В предыдущей главе я упомянул о нескольких лауреатах Нобелевской премии. Чего уж там говорить, Нобелевская премия – вещь хорошая, особенно для рекламы (самого высокого уровня), но сами ученые предпочитают мериться индексами цитирования. Самый уважаемый специалист – тот, на чьи труды больше всего ссылаются. Когда вас часто цитируют, это означает, что ваши коллеги обращают внимание на вашу работу и считают, что она связана с их собственной. При всем почтении к всяким революционным теориям, приходится отметить, что больше всего цитируют тех ученых, которые просто сумели придумать удачный способ делать что-то, ведь их методики постоянно в ходу.
Я долго разглагольствовал о теории и истории иммунологии – иными словами, о том, что такое иммунология сейчас и чем она была раньше. А в этой главе мне хотелось бы обратиться к тому, что иммунология делает. Какими путями она влияет на наш сегодняшний мир? И что она сможет предложить нам завтра?
Вне тела
Молекула антитела весьма специфична. Она присоединяется лишь к определенному типу антигенов. Поэтому такие молекулы служат очень полезным инструментом для того, чтобы идентифицировать практически что угодно (и прикрепляться к чему угодно). Прикрепите небольшую флуоресцентную молекулу к концу антитела, и вы сможете идентифицировать ее мишень-антиген с помощью микроскопа. Прикрепите радиоактивную молекулу, и вы сможете проводить такую же идентификацию при помощи счетчика Гейгера. Прикрепите маленькую молекулу, дающую цветную реакцию… Короче говоря, возможности здесь неисчислимы. Антитела и в самом деле активно применяются и в биологических лабораториях, и в клинических испытаниях, при диагностике и при лечении. Они обнаруживают рак; их можно применять против Т-лимфоцитов для подавления иммунитета; они входят в состав тестов на бесплодие и беременность; с их помощью можно очищать промышленные продукты, бороться с токсинами (например, при укусе змеи), обнаруживать взрывчатку или запрещенные вещества. Когда вы сдаете кровь на анализ, высока вероятность, что в процессе этого анализа (к какой бы категории он ни относился) будут использоваться антитела.
Если только вы можете произвести нужные антитела. В-лимфоциты нашего тела, действуя случайным образом, вырабатывают миллиарды типов антител, а кроме того, в больших количествах производят необходимое антитело, когда в организм попадает соответствующий антиген. Благодаря этому можно получать антитела для любого вещества, введя это вещество подопытному животному, выждав положенное время и затем добыв антитела из крови животного. Проблема в том, что при этом у вас на руках, скорее всего, окажется целый ряд разных типов антитела, и каждый из этих типов будет специфичен по отношению к определенному эпитопу (или антигенной детерминанте, части макромолекулы антигена, которая распознается иммунной системой – антителами, B-лимфоцитами, T-лимфоцитами – данного антигена).
Иногда такой проблемы не возникает, но все равно содержание подопытных животных, впрыскивание и очистка крови – процесс муторный и трудоемкий. В середине 1970-х годов придумали другой путь. Сезар Мильштейн и Георг Кёлер разработали методику получения моноклональных антител.
Моноклональное антитело – продукт слияния двух клеток. Первая – клетка селезенки, вырабатывающая антитела. Вторая – клетка миеломы, раковая клетка, которую можно искусственно вырастить вне тела. Если вы хотите получить моноклональные антитела для вещества X, введите X в организм мыши, отберите (прости, мышка) клетки ее селезенки, а затем, уже вне мышиного организма, смешайте их с клетками миеломы. В строго определенных условиях клетка селезенки сольется с клеткой миеломы, образуя двухклеточную химеру – гибридому. Такая химера может жить в лабораторной культуре вечно, без конца совершая пролиферацию, то есть размножаясь делением (раковые клетки отлично это умеют) и вырабатывая антитела одного-единственного типа. Затем можно выбрать ту гибридому, которая вырабатывает самые лучшие антитела для вещества X. Она способна производить один и тот же тип антител для X в неограниченных количествах и сколь угодно долго.
За разработку этой методики Мильштейн и Кёлер получили в 1984 году Нобелевскую премию. Что еще важнее, эта методика успешно применяется вот уже несколько десятилетий. На статью, где они впервые описали этот процесс, с тех пор сослались десятки тысяч раз. Сравнительно недавно в некоторых лабораториях попытались применить этот метод любопытным образом: ученые осуществляли слияние клеток селезенки не с раковыми клетками, а со стволовыми (тоже большими мастерами пролиферации). Дополнительное преимущество – не возникает необходимости плодить рак. Для работы в лабораторных условиях это не такое уж и преимущество, поскольку пластиковые пробирки не подвержены онкологическим заболеваниям. Однако ученые пытаются пересаживать эти клетки-химеры обратно животным, чтобы получать, к примеру, коз, которые дают обогащенное антигенами молоко, или кур, которые несут яйца, оснащенные терапевтическими компонентами. Гены, ответственные за производство антител, можно встраивать в растения, еще больше облегчая выработку (в данном случае – выращивание) антител. Возможно, нижеследующее покажется вам чем-то неестественным и даже вызовет у вас неуютные ощущения, но все же представьте себе:
Противораковый омлет.
Конец эпохи
Доклад Всемирной организации здравоохранения от 30 апреля 2014 года ясно и недвусмысленно указывает: микробы, резистентные (не поддающиеся) антибиотикам, сегодня – глобальная угроза. Мы уже давным-давно знаем об этой проблеме. Предупреждающие сигналы поступали с самого начала. Еще в 1945 году Александр Флеминг, первооткрыватель пенициллина, в своей нобелевской лекции (и вскоре после того, как этот антибиотик стал широко применяться) заявил: «Невежественный человек легко может принять слишком незначительную дозу, подвергнув своих микробов воздействию нелетального количества препарата. Это настоящая опасность: в результате они сумеют выработать невосприимчивость к этому веществу».
Так и вышло. Антибиотики стали чудодейственным средством, которое – большая редкость – вообще никак не использовало иммунные механизмы. Эти препараты помогли спасти миллионы жизней, но за чудо пришлось платить: микроорганизмы постепенно выработали сопротивляемость по отношению к этим веществам, и скорость, с которой распространяется эта сопротивляемость, гораздо выше той ничтожной скорости, с которой мы, люди, можем выпускать новые препараты для борьбы с микроорганизмами.
Одна из проблем здесь – в том, что наше общество стало очень заботиться о безопасности, в том числе и о безопасности фармацевтической. На то, чтобы провести новый препарат через все нормативно-правовые процессы и клинические испытания, уходит много лет и много денег. Но даже если этот процесс как-то удастся ускорить (что может привести к появлению на рынке потенциально небезопасных лекарств), микробы продолжат эволюционировать своим всегдашним путем: быстро, коллективно и не особенно заботясь о сохранности собственной жизни. Сопротивляемость антибиотикам часто передается особыми генами, которым так или иначе удается помешать воздействию лекарства. Эти гены не всегда остаются в геноме микроба: порой они перемещаются в мобильные генетические элементы и находят дорогу внутрь других микробов (иногда принадлежащих к иному виду!), которые в результате также становятся неуязвимы по отношению к данному антибиотику.
А поскольку мы перестаем принимать лекарство, когда начинаем чувствовать себя лучше (вместо того, чтобы честно завершить курс, как требуют врачи); и поскольку люди частенько принимают антибиотики «просто так, на всякий случай» (даже если у них вирусная инфекция, антибиотикам, как известно, не подвластная); и поскольку фермеры дают антибиотики своей вполне здоровой скотине (чтобы та оставалась здоровой, набирала вес и могла быть выгодно продана); и поскольку антибиотики – не самая прибыльная сфера фармацевтических исследований (пока от резистентных штаммов не начнет умирать достаточно народу, чтобы оправдать расходы на соответствующие изыскания); и поскольку геномика и биологическая статистика, столь многообещающие, пока не сумели дать сколько-нибудь мощный толчок разработке новых антибиотиков; и поскольку от непосредственных последствий при неправильном употреблении антибиотиков обычно страдает не тот, кто употребляет препарат; и поскольку, принимая антибиотики, мы сами проводим отбор по сопротивляемости, убивая всех несопротивляющихся микробов и оставляя поле битвы за резистентными, – по всем этим причинам и по множеству других мы сами активно поощряем микробов к выработке резистентности по отношению к антибиотикам.
Мы уже не первый год слышим об угрозе прихода «постантибиотической эпохе». И вот эта эпоха наступила. Тысячи людей, в том числе молодые и здоровые жители стран, где доступно самое современное медицинское обслуживание, умирают от болезней, которые мы, казалось, навсегда победили еще давным-давно.
К сожалению, эта проблема никуда не денется в обозримом будущем. Нам придется вести себя осторожнее: пытаться избегать инфекций и поддерживать свою иммунную систему в порядке, насколько это возможно.
Что-то я этого не чувствую
Сейчас я скажу одну вещь, которая не понравится многим ученым, особенно тем, кто участвует в разработке вакцин. Мне и самому не нравится то, что я собираюсь сказать. И вот я сижу перед клавиатурой, пытаясь как-то отвертеться от этого. Я изучил массу книг и статей о вакцинах, и чем больше я читаю эту литературу, тем глубже осознаю: неважно, насколько я взбудоражу научную элиту, ведь совесть не позволяет мне и дальше хранить молчание по этому поводу. Я больше не могу игнорировать печальную истину.
Вакцины – скучная штука.
Ну вот, я сказал.
Извините, уж как получилось. Я знаю, что миллионы людей сейчас живы благодаря вакцинам (вероятно, среди них я и члены моей семьи), и я понимаю, что разработка вакцин – работа трудная, она требует усердия и мастерства; но «важная работа» и «тяжелая работа» не всегда означает «интересная работа». Я честно пытался отыскать в этой сфере что-нибудь любопытное, но после Пастера, героически спасшего ребенка от бешенства в самую последнюю минуту при помощи непроверенной вакцины, все происходит довольно однообразно: ученые заранее (не в последнюю минуту, а за месяцы или годы до критического момента) спасают детей от болезней при помощи проверенных вакцин. К примеру, Морис Хиллеман создал десятки вакцин, но я узнал о его существовании лишь совсем недавно. Я уверен, что для него эта работа была интересной (как и для всех его сотрудников: по всем отзывам, Хиллеман отличался большим остроумием и не стеснялся пускать его в ход), однако, насколько могу судить, Хиллеман просто изо всех сил старался делать вакцины безопаснее и эффективнее.
В отчаянной попытке раскопать какую-нибудь увлекательную историю я обратился к антивакцинным ресурсам, но и там не нашел никакой интересной науки. Я целые часы провел за изучением материалов антивакцинных движений, узнал массу противоречащих друг другу фактов о правительствах, страховых компенсациях, о моем неотъемлемом праве на информированный выбор, о всемирных заговорах, но научная сторона того, что происходит с иммунизированным и неиммунизированным организмом, по большей части оставалась за кадром и сводилась к набору безответственных заявлений. Возможно, я просто заходил не на те сайты.
Вакцинация может дать интересный материал для рассказа, если посмотреть на нее с точки зрения здравоохранения или если вам охота поговорить о том, как человек обрабатывает сложную информацию и принимает решения. Можно потолковать об экономике вакцинации, обсудить ее психологию и этику: тут масса тем для дискуссий, не говоря уж о множестве книг, посвященных этим предметам.
А вот что касается биологии вакцинации, то здесь все довольно-таки прямолинейно: иммунной системе демонстрируется патоген, она реагирует на него, и эта реакция создает иммунную память, которая в дальнейшем помогает организму противостоять последующему заражению данным патогеном. Вакцины существуют во многих вариантах: в двух самых известных и широко используемых применяются ослабленная форма вируса и убитый вирус, однако есть и другие типы вакцин, создаваемых так, чтобы они обладали как можно большей иммуногенностью (способностью вызывать иммунный отклик) при минимальной патогенности (способности вызывать заболевание). ДНК-вакцины используют лишь ДНК вируса. Субъединичные вакцины сделаны из белков вируса, а не из целого вируса. Конъюгированные вакцины заставляют организм реагировать на вирусный компонент, который сам по себе не очень иммуногенен, путем связывания его с высокоиммуногенным белком: иммунная система, активизируясь благодаря присутствию этого высокоиммуногенного компонента, почему-то заодно запоминает и низкоиммуногенный.
Постоянно предлагаются и испытываются различные новаторские типы вакцин. Сегодня, кажется, все чаще поговаривают о том, что в ближайшем будущем нам, возможно, станет доступна эффективная вакцина против малярии. Такую вакцину создать непросто – во многом из-за того, что малярию вызывает не вирус (не имеющий ядра), а паразит-эукариота, у которого немало общего с нашими собственными клетками и который к тому же отлично умеет прятаться от иммунной системы (в красных кровяных тельцах и в печени).
Надеюсь, действенная противомалярийная вакцина уже на подходе, но такие вот хитроумные паразиты-простейшие представляют серьезные трудности для вакцинологов, которым еще предстоит справиться с целым рядом вирусных болезней. Пока нет вакцины против ВИЧ (несмотря на все усилия и все внимание, уделяемое этой проблеме), не говоря уж о таких коварных многоклеточных паразитах, как гельминты, чью способность избегать иммунной кары я уже обсуждал.
Вакцины всегда пребывали в царстве адаптивного иммунитета, со всеми этими специфичными реакциями и иммунной памятью, которую они должны создавать. Однако постепенно подбираются данные, как будто указывающие на то, что вакцинация может также активировать и систему врожденного иммунитета, готовя ее к бою. Так, научная группа Найджела Кёртиса в мельбурнском Королевском детском госпитале изучает сейчас «неспецифические эффекты иммунизации БКГ» (так они это называют). БКГ (от «бацилла Кальмета – Геринга») – противотуберкулезная вакцина, и наблюдения показывают, что у детей, которым ее вводят, ниже уровень смертности и от других инфекционных заболеваний, а кроме того, у таких детей реже возникает аллергия и экзема. Кёртис с коллегами пытаются выяснить, почему это так. Вот что такое интересное исследование (ну, с моей точки зрения).
Возможно, лет через 10–20 мы будем лучше понимать неспецифические эффекты вакцин, научимся оптимизировать вакцины и режим вакцинации так, чтобы достигать максимального положительного эффекта, сводя к минимуму нежелательные побочные эффекты. Любопытно, как будет проходить вакцинация у моих внуков.
Ну, а пока главное для профилактики заболеваний (и предотвращения смерти от болезней) – не столько разработка новых вакцин, сколько освоение тех, которые уже имеются в нашем распоряжении. Множество жизней спасает логистика организации неразрывной «холодильной цепочки», гарантирующей, что вакцины при хранении и транспортировке будут постоянно находиться при низкой температуре – начиная от фармацевтической фабрики и кончая пунктом назначения, куда они должны прибывать готовыми к применению. Сейчас развивается другой подход к доставке вакцин: разрабатываются методы «встраивания» вакцин в пищу (похоже на методику производства растительных антител, описанную в предыдущей главе), поскольку в глухой африканской деревне дать ребенку вакцинированный банан куда проще, чем раздобыть охлажденную ампулу с вакциной, не говоря уж о том, что ребенку в глухой деревне легче дать съесть банан, чем сделать укол.
Еще пример: знаете эти дурацкие стирофомовые шарики, которыми набивают подушки? В тех областях, где комары являются переносчиками заболеваний, такие шарики можно бросать в колодцы и сельские уборные. Стирофом плавает на поверхности жидкости и нарушает жизненный цикл комаров, мешая личинкам начать летать, а взрослым особям – откладывать яйца.
Ну да, эффективно, а все-таки (если только вы не живете в комарином краю) ужасно скучно.
Рак
Антивирусная программа в моем компьютере только что показала окошко с гордым сообщением, что за последнее время она защитила меня «от целого ряда угроз». Я попытался узнать побольше, но программа не пожелала вдаваться в подробности вышеупомянутых угроз, предпочитая ограничиваться общими туманными замечаниями, сводящимися, по сути, к одному: «У вас отличная машинка, жаль будет, если ее придется выбросить». Так что я махнул рукой и отступился. Я не нарываюсь, понятно?
Если бы наша иммунная система посылали нам такие же сообщения, вы удивились бы, узнав, с каким количеством внутренних опасностей приходится иметь дело этой системе (а может, и не удивились бы, если бы перед этим почти до конца прочли книжку о таких опасностях). К счастью, полномасштабный рак – явление редкое, но клетки нашего организма ежедневно выходят из повиновения, и иммунная система должна держать их в узде.
Вы уже слышали, что рак – это не что-то одно. Это общее название для огромного количества заболеваний, объединенных единственной особенностью – неуправляемым ростом и делением клетки. Почти каждый тип клеток организма (за некоторыми примечательными исключениями вроде клеток сердца) может рано или поздно начать это делать. Мы до сих пор не умерли от этого во многом благодаря тому, что почти всегда клетка способна себя контролировать. А когда ей это не удается, за нее берутся окружающие клетки, в том числе и иммунные. Иммунная система постоянно следит за клетками тела и при первых признаках неприятностей уничтожает те, что кажутся ей подозрительными.
Следует помнить, что деление – обычное действие живых клеток, которым они занимаются «по умолчанию». Посмотрите на тыльную сторону своей кисти, задумайтесь о странной судьбе каждой клетки кожи на ней. С ее точки зрения, она появилась как первая живая клетка в мире, миллиарды лет назад, и с тех пор снова и снова делилась, бесчисленное количество раз. В какой-то момент (приблизительно в последние миллиарды лет) она образовала непрочный союз со своими собратьями-клетками, и этот союз постепенно укреплялся, а потом каждая клетка приобрела свою особую роль. Нашей клетке в качестве особой роли досталось размножение. Оно-то и позволило ей выиграть в лотерее выживания: она стала одной из весьма немногих, кто смог обрести продолжение, породив следующее поколение. Так что она снова и снова размножалась, и всякий раз, в каждом новом организме, который она создавала из себя самой, ее сородичи принимались формировать тело (и позже погибали), а она снова и снова исполняла свою репродуктивную роль. Шли тысячелетия, человек произошел от своих эволюционных предков, и эта клетка стала человеческой репродуктивной клеткой (сперматозоидом или яйцеклеткой), и процесс повторялся: неограниченный рост, направление на работу в репродуктивную систему, удачное оплодотворение, несколько десятилетий ограниченного, управляемого роста и деления в человеческих яичках и яичниках, а затем снова репродуктивный цикл.
Вот каким было существование для этой клетки – с самого зарождения жизни на Земле, задолго до того, как появились вы. И тут вдруг (что называется, старожилы такого не упомнят) нашей клетке не поручают репродуктивную роль, эту работу предоставляют другим. А ее делают клеткой кожного эпителия. Она продолжает делиться и расти, делиться и расти, все дальше дифференцируясь, но теперь это зрелая эпителиальная клетка, и когда-нибудь, впервые за свою жизнь протяженностью 3,8 миллиарда лет, ей помешают делиться, и она окажется перед лицом гибели.
Клетки, не отягощенные сознанием или восприятием исторического контекста, обычно принимают это как должное, однако побуждение к пролиферации у них остается весьма сильным. Специализированные клеточные механизмы должны гарантировать, чтобы каждая клетка воспроизводила себя лишь когда требуется. Но эти механизмы контроля несовершенны, а кроме того, им может нанести ущерб радиация или вещества, повреждающие ДНК (мутагены). Неисправности в работе этих механизмов могут возникать и по другим причинам. Раковая клетка – клетка, лишившаяся тормозов. В ее ДНК что-то нарушилось (прошла мутация), и в результате она утратила компоненты, отвечающие за контроль размножения. Если клетка принадлежит к типу клеток, которому требуется частое деление (пример – клетки кожи или толстой кишки), эти средства контроля с самого начала менее жесткие, и риск потерять тормоза сильнее. Кроме того, клетки этих типов обычно больше контактируют с элементами внешней среды, что увеличивает их подверженность воздействию мутагенов. Типы клеток, не нуждающиеся в частом делении и укрытые в теле (скажем, клетки сердца), в этом смысле рискуют значительно меньше.
В наши дни опасность представляет даже не сам рост злокачественных новообразований. Опухоль можно удалить хирургическим путем. Настоящая же проблема – метастазы: устрашающее распространение раковых клеток от исходной опухоли в другие участки организма, где эти клетки активно начинают обустраиваться. По счастью, для клетки это не так-то просто: одна из клеток опухоли должна развить у себя способность отделяться от опухоли, пробираться в кровь или лимфу, двигаться в ней, а потом еще и суметь выбраться из потока, прикрепиться к какой-то другой ткани тела и обосноваться там. Очень нелегкая задача для того, кто начинает свой путь просто как еще одна клетка тела, а не как специализированный патоген. Но раковые клетки очень быстро делятся и часто мутируют. Они проходят естественный отбор, поскольку иммунные клетки находят и уничтожают тех из них, кто добивается меньшего успеха. Раковым клеткам доступны все ингредиенты, необходимые для развития и для адаптации к их новому образу жизни. Иногда ими руководит своего рода эволюционный процесс. В конечном счете эта эволюция, конечно, всегда упирается в тупик: опухоль умирает вместе с больным, – но у раковых клеток нет другого пути, и им по большому счету все равно.
Даже «обычные» опухоли должны заботиться о своем выживании, иначе они погибнут. Главным образом им необходимы две вещи. Первая – поступление крови: «добившиеся успеха» опухоли вызывают ангиогенез, то есть заставляют кровеносные сосуды расти по направлению к опухоли. Вторая вещь – какая-то защита от иммунной системы. Раковые клетки не похожи на клетки тела и ведут себя иначе. Одна из главных функций иммунной системы – распознав такие отличия и изменения, уничтожать взбунтовавшиеся клетки, пока они не наделали больших бед. Наша иммунная система неплохо с этим справляется: мы до сих пор не умерли благодаря тому, что ей удается обнаружить и победить большинство опухолей задолго до того, как те успеют причинить вред. Однако опухоли, добивающиеся большего успеха, могут развивать в себе способность подавлять иммунитет, уменьшая возможности иммунной системы справляться с ними, и постоянно вырабатывая новые способы спрятаться, чтобы она не могла их обнаружить.
Медикаментозное лечение онкологических заболеваний всегда требовало хитроумного подхода. Раковые клетки подобны патогенам, но обладают почти всеми свойствами других клеток организма. Антибиотики и вакцины бесполезны, когда речь идет об инфекции, распространяющейся изнутри. Помимо хирургического вмешательства, основные варианты лечения в таких случаях – радиотерапия и химиотерапия. Как я уже упоминал, оба метода сводятся к тому, чтобы отравить опухоль чуть быстрее, чем пациента. Еще один вариант – иммунотерапия: для борьбы с недугом она задействует либо иммунную систему больного, либо иммунные компоненты, полученные в лаборатории.
Я с удивлением узнал, что иммунотерапия появилась еще в XIX веке. Врач Уильям Коули обнаружил, что некоторые инфекции, вызывающие у пациента лихорадку, помогают бороться с опухолями. С 1891 года он начал с успехом применять смесь, содержащую убитых бактерий и бактериальные токсины, для лечения больных раком. В то время было трудно понять, почему такая штука работает (сейчас-то мы знаем, что эта бактериальная жидкость активизировала иммунную реакцию, тем самым помогая организму сражаться с опухолью), и методики Коули зачастую воспринимались с подозрением. Хотя врачи еще долгие годы пользовались «вакциной Коули» или «токсинами Коули», в конце концов иммунотерапия по Уильяму Коули уступила место терапии радиационной. Впрочем, сегодня она все-таки возвращается в медицинскую практику.
В наши дни иммунотерапия представляется весьма перспективным методом. Предложен целый ряд конкретных подходов, ведутся их клинические испытания, и некоторые методики применяются на практике. Более традиционные часто нацелены в основном на поддержание существующих иммунных функций или на их пробуждение, когда считают, что иммунная система недостаточно активна для борьбы с опухолью и что она должна избавиться от сдерживающего воздействия некоторых регуляторных механизмов. Другие методики идут еще дальше: группа исследователей из Сиэтла клонирует один из Т-лимфоцитов пациента, получая миллионы идентичных копий, и затем вводит эти Т-лимфоциты обратно пациенту. Некоторые коллективы ученых испытывают методику лечения, при которой не только берут у больного его Т-лимфоциты, но и встраивают в них новые гены. Полученные лимфоциты лучше идентифицируют опухолевые клетки и эффективнее реагируют на них.
Кстати, встраивание генов в Т-лимфоциты – дело непростое. Даже самыми крошечными щипчиками невозможно вставлять гены механически. Но кое-что отлично умеет встраивать гены в Т-лимфоциты. Это «кое-что» – вирус под названием ВИЧ-1. Обычно ВИЧ прикрепляется к Т-лимфоцитам, встраивает в них свои гены и размножается внутри лимфоцитов (тем самым нарушая работу иммунной системы и вызывая СПИД). Ученые воспользовались этой способностью вируса, удалив опасные гены ВИЧ (могу себе представить, с какой осторожностью), заменив их рецепторными генами, специфичными для обнаружения рака, и затем заразив этим вирусом Т-лимфоциты, находящиеся в лабораторных пластиковых сосудах. И вот они – усовершенствованные Т-лимфоциты, готовые для введения в организм. Противораковая терапия при помощи ВИЧ.
Более прямолинейный вариант иммунотерапии – простое введение пациенту противоопухолевых антител. Для этого следует предварительно удостовериться, что антитела, которые вы впрыскиваете больному, специфичны лишь по отношению к опухолевым клеткам, а я уже отмечал, что отличать опухолевую клетку от обычной непросто. В случае ошибки вы обрушите иммунную реакцию на бедные, ни в чем не повинные, ничего не подозревающие здоровые клетки, и у больного раком появится целый ряд новых проблем, совершенно ему не нужных в его положении.
Любопытный метод – радиоиммунотерапия, одна из форм иммунотерапии, применяемая лишь против опухолей, которые реагируют на радиационное лечение. При этом используется замечательная специфичность антител. Вместо того чтобы облучать все тело пациента, медики прикрепляют радиоактивные молекулы к противоопухолевым антителам, а уж затем эти антитела отыскивают опухоль и сами к ней прикрепляются. В результате клетки опухоли получают дозу радиации, а прочие участки тела остаются почти не затронутыми облучением.
Сейчас проходят испытания методы терапии при помощи антител, вообще не специфичных по отношению к опухолевым клеткам: разрабатываются антитела, которые должны противодействовать способности раковых клеток подавлять иммунитет. Эти антитела вводятся в опухоль, находят свою цель, соединяются с ней, демаскируют опухолевые клетки и обрушивают на них иммунную реакцию. В 2011 году американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов одобрило применение моноклональных антител ипилимунаб (Ipilimunab) для лечения меланомы поздней стадии, сопровождающейся метастазами.
Ускорители
Забежав пообедать в закусочную, я взял полистать один из глянцевых журнальчиков, где на обложке сияют счастливчики, занимающиеся чем-то вроде йоги, а внутри полно статей, посвященных какой-то «суперпище» и рекомендациям, как «снять стресс». Большая ошибка. Если я раскрою подобный журнал, то начну мрачно бормотать при виде неизбежной рекламы «иммунных ускорителей», а мрачное бормотание не способствует снятию стресса. От слов «иммунное ускорение» мне хочется скрежетать зубами.
Как я уже отмечал, «ускорение» в таких случаях – вещь опасная. Иммунитет представляет собой тонко настроенный механизм, с ним и без того могут случиться самые разные неприятности. «Ускоряете» ли вы нужный элемент иммунной системы? Уверены ли вы, что «ускоряете» его не слишком сильно, ведь иначе вы будете подталкивать свой организм к развитию аутоиммунных заболеваний? Короче говоря, действительно ли вас устраивает идея такой возни с параметрами системы, той системы, которую ни вы, ни кто-либо другой не понимает до конца? Возможно, вам следует стремиться не к «ускорению», а к более естественному иммунному балансу. Кажется, для этого тоже продаются таблетки.
Существует множество различных иммуномодулирующих лекарств и методик лечения, от обычных противовоспалительных средств до более мощных препаратов – иммунодепрессантов, позволяющих организму не отторгать пересаженные органы или облегчающих симптомы аллергических реакций и аутоиммунных заболеваний. Противораковая иммунотерапия направлена на «ускорение» работы весьма конкретного аспекта иммунитета, и иммунотерапевты пытаются ускорять лишь весьма конкретные элементы иммунной реакции. Однако проблем все равно не избежать. В статьях о клинических испытаниях иммунотерапевтических методик часто можно прочесть о пациентах, страдающих от всякого рода негативных системных симптомов. Вероятно, самый печально известный пример здесь – так называемая катастрофа TGN1412. В 2006 году на шести здоровых добровольцах в ходе проверки иммунотерапевтической методики испытывалась одна разновидность моноклональных антител-иммуномодуляторов. Все добровольцы едва не погибли в первые же часы после начала эксперимента.
Заразиться раком
Среди наиболее устрашающих причин рака – онковирусы, обычно переносимые вместе с кровью или в ходе сексуального контакта. Они интегрируют свой генетический материал в ДНК человеческой клетки. Встраивание целой шайки чужих генов в собственный геном клетки может привести к самым разрушительным последствиям для нее. К тому же онковирус часто побуждает клетку, которую он заражает, начать быстро делиться – во исполнение эгоистических целей вируса.
Представления о раке как об инфекционном заболевании появились сравнительно недавно, всего несколько десятков лет назад. За какую же долю онкологических заболеваний отвечают онковирусы? По нынешним оценкам, за 15–20 %. Возможно, в будущем этот показатель возрастет. Что по-своему не так уж плохо: для иммунолога заболевание, вызываемое вирусом, служит кандидатом на вакцинацию, а для некоторых онковирусов уже разработаны вакцины, скажем, для папилломавируса человека (этот вирус может вызывать рак шейки матки). Может быть, именно вакцины – будущее противораковой профилактики?
* * *
Итак, мы частично очертили границы нашего нынешнего понимания того, как действует иммунная система и как мы пытаемся вмешиваться в ее работу. У нашего знания есть пределы. За ними лежат неведомые земли, пока не нанесенные на карту. Ученые лишь начинают исследовать их при помощи новых инструментов и новых идей, которые совсем недавно оказались в их распоряжении.