Трехуровневый мазер
Как мы увидим, мазер на молекулярном пучке, несмотря на его исключительные характеристики, не очень полезен для практических применений и, вероятно, если бы не разработки, которые мы опишем далее, изобретение Таунса, его сотрудников и других не вызвало бы большого внимания, за исключением научной области спектроскопии. Принципиальным недостатком аммиачного мазера, который ограничивает его применение, за исключением стандартов частоты, является то, что он испускает чрезвычайно узкую линию (на хорошо определенной частоте) и частоту этой линии нельзя изменять, т.е. настроить на другие частоты.
Простым способом увеличить как полосу частот, которые могут усиливаться в устройстве, так и способность изменять центральную частоту в этой полосе (т.е. производить настройку) является использование другого материала. Интересным классом переходов представлялись переходы между магнитными уровнями ферромагнитных и парамагнитных материалов. Мы уже говорили, что энергетический уровень электрона в атоме расщепляется на много подуровней, когда атом помещается в магнитное поле (эффект Зеемана). Путем изменения напряженности внешнего магнитного поля, можно изменять интервал между ними и, тем самым, осуществлять настройку. При использовании твердых тел вместо газов также может сильно увеличиться мощность, поскольку концентрация парамагнитных ионов в твердом теле легко может быть в сотни тысяч раз большей, чем число молекул аммиака в пучке.
Таунс провел свой академический отпуск за 1955/56 г. наполовину в Париже, наполовину в Токио. Когда он был в Парижской высшей нормальной школе (Ecole Normal Superieure) осенью 1955г., один из его бывших аспирантов, Арнольд Хониг, который теперь работал в области парамагнитного резонанса, сообщил ему, что ионы мышьяка в кристаллах кремния имеют при температуре жидкого гелия огромное время релаксации, достигающее 16 с. Таунс сразу же понял, что это обстоятельство позволяет этим ионам оставаться достаточно долго на верхнем уровне, что позволит извлечь энергию с помощью вынужденного излучения. Он предложил сделать эксперимент. Когда Таунс покидал Японию весной 1956 г., этот эксперимент еще не закончился, и соответствующее устройство еще не работало. Однако Таунс был уверен в правильности выбранного пути и вместе со своими парижскими коллегами опубликовал статью, в которой обсуждались возможности предлагаемой системы.
Примерно в это же время, но независимо от Таунса, физик из MIT, М. В. Стрэндберг (г. р. 1919) рассмотрел возможность создания мазера, используя твердотельные материалы вместо газа. Во время войны он работал с радарами, а позднее стал интересоваться радиоспектроскопией, включившись в начале 1950-х гг. в работу по парамагнитному резонансу. 17 мая 1956 г. он выступил на семинаре MIT по парамагнитному резонансу с некоторыми соображениями о преимуществах твердотельного мазера. Среди слушателей был молодой голландец Николаас Бломберген, профессор факультета Прикладной физики Гарвардского университета.
Бломберген родился в Дордрехте, Нидерланды, 11 марта 1920 г. Он учился в университете Утрехта и получил степень кандидата и доктора соответственно в 1941 г. и в 1943 г., во время немецкой оккупации Нидерландов. Затем он сбежал в США и поступил в Гарвардский университет буквально через шесть недель после того, как Парселл, Торрун и Паунд обнаружили ядерный магнитный резонанс. Они были заняты написанием нового тома для серии книг, посвященных микроволновой технике (массачуссетская серия), и молодой Бломберген был принят, как помощник, и его попросили заняться дальнейшей разработкой аппаратуры ЯМР. Таким образом, он стал изучать ядерный магнитный резонанс, одновременно посещая лекции Швингера (1918-1994), Ван Флека и других.
На короткое время он возвратился в Нидерланды после войны и провел исследования в 1947-1948 годах в лаборатории Камерлинг-Онеса. В 1948 г. получил докторскую степень от Лейденского университета за диссертацию по ядерному магнитному резонансу, которая впоследствии была опубликована в виде книги. Затем возвратился в Гарвард и присоединился к Парселлу и Паунду, вместе с которыми выполнил важные работы по магнитному резонансу, о которых речь шла выше. Его огромные достижения в области ядерного магнитного резонанса, мазеров и нелинейной оптики были отмечены присуждением в 1981 г. Нобелевской премии по физике (он разделил ее с Шавловым и Сигманом).
После доклада Стрэнберга на семинаре Бломберген спросил его, почему он рассматривает твердотельную систему для мазера, ведь она не обладает спектральной чистотой, характерной для аммиачного мазера. Стрэнберг объяснил, что он рассматривает совершенно другое применение, а именно усилитель с очень малыми шумами. Бломберген воодушевился этой идеей и обсудил ее с Бенжаменом Лэксом, главой группы Физики твердого тела, который познакомил его с работой Таунса и его французских коллег. И в этой работе, и в идее Стрэнберга рассматривался двухуровневый мазер. Такое устройство предусматривало импульсный режим работы, и поэтому требовалось ненормально длительные времена релаксации. Очевидно, что устройство, лишенное этих недостатков, было бы более полезным, и Бломберген потратил несколько недель, размышляя, как бы реализовать это.
Знания Бломбергеном поведения вещества в магнитных полях позволило ему осознать, что для использования такого устройства нужно большее число уровней, которые можно получить, когда вещество подвержено магнитному полю (т.е. зеемановские уровни), чем два естественно существующих уровня молекулы. Поэтому Бломберген рассматривал эффект магнитного поля, чтобы выбрать по желанию два уровня, между которыми можно осуществить переход, настраивая частоту излучения, соответствующую разности энергий этих уровней. В результате он понял, что если вместо того, чтобы использовать два уровня, используется три уровня, тогда не нужно физически отделять молекулы в верхнем состоянии, но можно выбирать населенности уровней, путем искусного использования взаимодействий. Чтобы получить этот результат, он рассмотрел атомы, включенные в твердое тело в виде примесей. Атомы примеси замещают некоторые из атомов в твердом теле и находятся в изоляции друг от друга, окруженные соседними атомами твердого тела. В результате орбиты электронов атомов примеси очень мало возмущаются и остаются почти такими же, как в газовой фазе. Поэтому их уровни вполне отличны от уровней атомов твердого тела.
Чтобы понять предположение Бломбергена, вспомним, что атомы или ионы с n неспаренными электронами (т.е. с противоположными спинами) образуют во внешнем магнитном поле n + 1 магнитных уровней, интервал между которыми пропорционален напряженности магнитного поля (аномальный эффект Зеемана, который рассматривался в гл. 4). Теперь давайте рассмотрим вещество, обладающее тремя уровнями с неравными интервалами между ними (рис. 43). Некоторые парамагнитные ионы имеют такие уровни в подходящих кристаллах. Населенности уровней с энергиями Е1, Е2 и Е3 имеют населенности n1, n2 и n3 соответственно, и в условии термического равновесия мы имеем
n1 > n2 > n3
Рис. 43. Трехуровневая конфигурация парамагнитного материала
При обычных магнитных полях разности энергий между уровнями довольно малы и соответствуют микроволновым частотам. Они также малы по отношению к тепловой энергии атомов, и поэтому эти три населенности мало отличаются друг от друга.
Пусть теперь система подвергается сильному излучению накачки на частоте f13, которая соответствует разности энергий между уровнем 3 и уровнем 1. Такое поле, которое мы будем называть полем накачки, очевидно, поглощается и вызывает переходы между уровнями 1 и 3. Поскольку первоначально больше атомов находятся на основном уровне 1, система будет поглощать энергию, вызывая увеличение населенности уровня 3 за счет уровня 1. Итоговый эффект заключается в том, что населенности n1, и n3 стремятся стать равными с увеличением n3 и уменьшением n1. С другой стороны, населенность n2 не подвержена влиянию этого поля и поэтому остается той же самой. Первоначально она была слегка больше, чем n3, но затем, в результате действия поля накачки, n3 увеличивается за счет n1 и может получиться ситуация, когда n3 больше, чем n2 и больше, чем n1. Таким образом, между этими уровнями возникает инверсная населенность и может происходить вынужденный переход на частоте f32 или f21, соответствующей разностям энергий между уровнями 3 и 2, или между 2 и 1 соответственно. Разумеется, чтобы получить достаточно сильное вынужденное излучение, нужна как можно большая инверсная населенность, а так как энергии между уровнями очень малы, нужно работать при очень низких температурах.
Бломберген математически проанализировал разные процессы, которые происходят, и пришел к заключению, что инверсную населенность можно получить, например, между уровнями 3 и 2, если время, требуемое атомам, чтобы вернуться обратно в основное состояние (так называемое время релаксации), удовлетворяет определенным условиям.
В этом месте мы должны сказать, что идея использовать трехуровневую систему, пришла также Басову и Прохорову. В 1955 г. они опубликовали предложение, в котором рассматривались молекулы газа, с тремя уровнями. Они показали, что возможно получить инверсную населенность, используя подходящие поля излучения. В отличие от Бломбергена, система, предлагаемая двумя российскими исследователями, не допускала перестройки по частоте. Кроме того, не обсуждалась важность релаксации, и ни один из предложенных методов не заработал.
Возвратимся в США. В Bell Labs группа, в которой работал Гордон, поступивший в исследовательский центр после выполнения диссертации под руководством Таунса и Г. Феером, сумела получить мазерный эффект в образце кремния с примесями в согласии со схемой, предложенной Таунсом и его французскими коллегами. Немного спустя, Рудольф Компфнер (1909—1977), руководитель исследований по электронике, изобретатель лампы бегущей волны, привлек Г. Сковила, сотрудника технического отдела, работающего над разработкой твердотельных устройств. Эти два человека познакомились в Оксфордском университете, где работал Компфнер, а Сковил занимался изучением, как сделать твердотельный мазер, работающий в непрерывном режиме. 7 августа 1956 г. Сковил представил меморандум с предложением использовать кристалл этилсульфата гадолиния, свойства которого он детально изучил во время работы над своей диссертацией. Предполагалось использовать парамагнитные уровни в подходе, идентичном предложению Бломбергена. Сковил подготовил статью для посылки в Phisical Review.
Сообщения о работах Бломбергена доходили до научного центра Bell Labs, а Бломберген узнал, что что-то происходит в этих лабораториях. Бломберген хотел запатентовать свой мазер и стал беспокоиться, что он выдал слишком много информации коллегам. С другой стороны, в Bell Labs боялись, что может возникнуть неприятная ситуация с приоритетами оригинальных идей и будущими судебными процессами о патенте. Итак, Бломбергена пригласили представить свои результаты в Bell Labs, и 7 сентября 1956 г. он провел семинар в Нью Джерси (отделения Bell Labs расположены в двух местах). Сковил, не знавший о работе Бломбергена, понял на семинаре, по его собственным словам, что «Бломберген имел ту же идею и пришел к ней раньше меня. Так что я не послал мою работу в печать».
Bell Labs приняла соглашение об использовании патента Бломбергена, тем самым, оставляя обеим группам возможность полюбовно договориться, как реализовать экспериментально первый мазер этого типа.
Между тем Бломберген опубликовал свое предложение в Physical Review, в статье, полученной 6 июля 1956 г. и опубликованной в номере от 15 октября того же года. В ней он дополнительно рассматривал некоторые возможные материалы, что могло помочь создать мазер.
К сожалению, он и его группа в Гарварде интересовались устройством для астрономических целей, работающим на частоте линии межзвездного водорода 1420 МГц. Поэтому они выбирали материал, который мог бы работать на этой частоте, и упустили возможность первой успешной работы трехуровневого мазера. На следующий год, после публикации теоретической работы Бломбергена, первый трехуровневый мазер был создан (1957г.) в Bell Labs Сковилом, Феером и Зайделем, которые использовали ионы гадолиния в кристалле этилсульфата лантана. Вскоре после этого (1958 г.) А. Маквортер и Дж. Мейер из MIT использовали ионы хрома в цианидах кобальта и натрия, для создания первого усилителя. Бломберген и его сотрудники также старались сделать свой мазер, но оказались третьими в 1958 г.
При создании своего мазера, Сковил и его коллеги искусно использовали принцип его работы. Количество усиливающих ионов гадолиния зависит от того, какая инверсная населенность получается между мазерными уровнями. В случае гадолиния ими были уровни 2 и 1. Разность населенностей между этими двумя уровнями зависит, кроме других вещей, от того, как быстро ионы, накаченные с уровня 1 на уровень 3, распадаются на уровень 2. Группа наблюдала, что в их кристалле в качестве примеси присутствует цезий, который, взаимодействуя с гадолинием, увеличивает скорость, с которой ион распадается с уровня 3 на уровень 2. В согласии с этим, они выбрали концентрацию атомов цезия так, чтобы оптимизировать перенос энергии между этими двумя уровнями.
В то время как первоначальный аммиачный мазер был принципиально использован в качестве стандарта частоты, из-за стабильности частоты его излучения, или еще в качестве очень чувствительного детектора, твердотельный мазер, будучи перестраиваемый по частоте, мог бы быть использован для связи и для радаров. Его можно было непрерывно перестраивать в пределах допустимой полосы частот, оставаясь с принципиально малыми шумовыми характеристиками, присущими мазеру. Перестройку можно было получить, изменяя напряженность магнитного поля.
Немного времени спустя Ч. Кикучи и его коллеги показали, что рубин является хорошим материалом для мазера. В 1955 г. инженер Вестон Вивиан начал специальные исследования в Willow Run Lab. в Мичиганском университете, поддержанные военными, с целью разработать пассивную систему с очень чувствительным приемником, с помощью которой можно было бы регистрировать микроволны, естественно испускаемые объектами (вспомним закон черного тела, гл. 3). Вивиан рассчитал, что требуется исключительная чувствительность микроволнового приемника. Кикучи вначале занимался изучением поглощений микроволн в кристаллах. И его попросили попробовать построить хороший мазер, пригодный для этих целей. После рассмотрения трицелата хрома, который технологи с трудом вырастили, Кикучи решил использовать розовый рубин.
Рубин является кристаллом окиси алюминия (Аl2O3), в котором в качестве примеси имеются атомы хрома. Эти атомы замещают некоторые из атомов алюминия и теряют три своих валентных электрона, превращаясь, тем самым, в ион с тремя зарядами. Эти ионы, как мы увидим позднее, ответственны за оптические свойства, и именно они придают замечательный красный цвет рубину. Разумеется, рубины, используемые в мазере, получаются синтетически. Интенсивность окраски зависит от концентрации ионов хрома.
В январе 1957 г. Кикучи получил образец розового рубина и приступил к созданию мазера. Важным параметром конструкции мазера является угол, под которым магнитное поле направлено к оси кристалла. В то время предпочтительным углом был 15°. Но при этом угле, чтобы рассчитать положение требовался компьютер, который в те дни был недоступен. Кикучи выбрал угол 54°44' (рис. 44). При этом угле вычисления упрощаются так, что можно получить аналитические выражения. Они показывают, что можно построить мазер на длину волны 3,2 см, которая была хорошо знакома техникам, имеющими дело с радарами.
Однако работа продвигалась медленно, и только 20 декабря 1957 г. мазер заработал. После этого Маквортер и Мейер из MIT, весной, смогли сделать мазер, используя калий-кобальт цианид с добавкой хрома. Таунс со своими сотрудниками запустили мазер на 3 см, а Бломберген с сотрудниками с помощью этого же материала сделали свой собственный мазер на 21 см.
Калий-кобальтовый цианид — очень ядовитый материал. В 1958 г. Бломберген и Таунс с женами обедали в ресторане Нью-Йорка. Миссис Таунс похвасталась перед мисс Бломберген золотой цепочкой с кулоном из великолепного рубина. Она сказала, что ее муж сделал этот подарок в ознаменования мазера. Той же ночью, в отеле миссис Бломберген спросила мужа: «Когда ты собираешься сделать мне подарок в ознаменование твоего мазера?» На это Бломберген ответил: «Видишь ли, дорогая, мой мазер работает на цианиде». Таким образом, он избавился от необходимости покупать дорогой подарок!
Рис. 44. Энергетические уровни рубина с его осью под углом θ = 54°44' по отношению к магнитному полю
Рубиновый мазер сделал использование других кристаллов ненужными. Искусственный рубин был доступен, он прочен, удобен в эксплуатации, и с ним легко получалась перестройка частоты. В совершенствовании конструкции рубинового мазера активное участие в работе научного центра Bell Labs принял Жозеф Гёзик.
В течение 1957 г. и 1958 г. много мазеров было построено в нескольких лабораториях, включая Гарвард. В них использовались ионы хрома в кристаллах рубина. Рубины были использованы в большом числе типов мазеров с разными характеристиками. С 1958 г. многие мазеры были построены для использования в радиоастрономии или в качестве компонент приемников радаров. Почти все они были основаны на рубинах.
Мазеры, как только они появились, вызвали большой интерес военных, которые думали использовать их в качестве очень чувствительных приемников с малым уровнем шумов. Растущей областью применений также стала радиоастрономия. Рассматривалось использование их для обнаружения очень слабых сигналов, поскольку мазеры обладают весьма малыми шумами. Однако существовали и большие неудобства. Мазер, трехуровневая версия которого обладала наиболее подходящими характеристиками для этих применений, был достаточно мал и надежен в эксплуатации, но требовал охлаждения до температуры жидкого гелия и помещался в сильное магнитное поле. Эта система охлаждения и магнит были громоздкими и тяжелыми (рис. 45). Представлялось, что такое устройство не годится на поле боя и для установки на самолет. Также и для радиоастрономических применений его вес и габариты были нежелательны, имея в виду, что для полного использования его низких шумовых характеристик приемник должен был быть смонтирован в центре гигантской антенны (рис. 46). В противном случае пришлось бы использовать систему передачи сигнала от антенны к мазеру, а ее собственные шумы свели бы на нет его преимущества.
Также и для спутниковой связи, где спутники используются для передачи или ретрансляции сигналов от них к Земле, мазеры не оправдали надежд. Были разработаны новые полупроводниковые устройства, параметрические генераторы, которые хотя и не обладали столь малыми шумами, как мазеры, но были легки и компактны и не требовали охлаждения и сильных магнитных полей,
В конце концов применения мазеров ограничилось очень малым числом. Однако бурная активность вокруг них, полученные новые знания, и первые демонстрации практического применения вынужденного излучения содействовали появлению и развитию лазеров со всеми последующими применениями.
Рис. 45. Основные элементы твердотельного мазера
Рис. 46. Типичная параболическая антенна, используемая в радиоастрономии, телеметрии, радиолокации и др., с мазером, установленным в фокальной точке
Тем не менее для мазеров был момент славы. Мазер на рубине был использован А. Пензиасом и Р. Вильсоном в их открытии в 1965 г. излучения черного тела с температурой 3 К, которое является следствием Большого Взрыва Вселенной (реликтовое излучение). Оба были удостоены за свое открытие Нобелевской премии по физике в 1978 г. вместе с П.Л. Капицей (российский физик, который получил эту премию за свои исследования при низких температурах, которые привели его к обнаружению необычных свойств жидкого гелия, а именно его свертекучести). Эта история интересна тем, что показывает, что Нобелевскую премию можно получить почти случайно.
Арно Элан Пензиас родился в Мюнхене в 1933 г. и в возрасте шести лет был вместе со всей семьей депортирован в Польшу, откуда они эмигрировали сначала в Англию, а затем прибыли в 1940 г. в США. Здесь он стал инженером-химиком, и после женитьбы и службы в американской армии поступил в 1956 г. в Колумбийский университет, где он занимался физикой с Раби, Кушом и Таунсом. В качестве темы диссертации Таунс дал ему задание построить мазерный усилитель для эксперимента по его собственному выбору в радиоастрономии.
В 1961 г. Пензиас после завершения диссертации пытался получить работу в Bell Labs, предполагая использовать ее уникальное оборудование для завершения своих наблюдений, которые он получил в своей диссертации. Директор радиолаборатории предложил ему постоянное место с условием, что он может уйти, когда пожелает. Таким образом, он стал сотрудником Bell Labs, и оставался там до своей отставки в 1998 г.
Был проект зафиксировать все еще не обнаруженное излучение межзвездных молекул ОН, и ученые из MIT добились успехов в этом. Пензиас отправился со своей аппаратурой в Гарвард, чтобы провести наблюдения. В середине 1962 г. Bell System запустила спутник TELSTAR. Опасаясь, что Европейские специалисты не смогут вовремя закончить оборудование своих приемных станций, они сами создали в Холмделе (в одном из отделений Bell Labs) такую станцию. Она была оборудована новым мазером с ультранизким уровнем шумов, работающем на длине волны 7,35 см. В конце концов это оборудование не потребовалось, поскольку европейцы сдали свои станции вовремя. Поэтому Пензиас и Р. Вилсон, радиоастроном из Калтеха, могли использовать систему, разработанную в Bell Labs.
Роберт Вилсон родился в 1936 г. в Хьстоне (Техас, США), где его отец работал на нефтяных скважинах. С ранних лет он интересовался электроникой. Он окончил университет Раиса и поступил в Калтех для получения ученой степени по физике. Там он заинтересовался радиоастрономией и после написания и защиты диссертации, поступил в 1963 г. в Bell Labs, где он начал долгую и плодотворную работу с Пензиасом.
Монтаж приемной системы для радиоастрономии Пензиас и Вилсон начали с серии астрономических наблюдений, имеющих целью оптимизировать антенну и мазер, при этом они измеряли интенсивность излучения, испускаемого нашей галактикой. Были проведены очень точные калибровочные измерения. В 1963 г. был установлен мазер на длину волны 7,35 см и они выполнили серию операций по калибровке всей системы, все было под контролем, за исключением того факта, что входной шум всей системы был на 3,5 К больше значения, который они рассчитали. Пензиас и Вилсон начали аккуратное исследование возможных причин этого противоречия, и после рассмотрения и отбрасывания альтернативных гипотез, пришли к заключению, что на антенну поступает шумовое излучение, превышающее на 3,5 К рассчитанного значения шума всей приемной системы, причем это излучение приходит на антенну равномерно изо всех направлений в пространстве.
Однажды Пензиас обсуждал эту проблемы шумового излучения с Бернардом Бурке из MIT, который вспомнил о теоретических исследованиях излучения во Вселенной, проводимых П. Пиблесом из группы профессора Р. Дике в Принстоне. Пензиас позвонил Дике, и он прислал ему работу Пиблеса. В ней, Пиблес, следуя предположениям Дике, рассчитал, что Вселенная должна быть наполнена реликтовым излучением черного тела с минимальной температурой около 10 К, остатком первобытного взрыва Вселенной (Большой Взрыв). В 1948 г. Джордж Гамов уже выполнил расчеты первоначальных условий во Вселенной. Модель Большого Взрыва предполагает, что Вселенная родилась в результате гигантского взрыва. Сразу же после него температура должна была быть исключительно высокой, порядка 10 тысяч миллионов градусов, а может быть и выше. При таких температурах, разумеется, никакие вещества не существуют, но имеется некий бульон протонов, нейтронов, электронов, фотонов и других элементарных частиц. Эти частицы, взаимодействуя друг с другом, начинают образовывать легкие элементы, и в то же время испускается огромное количество излучения с очень большой энергией, а расширяющаяся Вселенная начинает охлаждаться. За период, меньший чем несколько сотен тысяч лет, материя во Вселенной все еще остается ионизованной и сильно взаимодействует со светом. В это время общая температура опускается до 3000 К и электрические заряды материи начинают рекомбинировать, образуя нейтральное вещество. На этом этапе взаимодействие фотонов с элементарными частицами прекращается, и электромагнитное излучение, заполняющее Вселенную, начинает охлаждаться из-за расширения Вселенной, причем длина волны сдвигается в сторону увеличения, и число фотонов в единице объема (т.е. их плотность) уменьшается. Одним из следствий этого расширения, является уменьшение температуры пропорционально размерам Вселенной. А температура, согласно распределению Планка, определяет спектральный состав излучения. Малые изменения в интенсивности приводят к малым пертурбациям плотности первоначальной материи, которые, усиливаясь гравитационными силами, образуют галактики.
Во времена нашей истории проблема этого излучения, забытая на некоторое время, снова обсуждалась астрофизиками, и группа Дике очень заинтересовалась. После первого контакта Дике и его сотрудники посетили Пензиаса и Вилсона и убедились в реальности их измерений. После этого в Astrophysical Journal были направлены два письма: одно за подписью Пензиаса и Вилсона объявляло об открытии, а второе, подписанное Дике, Пиблесом, Роллом и Вилкинсоном, давало теоретическое объяснение.
Рис. 47. Спектр космического фонового радиоизлучения, измеренного спутником СОВЕ в 1989 г. Точками показаны экспериментальные значения, а сплошная кривая относится к спектру при 2,735 К, рассчитанному по формуле Планка для черного излучения
За это открытие Пензиас и Вилсон получили Нобелевскую премию по физике в 1978 г. Совсем нет необходимости говорить, что это открытие стало возможным благодаря использованию мазера, обладающего крайне малыми собственными шумами. Именно это обстоятельство позволило измерить температуру реликтового излучения. Более точные современные измерения дают 2,735 К, и это является частью экспериментальных доказательств модели Большого Взрыва (рис. 47). Но почему именно 2,735 К, а не другое значение, является одной из наиболее важных проблем современной космологии, относящейся к фундаментальным аспектам строения и эволюции Вселенной. Все это ждет своего ответа.