконецъ, десятковъ тысячъ 3+1, всего 4. Искомое произведеніе выразится пятью цифрами: 44232. Способъ этотъ, какъ видно, очень сложный, фигурный и сбивчивый. Надо твердо помнить и хорошо привыкнуть къ тому, какъ чертится рѣшетка, какъ пишутся производители, гдѣ помѣщаются отдѣльныя произведенія, и какъ читается отвѣтъ; стоитъ только немного не остеречься, забыть, и тогда всѣ разряды перепутываются, и никакъ нельзя будетъ отличить, гдѣ единицы, гдѣ десятки, и что складывать съ чѣмъ. Вообще это вовсе не дѣловой способъ и не школьный, а скорѣе плодъ математической изобрѣтательности и развлеченіе въ математикѣ, которая въ средніе вѣка была особенно суха и недоступна, а подобныя выдумки ее оживляли.
18. Арабъ Альнасави (XI в.) училъ умножать еще болѣе чуждымъ для насъ пріемомъ. Онъ тоже не допускалъ устнаго счета и тоже подписывалъ всѣ цифры сполна, но сверхъ того и въ сложеніи у него было отличіе, потому что отдѣльные разряды складывались не въ концѣ всего дѣйствія, а постепенно, по мѣрѣ того, какъ они получались.
Множитель 97 пишется надъ множимымъ 456 такъ, что его высшій разрядъ, 9 десятковъ, стоитъ надъ простыми единицами числа 456. Вычисленіе начинается слѣва. 4×9 = 36, пишемъ 6 надъ четырьмя, а 3 рядомъ налѣво; 5×9=45, изъ нихъ 5 пишемъ рядомъ съ 6-ю, а 4 не подписываемъ надъ 6-ю, какъ это дѣлали въ способѣ треугольника, но прибавляемъ къ 6-ти, будетъ 10, прибавляемъ къ 30, будетъ 40, эти цифры помѣщаемъ надъ 36-ю. Ведемъ умноженiе далѣе: 6×9-= 54, изъ этого 4 пишемъ надъ 9-ю, потому что нижнее мѣсто занято, а 5 прибавляемъ къ 5-ти, получится 10, нуль пишемъ надъ пятью, единицу—надъ нулемъ, именно тѣмъ нулемъ, который принадлежитъ числу 40. Такимъ-то образомъ сложеніе идетъ рука объ руку съ умноженіемъ, и когда всѣ умноженія окончатся, то окончится и сложеніе, и отвѣтъ представится самыми высшими цифрами въ каждомъ вертикальномъ столбцѣ. Какъ видно, Альнасави допускаетъ особенность и въ множимомъ, именно онъ его еще разъ подвигаетъ и не только горизонтально, но такъ, что крайній разрядъ переставляется въ слѣдующую высшую строчку. Цѣль перемѣщенія та, чтобы единицы множимаго всегда приходились подъ тѣмъ разрядомъ множителя, на какой умножаемъ.
Альнасави заимствовалъ свой пріемъ у индусовъ; индусы же предпочитали устный счетъ письменному, не любили лишнихъ цифръ и. во всякомъ случаѣ, не стали бы вычислять такъ растянуто, какъ это дѣлаетъ Альнасави. У какого же индуса онъ его заимствовалъ? Или онъ самъ его такъ измѣнилъ? Объяснить это все можно такъ. Индусы вычисляли на пескѣ и сейчасъ же стирали тѣ цифры, которыя имъ не нужны, поэтому имъ было такъ легко передвигать множимое или множителя: они стирали прежнее и писали новое. Поэтому и мелкія сложенія и умноженія они писали только на одну минуту, и если имъ цифра не нужна, они ее сейчасъ за-мѣняли новой; такъ что, дѣйствительно, индусы не сбивались въ длинныхъ рядахъ цифръ и не запутывались, тѣмъ болѣе, что ихъ работѣ много помогалъ устный счетъ. Но арабы и Западная Европа переняли способы индусовъ, а примѣнять ихъ стали чаще всего на доскахъ и на бумагѣ, гдѣ цифры перетирать совершенно неудобно; отъ этого и получилась масса лишняго письма, сбивчивость и трудность въ вычисленіяхъ. Не скоро поняли европейскіе математики, что не достаточно перенести чужой пріемъ къ себѣ, но надо еще примѣнить его къ своимъ условіямъ, и тогда онъ будетъ пригоднымъ и удобнымъ.
19. Во всѣхъ разобранныхъ нами 18-ти способахъ, какъ они ни сложны и ни разнообразны, существенный ыорядокъ дѣйствія все время остается тотъ же, вездѣ дается 2 числа, множимое и множитель, и первое число, т.-е. множимое, помножается такъ или иначе на отдѣльные разряды множителя, сперва на его единиы, потомъ на десятки, сотни и т. д., или же, наооборотъ, раньше на сотни, а потомъ уже на десятки и единицы. Но нѣтъ ничего легче примѣнить другой порядокъ: не цѣлое множимое умножать на отдѣльные разряды множителя, а отдѣльные разряды множимаго на цѣлаго множителя. Такъ училъ индусскій авторъ Брамегупта (въ VII ст. по Р. X.).
Отвѣтъ у него помѣщается въ самомъ верху, данныя числа— внизу. Множитель переписывается столько разъ, сколько цифръ во множимомъ. Начинаемъ умножать 4 сотни на 97, получится 388 сотенъ, ихъ пишемъ надъ сотнями. Такъ же поступаемъ съ десятками и единiцами.
20. Самыми старыми первоначальными способами умноженія надо считать тѣ, когда умноженіе замѣняется сложеніемъ. Умноженіе, конечно, и есть въ существѣ дѣла сложеніе, но только сокращенное, благодаря таблицѣ и вслѣдствіе равенства слагаемыхъ. Чтобы, на-примѣръ; умножить 9 на 27, можно бы 9 выписать 27 разъ и потомъ послѣдовательно складывать: 9 + 9 = 18, 18 + 9 = 27, 27 + 9 = 36 и т. д. до 243-хъ. Но такое сосчитываніе было бы слишкомъ продолжительнымъ, и вотъ здѣсь является на помощь таблица умноженія, которая значительно сокращаетъ работу; изъ таблицы намъ извѣстно, что 9 × 2 = 18, а слѣдовательно 90 × 2 = 180, да 9 × 7 = 63, всего составится 180 + 63 = 243. Такимъ образомъ мы замѣнили набираніе 27 слагаемыхъ болѣе простыми дѣйствіями, именно 2 умноженіями и однимъ сложеніемъ. Не сразу выработала ариѳметика такой простой и легкій путь, чтобы замѣнять сложеніе равныхъ слагаемыхъ умноженіемъ. Поэтому на первыхъ ступеняхъ ея развитія, при наглядномъ счетѣ и при выкладкахъ на разныхъ счетныхъ приборахъ, преобладаетъ чистое сложеніе, а умноженіе является только урывками и проблесками. Едва къ концу среднихъ вѣковъ оно вполнѣ вступило въ свои права.
Приведемъ образецъ вычисленій на римскихъ цифрахъ. Изъ него хорошо видно, насколько сложеніе преобладало надъ умноженіемъ и замѣняло его. Требуется, положимъ, СХХХХIIIІ умножить на XXX. Тогда дѣйствіе располагается слѣдующимъ образомъ:
С · Х = М
С · Х = М
С · Х = М
ХХХХ · XXX = МСС
XXX + XXX + XXX + XXX = СХХ.
Такъ какъ множитель XXX состоитъ изъ X + X + X, то достаточно повторить множимое сперва X разъ, потомъ еще X разъ, и, наконецъ, еще X разъ и полученные отвѣты сложить. Но когда мы начнемъ повторять X разъ, то множимое, въ свою очередь, разложится на отдѣльныя слагаемыя: С + X + X + X + X + IIII; и придется намъ каждое слагаемое перваго числа помножать на каждое слагаемое второго.
21. Двадцать первымъ способомъ будетъ такъ называемый „per aschapezza“. Въ переводѣ съ итальянскаго языка,—способъ чаще другихъ примѣняли итальянцы,—это значитъ способъ «разложенія». Примѣръ: 44×26. Для этого 26 разлагаемъ на какія-нибудь легкія cлагаемыя, обыкновенно однозначныя, въ родѣ 3 + 4 + 5 + 6 + 8, и составляемъ пять произведеній: 44 · 3, 44 · 4, 44 · 5, 44 · 6, 44 · 8. Всѣ ихъ можно легко найти устно, и въ этомъ заключается преимущество подобнаго умноженія. Но иногда, забывая о главномъ условіи удобства, примѣняли этотъ способъ и тогда, когда онъ не даетъ никакого выигрыша ни во времени, ни въ письмѣ. Хорошимъ примѣромъ такого теоретическаго пользованія разложеніемъ можетъ служить помѣщенный въ аріѳметикѣ Брамегупты (VII в.): 235×288, съ разложеніемъ числа 288 на 9 + 8 + 151 + 120. Очевидно Брамегупта, выбирая такія неудобныя слагаемыя, не только не упростилъ дѣіствія, а скорѣе усложнилъ и затруднилъ; но онъ, навѣрное, и не задавался цѣлью упростить и облегчить вычисленіе, а желалъ только представить новую форму умноженія.
22. Какъ мы уже сказали, замѣна умноженія сложеніемъ является самымъ легкимъ и простымъ пріемомъ и въ то же время самымъ старымъ и испытаннымъ. Египтяне за много столѣтій до Р. X. умѣли съ болышшъ искусствомъ, чрезвычайно свободно и остроумно пользоваться этой замѣной. Если, напримѣръ, имъ требовалось умножить на 17, то они сперва складывали множимое само съ собой и получали такимъ образомъ двойное число; его тоже складывали само съ собой, получали четверное число; четверное складывали съ четвернымъ, получали восьмерное; восьмерное съ восьмернымъ, получится 16 ть слагаемыхъ, а такъ какъ ихъ задано набрать 17-ть, то остается добавить только одно слагаемое и отвѣтъ будетъ найденъ. Подобнымъ же образомъ они могли, напримѣръ, вычислять 466 .13. Они составляли 466.2 = 932, 932.2 = 1864, 1864.2 = 3728, затѣмъ складывали восьмерное число съ четвернымъ и съ простымъ и получали 466 .13 = 3728 + 1864 + 466 = 6058. Такимъ путемъ египтяне умѣли добираться до сложныхъ результатовъ, хотя и медленно, но довольно вѣрно и успѣшно. Изъ всѣхъ умноженій у нихъ было только одно удвоеніе; они даже не знали таблицы умноженія. Не они ли пришли къ мыели выдѣлить удвоеніе въ особое дѣйствіе, къ мысли, которая примѣнялась очень долго и едва въ ХУІ столѣтіи была оставлена, потому что съ этого времени удвоеніе вошло въ составъ вообще умноженія.
Покончимъ теперь на египтянахъ и не будемъ уходить далѣе въ глубь вѣковъ, тѣмъ болѣе, что у насъ нѣтъ фактическаго матеріала для этого. Подведемъ итоги всему. что сказали объ умноженіи. Оно начинается съ сложенія равныхъ слагаемыхъ и въ этомъ случаѣ не пользуется никакими особенными правилами, сокращеніями и удобствами. Затѣмъ, благодаря практикѣ, начинаетъ выдѣляться удвоеніе и оно образуетъ фундаментъ новаго дѣйствія—умноженія: по образцу удвоенія легко могли возникнуть другіе подобные разсчеты и удвоеніе натолкнуло на то, чтобы находить тройное число, четверное, десятерное и т. п. Всѣ эти употребительные случаи, повторяясь часто, привели къ таблицѣ умноженія и выдѣлили окончательно дѣйствіе умноженія изъ массы случаевъ сложенія. Тогда же начинается письменное производство этого дѣйствія, сначала въ грубой и несовершенной формѣ, при помощи абака и другихъ похожихъ на него пособій, съ многочисленными стираніями и измѣненіями цифръ; сложеніе отдѣльныхъ произведеній сначала шло попутно, вмѣстѣ съ умноженіемъ разрядовъ, но потомъ его начали относить на самый конецъ и производить тогда, когда уже всѣ произведенія найдены. Въ старинныхъ способахъ умноженія устный счетъ почти не допускался, и всѣ цифры, какія надо, писались безъ пропуска, и въ умѣ ничего не удерживалось: такъ, по крайней мѣрѣ, было въ Западной Европѣ въ средніе вѣка. Ближе къ нашему времени стали примѣнять и устный счетъ, начали помогать письму тѣмъ, что нѣкоторыя цифры удерживали въ умѣ, и такимъ то образомъ развился и принялъ окончательную отдѣлку нашъ современный нормальный способъ умноженія.
23. Индусы и Адамъ Ризе, и итальянцы XVI в. часто разлагали множителя на производителей. У итальянцевъ это называлось «per repiego». Чтобы, напр., умножить 15, можно данное число умножить на 5 и полученное вновь умножить на 3. Чтобы умножить на 121, можно умножить на 11 и опять на 11. Еще лучше у Адама Ризе: если ему надо какое-нибудь число взять слагаемымъ 46 разъ, то онъ умножаетъ данное число на 9, полученный результатъ—на 5 и ко всему этому прикладываетъ еще одно, 46 слагаемое. Хорошо бы и намъ пользоваться почаще такими сокращеніями и пріучать къ нимъ своихъ дѣтей въ училищахъ. Есть, правда, во многихъ школахъ, особенно въ начальныхъ, спеціальныя занятія по устному счету, но, во-первыхъ, очень жаль, что они въ средней школѣ глохнутъ и не продолжаются, и, во-вторыхъ, они ведутся, обыкновенно, по шаблону и не столько развиваютъ личную сообразительность дѣтей, сколько пріучаютъ ихъ къ готовымъ формуламъ.
24. Другимъ хорошимъ способомъ, который тоже можетъ развивать сообразительность и помогать вычисленію, является слѣдующій. Множитель замѣняется новымъ числомъ, которое болыпе его въ нѣсколько разъ или на нѣсколько единицъ, и притомъ гораздо удобнѣе для дѣйствія, чѣмъ самъ данный множитель. Напримѣръ, если намъ задано умножить какое-нибудь число на 25, то мы вмѣсто этого умножимъ на 100—такъ гораздо легче—и полученное отъ этого умноженія число раздѣлимъ на 4. Точно также, чтобы умножить на 98, мы можемъ умножить на 100 и изъ этого произведенія вычесть двойное множимое, потому что мы его взяли лишнихъ 2 раза. Оба эти пріема хороши для устныхъ вычисленій, они придуманы давно, еще индусами, но все еще не имѣютъ такого большого примѣненія на практикѣ, какого заслуживаютъ по своей легкости и удобству.
25. Есть еще методъ умноженія многозначныхъ чиселъ, очень интересный и оригинальный. Онъ построенъ на совершенно иной руководящей мысли, чѣмъ нашъ настоящій методъ. Мы теперь интересуемся множимымъ и множителемъ, старательно подписывая ихъ другъ подъ другомъ или рядомъ, разлагаемъ ихъ на разряды и разсуждаемъ, съ которой стороны лучше начать; такъ что порядокъ вычисленія у насъ опредѣляется множимымъ и множителемъ, и наши заботы мало касаются произведенія, которое выходитъ какъ-то само собой, изъ сложенія частныхъ результатовъ. Наоборотъ, способъ «крестикомъ», о которомъ мы будемъ сейчасъ говорить, обращаетъ исключительно свое вниманіе на результатъ умноженія и изъ его разбора, а не изъ разбора данныхъ чиселъ, выводитъ порядокъ дѣйствія. Въ способѣ «крестика» надо сперва вычислить единицы произведенія, потомъ его десятки и притомъ сразу всѣ, какіе только могутъ оказаться, чтобы затѣмъ къ десяткамъ болѣе не возвращаться; потомъ надо вычислить сотни произведенія, опять-таки всѣ, какія только могутъ въ немъ быть; и такъ мы идемъ послѣдовательно отъ одного разряда къ другому. Еще греки любили пользоваться этимъ умноженіемъ и назвали его «хіазмомъ», потому что греческая буква хи «Х» какъ разъ своей фигурой напоминаетъ крестикъ.
Возьмемъ примѣръ сперва двузначный: 56×97 и поставимъ такой вопросъ: откуда могутъ получиться единицы произведенія? Очевидно, только отъ перемноженія простыхъ единицъ, потому что отъ умноженія десятковъ будутъ десятки, отъ сотенъ будутъ сотни и т. д. 6×7 = 42, слѣд. простыхъ единицъ въ отвѣтѣ будетъ двѣ, не больше и не меньше. Итакъ, одну цифру мы нашли, она будетъ обязательно 2. Рѣшаемъ теперь второй вопросъ: откуда получаются десятки произведенія? Во-первыхъ, отъ умноженія десятковъ на единицы, во-вторыхъ, отъ умноженія единицъ на десятки и, кромѣ того, нѣсколько десятковъ образовалось отъ перемноженія простыхъ единицъ. Больше ни откуда десятковъ получиться не можетъ, такъ какъ во всякомъ случаѣ сотни и тысячи дадутъ по крайней мѣрѣ сотни же и тысячи. Вычисляемъ десятки: 5×7 — 35, 9×6 = 54, да 4 десятка осталось отъ единицъ, всего составится ихъ 93; изъ этого 9 сотенъ пока замѣтимъ, а 3 десятка можемъ записать спокойно: это ужъ цифра окончательная. Высчитываемъ сотни. Въ нашемъ примѣрѣ онѣ могутъ получиться только отъ умноженія десятковъ на десятки и ихъ будетъ 45, да 9 сотенъ отъ десятковъ, всего 54 сотни. Пишемъ ихъ въ окончательномъ отвѣтѣ и получаемъ: 56×97 = 5432. «Крестикъ» мы здѣсь примѣняли, когда составляли десятки произведенія, потому что въ этомъ случаѣ мы умножали крестъ на крестъ 5 на 7 и 6 на 9. Все дѣйствіе можно изобразить такой фигурой:
5 6
X
9 7
————
5432
Чтобы читателю былъ яснѣе виденъ ходъ вычисленія, разберемъ еще трехзначныи примѣръ. Возьмемъ 467 X 893. Низшимъ разрядомъ въ произведеніи будутъ простыя единицы, а высшимъ—десятки ты-сячъ, потому что сотни, умноженныя на сотни, даютъ десятки ты-сячъ; всего, слѣдовательно, въ произведеніи будетъ 5 разрядовъ. Оііредѣляемъ ихъ постепенно. Прежде всего запишемъ данныя числа такъ, чтобы цифры стояли порѣже и между ними были свободные промежутки, э зачѣмъ,—это будетъ понятно далѣе.
Простыя единицы образуются отъ перемноженія простыхъ же единицъ; 7 × 3 = 21, единицу пишемъ и 2 въ умѣ. Десятки образуются отъ умноженія десятковъ на единицы и единицъ на десятки и дадутъ: 6 × 3 = 18, 9 × 7 = 63, да 2, всего 83, три пишемъ и 8 замѣчаемъ. Но мы пишемъ 3 десятка не подъ десятками, а въ промежуткѣ между единицами и десятками: цѣль здѣсь та, чтобы сохранить полную симметрію въ расположеніи цифръ и строгій порядокъ, который не допустилъ бы насъ сбиться; дѣйствительно, какъ у насъ образовалась цифра единицъ и гдѣ она подписана? Она образовалась отъ единицъ и подъ ними подписана:
7
3
—
1
.
Какъ образовалась цифра десятковъ и гдѣ ее лучше всего подписать? На это отвѣтимъ мы такимъ чертежомъ:
6 7
×
9 3
———
3
Цифра 3 стоитъ симметрично подъ тѣми цифрами, отъ которыхъ она получилась. Вотъ далѣе чертежи для сотенъ, тысячъ и десятковъ тысячъ:
Сотни высчитываются такъ. Онѣ получаются отъ умноженія сотенъ на единицы, единицъ на сотни и десятковъ на десятки, будетъ 4.3 = 12, 7.8 = 56, 6.9 = 54, да отъ умноженія десятковъ осталось 8 сотенъ, всего ихъ составится 130, нуль пишемъ подъ чертой, а 13 тысячъ пока держимъ въ умѣ. Отыскиваемъ теперь тысячи нашего произведенія: онѣ получаются тогда, когда сотни множатся на десятки и десятки на сотни, слѣд. 4×9 = 36, 6×8 = 48, да еще замѣченныхъ 13, и составится ихъ всего 97. Цифру 7 пишемъ подъ чертой. Легко, наконецъ, опредѣлить и десятки тысячъ: ихѣ будетъ 41.
Такимъ же образомъ можно умножить и всякія многозначныя числа, до пятизначныхъ, шестизначныхъ и выше. Симметрія руководитъ нами во всѣхъ этихъ примѣрахъ и не позволяетъ сбиться. Поэтому, если во множимомъ и во множителѣ цифръ не поровну, напр., четырехзначное число берется съ двузначнымъ, то лучше всего приписать пару лишнихъ нулей и получить опять симметричную фигуру:
Индусы были въ восхищеніи отъ этого способа, часто имъ поль-зовались и умѣли умножать по этому способу очень быстро, за что и прозвали его «молніеноснымъ». Онъ вовсе не труденъ, если только научиться быстро складывать двузначныя числа; что онъ не нуждается въ большомъ письмѣ и даетъ выигрышъ во времени, въ этомъ, конечно, нечего и сомнѣваться. Какъ было бы хорошо, если бы онъ, почти забытый послѣ индусовъ и грековъ, получилъ доступъ въ наши школы, распространился въ народѣ и оправдалъ свое названіе «молніеноснаго».
26. Закончимъ нашу бесѣду объ умноженіи объясненіемъ послѣдняго, въ высшей степени оригинальнаго пріема, который незнающаго наблюдателя можетъ даже поразить. Передаютъ, будто одинъ нѣмецкій школьный учитель показалъ дѣтямъ это умноженіе, а потомъ при посѣтителяхъ спрашивалъ считать устно и приводилъ въ удивленіе быстротой счета, разумѣется въ томъ случаѣ, если посѣтитель не зналъ секрета.
Учнтель: «83×87!»
— Ученикъ: «80×90 = 7200 да 3-жды семь 21, всего 7221».
—Учитель: «24×26!»
—Ученикъ: «20×30 = 600, да четырежды шесть 24, всего 624».
— Учитель: «92 × 98!»
—Ученикъ «90 × 100 = 9000, да дважды восемь 16, всего 9016».
Секретъ, какъ видно, заключается въ томъ, что не всякій примѣръ годится для этого правила, а только такой, гдѣ бы десятки въ обоихъ множителяхъ были одинаковыми, а единицы составляли въ суммѣ десять; такъ что если взять одинъ множитель, наприм., 41, то парнымъ къ нему множителемъ обязательно долженъ быть 49. Правило для подобныхъ примѣровъ слѣдующее: надо десятки помножить на слѣдующіе десятки (40×50=2000), а единицы просто перемножить (1×9 = 9) и все сложить: 2000 + 9 = 2009. Правило это далъ итальянецъ Тарталья (XVI в.), большой изобрѣтатель разныхъ способовъ, и письменныхъ, и устныхъ.
Объяснимъ послѣдній примѣръ: 41×49. Какъ бы мы попросту стали его вычислять? Сперва 40 помножили бы на 40, потомъ 40 на 9, потомъ 1 на 40 и, наконецъ, 1 на 9. Намъ пришлось бы 40 повторить 40 разъ и 9 разъ и еще 1 разъ, потому что 1 × 40 все равно, что 40 × 1; такимъ образомъ 40 надо помножить на 50, да 1 на 9, всего 2009.
Подобные пріемы, дѣйствительно, даютъ при устномъ счетѣ громадную выгоду и удобство. Смѣло рекомендуемъ ихъ вниманію любителей ариѳметики.