Происхождение жизни, то, как она появилась, до сих пор остается святым Граалем науки, одним из главных вопросов, на которые ученые пока не знают ответа. Возникновение жизни из неорганической, неживой материи вполне логично, хоть и не так поэтично, называется абиогенезом.

Но прежде необходимо дать определение самому понятию жизни, поскольку надо понимать, что́ мы ищем. (Признаки жизни могут быть интуитивно понятны, однако говорить «узнаю, когда увижу» не слишком научно.) В самом простом смысле жизнь – это химическая реакция, которая прямо или опосредованно потребляет вещество и энергию из окружающей среды, чтобы расширять, распространять и воспроизводить себя. Такая реакция называется автокаталитической, потому что ее облегчают или даже ускоряют продукты реакции. Например, при фотосинтезе растения используют энергию солнечного света, чтобы соединить воду и углекислый газ для производства длинных цепочек молекул углеводов, которые составляют большую часть массы растения (в виде целлюлозы), что затем обеспечивает еще больше фотосинтеза. В отличие от растений аэробные, дышащие кислородом клетки и такие животные, как мы, поедают эти растения (или другие организмы, которые поедают эти растения) и используют их материю, содержащую солнечную энергию, чтобы создать больше клеток, которые будут поедать больше растений. Воспроизводя и размножая себя, жизнь активно распространяется в поисках источников материи и энергии.

Некоторые свойства жизни присущи химическим реакциям неживой материи, например горению. Как и аэробная жизнь, огонь потребляет материю и энергию и в ходе реакции горения, обратной фотосинтезу, образует воду и углекислый газ. Как и жизнь, огонь распространяется, потребляя топливо (например, дерево и траву), и катализирует себя, нагревая топливо, пока оно не воспламенится.

Тем не менее два других определения жизни отличают ее от огня. Во‑первых, реакция жизни не только потребляет материю, но и создает сложные молекулы, образующие «матрицу», с помощью которой катализируется больше таких же молекул, т. е. идет их воспроизводство. При этом не только ускоряются реакции, но и наследуется информация, полученная от предшествующих молекул. (Для сравнения: огонь не дублирует сложные молекулы, а создает простые – воду и углекислый газ.) Во‑вторых, жизнь развивается благодаря естественному отбору: если окружающая среда становится непригодной для поддержания химической реакции, существует вероятность, что жизнь сумеет к этому приспособиться (если изменение не произошло слишком быстро). Основано это на копировании предшествующих несовершенных организмов. Если новые поколения организмов выживают, значит, они чем‑то отличаются от своих прародителей, не являются их клонами. В этом суть дарвиновского естественного отбора: группа организмов или особей обладает достаточным внутренним разнообразием, в результате чего некоторые особи оказываются лучше приспособленными к неблагоприятным изменениям окружающей среды и выживают, а неприспособленные вымирают. Огонь не приводит к приспособлению, если окружающая среда слишком холодная или слишком влажная, он просто гаснет, не происходит отбора, в результате которого одни пожары приспосабливаются к холодной или влажной среде, а другие прекращают свое существование. Коротко говоря, жизнь – самоподдерживающаяся энергоемкая химическая реакция, чьи продукты – молекулы – катализируют или воспроизводят сами себя, и при этом они обладают достаточным разнообразием, чтобы эволюционировать путем естественного отбора, если окружающая среда станет непригодной (достаточно медленными темпами). Ну, получилось не совсем коротко.

Вся жизнь на нашей планете имеет клеточную природу, потому что химические реакции, поддерживающие жизнь, происходят внутри капсулы – клетки. Капсула окружена полужидкой мембраной, которая позволяет проникать внутрь питательным веществам и источникам энергии и защищает поддерживающие жизнь реакции от рассеяния или уничтожения (скажем, океанскими волнами). Возможно, самые ранние из таких капсул использовали для защиты пузырьки внутри лавовых пород вроде пемзы. Некоторые неклеточные формы жизни, такие как вирусы, представляют собой «свободно плавающий» генетический материал в защитной оболочке. Они обладают некоторыми признаками жизни, например подвержены действию естественного отбора, однако вирус может воспроизвести себя, лишь взломав клеточный механизм другого организма. Таким образом, являются ли вирусы живыми или нет – вопрос все еще не решенный.

Древнейшие известные ископаемые живые существа – это одноклеточные микроорганизмы (вроде бактерий) возрастом около 3,5 млрд лет. Возможно, жизнь на нашей планете существовала и раньше, но более древние ископаемые находки пока вызывают споры исследователей. Несмотря на большое разнообразие живых существ в настоящее время, основные компоненты для создания жизни практически не изменились почти за 4 млрд лет и для построения основных биологических структур нужно лишь несколько химических элементов.

Важнейшими элементами для возникновения жизни являются водород, углерод и кислород. Живые организмы неизменно получают их из источников воды и углекислого газа в атмосфере. Вода и углекислый газ необходимы не только для производства углеводов, которые служат материалом для построения тела растений и аэробным источником энергии; молекулы углеводов составляют и компонент генетического материала, РНК (рибонуклеиновой кислоты) и ДНК (дезоксирибонуклеиновой кислоты) – матриц, на которых происходит самовоспроизводство биологических молекул. Когда углеводы «восстанавливаются» путем удаления кислорода (в общем случае восстановление означает приобретение электронов, как правило, тех, которые кислород связывал в оксидном соединении), от них остаются углеводороды в виде жирных кислот, которые входят в состав липидов в клеточных мембранах и жировых клетках, где жиры хранятся как энергетический запас. Углерод и кислород также активно используются в других важных молекулах, о чем мы поговорим чуть ниже.

Следующим по важности элементом является азот, в основном в форме амидного иона, имеющего один атом азота, два атома водорода и свободный электрон с отрицательным зарядом, который используется, чтобы соединиться с другими атомами (или группами атомов), для создания аминов. Амиды получаются из аммиака – молекулы, состоящей из одного атома азота и трех атомов водорода, – путем отсечения одного атома водорода. Амиды соединяются с другой молекулой, состоящей из углерода, кислорода и водорода (это не углеводы, а карбоксильные соединения), и тогда образуются аминокислоты, которые служат основными строительными блоками для белков. Белки имеют огромное значение, потому что их функции чрезвычайно разнообразны, мы встречаем их везде – от ферментов до мышц. Ферменты ускоряют химические реакции, т. е. выступают в роли катализатора, например при расщеплении молекул пищи. Благодаря «скорости» они поддерживают биологическую активность. Кроме того, под действием электрического или химического стимула белки сворачиваются и скручиваются в различные формы, что делает возможным движение: например, биение жгутиков позволяет бактерии плавать, да и наши мышцы сокращаются благодаря белкам. А двигаться полезно: это помогает искать пищу и источники энергии.

Молекула ДНК состоит из последовательно расположенных нуклеотидов, каждый из которых представляет собой сочетание сахарофосфатного остова, прикрепленного к одному из азотистых (нуклеотидных) оснований – аденину, цитозину, гуанину или тимину. Таким образом, ДНК предстает в форме винтовой лестницы, в которой нуклеотидные основания образуют «перекладины», а сахарофосфаты соединяются вместе, образуя грядки этой лестницы. Эти нуклеотидные основания образуют последовательности, сохраняющие генетическую информацию и инструкции для работы клетки, а также связываются с соседями на другой стороне лестницы по определенным правилам (как указано на диаграмме), что позволяет ДНК в точности воспроизводить себя после расщепления. (С разрешения Барбары Шеберл, Animated Earth LLC.)

Азот также соединяется с углеродом, кислородом и водородом, образуя соединения, называемые нуклеотидами, которые служат важнейшими компонентами нуклеиновых кислот ДНК и РНК. К нуклеотидам относятся аденин, цитозин, гуанин (все они входят и в ДНК, и в РНК), тимин (только в ДНК) и урацил (только в РНК): в схемах их обозначают как азотистые основания А, С, G, T и/или U, и они служат перекладинами на винтовых лестницах ДНК и РНК (РНК выглядит как половина лестницы, разрезанной вдоль).

Наконец, у нас есть фосфор, который проявляется только в связи с кислородом в качестве фосфата (атом фосфора связан с четырьмя атомами кислорода). Фосфаты связываются с сахаром и другими азотистыми основаниями, образуя нуклеотиды, которые связываются вместе, чтобы создать одинарную или двойную спираль РНК и ДНК. В частности, сахар и фосфатные компоненты каждого нуклеотида соединяются, подобно позвонкам (т. е. атом сахара конца одного нуклеотида связан с атомом фосфата конца следующего), образуя рибозный (у РНК) или дезоксирибозный (у ДНК) «позвоночник» или «лестничные пролеты», в то время как азотистые основания выглядят как «перекладины» лестницы. Нуклеотиды также входят в состав молекул, которые хранят и переносят энергию, например аденозинтрифосфата (АТФ), который служит «золотой валютой» энергии в клеточной деятельности, поскольку содержит три фосфата, которые активно вступают в реакции. Вдобавок фосфаты и азот в сочетании с жирными кислотами образуют фосфолипиды в клеточных мембранах.

В ДНК и РНК нуклеотидные основания (или просто основания) химически связаны друг с другом, но лишь определенными взаимодополняющими способами. Например, нуклеотид А связывается только с T , а C  – только с G , чтобы заполнить обе стороны от лестницы ДНК; таким образом, полная ступень ДНК будет состоять из А на одной стороне лестницы и Т  – на другой стороне и т. д. Во время клеточного деления ДНК расщепляется продольно, и основания, торчащие, словно «обломанные перекладины» на каждой половине лестницы, соединяются со своими основаниями‑«партнерами», которые свободно плавают в клеточном бульоне и таким образом воссоздают другую сторону каждой лестницы – так ДНК воспроизводит себя. Именно эта особенность позволяет ДНК создавать копии самой себя, дублируя свои молекулы и тем самым создавая основную особенность жизни (или , по крайней мере, той жизни, которую мы знаем). ДНК также несет генетическую информацию о самовоспроизводстве и функционировании клеточных механизмов, эта информация закодирована или записана в последовательности пар оснований «лестничных перекладин» ДНК. Помимо самовоспроизводства ДНК может разделять и копировать фрагменты своих расщепленных цепей в РНК (снова путем сопоставления азотистых оснований), которые затем получают различные задания, например распределяют аминокислоты в особые белки для выполнения различных задач.

Жизнь полностью состоит из четырех основных классов химических соединений (помимо воды) – углеводов, жирных кислот, аминокислот и нуклеотидов, а они, в свою очередь, состоят всего лишь из пяти элементов – водорода, углерода, кислорода, азота и фосфора. Из них лишь бóльшая часть водорода образовалась в результате Большого взрыва, а остальные четыре элемента сформировались внутри звезд. Есть и другие элементы, которые в намного меньших количествах встречаются у разных живых организмов: например, железо в нашей крови транспортирует кислород, который используется для преобразования сахара для наших энергетических потребностей. Эти четыре класса соединений, состоящих из пяти элементов, – то, что объединяет все живые организмы. Чтобы жизнь, которую мы знаем на Земле, образовалась «с нуля», необходимы все эти строительные блоки.

Одной из самых известных попыток создать строительные блоки жизни из неживой материи стал ряд экспериментов, проведенных в 1950‑х гг. студентом Чикагского университета Стэнли Миллером и его выдающимся наставником Гарольдом Юри (получившим в 1934 г. Нобелевскую премию по химии за открытие дейтерия). Миллер создал смесь, которая, как считается, повторяла примитивную атмосферу Земли, содержавшую водород и его соединения – воду, метан и аммиак. Затем Миллер подверг этот химический бульон воздействию высоких температур (в основном с помощью водяного пара) и вдобавок подавал в колбу электрические разряды. В результате через несколько дней в колбе образовывалось несколько аминокислот. Однако, строго говоря, созданная в ходе этого эксперимента атмосфера была более характерна не для Земли, а для протосолнечной туманности. Подобные условия можно было бы обнаружить во внешней Солнечной системе, на Юпитере, Сатурне и на некоторых их спутниках. Скорее всего, такая атмосфера возникла и была вынесена из внутренней части Солнечной системы при ее формировании. Также в первоначальной атмосфере Земли, вероятно, преобладали углекислый газ и вода – продукты вулканической дегазации, а в эксперименте Миллера – Юри ничего подобного нет. И все же этот эксперимент впервые показал, что простые реакции нескольких соединений могут привести к созданию по крайней мере одного из основных строительных блоков жизни. Это открыло дорогу множеству экспериментов, проведенных в последующие десятилетия и стремившихся получить строительные блоки жизни путем имитации первичного бульона в примитивных атмосферных и океанических условиях. Кстати, аминокислоты могли формироваться даже в открытом космосе; несколько аминокислот (не все из них аналогичны земным) были обнаружены на Мурчисонском метеорите, углеродистом хондрите, прилетевшем из пояса астероидов. Метеориты занесли на Землю аминокислоты или нет – нам неизвестно, но это и не важно: если аминокислоты могут образовываться в самых разных средах, там могут возникать и другие строительные блоки жизни.

Вскоре после эксперимента Миллера – Юри испанский биохимик Хуан Оро смог сформировать нуклеотидные основания, которые, как вы помните, служат «перекладинами» в лестничной структуре ДНК и РНК, а также аминокислоты. До недавнего времени не удавалось сформировать полные нуклеотиды, которые соединяются, чтобы образовать полные молекулы РНК и ДНК, однако в последнее десятилетие был достигнут значительный прогресс в синтезе строительных блоков жизни (включая липиды, аминокислоты и нуклеотиды) из соединений, которые, предположительно, существовали на ранней Земле. Особенно удачными были исследования химика из Кембриджского университета Джона Д. Сазерленда. Простейшие возможные клетки состоят из цепочки ДНК, заключенной вместе с питательным бульоном внутри жирных кислот, липидного пузыря или мембраны, образуя оболочку клетки. Недавние эксперименты группы биохимика Джека Шостака из Гарвардского университета показали, что некоторые липиды могут создавать пузырьки в нуклеиновых кислотах, позволяя образоваться чему‑то вроде протоклетки. Таким образом, исследователи сделали большой шаг вперед к «спонтанному» абиотическому образованию клеток после экспериментов Миллера – Юри.

Когда и где жизнь возникла на нашей планете? Хотя самым древним ископаемым микроорганизмам около 3,5 млрд лет, у них, вероятно, были некие клетки‑предшественники, из которых после миллионов лет проб и ошибок возникли эти организмы. Возможно даже, что основой биологического воспроизводства ранней жизни была не ДНК, а более простая молекула РНК. В современных клетках РНК играет роль «мальчика на посылках» у ДНК, например, она создает специфические белки. Однако американские биохимики Сидни Олтмен и Томас Чек показали, что РНК может катализировать химические реакции или воспроизводить себя. Это открытие принесло им Нобелевскую премию и оказало мощную поддержку идее под названием «гипотеза мира РНК», согласно которой примитивная жизнь была основана на простом методе воспроизводства, характерном для РНК и предшествовавшем более сложному методу воспроизводства ДНК, который в наши дни характерен для клеточной жизни.

Чарльз Дарвин, как и Миллер и Юри, полагал, что жизнь возникла на поверхности Земли, в водоемах с первичным бульоном, где были основные ингредиенты для самозарождения, и поддерживалась за счет энергии Солнца с помощью фотосинтеза (на самом деле первой достоверно известной формой жизни были фотосинтезные бактерии). Но если жизнь формировалась таким образом ранее чем 3,5 млрд лет назад, это было бы просто чертовски трудно. В то время поверхность Земли представляла собой чрезвычайно враждебную среду, где, вероятно, было очень жарко из‑за того, что атмосфера была полна углекислого газа. На Земле все еще происходила очень активная вулканическая деятельность, и, скорее всего, к ней добавлялись массированные удары астероидов, особенно в период поздней тяжелой бомбардировки (от 4,2 млрд до 3,8 млрд лет назад). Таким образом, поверхность, вероятно, не была пригодна для формирования первых хрупких форм жизни.

В конце 1970‑х гг. геолог из Орегонского университета Джек Корлисс и его коллеги с помощью исследовательского глубоководного аппарата «Алвин» обнаружили, что гидротермальные источники и расселины срединного‑океанического хребта в районе Галапагосских островов, в месте, где расходятся две самые большие литосферные плиты, заселены живыми организмами – и это на дне океана, вдали от солнечного света. Здесь в воды океана под давлением извергаются из недр потоки геотермальной воды. Хотя ее температура выше температуры кипения воды на уровне моря, она не кипит, так как давление на таких глубинах очень высокое. Циркулирующая по вулканическим хребтам вода этих жерл‑источников («черных курильщиков») насыщена минералами и содержит растворенные вулканические газы – углекислый газ, водород, сероводород. В этих сверхгорячих гидротермальных потоках были обнаружены напоминающие бактерий микроорганизмы, названные археями. Они термофильные, т. е. обитают в горячей воде. Возле источников существуют экосистемы крупных организмов, таких как трубчатые черви. Они питаются веществами, поглощенными археями, и бактериями, обитающими в этой неприветливой среде. Например, черви погонофоры получают энергию и питательные вещества из бактерий, которые, в свою очередь, питаются путем хемосинтеза (а не фотосинтеза, учитывая недостаток солнечного света), при котором сероводород из подводных источников используется для создания органического углерода путем его выделения из молекул углекислого газа. Это открытие показало, что жизнь может процветать вдали от нашего любимого источника энергии, Солнца, за счет тепла и химических веществ, поступающих из недр. Можно предположить, что примитивная жизнь могла сформироваться на дне океана, в защищенном от враждебной среды месте и выжить за счет надежного источника энергии – мантии Земли. Также возможно, что жизнь могла бы возникнуть на планетах, расположенных слишком далеко от своей звезды (например, на спутнике Юпитера Европе), вулканическая энергия которых способна поддерживать воду в жидком состоянии.

Археи, впервые обнаруженные у гидротермальных жерл, а затем и в других, довольно неожиданных земных средах, вроде горячих источников, кратерных озер, солончаков, полярных льдов и даже в наших с вами внутренностях, были сначала отнесены к бактериям, поскольку, как и бактерии, они состояли из нескольких простых цепочек ДНК в липидном пузырьке. Однако впоследствии у архей и бактерий было обнаружено больше различий, чем сходства: в их РНК, в использовании энергии (метаболизме), химии их клеточной стенки, а также в жгутиках, которые они используют для плавания. И бактерии, и археи являются прокариотами – у них простая клеточная структура, они редко составляют клеточные колонии и никогда не образуют многоклеточной жизни.

Наличие жизни на поверхности Земли зависит от фотосинтеза. Его возникновение было самой значимой биологической революцией на планете, уступая, возможно, лишь самому факту появления жизни. Фотосинтез является (прямо или косвенно) основой питания почти всей жизни на Земле, к тому же он коренным образом изменил атмосферу. Принцип работы фотосинтеза все еще активно изучается, и, хотя я постараюсь максимально упростить описание этого явления, это реакция весьма сложная и состоящая из нескольких этапов. Обычно фотоны солнечного света улавливаются клеткой с помощью белков, содержащих пигменты, такие как хлорофилл, а затем энергия фотонов используется для расщепления молекулы воды и отделения электрона, в результате чего остается ядро водорода (протон) и кислород, который выделяется как побочный продукт. Высвобожденный электрон – это, прежде всего, носитель энергии, который используется для синтеза переносчиков энергии в клетке, например АТФ. Часть накопленной энергии используется для ассимиляции атмосферного углекислого газа, чтобы заменить в нем один атом кислорода на два атома водорода и получить конечный продукт – сахар (и еще больше кислорода). Производство сахара превращает углекислый газ в органические вещества, позволяя им захватывать больше электронов, не делясь с «жадным» до электронов кислородом. Чем больше кислорода удалено таким образом, тем более восстановленным становится углерод (подробнее об этом позже) и тем больше энергии заключено в его электронных связях.

Одной из первых заметных доминирующих форм, обитавших на поверхности, были фотосинтезирующие бактерии, весьма похожие на цианобактерии, которые часто неправильно называют сине‑зелеными водорослями. Эти бактерии образуют цианобактериальные маты – слоистые покровы микробов. Открытые воздействию Солнца, они постепенно затвердевали и кальцинировались, и в итоге формировались строматолиты – старейшие достоверно известные окаменелости. Обладая способностью к фотосинтезу, эти микробы превращают углекислый газ и воду в сахар и выпускают свободный кислород в качестве побочного продукта. Кислород химически очень активен, он стремится присоединить «чужие» электроны и, как правило, связывается практически с любым доступным элементом, за исключением еще более химически активных, «жадных до электронов», например хлора или фтора. Для многих форм жизни кислород является едким и ядовитым, это можно сравнить с воздействием хлора, одного из первых ядовитых газов, использовавшихся во время Первой мировой войны.

Поначалу фотосинтезированный побочный кислород не накапливался в атмосфере, а связывался с железом и другими элементами, а также с богатыми железом минералами на поверхности Земли и в океане, образуя окись железа – основу ржавчины. В течение примерно 2 млрд лет все доступное железо было окислено, оставив множество древних геологических отложений оксида железа (так называемые полосчатые железистые формации, которые образовали используемые сейчас месторождения железной руды). После этого, исчерпав минералы и металлы для реакций, кислород стал накапливаться в атмосфере до той концентрации, которую мы наблюдаем сейчас, – около 20 % от массы атмосферы.

Стабилизацию концентрации кислорода можно объяснить тем, что он достиг равновесия со всеми полученными органическими материалами (сахарами, жирами, метаном и т. д.), которые вступают в реакцию с кислородом, чтобы в конце концов вновь образовать углекислый газ и воду. В химии это означает, что реакция достигла стационарного состояния, т. е. производство кислорода в процессе фотосинтеза уравновешено его потреблением в ходе обратной реакции. Как уже отмечалось ранее, один из способов осуществить такую обратную фотосинтезу реакцию и достичь этого баланса – горение, когда накопленная солнечная энергия испускается в виде тепла и света. Другой способ заключается в жизнедеятельности аэробных организмов (например, людей), потребляющих сахара и жиры, которые вступают в реакцию с кислородом, используют высвобожденную солнечную энергию и выделяют углекислый газ и воду. Предки аэробных организмов были похожи на бактерии и эволюционировали таким образом, что могли в качестве запасного варианта использовать кислород для потребления собственных сахарных источников энергии, когда им не хватало солнечной энергии. Этот навык пригодился им позже (подробнее об этом ниже). В конце концов баланс между фотосинтезом и аэробным потреблением привел к тому, что уровень кислорода стал постоянным.

Количество атмосферного кислорода огромно – 20 % от массы атмосферы Земли, или примерно 1 квадрлн т (1018 кг). Следовательно, существует огромный резервуар органического вещества, который дополняет весь этот свободный кислород. Это другой продукт реакции фотосинтеза, а именно сахар, хотя обычно его называют органическим углеродом. (Углерод, путем выветривания вошедший в горные породы в виде карбонатов, называют неорганическим углеродом.) Бóльшая часть этого органического вещества изолирована от атмосферы, иначе оно в конце концов вступило бы в реакцию со свободным кислородом. На Земле органический углерод легко укрыть, например, на дне океанов или под осадочными породами, которые беспрестанно производятся эрозией постоянно образующихся вулканов и гор. Этого накопленного органического углерода сегодня в несколько тысяч раз больше (в единицах массы углерода), чем в биосфере, которая сама по себе является относительно крошечной системой, непрерывно производящей и потребляющей кислород.

Заслуживает упоминания то, как аэробные организмы используют сахар, чтобы получить энергию в процессе дыхания. Когда сахар (или углеводород) просто сгорает при взаимодействии с кислородом, запас органического углерода из обладающих запасом энергии электронов, возникших в результате фотосинтеза, захватывается кислородом и переходит на более низкий уровень энергии в кислородной атомной структуре или «валентном электронном слое», высвобождая энергию в виде тепла и света. Если же сахар используется аэробным организмом, реакции метаболизма приводят к тому, что электроны органического углерода медленно просачиваются назад к «жадному до электронов» кислороду и создают электрическое напряжение. Его энергия используется для создания АТФ, что поддерживает механизмы жизнедеятельности клетки. Часть накопленной энергии сахара выделяется в виде тепла, что позволяет теплокровным существам оставаться теплыми. И при сгорании сахара, и при его аэробном потреблении, как только к кислороду присоединяется электрон, он уходит с побочным углекислым газом и водой.

Как отмечалось в главе 5, азот составляет большую часть оставшихся 80 % массы атмосферы, представляющей собой резервуар биологических строительных блоков. При этом азот относительно инертен, не так легко вступает в химические реакции. Требуется долгая работа бактерий и архей в океанах и почве, чтобы образовался, например, аммиак, который более крупные организмы, например растения, используют для создания аминокислот. Напрямую мы атмосферный азот не используем. (Хотя производство удобрений, обеспечивающих необходимые для населения Земли урожаи, стало возможным благодаря процессу синтетического связывания атмосферного азота. Открывший его более 100 лет назад немецкий ученый Фриц Габер был удостоен Нобелевской премии по химии.)

На протяжении первых миллиардов лет существования биосферы Земли в ней по большей части преобладали простые одноклеточные прокариоты – бактерии и археи. Сложные клетки, из которых состоят животные, растения и такие сложные одноклеточные организмы, как грибы, амебы и инфузории, возникли около 2 млрд лет назад. Они называются эукариотическими и сильно отличаются от прокариотических клеток. Типичная эукариотическая клетка имеет мембрану, поддерживаемую цитоскелетом, а ее ядро удерживает в себе ДНК, не позволяя ей свободно плавать, и имеет так называемые органеллы – компоненты клетки, необходимые для ее существования. Помимо этого клетки эукариоты могут изменять свою форму и имеют мембраны, чтобы поглощать и есть другие организмы. Но как же эукариоты возникли?

Происхождение эукариот обычно объясняют теорией симбиогенеза, предполагающей, что вначале объединились две прокариоты. Возможно, одна из них поглотила другую или же вторглась в нее: разницы здесь практически нет. Это могли быть археи, «поглощающие» бактерий, или наоборот. По мере того как это происходило, выработались комбинации симбиотического обмена. Аэробные бактерии, способные удалять кислород, потребляя его и используя вместе с сахаром для производства энергии, были бы полезными партнерами для архей, для которых кислород является ядовитым. Фотосинтезирующие бактерии внутри крупных клеток могли бы генерировать сахар для их хозяина. Симбиотические комбинации такого рода могли дать большое эволюционное преимущество в условиях насыщающейся кислородом атмосферы, и поэтому эукариоты смогли выжить.

Считается, что органеллы, компоненты клетки, необходимые для ее существования, сформировались в результате симбиотического партнерства. Доказательством служит то, что наши «человеческие» клетки содержат органеллы, весьма похожие на бактерии, – у них даже есть собственные маленькие цепочки ДНК. Эти органеллы называются митохондриями, и заняты они преобразованием большей части энергии внутри наших клеток. Растения также имеют выглядящие как бактерии органеллы – хлоропласты, благодаря которым осуществляется фотосинтез. В любом случае симбиотические отношения хорошо подходят для использования возрастающего уровня кислорода на планете вместе со всеми сахарами и липидами, накопленными фотосинтезирующими бактериями. Сахара и жиры – гораздо более эффективные и мобильные источники энергии, чем солнечный свет, улавливая который организмы проводили весь день неподвижно. Теперь мы можем не только запасать сахар и жиры для питания, но и использовать их в качестве топлива для автомобилей и самолетов, увеличивая свою мобильность.

Эукариотическая клетка – это, по сути, комбинация нескольких предковых клеток. Поэтому естественно, что сами эукариоты крупнее прокариот и могут достигать гораздо большего размера. Размер эукариот не ограничен, потому что их органеллы распределены по всей клетке, так что по мере увеличения клетки пропорционально увеличивается и количество органелл. Прокариоты, как полагают, почти не изменили свой размер (или форму) за почти 4 млрд лет в первую очередь потому, что большинство их клеточных структур находятся на внешней клеточной мембране в виде трубочек и насосов для перекачивания химических веществ, в то время как их внутренняя часть представляет собой просто химический бульон и свободно плавающую ДНК. По мере увеличения клетки вся нагрузка по обслуживанию дополнительного объема падает на мембрану и ее структуры; если радиус прокариотической клетки увеличивается вдвое, то площадь ее поверхности растет в четыре раза, а объем – в восемь раз. В итоге поверхность клетки будет не в состоянии угнаться за объемом, и поэтому рост прокариотам попросту невыгоден.

Большее разнообразие эукариот также объясняется отличиями в воспроизводстве. Прокариоты обычно совершают деление клеток (митоз), клонируя себя. Неудивительно, что они почти не изменились. Простые одноклеточные эукариоты совершают не просто деление клетки – они еще разделяют и перетасовывают собственную ядерную ДНК, а потом соединяют ее часть с ДНК партнера посредством мейоза и полового размножения. Преимущество этих перетасовок и обмена в том, что они повышают разнообразие, а также уменьшают вероятность летальных генетических ошибок, вызванных повреждением фрагментов ДНК: поврежденные фрагменты теряются при перетасовке, зато сохраняются при простом клонировании. Разнообразие и контроль возникновения генетических ошибок стали эволюционным преимуществом, что привело к их закреплению.

Возникновение многоклеточных животных и растений, по всей видимости, началось с формирования колоний одноклеточных. В колонии все клетки идентичны, а в многоклеточном организме есть клетки специализированные, которые выполняют различные роли (как клетки наших мышц, мозга, костей, глаз). Прокариоты могут образовывать лишь простые нитевидные колонии и цианобактериальные маты; одноклеточные эукариоты могут создавать колонии различных структур, например вольвокс (подвижные шарообразные колонии водорослей, о которых шла речь в главе 1) или слизевик. Переход от колонии к многоклеточному организму, вероятно, был довольно простым, учитывая разнообразие путей адаптации и эволюции эукариот. Например, клетки на поверхности колонии отвечают за поглощение энергии и питательных веществ из окружающей среды, в то время как клетки внутреннего слоя транспортируют питательные вещества и воду внутрь колонии, образуя таким образом подобие кровеносной системы. Различие в среде внутри колонии стимулирует эволюцию ее клеток в сторону специализации. В итоге клетки, обеспечивающие, например, движение колонии или восприятие хищников и добычи, могут в определенных обстоятельствах стать эволюционным преимуществом.

Однако на возникновение многоклеточных организмов на Земле ушло очень много времени. Еще 640 млн лет назад в биосфере по‑прежнему доминировали одноклеточные организмы. Примерно с 640 млн по 540 млн лет назад существовали формы жизни, имеющие ветвящуюся и трубчатую структуру (эта эпоха называется эдиакарской), но эти организмы вымерли. Около 540 млн лет назад начался расцвет многоклеточных – появилось огромное число причудливых морских существ, большинство из которых, вероятно, вы приняли бы за страшных скорпионов, многоножек и крабов.

Это событие было названо кембрийским взрывом. После него в палеонтологической летописи появляются ископаемые останки, поскольку многие живые существа обзавелись твердыми раковинами и скелетами, которые сохраняются в целом виде. Конечно, мы остаемся в неведении о более ранних мягкотелых ископаемых существах, однако уже в наши дни современная палеонтология способна обнаружить присутствие жизни по следам биологического и генетического материала, оставленного в горных породах давно исчезнувшими беспозвоночными. Кроме того, осадочные отложения, образованные до кембрийского взрыва (сохранившиеся в виде горных пород), несут мало следов деятельности роющих животных (этот эффект называется биотурбацией), а после кембрийского взрыва такие следы широко распространяются в донных отложениях.

Появление существ, имеющих раковину, чьи твердые части состоят из карбонатных пород, могло произойти из‑за вулканогенного накопления углекислого газа в атмосфере, что вывело нашу планету из состояния «Земля‑снежок» (описанного в главе 6). Например, избыток углекислого газа, растворяясь в океанской воде и вымываясь по действием эрозии, мог обеспечить наличие материала для построения раковин. Таким образом, кембрийский взрыв могло запустить окончание ледникового периода «Земли‑снежка». За последние 400 млн лет растения и животные колонизировали сушу и продолжали эволюционировать и увеличивать многообразие, заполняя все возможные ниши и закоулки. И все же фанероза – время, прошедшее с кембрийского взрыва до наших дней, – составляет лишь около 10 % от всей истории Земли. Большую часть своей биологической истории Земля была заселена только микроорганизмами.

За время долгой истории жизни на Земле много солнечной энергии было накоплено в виде сахара, жиров и других органических веществ. В то же время в атмосфере накопилось огромное количество кислорода. Как уже отмечалось, бóльшая часть органических веществ была скрыта от кислорода под отложениями и на дне океана. И лишь незначительная часть этого органического вещества, находившаяся глубоко под поверхностью Земли, образовала под воздействием высоких температур и давления различные виды ископаемого топлива. В сущности, это был процесс медленного «плавления» молекул сахара – удаления кислорода и восстановления углерода (возвращения ему электронов, отобранных кислородом). Морские органические отложения, подверженные этому процессу, могли стать источником нефтегазовых углеводородов (молекул водорода и углерода, но без кислорода); некоторые из их запасов могли затем выйти наверх благодаря тектонике плит или оказаться у земной поверхности, когда понизился уровень моря и они оказались на суше, например в западной части нынешних Соединенных Штатов – от Техаса до Вайоминга, где во времена динозавров плескалось море. Отложения органического вещества на суше, например деревья и болота, могли бы при благоприятных условиях превратиться в уголь – относительно чистый углерод (в болотах образуется еще и торф – промежуточный продукт превращения в уголь). Нефть, газ и уголь (торф) составляют наши запасы ископаемого топлива, бóльшая их часть, около 85 % по массе углерода, приходится на уголь. Большинство его запасов было образовано около 300 млн лет назад – в геологический период, вполне заслуженно названный каменноугольным. Он продолжался, по геологическим меркам, недолго после того, как растения захватили сушу.

В общей сложности около 4 трлн т углерода связано в виде ископаемого топлива, что вдвое больше, чем масса углерода всей сегодняшней биосферы (считая живую и мертвую биомассу). Однако из всего органического вещества, синтезированного под действием атмосферного кислорода, бóльшая его часть, т. е. около 15 квадрлн т углерода, что примерно в 4000 раз больше, чем в ископаемом топливе, находится в коре, не трансформировавшись в ископаемое топливо, причем залегает так, что извлечь или использовать его слишком трудно. Эти органические полимеры обычно называют керогеном. Сам по себе кероген служит одним из основных резервуаров углерода Земли, но осознайте его размеры: он на четверть больше резервуара неорганического углерода, хранящегося в виде карбонатов на дне океанов и на континентах! Карбонаты и кероген вместе уже поглотили почти весь изначальный углекислый газ Земли, который когда‑то был в атмосфере, и таким образом они помогают нашему климату не стать похожим на климат Венеры. Запасы керогена настолько огромны, что, когда лишь незначительная его часть попадает в подходящие условия температуры и давления, он вновь становится гигантским источником ископаемого топлива.

В конце концов, формы углерода и углеводорода в ископаемом топливе служат даже лучшим источником энергии, чем сахара, поскольку они лишены кислорода, и, следовательно, все их вещество может вступать в реакцию с кислородом. В некотором смысле ископаемые виды топлива представляют собой не только сбереженную солнечную энергию, захваченную благодаря фотосинтезу, но и геотермальную энергию, затраченную на восстановление сахаров до бескислородного состояния. Даже без учета докембрийской биомассы за сотни миллионов лет на Земле накопились триллионы тонн энергии, доступной для потребления. Наличие этого дешевого, концентрированного и транспортабельного источника накопленной энергии изменило человеческую цивилизацию и породило бесчисленное количество технологических и социальных достижений. Но получается, что крайняя полезность этого ресурса вынуждает нас сжигать его поразительными темпами. За несколько десятилетий человечество израсходовало углерод, накопленный за миллионы и миллионы лет, и этот процесс стал оказывать влияние на климат и благоприятную для жизни окружающую среду, т. е. среду, пригодную для человека.