История лазера

Бертолотти Марио

ГЛАВА 13

И НАКОНЕЦ-ТО, ЛАЗЕР!

 

 

Сразу же после опубликования работы Шавлова и Таунса и даже до того целый ряд людей стали размышлять о разных способах создания инверсной населенности в инфракрасной и видимой областях. Творческая ментальность исследователя, который стремится улучшить существующие знания и прорваться в новом направлении без предубеждений, приводит почти одновременно и независимо к рассмотрению нескольких различных систем. В ряде случаев, например, как тот, в котором используется излучение, испускаемое за счет стимулированной рекомбинации электрон-дырочных пар в полупроводнике, исследования проводились до обсуждения Шавловым и Таунсом.

Конечно, главные темы исследований были под воздействием идей этих двух ученых, и большинство людей ожидало, что первая работа лазера осуществится в возбужденном газе. Но получилось так, что первый работающий лазер был создан в июле 1960 г. в Исследовательских лабораториях фирмы Hughes (Малибу, Южная Калифорния, США) Теодором Мейманом, который использовал рубин в качестве активного материала. Затем последовало огромное число других лазеров на твердотельных материалах, газах и жидкостях. Это продемонстрировало, что многие люди в различных частях мира устремились к проблеме с разных направлений, работая, более или менее, независимо друг от друга. Более того, они показали, как, сравнительно легко сделать лазер, после того как поняты основные принципы его работы.

 

Мейман начинает создавать рубиновый мазер

Теодор Мейман родился в 1927 г. После учебы в университете Колорадо и после получения докторской степени по физике в 1955 г.  в Стэнфордском университете по диссертации, посвященной микроволновой спектроскопии, он стал работать в промышленности. Вначале он был исследователем в Lockheed Aircraft, где занимался изучением проблем коммуникаций для управляемых снарядов. Затем он перешел в Hughes для работы над мазером.

Во время своей работы над диссертацией в Стэнфорде Мейман изучал тонкую структуру возбужденных состояний гелия. В своей работе он использовал разработанные им измерительные методики, которые представляли комбинацию электроники, техники микроволн и оптических приборов. В Hughes он стал работать во вновь созданном Отделе атомной физики. Главной целью была генерация когерентных частот, более высоких, чем удавалось получать в то время. Это было время, когда появился аммиачный мазер. В Hughes возник большой интерес к исследованиям мазеров. Однако Мейман сперва работал по другому контракту. Когда он окончил эту работу, то пожелал работать в области фундаментальных исследований, но ведомство Армии, которое финансировало эту работу, требовало в то время практический мазер, работающий на длине волны 3 см. Их не интересовали какие-либо научные достижения, они просто хотели иметь такой мазер, и Меймана попросили возглавить проект. У него это не вызвало энтузиазма, поскольку проект был чисто техническим, а он стремился к исследовательской деятельности. Но затем он заинтересовался и, хотя заказчики не требовали, чтобы он сделал выдающееся изделие, решил, что может сделать мазер более практичным.

Мазеры в то время имели два серьезных практических недостатка. Главная трудность была в том, что твердотельный мазер (наиболее полезный тип) требовал для своей работы очень низких температур. В самом деле температура жидкого гелия, которая требовалась, всего лишь на 4 К выше абсолютного нуля. Другая проблема была в том, что в обычном мазере использовался огромный магнит весом около двух тонн. Он был нужен, чтобы получить зеемановские уровни, требуемые для работы мазера. Внутри магнита помещался дьюар (специальный сосуд, в котором может продолжительное время сохраняться сжиженный газ). В него приходилось подливать жидкий азот с температурой — 166° С, которая была первой стадией охлаждения гелия. В дьюар с жидким азотом помещался второй дьюар с жидким гелием. Сам мазер представлял маленький резонатор с кристаллом внутри него. Все это помещалось в дьюар с жидким гелием, который, в свою очередь, помещался между полюсами магнита. Магнит должен был обеспечить сильное поле во всей области, занимаемой дьюарами, резонатором и кристаллом. Поэтому он имел большие размеры и вес.

Предпочтительным материалом для мазера в то время был рубин. Мейман решил, что он может кое-что сделать, также используя рубин. Он сделал миниатюрный резонатор, используя сам кристалл рубина. С этой целью рубин вырезался в виде маленького параллелепипеда. Его грани покрывались слоем серебра, имеющего высокую проводимость. В одной из стенок, делалось маленькое отверстие. Таким образом получался резонатор и, одновременно, активный материал. Затем он решил, вместо того, чтобы помещать двойной дьюар в громадный магнит, взять маленький постоянный магнит и поместить его в дьюар. Были опасения, что магнит лопнет, но все сработало прекрасно. В результате все устройство стало весить не более 15 кг вместо двух тонн и работало много лучше и много более стабильно, чем прежде.

Позднее он сделал еще меньшие мазеры весом не более 2 кг и разработал «горячий» мазер, который работал при температуре жидкого азота и даже сухого льда.

 

Рубиновый лазер

В первой половине 1960 г. предположения о лазерных материалах сосредоточивались на газах, и более конкретно на парах щелочных металлов, возбуждаемых оптическим излучением, а также на инертных газах, возбуждаемых электрическим разрядом. Успех, полученный Мейманом с рубиновым лазером, был поистине сюрпризом. Однако это не было случайным открытием. Уже работая с рубином как с материалом для мазера, Мейман решил использовать его в качестве отправного материала для лазера. Вначале он выполнил некоторые расчеты, но без успеха, поскольку Ирвин Видер опубликовал работу, в которой указал, что квантовая эффективность рубина (т.е. число фотонов люминесцентного излучения на каждый поглощенный фотон) была всего лишь около 1%.

Рис. 50. Энергетические уровни хрома в рубине, которые участвуют в излучении лазера

Рубин является кристаллом окиси алюминия (Аl2O3), в которую добавлено небольшое число атомов хрома в качестве примеси (мы говорим допирование хромом). Атом хрома теряет три своих электрона и становится ионом хрома, который замещает один из ионов алюминия в кристаллической решетке. Эти ионы хрома имеют серию энергетических уровней в видимой области (рис. 50), которые делают прозрачный и бесцветный материал окрашенным от розового до тёмно-красного, в зависимости от концентрации примеси. На рис. 50 показаны две серии уровней, которые настолько близки друг к другу, что практически сливаются в две непрерывные полосы. Эти две полосы имеют центры на длине волны 0,55 мкм (зеленая; эту полосу в спектроскопии обозначают 4F2) и на длине волны 0,42 мкм (фиолетовая; обозначенная 4F1) соответственно. Если кристалл облучается зеленым или фиолетовым светом, возбужденные ионы релаксируют на два промежуточных уровня, обозначаемых 2Е, за очень короткое время, вместо того, чтобы непосредственно спадать в основное состояние. Переход из зеленой и из фиолетовой полос на эти уровни происходит без испускания света, но дает избыток энергии решетке через колебания ее атомов. С этих очень близко расположенных уровней (обозначаемых 2A и Ē) ионы медленно спадают (за время порядка миллисекунды) на основной уровень, причем в это время испускается красный свет, который имеет очень узкое спектральное распределение (узкие линии) около 6928 А° (спектроскописты называют ее R2 линией) или 6943 A° (R1). Этот свет, испускаемый после освещения кристалла, называется люминесценцией. Наименование этих уровней и полос было предложено теоретиками согласно рассмотрению на основе теории групп, которое отражает определенные свойства симметрии соответствующих состояний. Это не представляет интереса в нашем случае.

Ирвин Видер из Исследовательских лабораторий Вестингауза занимался исследованием излучения, соответствующего узким линиям рубина, т.е. R линий. Он использовал лампу накаливания, свет которой поглощался и возбуждал обе зеленую и фиолетовую полосы рубина. Затем энергия передавалась на 2Ē уровень. Видер рассчитал, что эффективность этого преобразования энергии была около 1% (т.е. около одной сотой энергии, поглощенной в этих двух полосах, оказывается в виде красного света, испускаемого в R линиях). Если это так, то лишь один красный фотон получается на каждые 100 поглощенных фотонов, что, практически, закрывает возможность использования оптической накачки для получения лазера. Однако после исследования других материалов, Мейман решил выполнить более точные измерения для рубина, путем изучения спектроскопии ионов хрома в розовом рубине. Он обнаружил, что на самом деле, квантовая эффективность была очень высока. Эти и другие результаты точных исследований люминесценции составили предмет статьи, которая была направлена 22 апреля 1960 г. в журнал Physical Review Letters и была опубликована в июне того же года.

В этом исследовании Мейману помогал И. Д'Хейнес, который только частично был связан с фирмой и придерживался мнения своих руководителей Дж. Бирнбаума и Г. Лайона, высказывавших скептицизм относительно успеха.

В результате исследований было обнаружено распределение энергии в ионах хрома, которое мы описали и которое изображено на рис. 50, причем время жизни 2Ē уровней, оказалось около 5 мс. Это, относительно длинное, время жизни, в течение которого атомы остаются в метастабильном состоянии, и их последующий распад с испусканием излучения (радиационный распад) является ответственным за явление люминесценции рубина, т.е. явления, которое и дает материалу его красный цвет. Рубины, которые исследовал Мейман, относились к так называемым розовым рубинам, в которых концентрация ионов хрома составляет только около 0,05% по весу. Поэтому, хотя обе линии 6943 A° и 6928 А° красные, полная окраска получается розовой (отсюда и название). Измерения квантовой эффективности люминесценции, т.е. числа фотонов, испускаемых при люминесценции, по сравнению с числом поглощенных фотонов зеленого возбуждающего света, показали, что это отношение близко к единице. Это означает, что практически каждый поглощенный зеленый фотон приводит к испусканию одного красного фотона. Это результат опровергал данные Видера и делал возможным осуществление лазера.

Мейман рассчитал, что достаточно интенсивный зеленый свет может желательным образом заселить промежуточное состояние 2Ē. Это, в свою очередь, должно было изменить населенность основного состояния (уменьшить его населенность). Все эти результаты побудили его использовать рубин для первого лазеры и продолжить расчеты.

На этом этапе принципиальной проблемой было найти источник зеленого света, достаточно мощного, чтобы накачать атомы на верхний уровень. Грубо говоря, лампа излучает свет, как если бы она была черным телом с высокой температурой.

Предварительные расчеты показали, что требуется лампа с эквивалентной температурой черного тела 5000 К. Мейман начал свои расчеты с коммерчески доступными ртутными лампами, но убедился, что их характеристики на пределе. Тогда он вспомнил, что импульсные ксеноновые лампы имеют эквивалентную температуру 8000 К. Не было причин исключать работу лазера в импульсном режиме, так как во многих случаях импульсный источник был привлекательным.

Теперь мы можем легко понять динамику процесса, снова обращаясь к рис. 50. Освещение зеленым светом возбуждает некоторые ионы хрома с основного уровня (на рисунке он имеет спектроскопическое обозначение 4А2 и обозначен числом 1) в полосу уровней, обозначенную как 4F2 и числом 3. Отсюда ионы быстро, за доли микросекунды (путем передачи энергии при столкновениях с атомами решетки), переходят на уровень 2Ē, обозначенный числом 2. С него они возвращаются на основной уровень в течение ~ 5 мс, испуская красный свет.

Мейман измерил уменьшение числа ионов, остающихся на основном уровне после поглощения зеленого света на 5600 А°, путем наблюдения фиолетового света на 4100 А°, который поглощается на переходе от 4A2 на 4F1. За счет этого перехода энергия ионов хрома возрастает с основного уровня 1 в полосу, обозначенную 4F1. На образец рубина посылался интенсивный короткий импульс излучения зеленого света на 5600 А° и одновременно образец просвечивался фиолетовым светом на 4100 А°. Когда интенсивный импульс излучения на 5600 А° посылается на образец, излучение на 4100 А°, также посылаемое в это же время на образец, испытывает резкое увеличение (поглощение уменьшается), которое спадает за ~ 5 мс. Этот эффект легко объяснить. Импульс света на 5600 А°, который возбуждает ионы с основного уровня в полосу 4F2 уменьшает число ионов на основном уровне, которые можно возбудить светом на 4100 А° в полосу 4F1. Тем самым уменьшается поглощение фиолетового света. Только после ~ 5 мс, когда ионы возбужденные в полосу 4F2, пройдя уровень 2Ē, возвратятся на основной уровень, поглощение фиолетового света возвратится к первоначальному состоянию. Этот и другие эксперименты позволили Мейману рассчитать, что изменение населенности основного уровня в 3% вполне осуществимо.

Воодушевленный этим результатом, он модифицировал условия эксперимента, чтобы возбудить максимально возможное число ионов хрома с основного уровня 1 на уровень 2. Для этого он использовал рубин в виде цилиндра, окруженного спиральной импульсной лампой (лампой-вспышкой). Чтобы собрать побольше света на образец рубина, он поместил все в цилиндр с посеребренными внутренними стенками. Таким образом, около 98% света лампы отражалось от них на образец. После внимательного изучения каталога ламп-вспышек, выпускаемых для профессиональных фотографов фирмой Дженерал Электрик, он установил, что три из них, FT 503, FT 506, FT 634, в принципе годятся. Чтобы получить резонатор, он отполировал оба основания цилиндра рубина и сделал их грани параллельными. На них испарением в вакууме наносились слои серебра (получался эталон Фабри-Перо). Один из слоев имел максимальный коэффициент отражения, а другой имел некоторое малое пропускание для вывода излучения из резонатора. Цилиндр рубина имел длину около 2 см и диаметр несколько меньший 1 см, и полностью окружался спиралью импульсной лампы (рис. 51). Мейман выбрал самую маленькую лампу, FT 506. Через лампу разряжалась батарея конденсаторов, заряженная до нескольких киловольт. Напряжением на батарее определялась интенсивность излучения лампы- Когда энергия разряда была не слишком высока, через не полностью отражающую грань рубина проходил красный свет люминесценции, который можно было наблюдать глазом на экране. С помощью подходящего приемника (фотоэлемент или фотоумножитель) можно было также прослеживать изменение интенсивности этого света во времени, убеждаясь, что она затухает за характерное время ~ 5 мс, типичное для люминесценции. Однако когда энергия разряда достигала определенного значения, внезапно на экране наблюдалось интенсивное красное пятно диаметром около 1 см.

Рис. 51. Схема лазера на рубине Меймана

Этот результат был получен в мае 1960 г. Сигнал лазера был не очень сильным, поскольку образец рубина выбирался из тех, что использовались в мазерах, и был довольно плохого оптического качества. Мейман заказал специальные рубины и немедленно подготовил сообщение о своих впечатляющих результатах, которое он отправил 24 июня в Physical Review Letters. Однако редактор журнала не принял статью для публикации, считая, что физика мазеров уже достигла значительного уровня и новые результаты в этой области не заслуживают быстрой публикации. Нет необходимости говорить, что он ничего не понял по существу дела. Однако не будем забывать, что в то время соответствующее устройство обозначалось как оптический мазер, а также то, что люди были склонны верить Шавлову, что R-линии рубина не годятся для лазера. Поэтому можно оправдать скептицизм редактора в отношении достоверности результатов. Во всяком случае, Мейман сделал известным свое изобретение через сообщение в New York Times 7 июля 1960 г., а статья, отвергнутая Physical Review Letters, через короткое время появилась в британском журнале. В выпуске от 6 августа в Nature был описан этот выдающийся эксперимент.

Когда люди, отвечающие за рекламу в Hughes, решили сделать фотографию первого лазера и его создателя Меймана, они использовали самую большую спиральную лампу-вспышку FT503, поскольку фотография Меймана на ее фоне была более фотогенична. Широкое распространение этой фотографии создало представление, что именно такая лампа используется в рубиновом лазере. Это способствовало продаже этой лампы, так как желающие воспроизвести результаты Меймана использовали эту лампу.

Когда Мейман работал над своим проектом, в фирме не было особого энтузиазма. В больших компаниях часто имеется огромное сопротивление к чему-то новому и необычному. Многие люди были настроены скептически и не верили, что оптические мазеры будут созданы. Более того, они видели, что многие занимаются этой проблемой без какого-либо успеха. И наконец, даже если лазер удастся построить, на что он будет нужен? Если этого недостаточно, отметим, что Шавлов сказал, что рубин не годится, а Мейман как раз использовал именно этот материал. Люди фирмы заботились о деньгах. Стоит ли компании финансировать такую работу? Мейман не работал по контракту, но использовал общие фонды на исследования. Во всяком случае к концу девяти месяцев было потрачено 50 000 долларов.

Однако Мейман не опустил руки и был намерен продолжать. Через какое-то время, он 14 ноября 1967 г. получил патент на свой лазер. Сразу же после создания лазера, он оставил Hughes и в 1962 г. основал собственную компанию, Korad Corporation, которая стала лидером рынка, выпуская рубиновые лазеры высокой мощности. В последующие годы Мейман занимался коммерческой деятельностью. В 1984 г. его ввели в Зал славы Национальных изобретателей.

На следующий день, после того, как Мейман объявил, что рубин успешен, многие продолжали сомневаться в этом. В августе группа, включающая Шавлова, воспроизвела в Bell Labs лазер Меймана и показала, что он эффективно работает. Свои результаты они опубликовали в октябрьском выпуске Physical Review Letters. Многие, из тех кто не видел английских работ Меймана, посчитали, что первый лазер был создан в научном центре Bell Labs. Это заблуждение поддерживалось тем, что предложение лазера было сделано в том же Bell Labs Шавловым и Таунсом, которые, как было известно, работают над практической реализации своей идеи. Hughes в Калифорнии была полностью в стороне от этих исследований и от принципиальной команды на Восточном Побережье.

Работу лазера легко понять. Когда возбуждение импульсной лампой достаточно сильное, населенность состояния 2Ē становится больше, чем населенность основного состояния. В этой ситуации, некоторые из спонтанно испущенных фотонов люминесценции, которые распространяются параллельно оси системы и которые отражаются обратно и вперед на зеркалах концов рубина, многократно проходят через усиливающую среду, стимулируя излучение возбужденных ионов, производя, тем самым, вынужденное излучение. Таким образом, лазерное действие инициируется спонтанным излучением и протекает за счет усиления только того излучения, которое из-за селективных свойств резонатора, распространяется взад и вперед вдоль оси стержня. Фотоны, распространяющиеся не вдоль оси, а по другим направлениям, теряются после нескольких отражений.

В принципе лазерное действие можно получить на R1 или R2 линиях, но обычно оно получается на R1, линии. Лазер характеризуется некоторыми особенными свойствами, присущими источнику этого типа: когерентностью, т.е. способностью производить интерференционные явления; направленностью пучка испусканием очень узкой полосы частот с очень большой мощностью. Расходимость пучка, т.е. угол, под которым он расходится, был около 5°, на расстоянии 10 м пятно излучения было меньше 9 см в диаметре. Более того, пучок был пространственно когерентным, что было немедленно продемонстрировано путем наблюдения способности производить интерференционные полосы. Испускаемая мощность была около 10 кВт, это означало, что поток, испускаемый в частотном интервале (спектральная мощность), почти в миллион раз превосходил тот, что соответствует солнечному свету на поверхности земли для того же спектрального интервала.

При исследовании временных характеристик лазерного излучения с помощью фотоэлектрического приемника и осциллографа оказалось, что излучение состоит из ряда тесно расположенных импульсов («пичков»), каждый длительностью порядка микросекунды (рис. 52). Эта особенность была названа пичковым режимом, а лазер обозначался как работающий в режиме свободной генерации. Вскоре была использована специальная техника, называемая Q-switching, или модуляция добротность. Этот метод заставляет лазер излучать лишь один импульс с существенно меньшей длительностью и соответственно с существенно большей (в сотни раз) пиковой мощностью. Получались импульсы света с пиковыми мощностями в сотни и даже тысячи мегаватт. Такие импульсы стали называть гигантскими.

Рис. 52. Излучение рубинового лазера в режиме «свободной генерации» (пички)

Появление лазера произвело в научном мире эффект разорвавшейся бомбы, вызвав разработку целого ряда систем лазеров, в реальность которых никто не верил несколькими месяцами ранее. Практически, любая субстанция, включая воздух, могла быть использована для создания лазера. Мы рассмотрим лишь несколько случаев и начнем рассмотрение с примеров твердотельных лазеров, а затем опишем реализацию первого газового лазера, гелий-неонового лазера, который даже сегодня является одним из наиболее широко используемых лазеров с прекрасными характеристиками. Мы также рассмотрим цезиевый лазер, неодимовый лазер, а также лазеры, основанные на растворах органических красителей. Эти лазеры можно перестраивать в очень широком диапазоне частот, и они являются некоторыми из наиболее универсальных лазеров. Наконец, полупроводниковые лазеры, имеющие фундаментальное значение для современных систем коммуникации, основанных на применении оптических волокон. Для этого применения полупроводниковый лазер является идеальным источником.

 

Второй твердотельный лазер

В сентябре 1959 г. Таунс организовал конференцию «Квантовая электроника — резонансные явления», на которой, хотя лазер еще не был создан, большинство неформальных дискуссий концентрировалось на лазерах.

В этой конференции приняли участие Петер Сорокин и Мирек Стевенсон из Исследовательского Центра им. Томаса Ватсона фирмы IBM. Они стали энтузиастами концепции лазера. Этот Центр был организован в 1956 г. и предоставлял комфортные условия в прекрасном месте вблизи Нью-Йорка. Директор физического отдела Центра Вильям Смит, предложил после прочтения статьи Шавлова и Таунса, чтобы его группа, занимающаяся микроволновой спектроскопии и в которой работали Сорокин и Стевенсон, переключила свои усилия на лазеры.

Петер П. Сорокин был сыном Питирима Сорокина [10] , профессора социологии Гарвардского университета. П.П. Сорокин учился в том же университете на физическом факультете. В 1958 г. он под руководством Бломбергена защитил диссертацию по ядерному магнитному резонансу. Молодой человек планировал работать в области теоретической физики твердого тела. На второй год аспирантуры он и его друг получили от Бломбергена тему по ядерному магнитному резонансу. Они сочли ее легкой. В то время Бломберген был не очень опытным руководителем и оба приятеля делали, что хотели. Но к концу срока профессор пожелал иметь от каждого аспиранта статью с результатами, которые он счел неудовлетворительными. Бломберген так прокомментировал их: «Эти статьи ничего не говорят о том, чему я вас учил». В результате Сорокин потратил часть лета, чтобы понять ядерный магнитный резонанс и написал новую статью, которую Бломберген, на этот раз, принял. Он решил, что затратил много времени на тему и теперь может непосредственно приступить к диссертации. Сначала Бломберген предложил ему теоретическую проблему, и Сорокин в течение года сидел за столом с пачкой бумаг. Наконец, он пришел к профессору и сказал: «Вычеркнуто всё, что я перепробовал, оставшееся очень трудно продвинуть». Бломберген посмотрел на него и сказал: «Хорошо, Петер, я думаю тебе лучше заняться экспериментом». Итак, Сорокин получил задание сделать измерения ядерного магнитного резонанса на атомах цезия. Однако оказалось, что времена релаксации велики, и это затрудняло эксперимент. Наконец, он построил систему скрещенных катушек, аналогичную той, что использовалась группой Блоха в Стенфорде, и успешно закончил диссертацию.

Смит верил, что лазеры принесут доходы IBM и будут способствовать репутации его новой лаборатории. После получения степени, Сорокин поступил в IBM для работы по микроволновому резонансу в твердых телах. Когда появилась работа Шавлова и Таунса, его руководитель предложил изучить возможность построить лазер. Вместе с Миреком Стевенсоном, который получил докторскую степень под руководством Таунса несколькими годами ранее, он решил сосредоточиться на этой проблеме. После Конференции сентября 1959 г. они устремились в работу. Они захотели построить лазер, работающий непрерывно, используя лампы с мощностью порядка нескольких ватт. Сорокин полагал, что главная проблема — накачка. Для увеличения эффективности нужно существенно уменьшать потери. Поэтому он решил исключить зеркала в резонаторе Фабри—Перо, заменив их двумя призмами полного внутреннего отражения.

Явление полного отражения имеет место, когда свет проходит под определенным углом из среды с большим показателем преломления во вторую среду с меньшим показателем преломления, например из стекла в воздух. Если угол светового пучка в стекле по отношению к нормали к поверхности стекло—воздух больше определенного значения (для стекла с n = 1,5 этот угол около 57°), то свет полностью отражается и не проходит в воздух. В этом случае исключаются потери при отражении. Глава физического отдела Центра В. Смит предложил выбрать кристалл с показателем преломления как раз таким, чтобы можно было, используя призмы, селектировать моды резонатора. Следуя этим соображениям, Сорокин выбрал кристалл флюорида кальция.

Теперь проблема была найти материал для лазерной среды. После изучения научных публикаций по этому предмету Сорокин обнаружил, что русский ученый П. П. Феофилов изучил испускание света ионами урана и самария в кристаллах флюорида кальция. Добавление урана дает люминесцентное излучение на длине волны около 2,5 мкм. Ионы урана или самария замещают ионы кальция в кристалле флюорида кальция и имеют энергетические уровни, подобные тем, что имеют ионы хрома в рубине, с одним отличием, показанном на рис. 53. Имеется один добавочный уровень, поэтому испускание света может происходить между уровнем, который заселяется из-за распада с одной из полос, на промежуточный уровень, который, если работают при низкой температуре, практически не заселен, так как тепловое возбуждение не способно заселить его из основного состояния. Это обстоятельство, которое мы можем описать, как четырехуровневая система, позволяет значительно легче получать инверсную населенность. Кроме того, флюорид кальция, допированный ураном, имеет сильную полосу поглощения в видимой области. Это значит, что ее можно накачивать ксеноновой лампой высокого давления. Разумеется, система нуждается в охлаждении до низких температур.

Рис. 53. Энергетические уровни трижды ионизованного атома урана в кристалле флюорита кальция (CaF 2 :U 3+ ). При накачке происходит переход с основного уровня (1) в полосу (2). (Поглощением света на уровни 4115 можно пренебречь). Электроны скатываются с полосы (2) на уровни (3), и лазерный переход получается на длине волны около 2,5 мкм между уровнями (3) и (4)

Оба исследователя заказали кристаллы, допированные ураном и самарием. Когда они их получили, то услышали об успехе Меймана с рубином. Они немедленно отказались от идеи использовать полное внутреннее отражение, обработали кристаллы в виде цилиндров с отполированными и посеребренными торцами, и приобрели нужные импульсные лампы. В начале ноября они получили лазерный эффект на кристалле, допированном ураном, а вскоре, и на кристалле, допированном самарием.

После этих успехов они написали статью для Physical Review Letters, Стевенсон, будучи прямолинейным и агрессивным, сказал: «Нам не следует посылать статью. Мы должны отправиться в Брукхейвен и сказать Сэму Гоудсмиту (редактору), что мы хотим решения, прежде чем уедем. Сорокин сказал: «Мирек, давай не будем так делать». «Нет, мы именно так сделаем». Итак, они отправились к Гоудсмиту. Он был слегка смущен различием мазеров и лазеров, но сказал, что не хочет еще одной «мазерной» работы, что он и сделал со статьей Меймана. Но Стевенсон настаивал так упорно, что он в конце концов согласился принять статью для публикации.

На прощание Гоудсмит сказал: «Скажите вашим людям в IBM, чтобы они не являлись сюда с автоматами».

Из-за работы по четырехуровневой схеме вместо трехуровневой для рубина, лазер работал с мощностью накачки, которая была в десять раз меньшая, чем требовалась для рубина. Уран имеет сильную полосу поглощения в зелено-синей области. Лазерная генерация получается на длине волны 2,49 мкм, в инфракрасной области. Устройство лазера было подобно устройству лазера на рубине, за исключение некоторого усложнения, обусловленного тем, что кристалл следовало помещать в дьюар для охлаждения до гелиевых температур.

Некоторое время спустя Сорокин со своим техником Джоном Ланкардом построил лазер другого типа на жидкости. Он стал первым в серии лазеров, речь о которых будет далее. В них используются растворы органических красителей. Эти лазеры успешно разрабатывались во многих лабораториях и используются до сих пор.

 

Гелий-неоновый лазер

Кроме Шавлова, еще два исследователя Bell Labs работали в 1958 г. над проблемой лазера: Али Джаван и Джон Сандерс. Джаван был иранцем по происхождению. Он получил докторскую степень в 1954 г. под руководством Таунса по теме радиоспектроскопии. Он четыре года оставался в группе Таунса, работая в области радиоспектроскопии и мазеров. После защиты диссертации, когда Тау не был в творческом отпуске в Париже и в Токио, Джаван стал более активно заниматься мазерами и пришел к идее трехуровнего мазера, прежде чем группа из Bell Labs опубликовала экспериментальную работу по этой теме. Он нашел метод получения усиления безынверсной населенности, используя, в частности, эффект Рамана в трехуровневой системе, однако он опубликовал свои результаты позже, чем группа из Bell.

В апреле 1958 г., когда он искал место в Bell Labs, общался с Шавловым, который рассказал ему о лазерах. В августе 1958 г. он был принят в Bell Labs, и в октябре начал систематические исследования по лазерам. Первоначально он имел там этические затруднения. Компания RCA предварительно изучила его записи о трехуровневом мазере и установила, что его даты предшествуют датам группы из Bell. RCA заплатила ему $1000 за право на патент, и начала спор с Bell, где Джаван уже работал. В течение примерно шести месяцев Джаван имел дело с юристами из RCA и Bell Labs. К счастью, RCA провела маркетинговое исследование и, убедившись, что этот мазерный усилитель не сулит прибыли, прекратила дело, оставив патент Bell Labs.

Итак, Джаван мог всецело посвятить себя лазеру. Он думал построить его, используя газы, и опубликовал предполагаемую конструкцию в Physical Review Letters в 1959 г. Он решил использовать газ в качестве активной среды, поскольку полагал, что это простое вещество облегчит исследования. Однако он думал, что невозможно использовать мощные лампы для накачки атомов прямо в возбужденное состояние, и рассматривал возбуждение либо прямыми столкновениями с электронами в среде чистого неона, либо путем столкновений второго рода. В последнем случае разрядная трубка наполняется двумя газами, которые выбираются так, что атомы первого газа, возбуждаемые столкновениями с электронами в электрическом разряде, могут передавать свою энергию атомам второго газа, возбуждая их. Некоторые смеси газов имели структуру энергетических уровней, которая удовлетворяла этим условиям. Фактически, необходимо, чтобы энергетический уровень второго газа имел энергию, практически равную энергии возбуждения первого газа. Из возможных комбинаций газов Джаван выбрал комбинацию гелия и неона, уровни которых показаны на рис. 54. Он считал, что любой физический процесс стремится к установлению больцмановского распределения энергии по уровням (т.е. населенность нижнего уровня больше, чем населенность верхнего). Поэтому среда с инверсной населенностью может получиться в стационарном процессе только в результате конкуренции различных физических процессов, протекающих с разной скоростью.

Это можно лучше понять на примере с рассмотрением дерева с ветками (две на рис. 55), на которых сидят обезьяны. Рассмотрим сперва населенность согласно больцмановской статистике, т.е., скажем, четыре обезьяны сидят на верхней ветке (1), пять на нижней (2) и шесть на земле (3, основной уровень). Из этих трех уровней основной наиболее населен, и чем выше уровень, тем менее он заселен. Однако обезьяны не сидят на месте, но прыгают по веткам (для примера мы можем полагать, что это происходит каждую минуту). Населенности на уровнях при этом остаются одними и теми же во времени (равновесная ситуация). Предположим теперь, что мы продолжаем заселять ветки с той же скоростью (одна обезьяна за минуту), но в то же время мы смачиваем ветку 2 и делаем ее скользкой. Теперь обезьяны не могут оставаться на ней более, например, 10 секунд. Поэтому эта ветка быстро расселяется, и вскоре на ветке 1 оказывается больше обезьян, чем на ветке 2. Таким образом, получается инверсная населенность из-за того, что время пребывания обезьяны на разных ветках различно. Хотя это очень примитивные рассуждения, но они помогают понять соображения Джавана.

Выбор гелий-неоновой смеси проходил через тщательный отбор, чтобы получить систему, обещающую оптимальную среду, и лишь последующий успех принес a posteriory полное доверие Джавану. Даже после того, как он убедился, что гелий-неон является лучшей смесью, находилось немало скептиков, которые говорили ему, что газовый разряд слишком хаотичен. Они говорили, что слишком много неопределенностей, и его попытки напоминают охоту на диких гусей.

Рис. 54. Энергетические уровни гелия (Не) и (Ne). Показаны главные лазерные переходы

Рис.55. Обезьяны на дерене распределяются согласно статистике Больцмана. Их больше на земле, и их число уменьшается по мере высоты веток

Джаван потратил много денег, но, к счастью, система заработала, иначе администрация уже готова была закрыть проект и прекратить эксперименты. К концу проекта на это исследование были затрачены два миллиона долларов. Хотя эта сумма, по-видимому, преувеличена, проект, несомненно, требовал значительных затрат.

Между тем, Джон Сандерс, физик экспериментатор из Оксфордского университета, был приглашен в Bell Labs, чтобы он попытался реализовать инфракрасный лазер. В течение менее одного года, выделенного на это исследование, Сандерс не тратил времени на теоретическое изучение, а сразу решил возбуждать чистый гелий в разрядной трубке с резонатором Фабри—Перо внутри ее. Он пытался получить лазерный эффект путем проб и ошибок, варьируя параметры разряда. Максимальное расстояние, на котором можно было установить зеркала, все еще остающимися параллельными друг другу, было 15 см. Сандерс не использовал разрядные трубки большей длины. Джаван считал это принципиальным ограничением. Он предполагал, что усиление в газе очень мало и резонатор Сандерса не заработает. Трубка, которую использовал Джаван, была намного длиннее, и поскольку крайне трудно было настроить зеркала Фабри—Перо на таком расстоянии, он решил сперва определить требуемые значения параметров для работающего устройства, а затем уж постараться настроить зеркала методом проб и ошибок. Так он работал. Без всей предварительной работы по выбору режима He-Ne для получения известного усиления, было невозможно добиться успеха.

Сандерс послал письмо в Physical Review Letters, в котором сообщал, что было трудно получить достаточное число возбужденных атомов с помощью импульсной лампы, и предлагал использовать возбуждение, производимое ударами электронов. Такое возбуждение легко осуществить при электрическом разряде в газе или в парах. Инверсия населенности могла быть получена, если в активном материале существуют возбужденные состояния с большими временами жизни, а также состояния с более низкими энергиями и с короткими временами жизни (как мы рассматривали в примере с обезьянами).

Сразу же после этой статьи, в том же выпуске Physical Review Letters, А. Джаван опубликовал свою статью, в которой также рассматривал эти проблемы, и среди других схем предложил одну очень оригинальную. Рассмотрим долго живущее состояние в газе. В условиях разряда это состояние можно заселить подходящим образом из-за его большого времени жизни. Если теперь возбужденное состояние второго газа имеет энергию очень близкую к этому долго живущему состоянию, то очень вероятно, что при столкновении энергия будет передана от первого атома ко второму, который станет возбужденным. Если этот атом имеет другие состояния с более низкими энергиями, то они останутся невозбужденными и, тем самым может получиться инверсная населенность между состоянием с высокой энергией по отношению к состоянию с более низкой энергией. В своей работе Джаван упомянул о смесях криптона и ртути, а также о смеси гелия с неоном. Эта работа была опубликована в Physical Review Letters 3 июня 1959 г.

Джаван работал в тесном контакте с Вильямом Р. Беннеттом мл., спектроскопистом из Йельского университета, и который был другом Джавана в Колумбии. Они работали до самой ночи целый год. Осенью 1959 г. Джаван попросил Дональда Р. Херриота, специалиста по оптической аппаратуре в Bell Labs, участвовать в работе над проектом. Одной из принципиальных проблем, было снабдить разрядную трубку двумя прозрачными окнами очень высокого оптического качества, чтобы не искажать выходной пучок. Также требовалось установить зеркала резонатора. Была разработана схема (рис. 56) с зеркалами внутри разрядной трубки, снабженная специальными устройствами с микрометрическими винтами, которые обеспечивали возможность тонкой настойки зеркал по углам. В сентябре 1959 г. Беннетт перешел из Йеля в Bell Labs и вместе с Джаваном начал программу интенсивных и тщательных исследований с расчетами и измерениями спектроскопических свойств гелий-неон смесей при различных условиях, с целью определить факторы, определяющие получение инверсии. Они установили, что при наилучших условиях можно получить лишь очень малое усиление, порядка 1,5%. Такое малое усиление делало совершенно необходимым минимизировать потери и использовать зеркала с наибольшим возможным коэффициентом отражения. Такие зеркала получают путем нанесения на прозрачную поверхность (стекло) многих слоев подходящих (прозрачных) диэлектрических материалов с разными коэффициентами преломления. Высокий коэффициент отражения получается за счет многолучевой интерференции при отражениях на границах между слоями. Три исследователя сумели использовать такие зеркала, которые на длине волны 1.15 мкм имели коэффициент отражения 98,9%.

Рис. 56. Схема гелий-неонового лазера, построенного Джаваном, Беннеттом и Хериоттом

В 1960 г. Джаван, Беннетт и Хериотт наконец испытали свой лазер. Сначала они пытались осуществить электрический разряд в кварцевой трубке, содержащей газовую смесь, с помощью мощного магнетрона, но трубка плавилась. Пришлось переделать аппаратуру и внести изменения. 12 декабря 1960 г. они стали работать с новой трубкой и организацией разряда. Они пытались настроить зеркала, чтобы получить лазерную генерацию, но безуспешно. Затем, в полдень, Хериотт увидел сигнал: «Я, как обычно, поворачивал микрометрические винты одного из зеркал, когда, внезапно, появился сигнал на осциллографе. Мы настроили монохроматор и зарегистрировали пик сигнала на длине волны 1,153 мкм, т.е. на ожидаемой длине волны». Родился первый лазер, использующий газ в качестве активной среды, и работающий в непрерывном режиме! Его излучение было в ближнем ИК-диапазоне и поэтому невидимое глазом. Для регистрации требовался подходящий приемник, связанный с осциллографом.

А шестью месяцами ранее, техник Эд Баллик, помогавший в работе, позднее получивший степень в Оксфордском Университете и преподававший в Канаде, купил бутылку вина столетней давности. Она предназначалась для торжественного момента — по случаю работы лазера. Когда, наконец, эксперименты по созданию лазера привели к успеху, через несколько дней Джаван позвонил главе Bell Labs и пригласил его обмыть событие столетним вином. Тот страшно обрадовался, но потом воскликнул: «Черт, Али. У нас проблема!». Это произошло с утра, Джаван, так и не понял в чем проблема. Но в полдень по лаборатории был распространен циркуляр, уточняющий предыдущий, выпущенный несколькими месяцами ранее, и запрещающий распитие алкоголя на территории научного центра. Уточнение запрещало распивать любой алкоголь, возраст которого не достиг 100 лет. После этого они подняли бокалы за успех, не нарушив правила!

Первый лазер работал на переходе с длиной волны 1,15 мкм, ближнем ИК-диапазоне. Джаван использовал зеркала, которые имели максимальное отражение на этой длине волны, которая соответствует одному из возможных переходов неона. Он знал, что были и другие возможные длины волн. Он выбрал эту длину волны, поскольку его исследования показали, что на ней можно ожидать наибольшее усиление. Чтобы использовать переходы в видимой области, требовалась трубка с таким малым диаметром, что невозможно было настроить плоские зеркала, которые в то время использовались для резонатора Фабри—Перо.

В лазере Джавана разрядная трубка содержала неон и гелий при давлении 0,1 и 1 торр соответственно (1 торр — почти тысячная часть давления в одну атмосферу). Трубка из плавленого кварца имела длину 80 см и диаметр 1,5 см. На каждом конце была металлическая полость, в которых располагались плоские зеркала с высоким отражением. Использовались гибкие рукава (сильфоны), позволяющие микрометрическими винтами настраивать (путем прецизионных наклонов) зеркала Фабри—Перо. Это позволяло обеспечить параллельность с точностью до 6 угловых секунд. На концах располагались плоские стеклянные окна с поверхностями, отполированными с точностью, лучшей 100 А. Они позволяли выпускать пучок излучения без искажений. Электрический разряд возбуждался с помощью внешних электродов, используя генератор на 28 МГц с мощностью 50 Вт. Зеркала с высоким отражением получались напылением 13 слоев диэлектрических материалов (MgF2, ZnS). В области между 1,1 и 1,2 мкм коэффициент отражения был 98,9%. Лазер работал в непрерывном режиме и был первым лазером этого типа.

Следуя примеру Hughes, исследовательский центр Bell Labs также устроил публичную демонстрацию гелий-неонового лазера 14 декабря 1960 г. Чтобы продемонстрировать возможную важность для коммуникаций, была организована передача телефонного разговора, используя пучок лазерного излучения, который модулировался телефонным сигналом.

Этот лазер стали называть He-Ne-лазером, используя химические символы его компонент для названия. Он был представлен прессе 31 января 1961 г. Работа, описывающая его, была опубликована 30 декабря 1960 г. в Physical Review Letters.

В то время, когда Джаван проводил эксперименты весной 1960 г., два исследователя Bell Labs, А. Фокс и Т. Ли, стали изучать вопрос, какие моды существуют в резонаторе Фабри—Перо. Дело в том, что резонатор Фабри—Перо сильно отличается от микроволновых резонаторов в виде замкнутых полостей. Они определили вид этих мод, и их результат побудил других исследователей Bell Labs, Гэри Д. Бонда, Джеймса Гордона и Хервига Когельника, найти аналитические решения в случае зеркал сферической формы. Важность изучения оптических резонаторов для развития газовых лазеров нельзя недооценивать. До того как были получены эти результаты, газовый лазер был, в лучшем случае, маргинальным устройством, генерация которого в сильнейшей степени зависела от юстировки концевых зеркал. Теоретические исследования резонаторов со сферическими зеркалами показали, что могут быть конфигурации, относительно слабо зависящие от юстировки зеркал, а внутренние потери в резонаторе могут быть меньшими, чем в резонаторе с плоскими зеркалами. Это позволяет использовать активные среды со значительно меньшими, чем думали раньше, усилениями. От резонатора с плоскими зеркалами практически отказались, и все открытия новых газовых лазеров делались с помощью резонаторов со сферическими зеркалами.

В 1961 г. в Bell Labs началась большая программа лазерных исследований. Исследователей, занятых другими проблемами, переориентировали на новую тематику, были приняты новые сотрудники. Решение использовать в резонаторе два одинаковых сферических зеркала, расположенных в положении их фокусов (такая конфигурация называется конфокальным резонатором), показало, каких трудностей мог бы избежать Джаван, если бы использовал такой резонатор. В результате, Вильям В. Ригрод, Хервиг Когельник, Дональд Р. Хериотт и Д. Дж. Брангачио построили весной 1962 г. первый конфокальный резонатор со сферическими зеркалами, которые концентрируют свет к оси разрядной трубки, причем эти зеркала помещались вне трубки. Это позволило получить генерацию на красной линии 6328 А. Часть света неизбежно теряется при отражениях от поверхностей окон (френелевское отражение). Этих потерь, однако, можно избежать, если наклонить окна под определенным углом, называемым углом Брюстера. В этом случае для света определенной поляризации потери практически равны нулю. Такая новая конфигурация лазера показана на рис. 57.

Рис. 57. Конфокальный оптический резонатор. Трубка, в которой газ возбуждается электрическим разрядом, закрыта окошками, наклоненными под углом Брюстера. Вогнутые зеркала с равными радиусами кривизны располагаются за трубкой так, чтобы расстояние между ними было равно радиусу кривизны

Красный He-Ne-лазер стал широко применяться, и до сих пор находит использование, в частности, в медицине. Кроме того, он сильно способствует пониманию принципиальных различий между лазерным (высококогерентным) и обычным (некогерентным) светом. С помощью этого лазера легко наблюдаются явления интерференции, а также модовая структура лазерного пучка, которая легко и наглядно изменяется небольшим наклоном зеркала резонатора. Также стимулировалась разработка других, многочисленных типов лазеров.

Современный He-Ne-лазер может генерировать на одном из нескольких переходах, показанных на рис. 54. Для этого могослойные зеркала изготавливаются с максимальным отражением на нужной длине волны. Генерация получается на длинах волн 3,39 мкм, 1,153 мкм, 6328 А° и даже при использовании особых зеркал, на длинах волн 5433 А (зеленая линия), 5941 А° (желтая линия), 6120 А° (оранжевая линия).

 

Цезиевый лазер

1961 г. был годом реализации еще двух лазеров, над которыми специалисты работали с самого начала появления концепции лазера. Одним из них был цезиевый лазер. После того как Таунс и Шавлов написали свою работу, было решено, что Таунс попытается построить лазер на парах калия. Выбор был обусловлен тем, что расчеты показывали возможность работы, а также тем, что пары калия являются простым одноатомным газом с хорошо известными свойствами. Таунс хотел работать с системой, свойства которой можно было проанализировать в деталях. Позднее он говорил: «Мой стиль физики заключается в том, чтобы обдумать проблему теоретически, проанализировать ее, а затем поставить эксперимент, который должен работать. Если он не получается, вы должны заставить его заработать. Вы анализируете и усиливаете теоретические условия в лаборатории, до тех пор, пока вы не добьете проблему». Его предварительные расчеты показывали, что калиевый лазер будет иметь высокомонохроматическое излучение, что было бы весьма полезно для специальных применений. Но были и недостатки: малый коэффициент полезного действия (около 0.1%) и выходная мощность в доли милливатта.

В то время как Таунс сконцентрировался на парах калия, Шавлов в Bell Labs, изучая рубин, пришел к заключению, что его линии, которые позднее Мейман использовал для создания первого лазера, не годятся. Таунс запросил и получил финансирование от Военно-воздушного ведомства. Это позволило ему привлечь к проекту двух аспирантов: Г. Камминса и И. Абелла.

Однако в работе возник ряд проблем. Пары калия вызывали потемнение стекла разрядной трубки и действовали химически на вакуумную аппаратуру. В конце 1959 г. Таунс попросил О. Хивенса, британского специалиста по диэлектрическим зеркалам, приехать и помочь, а также решил использовать пары цезия вместо калия, накачивая их гелиевой лампой.

Рис. 58. Энергетические уровни цезия и гелия

Одна из узких линий поглощения атома цезия имеет в точности такую же энергию, как одна из узких линий гелия. Поэтому можно использовать свет гелиевой лампы, испускаемой на этой длине волны (389 нм), для селективной накачки уровня цезия и заселить его больше, чем нижние уровни. Таким образом, можно получить инверсную населенность (рис. 58). После сообщения Меймана Таунс перевел Абелла на работу с рубином, а Камминс продолжал работу с цезием. Цезиевый лазер был запущен в TRG между концом 1961 г. и первыми месяцами 1962 г. Полом Рабиновичем, Стефеном Джакобсом и Голдом. Он испускал излучение на 3,20 и 7,18 мкм. Это был один из лазеров, запущенных благодаря конфокальным зеркалам. Исследователи из TRG также начали с калия, но после одного из семинаров, на котором Хивенс сказал, что цезий лучше, также перешли на этот материал и оказались первыми, стремясь показать, что миллион долларов, выделенный им, потрачен не напрасно. Они в марте 1961 г. добились получения инверсии, и получили генерацию в начале 1962 г.

Этот лазер был скорее любопытен, чем практичен. В настоящее время генерацию на этих длинах волн более легко получают другими методами, к тому же цезиевые пары ядовиты.

 

Неодимовый лазер

Другой лазер, запущенный в 1961 г. и все еще остающимся одним из главных, — лазер на неодимовом стекле. В 1959—1960 гг. Американская Оптическая Компания также заинтересовалась лазерными исследованиями, которые проводил один из ее ученых, Элиас Снитцер. Эта компания первоначально концентрировалась на оптических приборах и офтальмологических изделиях. Она также была сильна в области изготовления стекла и изделий из него. В течение 1950-х гг. компания решила расширить производство и, поэтому запустила исследовательские проекты в новых областях, таких как военная электрооптика и волоконная оптика. Элиас Снитцер был принят в начале 1959 г. в исследовательскую группу и начал свои работы по распространению электромагнитных волн в оптических волокнах. Для компании эта работа принесла патенты в области волоконной оптики и укрепила ее имидж в этой области в научном мире. Снитцер уловил связи между исследованиями оптических волокон и лазерными работами. Поскольку стеклянное волокно может поддерживать моды электромагнитного излучения, то его можно превратить в лазерный резонатор, если на его концах разместить зеркала. Это предположение было интересно, поскольку в научной среде были сомнения, будет ли работать резонатор Фабри—Перо. Стекло само по себе может стать лазерным материалом, если его допировать подходящим веществом, таким как самарий или иттербий, и накачивать требуемые уровни с помощью некогерентного света, посылаемого либо через поверхность, либо через торец волокна. Снитцер полагал, что он может даже сконцентрировать больше света накачки в волокне, если покроет его тонким слоем стекла с несколько отличающимся показателем преломления.

В начале 1960 г. Снитцер с двумя сотрудниками начал исследования серии стеклянных волокон, допированных ионами, имеющими линии люминесценции в видимой области. Стекло было необычным выбором. Все исследованные материалы были либо газами, либо кристаллами. После успеха Меймана Снитцер попробовал волокна рубина. До этого он использовал ртутные лампы большого давления, непрерывно испускающие свет. Теперь он приобрел лампы-вспышки. Группа исследовала 200 волокон. В конце 1960 г. оба помощника Снитцера были переведены на закрытый проект ВВС, имеющий цель создать лазерный излучатель с солнечной накачкой. Снитцер остался один и решил перейти от видимого диапазона к инфракрасному. Это решение означало замену допированных материалов. В инфракрасной области можно было использовать редкие земли: неодим, празеодим, гольмий, эрбий и тулий. Снитцер также решил оставить волокна и сосредоточиться на простом стержне допированного стекла. В октябре 1961 г. он получил лазерную генерацию на стержне стекла, допированного неодимом.

Ионы неодима, когда они введены в кристаллы или в аморфный материал, подобный стеклу, имеют узкие спектры. Использование стекла в качестве лазерного материала дает ряд преимуществ. Методы приготовления оптических стекол хорошо освоены, и изготовление стеклянного образца значительно проще выращивания кристалла. Кроме того, оптическое качество стекла несравненно лучше, чем у кристаллов, и можно изготавливать стеклянные образцы значительно больших размеров. Более того, стекла, допированные ионами редких земель (окрашенные стекла), уже производились в течение многих лет, в частности для использования в фотографии.

Рис. 59. Энергетические уровни ионов неодима (Nd 3+ ), включенных в стекло (бариевый крон)

Уровни неодима в стекле показаны на рис. 59. Уровень 4F3/2 является люминесцентным, и лазерные переходы получаются между этим уровнем и уровнями 4I13/2, 4I11/2, 4I9/2 на длинах волн 1,06 1,35 мкм, соответственно. Возбуждение получается путем оптической накачки с основного уровня на уровни, лежащие выше состояния 4F3/2. Имеются три уровня поглощения в инфракрасном диапазоне, уровни, которые поглощают в желтой области около 5800 А°, и другие уровни, поглощающие главным образом в ультрафиолете. На рис. 59 уровни выше, чем уровень 4F3/2, показаны жирными линиями. Из этих уровней возбужденные атомы распадаются за счет безызлучательных переходов на уровень 4F3/2, с которого и начинается лазерное излучение.

Лазеры, использующие неодимовое стекло, важны прежде всего потому, что они являются примером твердотельного материала, отличного от синтетических кристаллов. Также определенные стекла, допированные неодимом, обладают большими выходными энергиями на единицу объема материала. И наконец, стеклянная матрица позволяет иметь лазеры в виде стержней или волокон.

В тот же год лазерная генерация была получена Л. Джонсоном, Г. Бойдом, К. Нассау и Р. Соденом из Bell Labs на кристаллах вольфрамата кальция, допированного неодимом. Их лазер при охлаждении жидким азотом работал в непрерывном режиме. Длина волны генерации была 1,06 мкм.

В декабре 1961 г. ARPA (Advanced Research Projects Agency — агентство, организованное в 1959 г. для поддержки фундаментальных исследований в области перспективных военных технологий) организовало научный комитет, который установил высшие приоритеты исследований лазеров на рубине и стекле. На следующий год Снитцер получил излучение в волокне диаметром 32 мкм. Сегодня на основе волокон, допированных редкими землями, создаются прекрасные лазеры и усилители, с успехом используемые, в волоконно-оптических системах связи.

Трехвалентный ион неодима был введен в большое число матриц. Одна из них решетка кристалла Y3Al5O12, который обычно обозначается как YAG (сокращение для иттрий-алюминеевого граната). Уровни неодима в них, по существу, одни и те же, не зависящие от матрицы. Лазер YAG работает как в импульсном, так и в непрерывном режиме. Этот лазер был сделан в Bell Labs Дж. Гейзеком и Е. Сковилом. Они в 1962 г. написали обзорную статью о мазерах и лазерах, в которой обсуждалась аналогия оптической накачки лазера и термодинамической, тепловой, накачкой. Эта аналогия дала критерий отбора лазерных материалов, который позволил отобрать около 40 кристаллов, среди которых был и YAG. Проблемой с этими материалами было то, что не было достаточно длинных кристаллов. Благодаря сотрудничеству с отделением Union Carbide удалось разработать достаточно длинные кристаллы высокого оптического качества и продемонстрировать преимущества этого лазера, который является альтернативой другим мощным лазерам (рубин и СO2). Этот лазер является примером междисциплинарного сотрудничества, типичного для крупных американских лабораторий, которое позволило за пару лет разработать новый лазер с исключительными характеристиками.

 

Лазеры на органических красителях

Если большинство лазеров, которые мы рассмотрели, появились в результате высокоскоординированных усилий и требовали развития передовых технологий (это объясняет, почему они все появились в США), то случай органических красителей (просто красителей) можно рассматривать как совершенно отличающийся. Первый лазер этого типа появился случайно благодаря лазерной методике, называемой модуляцией добротности, которую предложил в 1961 г. Роберт Хелворт из Hughes Research Lab. Этот метод, как отмечалось выше, позволяет в огромной мере увеличить импульсную мощность лазерного излучения путем генерации «гигантских импульсов». Суть метода заключается в следующем. В период накачки, добротность резонатора искусственно поддерживается на низком уровне и генерация не возникает. Отсутствие генерации позволяет получить большую инверсную населенность (при генерации вынужденное излучение обедняет верхний лазерный уровень). В момент достижения максимального значения инверсной населенности быстро включается максимальная добротность резонатора (резко уменьшаются его потери). Условия генерации оказываются сильно перевыполненными. В результате генерация очень быстро развивается и запасенная в активной среде энергия высвечивается в виде короткого импульса (его длительность составляет несколько времен обхода светом расстояния между зеркалами резонатора). Таким способом можно получить от рубинового лазера одиночный импульс с типичной длительностью 30 не и мощностью порядка десятков или сотен миллионов ватт (мегаватт).

Вначале осуществление этого метода было очень грубым. Внутри резонатора, т.е. между зеркалами, помещался быстро вращающийся диск из непрозрачного материала, в котором была щель, открывающая путь свету (для быстрого открытия щель располагалась в общем фокусе двух линз, которые фокусировали параллельный пучок и снова превращали его в параллельный). Накачка светом импульсной лампы производилась в тот интервал времени, когда диск перекрывал свет между зеркалами. В момент, когда инверсная населенность оказывалась максимальной, щель открывала путь свету, так что получался резонатор с минимальными потерями. Эта система давала слишком медленное включение добротности и была неудобна в обращении. Часто получался не один, а два или три импульса с меньшей мощностью.

Так что специалисты стали думать о других методах. Один из них оказался саморегулирующим. Когда свет падает на поглощающее вещество (например, состоящее из молекул), он поглощается из-за того, что молекулы, которые находятся в нижнем энергетическом состоянии, возбуждаются на верхний уровень. Однако, если интенсивность света очень велика, большинство молекул с нижнего состояния перейдут на верхние, и оставшиеся на нижнем состоянии молекулы будут слабее поглощать свет. Поглощающий материал становится «просветленным», или, как говорят, «насыщенным» (если такой материал поместить внутри резонатора, то он автоматически увеличит его добротность во время генерации).

В IBM Петер Сорокин и Джон Ланкард показали в 1966 г., что такими материалами по отношению к свету рубинового лазера могут быть органические красители, называемые фталоцианинами (фталоцианин ванадия), растворенные в некоторых органических жидкостях (нитробензол). Фталоцианин представляет комплекс кольцевых структур с ионом металла в центре. Они попросили своего коллегу Луцци синтезировать это вещество. Сорокин поместил кювету со слоем раствора фталоцианина прямо в резонатор рубинового лазера и включил его. Немедленно был получен одиночный мощный импульс длительностью около 20 не.

Пытаясь лучше понять, что происходит, Сорокин подумал, что эти вещества можно использовать и в других экспериментах, и сосредоточился на двух из них. В одном эксперименте он хотел индуцировать эффект, известный в наше время как рамановское рассеяние, или эффект Рамана (в российской литературе этот эффект называют комбинационным рассеянием). Его открыл в 1928 г. индийский физик Чандрасекар Раман (1888— 1970), который за это открытие получил в 1930 г. Нобелевскую премию по физике. Раман показал, что при определенных условиях некоторая доля света, проходящего через прозрачный материал, переизлучается на несколько отличной частоте. Сорокин хотел в другом эксперименте проверить, не могут ли красители, накачиваемые светом рубинового лазера, сами давать лазерный эффект.

Сорокин решил начать с первого эксперимента, посылая пучок рубинового лазера через образец. Исследовав спектр, испускаемый образцом, он убедился, что успешен второй эксперимент. Поместив образец красителя между двумя зеркалами, Сорокин и Ланкард получили мощный лазерный пучок на длине волны 7555 А°. Они испробовали другие красители и убедились, что это общий эффект. Они перепробовали все красители, какие смогли достать. В один из дней Сорокин проходил через лабораторию, спрашивая коллег: «Какой цвет вы желаете?», так как многие длины волн можно было получать, заменяя краситель. Одно обстоятельство, которое они упустили, заключалось в том, что этот новый лазер мог быть перестраиваемым, т.е. испускать длину волны, варьируемой в значительном диапазоне, используя один и тот же материал.

В этих исследованиях у них были предшественники. В 1961 г. два русских ученых С.Г. Раутиан и И.И. Собельман провели теоретическое рассмотрение, а в 1964 г. Д.Л. Штокман с сотрудниками сделали эксперименты, в которых были получены некоторые указания на возможный лазерный эффект в ароматических молекулах перилена с накачкой импульсной лампой.

Немного позднее и независимо Фриц Шэфер, который тогда работал в университете Марбурга (Германия), изучая характеристики насыщения некоторых органических красителей семейства цианинов, получил такой же эффект. Он изучал свет, испускаемый красителем, накачиваемым мощным рубиновым лазером с модуляцией добротности. Его студент Волце, исследуя спектры растворов с высокой концентрацией получил сигналы в тысячи раз сильнее, чем ожидалось. Вскоре оба исследователя поняли, что они имеют дело с лазерным эффектом. Вместе с аспирантом Шмидтом они сняли спектры при разных концентрациях, и впервые показали, что можно построить лазер, перестраиваемый по длинам волн в пределах 600 А°, изменяя концентрацию или отражения зеркал резонатора. Вскоре этот результат был распространен на десяток разных красителей семейства цианинов. Возник целый поток результатов в этой области, и в тысячах красителей был получен лазерный эффект. Наконец, в 1969 г. Б. Снэвли и Шэфер показали возможность непрерывной генерации с использованием накачки аргоновым лазером раствора родамина: 6Ж.

Эти лазеры осуществили долго вынашиваемую мечту — получить лазер, легко перестраиваемый в широком диапазоне частот. Лазер, перестраиваемый на требуемую длину волны, наконец-то родился! Красители интересны в качестве рабочих сред лазеров и по другим причинам. Подбором красителя, растворителя, концентрации и толщиной кюветы легко получить лазер, генерирующий на нужной длине волны. Охлаждение активной среды, требуемое в любом лазере, легко достигается прокачкой раствора. Более того, в жидкости не возникают необратимые повреждения, характерные для твердотельных сред.

В середине 1967 г. Б. Соффер и Б. МакФаллан заменили одно из зеркал резонатора отражающей дифракционной решеткой и получили лазер, плавно перестраиваемый по длинам волн в области более 400 А простым поворотом решетки.

Лазеры на красителях в настоящее время позволяют получать лазерное излучение на любой длине волны, от ближнего ИК-диапазона до ультрафиолета. Благодаря тому, что лазеры на красителях имеют чрезвычайно широкие полосы усиления, они позволяют осуществлять режим генерации импульсов длительностью менее пикосекунды (10—12 с).

 

Лазерные диоды

Полупроводниковые или диодные лазеры очень важны для многих применений. В них используются не уровни, а энергетические состояния нелокализованных электронов. В твердых телах энергетические уровни электронов группируются в зоны. При температуре абсолютного нуля в полупроводниках, все имеющиеся уровни заполняют одну зону (валентная зона), а последующие свободные уровни группируются в другой зоне (зона проводимости), которая совершенно не заполнена и отделена от валентной зоны некоторым промежутком энергий, для которых нет состояний. Этот интервал называется запрещенной зоной (энергетической щелью). В этих условиях материал не может проводить ток и является изолятором. Когда температура увеличивается и если зона проводимости расположена от валентной зоны не слишком высоко, термическое возбуждение достаточно, чтобы некоторые из электронов перескочили в зону проводимости. Поскольку там все уровни пустые, они способны обеспечить электрический ток. Однако из-за того, что их мало, величина тока невелика. Соответственно материал становится проводящим с плохой проводимостью, т.е. полупроводником. Электроны, которые способны поддерживать ток в зоне проводимости, оставляют вакантными состояния в валентной зоне. Эти вакантные состояния, которые называются дырками, ведут себя как положительно заряженные частицы и также участвуют в проводимости. В чистом полупроводнике термическое возбуждение производит электроны в зоне проводимости и дырки в валентной зоне в равных количествах.

Электроны и дырки, способные поддерживать ток, называются носителями. Если по какой-либо причине в зоне проводимости оказывается больше электронов, чем следует по статистике Максвелла-Больцмана, избыток электронов падает на вакантные энергетические уровни валентной зоны и таким образом возвращается в валентную зону и там исчезает дырка. То же самое происходит, если, наоборот, больше дырок присутствует в валентной зоне, чем допускается данной температурой. Этот процесс называется рекомбинацией двух носителей. Он происходит, давая энергию, соответствующую величине интервала между двумя зонами, которая проявляется либо в виде механических колебаний решетки, либо в виде испускания фотона. В последнем случае переход называется излучательным, а энергия фотона соответствует разности энергий уровней в валентной зоне и в зоне проводимости, т.е., грубо говоря, равной энергии запрещенной зоны.

Некоторые полупроводники не вполне чистые. Примеси образуют энергетические уровни электронов внутри зон. Если эти дополнительные уровни находятся вблизи дна зоны проводимости, термическое возбуждение заставляет их электроны перепрыгнуть в зону проводимости, где они способны поддерживать электрический ток. Уровни примеси остаются пустыми и, поскольку они фиксированы в материале, не способны поддерживать ток. В этом случае единственными носителями тока являются электроны в зоне проводимости, и полупроводник называется допированным n-типом («n» напоминает, что проводимость обеспечивается отрицательными зарядами). Наоборот, если уровни примеси располагаются вблизи верха валентной зоны, термическое возбуждение заставляет электроны из валентной зоны перепрыгнуть на эти примесные уровни, образуя тем самым дырки, которые способны поддерживать ток. Тогда полупроводник называется p-типом («p» — для положительного заряда). Возможно так допировать полупроводник, что получаются области как p-типа, так и n-типа с узкой промежуточной областью между ними. Этот промежуток между различными областями называется p-n-переходом. Если заставить ток протекать через этот переход, делая n область отрицательной и p область положительной, электроны инжектируются в этот переход. На основе этого свойства были изобретены в конце 1940-х гг. транзисторы, вызвавшие революцию в мире электроники.

Хотя полупроводники были известны давно, их физика была полностью понята только после изобретения транзистора в 1948 г. Можно тем самым понять, что были некоторые сомнения в возможности их использования для лазера. Во всяком случае полупроводники были первыми, рассмотренными как возможная среда для получения излучения путем стимулированного испускания. В то время были выдвинуты различные предложения. В 1954 г. Джон фон Нейман обсуждал с Джоном Бардиным  (один из изобретателей транзистора) возможность использования полупроводников. Тремя годами позднее, в 1957 г., произошел подлинный взрыв. В Японии 22 апреля 1957 г. был выдан патент Ватанабе и Нишизава, в котором рассматривалось рекомбинационное излучение, получающееся при инжекции свободных носителей в полупроводнике. Позднее он был опубликован 20 сентября 1960 г. Патент назывался «полупроводниковый мазер», и, как пример, рассматривалось рекомбинационное свечение в теллуре на длине волны около 4 мкм, т.е. в ближнем ИК-диапазоне. Авторы наивно рассматривали полупроводник, помещенный в резонаторе, типичном для микроволновой области. Но концепция использовать инжекцию носителей и их рекомбинационное излучение была озвучена. В Линкольновской лаборатории MIT физик Бенжамен Лэкс провел в 1957 г. семинар с участием Пьера Эгрэна (1924—2002) из Парижа, и начались исследования переходов в группе энергетических уровней, которые возникают, когда полупроводник помещается в сильное магнитное поле (подобные тем, что работают в трехуровневом мазере Бломбергена). Идеи Эгрэна были представлены на международной конференции по физике твердого тела в электронике и телекоммуникациям. Она проходила в 1958 г. в Брюсселе, и на ней обсуждалась возможность использования полупроводников для продвижения мазерного эффекта в область оптических частот. Однако труды этой конференции не были опубликованы.

В бывшем Советском Союзе группа ученых Института им. П.Н. Лебедева (ФИАН) АН СССР, возглавляемая Н.Г. Басовым, в составе Б.М. Вула и Ю.М. Попова, начала в 1957 г. рассматривать возможность использования полупроводников для продвижения излучения мазера в оптический диапазон. Басов начал рассмотрение этой проблемы вместе с Поповым, который тогда работал в лаборатории люминесценции. Оба исследователя познакомились, когда были студентами в МИФИ. Физика полупроводников изучалась в ФИАНе в лаборатории полупроводников, которой руководил Бул. Поэтому он, естественно, принимал активное участие. В результате сотрудничества этих трех ученых появилось предложение лазерной системы с использованием электрического разряда. Оно было опубликовано в июне 1958 г. и обсуждалось Басовым на Западе на Первой конференции по квантовой электронике, организованной Таунсом в США. Этой работы не было в программе, и она была представлена на обеде (полупроводниковый лазер, работающий на этом принципе, был создан много позже, в 1968 г., в группе Басова). Позднее, в 1960-61 гг., эта группа предложила еще три метода возбуждения: электронный пучок, оптическая накачка и инжекция электронов через p-n-переход. Авторами этих предложений были Н.Г. Басов, Ю.М. Попов и О.Н. Крохин. Выполнялись также экспериментальные исследования. В 1959 г, в ФИАНе под руководством Басова была начата программа «Фотон», которая была первой научной программой в СССР по разработке лазеров.

Возможность использования полупроводников рассматривалась в США и обсуждалась в 1959 г. в MIT Кромером и Цайгером. В 1960 г. Бойль и Томас из Bell Labs получили патент на использование полупроводников для создания лазера.

Тем временем, в 1961 г., двумя французскими исследователями М. Бернардом и Г. Дурафургом из Национального исследовательского центра телекоммуникаций (CNET) был получен важный теоретический результат. Они представили полное и исчерпывающее обсуждение, из которого следовала возможность вынужденного излучения в полупроводниках благодаря переходам между зоной проводимости и валентной зоной. Были получены фундаментальные соотношения, из которых следовала возможность получить лазерный эффект. Они также рассмотрели некоторые материалы, в которых можно ожидать выполнение нужных условий, и предложили среди других материалов полупроводники GaAs (арсенид галлия) и GaSb (антимонид галлия). После публикации этой работы многие группы начали активные исследования. В январе 1962 г. российский ученый Д.Н. Наследов и его коллеги из Физико-технического института АН СССР (г. Ленинград) сообщили, что ширина линии излучения, испускаемого GaAs-диодами, демонстрирует некоторое уменьшение ширины при увеличении тока. Они предположили, что это могло указывать на вынужденное излучение. В США несколько групп из IBM, RCA, Линкольновской лаборатории MIT и General Electric (GE) начали соревновательную гонку, которая коротко описывается здесь.

В Ватсоновском исследовательском центре IBM P. Ландауер сформировал в 1961 г. небольшую группу для изучения проблемы систематическим путем. В. Думке из IBM показал, что простые (элементарные) полупроводники, такие как кремний и германий, которые широко используются в электронике, не пригодны из-за их структуры зон, и предложил использовать более сложные в структурном отношении полупроводники (полупроводниковые соединения), такие как арсенид галлия. У них минимум энергии зоны проводимости совпадает с максимумом валентной зоны (прямозонные полупроводники). В IBM были хорошие условия для изучения, поскольку уже началась программа для применений арсенида галлия в электронике.

Изучением полупроводниковых соединений, особенно арсенидом галлия, занимались также в General Telephone and Electronics Laboratories  (GT&E). Здесь работала группа С. Мэйбурга. В марте 1962 г. он представил на заседании Американского Физического Общества работу по электролюминесценции GaAs диодов при 77 К, т.е. излучение этих диодов, охлажденных до температуры жидкого азота, при пропускании электрического тока. Было показано, что при определенных условиях почти каждый заряд, инжектированный через p-n-переход, дает фотон. Это был результат, аналогичный тому, что получил Мейман для рубина (высокая квантовая эффективность) и указывал, что p-n-переходы являются идеальной системой, для получения лазерного эффекта.

Ж. Панков из RCA провел 1956—1957 гг. в Париже, работая с Эгрэном. Возвратившись из Франции, он начал исследования, но без финансовой поддержки, поскольку начальство не рассматривало полупроводниковые лазеры выгодным объектом. В январе 1962 г. на конференции Американского Физического Общества Панков объявил о наблюдении рекомбинационного излучения из переходов арсенида галлия. Мэйбург почувствовал, что его могут опередить, и удвоил усилия.

В IBM, после семинара с Мэйбургом, теоретик Г. Лашер стал изучать вопрос, как сделать резонатор для полупроводникового лазера, а в то же время в соседней лаборатории в Йорктаун Хейтс М. Думке стал размышлять, как сделать лазер на арсениде галлия.

В июле 1962 г. результаты Мэйбурга обсуждались на Конференции по исследованиям твердотельных устройств в университете Нью-Гемпшира и Р. Кейс и Т. Квист из MIT сообщили, что они создали диоды арсенида галлия с люминесцентной эффективностью, которую они оценивают в 85%. Панков в мае представил подобные же результаты на другой конференции. В MIT люминесценция, излучаемая диодом, использовалась для передачи телевизионного канала, о чем было сообщено в New York Times.

На этом этапе четыре группы пустились в гонку. Р. Холл из GE принимал участие в конференции в Нью-Гемпшире и был поражен представленными результатами. На него сильное впечатление произвела высокая эффективность излучения p-n-переходов арсенида галлия, и, возвращаясь, он еще в поезде стал делать расчеты и размышлять, как получить резонатор Фабри—Перо. Идея была: взять p-n-переход, обрезать и отполировать его грани. Холл был астрономом-любителем и в школе сам построил телескоп, он знал, как можно отполировать оптические компоненты. В настоящее время резонаторы полупроводниковых лазеров получают скалыванием кристалла в нужном направлении, но в то время он не знал о такой методике. После некоторых обсуждений он получил разрешение начальства начать работу над проектом. Принципиальной трудностью было изготовление перехода GaAs, который должен был удовлетворять определенным критериям, а именно, сильно допирован. Вторая трудность была вырезать и отполировать грани так, чтобы они были параллельными друг другу. Затем следовало пропустить очень большой ток через переход, чтобы инжектировать достаточное число электронов. Ток должен был быть в виде импульса с короткой длительностью, чтобы не расплавить образец. Чтобы предотвратить чрезмерный рост температуры, следовало использовать охлаждение жидким азотом (77 К).

Хотя Холл был последним, включившимся в гонку, он оказался первым, правда на короткое время, и получил в сентябре 1962 г. первый лазерный диод. Бернард (из Франции) несколько раз посещал лабораторию Холла, обсуждая возможность полупроводниковых лазеров. Во время одного из визитов он появился как раз, когда группа Холла получила результат, но еще не оформила его для публикации. Поэтому достижение держалось в секрете. У Холла возникла проблема, как обсуждать возможность сделать лазер, не сообщая Бернарду, что он уже работает в соседней комнате.

Конференция в Нью-Гемпшире вдохновила также Н. Холоньяка из GE, эксперта по арсениду галлия. Когда первый диод заработал, почти одновременно несколько групп объявили о лазерном действии на p-n-переходах GaAs. Во всех случаях использовалось охлаждение до 77 К, а накачка производилась импульсами тока высокой интенсивности с короткой длительностью (несколько микросекунд). О лазере группы GE было объявлено в работе от 24 сентября 1962 г.; о втором лазере группы М. Натана из IBM Йорктаун Хейтс было объявлено 4 октября; а о третьем из Линкольновской лаборатории MIT — 23 октября. Холоньяк сообщил о своем лазере 17 октября. Все эти лазеры были сделаны на переходе арсенида галлия, охлаждались жидким азотом, и накачивались интенсивными импульсами тока длительностью несколько микросекунд.

Устройство Холла (рис. 60) представляло куб со стороной 0.4 мм, с переходом, расположенным в горизонтальной плоскости, в центре. Передняя и задняя грани были отполированы параллельно друг к другу и перпендикулярно к плоскости перехода, образуя резонатор Фабри—Перо (арсенид галлия обладает высоким показателем преломления, поэтому френелевское отражение на границе полупроводник—воздух дает достаточно высокий коэффициент отражения). При такой геометрии получается относительно длинный путь в области перехода, где инжектированные носители рекомбинируют и испускают свет, распространяющийся взад-вперед между отполированными гранями (зеркалами резонатора). Лазер работал при подаче импульсов тока длительностью 5—20 мкс, причем полюс тока подавался на p-допированную сторону перехода, а минус на n-допированную сторону. Диод помещался в жидкий азот. Когда ток достигал очень большого значения, 8500 А/см2, возникала лазерная генерация, что проявлялось в резком увеличении испускаемого излучения и в сужении спектральной линии от 125 до 15 А°.

Рис. 60. Схема полупроводникового лазера на p-n-переходе простейшего типа. Лазерное излучение испускается в тонком активном слое между p и n зонами, и отражается взад и вперед параллельными гранями F 1 , F 2 , которые действуют как зеркала резонатора

Натан работал с несколько отличной системой, используя переход без резонатора. Порог, достигаемый при температуре жидкого азота, очевидно, был выше между 10 000 и 100 000 А/см2. Т. Квист из MIT использовал структуру 1,4x0,6 мм2 с отполированными короткими гранями. При температуре жидкого азота порог был около 1000 А/см2. Наконец, Холоньяк использовал переход соединения арсенида галлия с фосфидом. Используя этот материал, удалось получить генерацию при 6000—7000 А/см2 вместо 8400 А/см2, когда использовался простой образец GaAs.

В России (СССР), вскоре после создания лазеров в США, В.С. Багаев, Н.Г. Басов, Б.М. Вул, Б.Д. Копыловский, О.Н. Крохин, Ю.М. Попов, А.П. Шотов и др. создали лазерный диод в ФИАНе. Этот результат обсуждался на 3-й Международной конференции по квантовой электронике в Париже, в 1963 г.

Первые лазеры делались из одного и того же материала с переходом между n и p частями. Они имели высокие пороги. В 1963 г. X. Кромер предложил использовать гетеропереходы, в которых полупроводник с относительно узкой запрещенной зоной располагается между двумя слоями полупроводника с более широкими запрещенными зонами (сэндвич-структура). В то же время аналогичное предложение сделали Ж.И. Алфёров и Р.Ф. Казаринов из Физико-технического института им. А.Ф. Иоффе (г. Ленинград). Российские ученые не опубликовали свое предложение. Прошло шесть лет, прежде чем в Bell Labs и в RCA были разработаны первые гетероструктурные лазеры. К тому времени Алфёров и его сотрудники разработали более сложные многослойные структуры, которые сегодня известны как лазеры с двойной гетероструктурой. Усилия Ж. Алфёрова и X. Кромера были отмечены Нобелевской премией по физике в 2000 г. «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной электронике и в оптоэлектронике» вместе с Джеком Килби «за его вклад в изобретение интегральной схемы».

Ж.И. Алфёров родился в Витебске (Белоруссия) в 1930 г. Он окончил Электротехнический институт им. В. И. Ленина (Ленинград) в 1952 г. и в 1953 г. поступил в Физико-технический институт. С 1987 г. он директор этого института. Алфёров — академик РАН и депутат Государственной Думы.

Герберт Кромер родился в Веймаре (Германия) в 1928 г. и получил докторскую степень в университете Гёттингена в 1952 г. за диссертацию, посвященную только появившимся тогда новым транзисторам. В 1968 г. он стал работать в университете Колорадо, а с 1976 г. — в университете Калифорнии (Санта Барбара).

Разработка полупроводниковых лазеров тормозилась по нескольким причинам. Необходимо было разработать новую технологию для работы с полупроводниками, учитывая, что хорошо разработанная технология для кремния не годится. Проблемой также была необходимость работы с короткими импульсами большого тока при низких температурах. По этой причине КПД лазеров был низок. Значительный шаг вперед в решении этих проблем был сделан в 1969 г. путем введения гетероструктур, В гетероструктурном лазере простой p-n-переход заменяется многослойной структурой полупроводников разного состава (рис, 61). Активная область уменьшается по толщине, и ток, требуемый для лазерной генерации, существенно уменьшается, что соответственно уменьшает выделение тепла. Это приводит к тому, что уже не требуется охлаждение, и лазер может работать при комнатной температуре.

Рис. 61. Природный лазер в звезде MWC349. Лазерное излучение происходит в диске водорода, ближайшего к звезде, а мазерное излучение получается в более отдаленных областях. Излучение испускается в плоскости, показанной на рисунке, и достигает Земли, которая случайно оказалась лежащей в этой же плоскости

Два фактора сильно способствовали преобразованию полупроводниковых лазеров из лабораторных устройств, работающих при очень низких температурах в практичные оптоэлектронные устройства, способные работать непрерывно при комнатной температуре. Первое исключительное и счастливое сходство решеток, содержащих арсенид алюминия (AlAs) и арсенида галлия (GaAs), что позволяет изготавливать гетероструктуры из слоев разной композиции соединение типа AxGa1—xAs. Второе многие важные применения, для которых полупроводниковые лазеры оказываются особенно пригодными из-за их особенностей: малые размеры (несколько кубических миллиметров), высокий КПД (обычно не менее 50%), накачка непосредственно электрическим током, долговечность по сравнению с другими типами лазеров.

Тот факт, что лазер непосредственно накачивается током, позволяет модулировать выходное излучение, простой модуляцией тока. Эта особенность идеальна для систем передачи информации.

 

Существует ли лазер в природе?

Ответ, по-видимому, да! Лазерное излучение с длиной волны около 10 мкм (типичная линия излучения двуокиси углерода, на которой работают мощные СO2 лазеры, находящие широкое применение, в частности для механической обработки материалов) было обнаружено в атмосферах Марса и Венеры в 1981 г. исследователями из Лаборатории экспериментальной физики Центра управляемых полетов им. Годдарда (НАСА). Это излучение уже наблюдалось в 1976 г. студентами Таунса, который стал заниматься проблемой астрофизики, но только в 1981 г. было установлено, что причиной его является естественный лазер.

Инверсная населенность перехода молекулы двуокиси углерода, которая составляет значительную часть атмосферы этих планет, получается в результате солнечного света, и поэтому получается только на освещенной полусфере. Это такой же механизм, как и в лазерах на СO2, построенных на Земле. Они работают на длине волны 10 мкм и используются в качестве мощных лазеров для резки и сварки металлов и других применений. Линии излучения в атмосферах этих планет почти в 100 миллионов раз интенсивнее, чем если бы газ испускал их в условиях термодинамического равновесия при температуре атмосферы. Часть наблюдаемого излучения является излучением, усиленным в инверсно населенной среде. Если бы можно было поместить два зеркала на орбите вокруг этих планет, мы могли бы получить такую же генерацию, которую получаем в земных условиях. Возможности реализации лазера на планетарном масштабе вне нашего понимания, но что будет в будущем, мы не знаем. Эти линии излучения оказались полезными для измерения температур и ветров на Марсе и Венере.

Космические мазеры, как уже говорилось, были обнаружены много лет назад, и нет причин исключать существование и космических лазеров. Однако для их существования требуется более трудный процесс, поскольку необходимо большие энергии фотонов. В начале 1995 г., группа астрономов зарегистрировала усиленное инфракрасное излучение, приходящее от диска водорода, вращающегося вокруг молодой звезды в созвездии Лебедя, находящейся от нас на расстоянии 4000 световых лет. Интенсивность излучения на одной из длин волн, по сравнению с соседними длинами волн, показывает наличие вынужденного излучения (рис. 62). Предварительные наблюдения в 1994 г. одной из звезд, обозначенной MWC349, уже показали интенсивное мазерное излучение от ее диска на длинах волн 850 мкм и 450 мкм, испускаемое водородом. Изучение процессов, которые ответственны за это излучение, привело к предположению, что также возможно излучение на менее коротких длинах волн, испускаемое из области диска вблизи звезды.

Рис. 62. Природный лазер в звезде MWC349. Лазерное излучение происходит в диске водорода, ближайшего к звезде, а мазерное излучение получается в более отдаленных областях. Излучение испускается в плоскости, показанной на рисунке, и достигает Земли, которая случайно оказалась лежащей в этой же плоскости

Исследователи из NASA поместили инфракрасный телескоп на самолете, летающие на высоте 12 500 м. На этой высоте поглощение исследуемого излучения в атмосфере существенно ослабляется. Они наблюдали линию на 169 мкм, интенсивность которой в шесть раз превышала ожидаемую интенсивность при термическом равновесии. Излучение на этой линии производится атомами водорода, ионизованными интенсивным УФ-излучением звезды или из-за более сложных процессов, происходящих в диске. Когда ионы рекомбинируют со свободными электронами, они испускают фотоны. Большая часть излучения испускается спонтанно, но возможно также и вынужденное излучение. Такой же процесс дает мазерное излучение в других частях диска, но в центральных частях наблюдается лазерное излучение, частично, из-за того, что водород там плотнее, частично, из-за того, что интенсивность ультрафиолетового излучения выше. Случайно, диск ориентирован по отношению к Земле так, что можно зарегистрировать лазерное излучение. Диск представляет собой область, где, как полагают, могут формироваться планеты, и наблюдаемое излучение приходит от той части этой «колыбели планет», которая удалена от звезды на расстояние, приблизительно равное расстоянию между Землей и Солнцем. Поэтому лазерное излучение может помочь нам лучше понять состояние газа в диске. Длина волны 169 мкм лежит на границе областей, которые относят к микроволнам, и оптического диапазона. Поэтому можно говорить как о мазерном, так и о лазерном эффекте.

Лазеры в ультрафиолетовой области также существуют. Излучение в этой области было обнаружено с помощью космического телескопа Хаббл. Оно испускается из газового облака вблизи звезды η-Киля.

Итак, мы можем заключить, что в космосе уже существуют естественные мазеры и лазеры. Поэтому мы можем более точно сказать, что мазеры и лазеры были не изобретены, а открыты.