История лазера

Бертолотти Марио

ГЛАВА 5

ЭЙНШТЕЙН

 

 

Альберт Эйнштейн, всемирно известен благодаря теории относительности, которую разрабатывал между 1905 г. (когда была сформулирована специальная теория относительности) и 1915 г. (когда была сформулирована общая теория относительности). Но только специалисты знают о его фундаментальных достижениях в области природы света, которые были получены в это же время. Эти достижения имели исключительную важность для изобретения мазера, а затем и лазера.

Новалис, энтузиаст науки и немецкий поэт романтик XVIII в., сказал: «Теории подобны рыболовной снасти: только тот получит улов, кто ее забрасывает». Расширяя эту метафору, мы можем сказать, что в XX в. веке не было более удачливого рыболова. В 1905 г. его annus mirabilis (сравнимый, может быть, с памятным 1666 годом, в котором Исаак Ньютон задумал большинство идей, которые управляли наукой в течение более чем двухсот лет) Альберт Эйнштейн опубликовал в одном и том же томе немецкого научного журнала Annalen der Physik три статьи, каждая из которых содержала не только важные научные результаты, но выдвигала основы новых и значительных областей фундаментальной науки, что мы и опишем ниже.

 

Молодой Эйнштейн

Кто же был этот человек, Альберт Эйнштейн, который, будучи техническим экспертом третьего класса в Швейцарском патентном бюро Берна, в возрасте 26 лет, в свое свободное время изобретал новые методы статистической механики, ввел кванты света, дал доказательства существования атомов, и решил проблему точной формулировки электродинамики движущихся тел, проблему, над которой безуспешно бились наиболее влиятельные исследователи того времени, такие как Хендрик Антон Лоренц и Анри Пуанкаре (1854—1912), и в результате которой была построена новая теория пространства и времени?

Немец по национальности, еврей по происхождению и возмутитель по призванию, Эйнштейн двойственно реагировал на эти три природных дарования. Он выбросил за борт свою немецкую национальность в возрасте 16 лет; 20 лет спустя, после того, как он стал швейцарцем, он поселился в Берлине, где оставался все время Первой мировой войны; после поражения, потерпевшего Германией в 1918 г., он продолжал свою борьбу за германские гражданские права и отказался от гражданства второй раз, когда Гитлер пришел к власти. Тот факт, что он признавал сионизм, было подтверждением его еврейства, но верность ему он не оправдывал много раз.

Он родился 14 марта 1879 г. в Ульме, древнем немецком городе, памятном как место разгрома австрийцев Наполеоном в 1805 г. Интересно отметить, что в год рождения Эйнштейна родился Макс фон Лауэ (1879—1960), открыватель дифракции рентгеновских лучей и нобелевский лауреат по физике «за его открытие дифракции рентгеновских лучей в кристаллах». В этот же год родился химик Отго Ганн (1879—1968), лауреат Нобелевской премии по химии 1944 г. «за открытие деления тяжелых ядер». Также Ганн открыл радиоторий и протактиний, а вместе с Лизой Мейтнер (1878— 1968) и Фрицем Штрасманом (1902—1980) — деление ядер. В этот же год умер Джеймс Клерк Максвелл, основатель современной теории электромагнетизма.

Семья Эйнштейна происходила из маленького, тихого немецкого городка Бухау на пути к озеру Констанц. Там жили евреи, которые уже не соблюдали религиозных правил и обычаев. В 1880 г. семья перебралась в Мюнхен, где отец Эйнштейна инженер по профессии, открыл в партнерстве со своим братом маленькую электрохимическую мастерскую. В следующем году родилась единственная сестра Альберта, к которой он был очень привязан. Молодого Альберта описывают как скрытного, меланхоличного и задумчивого мальчика, который поздно стал говорить, не любил физической активности и игр с другими мальчиками. Когда ему было четыре или пять лет, произошло нечто, глубоко потрясшее его: отец показал ему карманный компас, который постоянно указывал одно и то же направление, повинуясь невидимой и таинственной силе, как бы не вертели компас.

Спустя некоторое время, когда ему было пять или шесть лет, он с большим рвением стал учиться играть на скрипке, больше получая удовольствие от самой игры нежели от мастерства исполнения. Он поступил в католическую начальную школу, так как это было наиболее удобно, и оказался евреем среди христиан; а среди евреев он был аутсайдером, подобно членам его семьи. Позднее, в возрасте 10 лет, он перешел в гимназию, но был нетерпим к строгой дисциплине, диктаторскому духу и отсутствию свободы. В гимназии его заставляли учить латинскую и греческую грамматику, что мешало его изучению математики и физики, интерес к которым он получил от своего дяди Якоба инженера. «Алгебра — веселая наука» — любил он говорить. «Мы идем на охоту за маленьким зверем, название которого мы не знаем, так что мы называем его х. Когда мы подстрелим нашу дичь, мы набрасываемся на нее и даем ей ее собственное название».

В то время Эйнштейн прочел книгу по геометрии Эвклида и серию популярных книг по науке и познакомился с принципами дифференциального и интегрального исчисления. Окружающим юный Эйнштейн казался несчастным и подавленным аутсайдером. Учителя обвиняли его в плохом влиянии на соучеников. Но даже если его детство и было ничем непримечательным, его школьная жизнь, вопреки тому, что написано в некоторых биографиях, была достаточно яркой.

Однажды в гимназии учитель попросил его выйти из класса. Эйнштейн ответил, что не будет этого делать. Тогда учитель сказал: «Хорошо. Но сядь на последний ряд. Твои ухмылки оскорбляют учителя, которому нужно чувствовать уважение класса». В это время в нем росло чувство антагонизма к официальности и к имперской Германии, чувство, которое никогда не покидало его.

Первоначально процветающая мастерская его отца перестала приносить доходы, и братья Герман и Якоб Эйнштейны приняли приглашение переехать в Италию. Семьи вначале перебрались в Милан в 1894 г., а на следующий год в Павию, где открыли новую мастерскую. Альберт оставался в Мюнхене, чтобы продолжить учение, но в начале весны 1895 г., имея на руках свидетельство врача о нервном расстройстве, он получил разрешение оставить гимназию, которую он ненавидел, и присоединился к родителям в Италии, которые так и не узнали, что врачебное свидетельство было инициативой самого Альберта. Он обещал родителям, что сам подготовится к вступительным экзаменам в Цюрихский Политехникум и сообщил им, что намерен аннулировать свое германское гражданство, что он и сделал позднее, когда поступил в Политехникум. Будучи убежденным антимилитаристом, возможно, таким образом, он хотел избежать военной службы в немецкой армии.

 

Цюрихский Политехникум

Университет Цюриха был основан в 1813 г. согласно желанию жителей города получать высшее образование не покидая его пределов. До этого времени единственным университетом в Швейцарии был университет в Базеле. В 1855 г. был основан Федеральный институт технологии и политехники, который должен был удовлетворить нужду в техническом образовании, и Рудольф Клаузиус (1822-1888) был назначен туда профессором физики (1857). Клаузиус был одним из великих физиков 19 столетия. Он сформулировал второе начало термодинамики и определил концепцию энтропии; также он внес существенный вклад в кинетическую теорию газов.

В 1878 г. Альфред Кляйнер (1849-1916) был назначен профессором экспериментальной физики. Его главным достижением, как он часто признавался, было принятие в 1905 г. диссертации Альберта Эйнштейна, и лоббирование дать ему в 1909 г. кафедру теоретической физики, впервые учреждаемой в университете.

В октябре 1895 г. Эйнштейну было отказано в приеме в Политехникум. Поскольку он не имел стандартного школьного аттестата, ему отказали даже в праве сдать вступительные экзамены, несмотря на его превосходные результаты по математике и физике. Чтобы получить нужный аттестат, он поступил в школу немецко-говорящего кантона. Там он чувствовал себя более счастливым, чем в немецкой гимназии. На следующий год он смог поступить на физико-математический факультет Политехникума. В 1901 г. он принял швейцарское гражданство.

В течение года, который он провел в школе, озадачился проблемой: если некто движется за световой волной со скоростью, равной скорости света, то он будет сталкиваться с полем в волне, не зависящим от времени. Однако, это невозможно! Это был первый мысленный эксперимент, который он рассмотрел, и этот парадокс, вставший перед ним, после десятилетий размышлений привел его к специальной теории относительности.

Короткие записи, сделанные им во время обучения в школе, дают нам некоторое представление относительно его планов:

«Мои планы на будущее

Счастлив человек, который живет настоящим, чтобы много думать о своем будущем. Но, с другой стороны, молодые люди любят строить смелые планы. Более того, естественно для серьезного молодого человека добиваться по возможности желаемых целей.

Если мне повезет с моими экзаменами, и я смогу поступить в Политехникум. Я провел бы там четыре года, изучая математику и физику. Я мечтаю стать преподавателем в этих областях естественных наук, выбрав теоретическую часть.

Вот причины, ведущие меня к этому плану. Прежде всего, это моя склонность к абстрактному и математическому мышлению и отсутствие изобретательности и практических способностей. Мои желания живут во мне в согласии с этим. Это вполне естественно; каждый предпочитает делать то, к чему у него имеются склонности. Кроме того, в профессии ученого есть определенная независимость, которую я так люблю».

Среди студентов в Политехникуме он встретил Милеву Марич (1875— 1948), темноволосую сербку, которая была на четыре года старше его и которая в 1903 г. стала его женой и, позднее, матерью его трех детей. Также он познакомился со своим однокашником, швейцарцем Марселем Гроссманном (1878—1936), который, 18 лет спустя, стал его математическим сотрудником в написании общей теории относительности. Среди его учителей был знаменитый математик Герман Минковский (1864—1909), который в 1907 г. ввел концепцию пространства-времени, внеся, тем самым, существенный вклад в развитие теории относительности.

В Политехникуме, он стал другом М.А. Бессо (1873—1955), молодого инженера из Триеста, который с 1904 г. был его коллегой по Патентному бюро и оставался его близким другом и корреспондентом всю жизнь. Эйнштейн много времени проводил за работой в физической лаборатории, увлекаясь непосредственным участием в экспериментах. Однако его учитель профессор Г. Ф. Вебер (1843—1912), лекции которого не нравились Эйнштейну, не был в восторге и однажды сказал ему: «Вы симпатичный юноша, Эйнштейн, очень симпатичный. Но у вас есть большой недостаток: вам не нравится, чтобы вам говорили что-нибудь».

В течение последнего семестра, в результате лекций Германа Минковского по капиллярности, Эйнштейн включился в работу по этой проблеме. Капиллярность является специальной формой энергии, связанной с формой и положением поверхности жидкости. Например, она может определять уровень жидкости в тонкой трубке (капилляре). В XIX в. многие ученые, среди которых были Томас Юнг, П.С. Лаплас (1749-1827), К.Ф. Гаусс (1777-1855), Дж. К. Максвелл, Д.Д. ван дер Ваальс (1837-1923) (нобелевский лауреат по физике 1910 г. «за свою работу по уравнению состояния газов и жидкостей») и А. Пуанкаре, занимались этой проблемой. Лаплас считал, что причина капиллярности в существовании сил сцепления молекул жидкости. Как следствие, можно получить из экспериментального изучения капиллярности жидкости информацию об этих внутримолекулярных сил. Эта возможность интересовала Эйнштейна в его первом исследовании в 1901 г. и, как мы увидим, продолжала интересовать его и позднее.

 

Патентное бюро

После окончания Политехникума и получения степени в 1900 г. Эйнштейну не удалось получить место в Политехникуме, где он не собирался заниматься интересующими его темами, и где его не любили его учителя. После безуспешных попыток найти работу он с помощью своего друга Марселя Гроссманна устроился в Патентное бюро в Берне. Там он чувствовал себя вполне удовлетворенным, серьезно относился к работе и даже находил ее интересной. Более того, он располагал временем и возможностью заниматься своей собственной физикой. Итак, он стал писать работы по физике, посылая их в журнал Annalen der Physik, редакция которого располагалась в Вене. Среди них, он опубликовал в 1903—1904 гг. работы по основам статистической механике, но он не знал, что Гиббс уже опередил его. Эйнштейн приготовил докторскую диссертацию и в 1905 г. успешно защитил ее и сдал экзамены. Он продолжал свои исследования в теоретической физике и в том же году написал работу по световым квантам, которая принесла ему Нобелевскую премию, первую работу по теории относительности, написал диссертацию, посвященную «моему другу Марселю Гассманну», в которой он описал новый теоретический метод определения радиусов молекул и число молекул, которые могут занимать данный объем (число Авагадро), и, наконец, представил результаты исследования движения взвешенных частиц в жидкости (броуновское движение). Это последнее исследование можно рассматривать как побочный продукт его диссертации и которое было опубликовано в том же журнале в 1906 г.

В отличие от результатов фундаментального характера, изложенных в его диссертации, она вызвала необычный интерес. Это объяснялось большими практическими выводами, следующими из нее, по сравнению с другими работами Эйнштейна. Из свойств частиц в суспензии следовали выводы, применимые к движению частиц песка в бетонных смесях (важность для строительной индустрии), мицеллы казеина в молоке (важность для пищевой индустрии), аэрозоли в облаках (важность для экологии) и т.д.

Эйнштейн оставался на своей должности в Берне до конца 1909 г., когда он в первый раз получил академическую позицию доцента в университете Цюриха. В то время его научный авторитет уже был достаточно высок. Кроме результатов по квантам света, броуновского движения и теории относительности, Эйнштейн, двумя годами позже, опубликовал первую квантовую теорию удельной теплопроводности твердых тел. Теория тепла, основанная на рассмотрении энергии движения, либо сталкивающихся частиц газа, либо внутренних колебаний твердых тел, имела большой успех, к началу XIX в. встретила серьезные трудности. Статистическая механика позволяет рассчитать количество тепла, которое нужно сообщить телу для увеличения его температуры на один градус (т.н. удельная теплоемкость). В случае твердых тел ожидалось теоретически, что эта величина примерно одинаковая для всех тел и не зависит от температуры. Эксперимент противоречил этому заключению, демонстрируя, что теплоемкость растет при увеличении температуры, достигая значения, предсказываемого статистической механикой, лишь при высоких температурах (закон Дюлонга— Пти). В 1907 г. Эйнштейн пришел к заключению, что если серьезно принять идею Планка, ее следует считать справедливой для всех видов колебаний и, применив эту концепцию к колебаниям атомов, он вывел правильную зависимость удельной теплоемкости от температуры. В том же 1907 г. Иоганн Штарк (1874— 1957), главный редактор Jahrbuch der Radiaktivitat und Elektronik, попросил Эйнштейна написать обзор по теории относительности. При работе над этой важной статьей, Эйнштейн вспомнил, что когда он сидел в Патентном бюро, он размышлял: «Если человек свободно падает, он не ощущает своего веса». Так, для наблюдателя, падающего с крыши дома, не существует гравитационного поля, по крайней мере, в ближайшем окружении. Действительно, если этот наблюдатель роняет какое-нибудь тело, оно остается относительно его в состоянии покоя или равномерного движения, независимо от его природы. Поэтому наблюдатель имеет право рассматривать свое состояние как «состояние покоя». Благодаря таким интуитивным соображениям частный экспериментальный закон, что в гравитационном поле все тела падают с одним и тем же ускорением (найденном еще Галилеем), сразу же приобретает глубокий физический смысл. Наблюдатель не имеет никаких средств, которые позволили бы ему установить, что он свободно падает в гравитационном поле. На основе таких размышлений Эйнштейн выдвинул теорию гравитации. Он пришел к заключению, что удовлетворительная теория гравитации должна включать фундаментально и естественным образом эквивалентность между инерционной и гравитационной массами и тот факт, уже установленный Галилеем, что все тела падают с одним и тем же ускорением. Гравитация и инерция по существу одно и то же, решил Эйнштейн, и поэтому удовлетворительная теория гравитации требует обобщения структуры пространство-время его теории относительности, поскольку, если гравитация принимается во внимание, концепция конечной и строго инерциально покоящейся системы координат уже неадекватна.

 

Его академическая карьера

Некоторое время спустя после декабря 1907 г. началась академическая карьера Эйнштейна. Первым шагом было требование, обычное в то время, получить разрешение преподавать (быть доцентом) в университете, которое давалось при определенном числе студентов. Это требование было отвергнуто университетом Берна как формалистика. Эйнштейн не включил в представляемые документы (докторская диссертация и 17 опубликованных работ) специальное сочинение Habilitation thesis, которое он еще не подготовил. Он представил необходимую работу в начале 1908 г. и получил звание.

Однако он все еще работал в Патентном Бюро и поэтому был вынужден читать лекции в свое нерабочее время. В 1908 г. он читал лекции в субботу и во вторник утром с 7 до 8 часов трем студентам, один из которых был Бессо, работающий с ним в Патентном Бюро. В 1908—1909 гг. он читал второй и последний курс каждую среду вечером с 6 до 7 часов четырем студентам.

 

Профессор Эйнштейн

Наконец в 1909 г. Эйнштейн стал профессором теоретической физики в университете Цюриха. Это был новый пост: с уходом Клаузиуса в 1867 г. не было профессора теоретической физики. Эйнштейна представил собранию факультета профессор А. Кляйнер, который очень хорошо говорил о нем. О его выступлении на фоне антисемитских выпадов коллег сохранилось такое свидетельство:

«Эти выражения нашего коллеги Кляйнера, основанные на многолетнем знакомстве, более ценны для комитета и факультета, чем то, что г. д-р. Эйнштейн является иудеем, так как иудеям, среди преподавателей присущи (во многих случаях, хотя и не всегда) все неприятные особенности такие, как назойливость, наглость и менталитет лавочника».

6 июля 1909 г. Эйнштейн получил отставку в Патентном Бюро и перешел в университет. Профессор Эйнштейн появился в классе в обычной одежде, часто носил слишком короткие брюки и приносил маленькую бумажку размером с визитную карточку, по которой читал свои лекции. Между 1907 и 1911 гг. Эйнштейн потерял интерес к теории гравитации. Вместо этого он был полностью поглощен квантовой теорией. Он писал в 1908 г. своему сотруднику Лаубу (1882—1962):

«Я целиком занят вопросом сущности излучения ... Эта квантовая проблема имеет настолько исключительно важную значимость и так сложна, что она должна интересовать каждого».

И в следующем году:

«Я еще не нашел решения вопроса о свете и квантах. В то же время я стараюсь понять, смогу ли я разработать эту мою любимую проблему».

Тем не менее, позднее он временно оставил свои усилия в отношении теории света, обратился снова к теории гравитации. В 1910 г. Эйнштейн принял кафедру в Немецком университете в Праге, куда он перебрался в марте 1911 г. Теперь он старался обобщить специальную теорию относительности, включив в нее гравитацию. Теория гравитации была его главным интересом до 1916 г. В то время как большинство физиков уже признали специальную теорию относительности, считая ее прочной частью основ физики, Эйнштейн был занят поиском пределов ее применимости и математическим представлением более глобальным и более применимым ко многим физическим явлениям.

В Праге в 1911 г. он выдвинул предположение, что световые волны искривляются гравитационными полями, но необходимо было ждать до 1914 г. когда экспедиции могли бы проверить это предсказание во время солнечного затмения. Первая мировая война прервала эти наблюдения, и первые измерения могли быть сделаны лишь в 1919 г.

В 1911 г. Эйнштейн был также занят написанием важной лекции по квантовой физике на Первом Сольвеевском Конгрессе (30 октябрь — 3 ноябрь 1911 г.). После 18 месяцев, проведенных в Праге, Эйнштейн возвратился в Цюрих в конце 1912 г. на должность полного профессора в Политехникуме, где он учился двенадцать лет назад. В Цюрихе, в соавторстве с Марселем Гроссманном, который стал профессором математики, Эйнштейн опубликовал в 1913 г. предварительную версию новой теории гравитации.

В конце 1913 г., по инициативе немецких физиков Макса Планка и Вальтера Нернста (1864-1941) (нобелевского лауреата по химии за 1920 г. «За признание его работ по термохимии») Эйнштейну было сделано почетное предложение стать членом Королевской Прусской Академии в Берлине, быть профессором Берлинского университета без обязанности преподавать и стать директором вновь создаваемого Физического института кайзера Вильгельма. Задачей Эйнштейна было организовать исследовательскую работу. Его не обязывали преподавать, но он мог это делать по своему желанию. Эйнштейн не любил формальное преподавание, а живая научная атмосфера в Берлине привлекала его. Так что он принял приглашение.

Во время визита Макса Планка и Вальтера Нернста в Цюрих с целью предложить Эйнштейну новое положение он по просьбе Планка описал состояние своей работы по общей теории относительности, и Планк, который первым распознал в нем гения, сказал: «Как более старший, должен предостеречь вас; сперва вы не добьетесь успеха, и даже если и добьетесь, никто не поверит вам».

Когда Планк и Нернст ушли, Эйнштейн так прокомментировал эту встречу своему ассистенту Отго Штерну: «Эти двое напоминают мне людей, гоняющихся за редкой почтовой маркой».

Вскоре после прибытия в Берлин Эйнштейн развелся со своей женой Милевой; ему было 34 года, и он был звездой первой величины на научном небосклоне.

В Берлине, несмотря на многие контакты с коллегами, в частности с Максом Планком, Максом фон Лауэ, Вальтером Нернстом и, позднее, с Эрвином Шрёдингером и многими другими, он чувствовал себя изолированным и чужим. Он не выступал с лекциями, но активно участвовал в обсуждениях, которые следовали за научными семинарами. Как пацифист и противник национализма, он чувствовал себя еще более изолированным во время Первой мировой войны. Он полностью сосредоточился на теории гравитации и, после значительных усилий, добился успеха к концу 1915 г. в формулировке, которая до сих пор рассматривается как замечательнейшая часть классической физики. Эта теория выдержала все экспериментальные проверки, выполненные до сих пор.

В 1915 г. он также заинтересовался экспериментом, проводимым вместе с голландским физиком Вандером Иоганном де Гаазом (1878—1960) (зятем Лоренца). В этом эксперименте использовался цилиндр (например, железа), подвешенный на упругой нити, и исследовалось закручивание при быстром намагничивании; сегодня это известно как эффект Эйнштейна—де Гааза.

Тяготы войны его не слишком затронули, эти годы были наиболее продуктивными и творческими в его карьере. Он опубликовал книгу и около 50 статей. В 1916 г. Эйнштейн написал десять научных работ, среди которых были наиболее важный синтез общей теории относительности, обсуждение теории излучения света с введением спонтанного и индуцированного излучения, первая работа по гравитационным волнам и другие, которые мы обсудим в дальнейшем. Он также закончил свою популярную книгу по теории относительности.

В этот год он вновь обратился к излучению черного тела и добился значительного прогресса. В ноябре 1916 г. он писал Бессо: «Чудесный свет пролился на меня в виде поглощения и испускания излучения». Его объяснения были изложены в трех статьях, две из которых появились в 1916 г., а третья в начале 1917 г. В этих работах, которые мы можем считать наиболее важным вкладом в квантовую теорию, Эйнштейн предложил статистическую теорию взаимодействия между атомами и фотонами, дал новую демонстрацию теории излучения Планка и ввел концепцию «индуцированного излучения», что обеспечило основу для открытия мазеров и лазеров, о чем мы будем говорить в следующей главе. В тот же год он обосновал современную космологию, науку о крупно масштабной структуре Вселенной, построив первую математически корректную модель Вселенной, содержащей однородно распределенное вещество, испытывающее гравитацию.

 

Частная жизнь Эйнштейна

После напряженной работы в предыдущие годы, в 1917 г. Эйнштейн серьезно заболел. Его кузина Эльза Эйнштейн, брак которой с торговцем по имени Ловенталь закончился разводом, ухаживала за Эйнштейном и в июне 1919 г. Альберт и Эльза поженились. Эльза, которая умерла в 1936 г., была счастлива заботиться об Эйнштейне; она гордилась его славой. Эйнштейн, обычно был не устроенный в бытовом отношении, наконец, обрел дом и заботу. Он хорошо выглядел и получал удовольствие, принимая гостей: ученых, художников, дипломатов и других близких друзей. Однако в других отношениях его жизнь была слишком тяжела для него. Посетивший его друг писал:

«Он, который всегда был несколько богемным, стал вести жизнь среднего класса... содержа дом, типичный для преуспевающей семьи в Берлине... в окружении прекрасной мебели, ковров и картин... Когда кто-нибудь посещает его...он находит Эйнштейна все еще остающимся «посторонним» в таком окружении — богемным гостем в доме среднего класса».

Все, что мы теперь знаем о его частной жизни, было разукрашено в последние годы благодаря доступу к его частным письмам и смертью тех, кто препятствовал их опубликованию. Из этих приватных эпизодов, которые никак не ограничивают нашей признательности его научных заслуг, мы узнаем, что когда ученик Эйнштейн влюбился в Мери Винтелер, молодую дочку его учителя греческого языка и истории, владельца квартиры, в которой он жил, он писал ее полные любви письма. Но быстро бросил это, когда она возвратила их. С Милевой вспыхнули бурные отношения, с рождением в 1902 г., до брака, дочки (вероятно, ее отдали на воспитание), и семья Эйнштейна сильно противилась его выбору. Этот брак закончился появлением его кузины Эльзы, которая после брака, наскучила ему, и он обращал внимание на других женщин. В поисках сенсации, один из его знакомых того периода выдвинул гипотезу, что Милева принимала участие в создании специальной теории относительности, но это не подтверждается какими бы то ни было письмами или тем, что мы знаем о научной жизни Милевой, которая не была отмечена событиями. В 1939 г. при разводе он взял под опеку своих двух сыновей и жену, и продолжал поддерживать всех трех. Более того, он решил отдать Милевой деньги из своей Нобелевской премии.

 

Теория относительности

Теория относительности, которая произвела революцию в наших представлениях о времени и пространстве, и которая приводит к очень важным следствиям, до 1918 г. (до конца конец Первой мировой войны) оставалась неизвестной широким кругам, за исключением немногих специалистов. Затем ситуация изменилась, и она привлекла всеобщее внимание благодаря новому способу мышления и новой философии.

Это случилось в то время, когда все устали от войны и победители и побежденные. Люди хотели чего-то нового. Теория относительность давала именно то, что было нужно, и она стала центральным аргументом преобразований. Это позволило людям забыть на время ужасы войны и проблемы, которые она вызвала.

Об относительности было написано фантастическое число статей в газетах и журналах. Никогда прежде и затем специфическая идея не вызывала такого огромного интереса. Большинство из того, что писалось и говорилось, относилось к общим философским идеям, а не являлось серьезным научным обсуждением. Было мало точной информации, но многие люди были счастливы изложить свои идеи.

В Великобритании только один человек, астроном и математик, сэр Артур Эддингтон (1882—1944) по-настоящему понял, что такое теория относительности, и стал авторитетнейшим специалистом в этой области в своей стране. Его крайне интересовали астрономические следствия теории и возможность проверки теории с помощью астрономических наблюдений. Три возможных проверки теории, основанные на предсказаниях Эйнштейна, были сделаны в его работе 1915 г. Первая связана с движением планеты Меркурий. Было установлено, что перигелий (точка траектории планеты, ближайшая к Солнцу) Меркурия смещается за оборот приблизительно на 43 угловые секунды. Это не укладывалось в теорию Ньютона и долго озадачивало астрономов.

Новая теория Эйнштейна точно предсказывала этот эффект, и измерения Эддингтона подтвердили эти предсказания. Это было большим успехом теории, но оставило Эйнштейна безучастным, когда он узнал о подтверждении Эддингтона, так как нисколько не сомневался в справедливости своей теории.

Второе подтверждение связано с отклонением света, который проходит вблизи Солнца. Теория гравитации Эйнштейна утверждает, что свет, проходящий вблизи Солнца, должен отклоняться. Согласно теории Ньютона, также должно быть отклонение, но оно в два раза меньше того, что предсказывается Эйнштейном (рис. 20). Поэтому, наблюдая звезды вблизи солнечного диска, чей свет проходит вблизи Солнца, прежде чем достигает Земли, можно проверить теорию. Однако мы можем наблюдать звезды вблизи солнечного диска только в момент полного затмения, когда свет Солнца блокирован Луной. Подходящее затмение происходило в 1919 г., и Эддингтон организовал две экспедиции для его наблюдения: одну в Бразилию под руководством А. С. Кроммелина (1865— 1939) из Гринвичской обсерватории, а другую на Принцевы Острова, около побережья Испанской Гвинеи, руководимую им самим. Обе экспедиции получили результаты, подтверждающие теорию Эйнштейна. В Лондоне, 6 ноября, на объединенном собрании Королевского Общества и Королевского астрономического общества, президент Королевского общества, нобелевский лауреат Дж. Дж. Томсон, услышав результаты Эддингтона, превознес работу Эйнштейна как «одно из высочайших достижений человеческой мысли».

Рис. 20. Во время затмения Солнца можно наблюдать свет, приходящий от двух звезд сбоку от диска Солнца. Из-за того, что гравитационное поле Солнца искривляет свет, звезды, наблюдаемые с Земли в направлении продолженных лучей, кажутся разнесенными дальше, чем на самом деле

Однако точность этих подтверждений была недостаточно высока из-за трудностей таких наблюдений. Совсем недавно этот эффект смог подвергнуть проверке за счет использования вместо света микроволн. Были открыты объекты звездного типа, сильно излучающие в радиодиапазоне (квазизвездные радиоисточники, или квазары). Когда один из них находится позади Солнца, мы можем наблюдать, отклоняются ли радиоволны, проходящие вблизи Солнца. Для этого нет необходимости ожидать затмения, поскольку Солнце слабо испускает радиоволны. Результат, с необходимыми коррекциями побочных эффектов, показал, что теория Эйнштейна подтверждается с более высокой точностью, чем на световых волнах.

Отклонение света за счет гравитации оказалось даже еще более впечатляющим в недавние годы. Масса галактики может действовать как линза и фокусировать свет, который приходит от удаленного источника, расположенного позади нее (рис. 21). Если этот источник, галактика, действующая как линза, и телескоп расположены (настроены) должным образом, тогда «гравитационная линза» дает совершенное круговое изображение («кольцо Эйнштейна»), наблюдаемое на некоторых фотографиях, полученных различными методами в разных ситуациях.

Третье подтверждение относится к предсказанию общей теорией относительности того, что световые волны, испускаемые источником, находящемся в гравитационном поле, подвержены изменению длины в сторону более длинных волн, т.е. к красному концу спектра. Этот эффект известен как красное смещение. Он был проверен путем исследования света, испускаемого звездами типа белых карликов, содержащих вещество в высокосжатом состоянии. Гравитационный потенциал на поверхности белого карлика значительно больше, чем на поверхности нашего Солнца, это дает возможность проверить этот эффект, предсказанный Эйнштейном. Другие следствия теории гравитации Эйнштейна были получены в последующие годы. Одно из самых ярких — открытие черных дыр, коллапсированных звезд, диаметр которых сжимается до бесконечно малой доли их первоначального состояния. Свет, испускаемый черной дырой, не может покинуть ее, так как он затягивается обратно огромным гравитационным полем, получающимся при сжатии. По существу черная дыра — это точка в пространстве с массой обычной звезды. В настоящее время существование черных дыр признается, и получены некоторые наблюдательные доказательства этого.

Рис. 21. Гравитационная линза. Свет, приходящий от далекого объекта (квазар на рисунке), искривляется сильными гравитационными полями вблизи галактики или черной дыры. Наблюдатель на Земле, продолжая лучи, которые приходят к нему, воссоздает два изображения объекта, как показано на рисунке. Если объект, наблюдатель и галактика расположены совершенным образом, то вся система обладает аксиальной симметрией и изображения представляются кругом с объектом в его центре (круг Эйнштейна)

В течение 1921—1923 гг. Эйнштейн совершил путешествия по США, Европе и Азии. Вайтцман убеждал его присоединиться к сионистскому движению. В 1921 г. он получил Нобелевскую премию по физике, но не за теорию относительности, а «за его служение теоретической физике, и особенно за открытие закона фотоэлектрического эффекта». В следующей главе мы опишем фотоэлектрический эффект.

Важной экспериментальной проверкой специальной теории относительности был отрицательный результат эксперимента, проведенного в 1887 г. Майкельсоном и Морли, поставленного для обнаружения движения Земли относительно эфира. В конце 19 столетия полагали, что колебания электрических и магнитных полей световой волны должны с необходимостью представлять колебания некоторой среды и что эта среда является знаменитым эфиром, уже введенным Декартом и Гюйгенсом. Электрические колебания эфира идентифицировались со светом, и возникала проблема установить свойства этого эфира. Если, например, источник света движется по отношению к эфиру или наблюдатель движется по отношению к нему, то это движение можно обнаружить. Но эксперимент Майкельсона и Морли показал, что никакой эффект такого движения не обнаруживается. Этот эксперимент является одной из экспериментальных опор теории относительности, хотя представляется, что он не повлиял на работу Эйнштейна в 1905 г. Вероятно, что он не был известен ему в то время. В 1921 г. Д.С. Миллер (1886—1941), который тогда был молодым сотрудником Майкельсона, поставил аналогичный эксперимент на горе Маунт Вильсон в Калифорнии, где располагалась астрономическая обсерватория, и объявил, что он смог наблюдать малые влияния движения Земли на скорость света. Он теоретизировал, что на уровне моря эфир увлекается Землей, а на больших высотах малый эффект «эфирного ветра» может сказаться на распространении света. Эти результаты он опубликовал несколькими годами позже. В то время Эйнштейн посещал Принстон, и когда он услышал об этом, сказал знаменитую фразу: «Бог коварен, но Он не злонамерен».

Результат Миллера вызвал огромную радость у врагов теории относительности. Германские реакционные круги никогда не признавали факт поражения военной машины Кайзера в Первой мировой войне и объясняли его как результат «злобного заговора» евреев и социалистов. Эйнштейн был в их поле зрения. Его пацифистские и социалистские идеи были хорошо известны. Он отказался подписать декларацию немецких профессоров в поддержку вторжения в Бельгию и всегда призывал к заключению мира, даже тогда, когда казалась близкой победа Германии. Разумеется, результаты Миллера оказались ошибочными, что немедленно продемонстрировал Георг Йосс, который выполнил серию отличных экспериментов, подтверждающих предсказания Эйнштейна.

 

Эйнштейн и статистика фотонов

В 1924 г. у Эйнштейна снова начал интересоваться фотонами относительно статистических законов, которым они подчиняются. С. Бозе (1894—1974), в то время лектор по физике в университете Дакка в Восточной Бенгалии (Индия), представил в 1923 г. статью для публикации в престижный английский журнал Philosophical Magazine. В ней он давал новое доказательство формулы Планка. Через шесть месяцев редактор информировал его, что статья отвергается, и Бозе 4 июня 1924 г. послал рукопись Эйнштейну в Берлин с письмом, которое начиналось так:

«Уважаемый сэр,

Я осмеливаюсь представить вашему рассмотрению и вниманию статью. Я с волнением ожидаю, что вы думаете о ней... Я не знаю достаточно немецкий для перевода этой статьи и был бы признателен, если вы посодействуете для ее публикации в Zeitschriftfur Physik. Поскольку я совершенно неизвестен вам, я не настаиваю на просьбе. Но мы все ваши ученики, пользующиеся обучением у вас благодаря вашим научным сочинениям».

Следует сказать, что уже в 1919 г. Бозе вместе со своим соотечественником М. Т. Саха (1893—1956) опубликовал антологию работ Эйнштейна по теории относительности, первое из собраний на английском языке. Эйнштейн перевел статью и послал ее в июле 1924 г. в этот журнал, где она и была опубликована под именем Бозе. Эйнштейн добавил заметку следующего содержания:

«По моему мнению вывод Бозе формулы Планка имеет очень важное следствие. Использованный метод дает квантовую теорию идеального газа, которую я еще разработаю в деталях».

Затем он отправил открытку Бозе, отметив, что он рассматривает его работу как очень важный вклад. Работа Бозе была четвертым и последним шагом в истории старой теории квантов (тремя другими были: закон Планка в 1900 г., гипотеза световых квантов Эйнштейна в 1905 г. и теория Бора в 1913 г.). Доводы Бозе освобождали закон Планка от излишних элементов электромагнитной теории и давали вывод из общих сущностей. Он исследовал закон теплового равновесия частиц, а именно фотонов, и открыл, что эти частицы подчиняются новому статистическому закону.

В 1924 г. Бозе получил поддержку для проведения в течение двух лет исследований в Европе и в сентябре прибыл в Париж. Он почувствовал силу одобрения Эйнштейна, когда германское консульство в Калькутте выдало ему визу, не требуя формальной оплаты. По прибытии в Париж он встретился с Полем Ланжевеном (1872—1946), который предложил ему возможность работы в лаборатории мадам Кюри. Бозе с удовольствием и весело вспоминал встречу с ней. Мадам Кюри (Мария Кюри-Склодовская (1867—1934) все время говорила по-английски и не давала вставить ни одного слова. Она сказала, что один студент из Индии работал с ней и имел серьезные трудности, поскольку не говорил хорошо по-французски. После этого она предложила Бозе заняться языком в течение шести месяцев и только после этого прийти к ней. У Бозе даже не было шанса сообщить ей, что он учил французский в течение 15 лет!

После такого обескураживающего контакта Бозе познакомился братьями де Бройль (Морисом и Луи) и некоторое время был с Морисом (1875—1960). Однако он все еще очень стремился попасть к Эйнштейну, и 26 октября 1924 г. он написал Эйнштейну письмо, которое начиналось словами:

«Дорогой мастер,

Моя самая сердечная благодарность за ваш труд по переводу моей работы и за ее публикацию. Я увидел публикацию как раз накануне отъезда из Индии. Я послал вам в середине июня вторую работу… Я получил грант для исследовательской работы вне моего университета... Я не знаю, возможно ли мне работать под вашим руководством в Германии...»

Эйнштейн перевел и вторую статью и послал ее в Zeitschrift, где она и была опубликована. Однако на этот раз Эйнштейн добавил ремарку, в которой сообщал, что он не может согласиться с заключениями автора и собирается дать свои соображения.

Возможность сотрудничества Бозе с Эйнштейном иссякла уже к январю 1925 г. В июле 1924 г., примерно в то время, когда Бозе, наконец, решил вопрос с начальством университета об отъезде из Дакки для научной работы, Эйнштейн выступил с работой перед Прусской академией, в которой он применил статистический метод Бозе к идеальному газу. Сходство в статистическом поведении между фотонами и частицами газа, которое он обнаружил в этой работе, было в дальнейшем исследовано Эйнштейном в сентябре. Это привело к важным результатом поведения частиц при низких температурах, и в январе 1925 г. Эйнштейн опубликовал вторую работу. В ней он полностью разработал основные идеи и получил статистические законы, которым следуют частицы и фотоны (позднее названные статистикой Бозе—Эйнштейна). После этого он переключил внимание на другие вещи. Эйнштейн обобщил теорию Бозе на газ идентичных частиц, атомов или молекул и предсказал, что при достаточно низких температурах частицы имеют тенденцию соединиться друг с другом в наинизшем квантовом состоянии системы. Это явление сегодня называется конденсацией Бозе—Эйнштейна и обладает многими необычными свойствами. Ее в течение многих лет безуспешно пытались получить экспериментально, вплоть до 1995 г., когда с помощью лазера впервые удалось наблюдать это состояние двумя группами в JILA в Боулдере (штат Колорадо, США) и в MIT (Массачусетский технологический институт, США). В 1997 г. Э. А. Корнелл, К. Е. Виман и В. Кеттерле получили Нобелевскую премию по физике «за получение конденсата Бозе—Эйнштейна в разряженных газах атомов натрия и за ранние фундаментальные исследования свойств этого конденсата».

После своего приезда в Берлин Бозе 8 октября 1925 г. написал Эйнштейну, прося о встрече, но Эйнштейн был в Лейдене и уже потерял интерес к теме. Он возвратился спустя несколько недель. Когда, наконец, они встретились, встреча была не очень удачная. В результате Бозе получил письмо, позволяющее ему пользоваться обычными привилегиями для студентов в Берлине, включая разрешение брать книги из университетской библиотеки.

Вероятно, из-за того, что он не представил формально диссертации и не посетил Англию (которая в то время была Меккой для индийских ученых), после возвращения в университет Дакки Бозе не сделался профессором. Открытка от Эйнштейна проректору университета с одним лишь предложением, в котором говорилось, что многие в Европе получили пользу от присутствия Бозе, позднее обеспечила ему путь к профессорству, и в 1954 г. Бозе возвратился в Калькутту, где он родился, в звании профессора физики. Его неудачная поездка в Европу подавила его творческий талант, и он не внес более вклада в развитие физики.

 

Эйнштейн в Принстоне

Когда Гитлер пришел к власти в 1933 г., Эйнштейн путешествовал в США. Он решил не возвращаться в Германию. После короткой остановки в Бельгии, в течение которой он аннулировал свое членство в Прусской Академии и в Баварской академии наук в знак протеста против пассивной позиции этих академий в ситуации, когда в Германии подавляются академические свободы и многие ученые и интеллектуалы лишились своих мест по идеологическим причинам. Эйнштейн получил место в новом Институте прогрессивных исследований в Принстоне (США).

Этот институт возник благодаря значительному пожертвованию от Луи Бамберга и его сестры Каролины Бамберг Фулд. Сначала они просили выдающегося американского эксперта по университетам Абрахама Флекснера (1866—1959), организовать медицинский институт. Но он отговорил их, предложив идею организовать институт нового типа, где преподавание, экзамены и присуждение степеней было бы не формальной обязанностью, но где выдающиеся умы, могли бы посвящать себя чистой науке в мирной и свободной атмосфере, с хорошей оплатой и заботой.

Институт открылся 20 мая 1930 г., хотя официальная церемония открытия прошла тремя годами позже. Вместе с Эйнштейном там были еще три профессора: Джеймс Александер (1888—1971), математик в области топологии, Джо фон Нейман (1903—1957), гений в области теоретической и экспериментальной физики, который построил в Принстоне первый компьютер, и Освальд Веблер (1880—1960), специалист в области топологии и дифференциальной геометрии.

Назначение Эйнштейна последовало после ряда встреч с Флекснером. Зимой он был в Калифорнии, где искал кандидатов на академические должности нового института. Ему посоветовали встретиться с Эйнштейном, который в это время посещал Калифорнийский технологический институт. Эйнштейну сразу же понравилась идея. Ситуация в Германии быстро менялась к худшему. С 1920 г. анти-эйнштейновская ассоциация, группа ученых из так называемых германских натурфилософов, предлагала деньги каждому, кто выступал против физиков евреев, особенно против теории относительности.

Поэтому оба встретились сначала в Оксфорде, в течение второго семестра 1932 г., затем вблизи Берлина, где у Эйнштейна был маленький летний дом (его можно посетить и сегодня). В конце концов, 4 июня 1932 г. Эйнштейн принял приглашения быть первым членом академического штата института.

Во время встречи с Флексером Эйнштейн попросил годовое жалование в три тысячи долларов. «Смогу ли я жить на меньшее?» — спросил он. Соглашение, подписанное в октябре 1932 г., определяло ему содержание в пятнадцать тысяч долларов.

Потом встала проблема помощника. Эйнштейн хотел, чтобы им был В. Майер (1887—1948), австрийский математик, с которым он написал ряд работ. Эйнштейн хотел, чтобы он был назначен профессором. Флексер полагал, что Майер не отвечает нужным требованиям, но Эйнштейн был неумолим. Итак, 17 октября 1933 г. Альберт, его жена Эльза, их секретарь Элен Дюкас (1896—1982) и Вальтер Майер высадились в Нью-Йорке на пути в Принстон.

Здесь он продолжал свои исследования, в основном концентрируясь над созданием того, что он назвал «единая теория» поля, которая, как он надеялся, смогла бы дать глубокое объяснение и гравитации и электромагнетизма, и описать дискретные частицы как стабильные области высокой концентрации полей.

Эйнштейн не преуспел в этих попытках. Кроме этих исследований он иногда снова обращался к теории гравитации 1915 г. и обогатил ее новыми результатами. В 1932 г. он сотрудничал с голландским астрономом В. де Ситтером (1972—1934), занимаясь построением модели расширяющейся Вселенной, которая все еще является возможным кандидатом представления крупномасштабной структуры материального мира.

Эйнштейн, который своими гипотезами световых квантов и удельной теплоемкости внес определяющий вклад в разработку квантовой механики, никогда не принимал ее вероятностную интерпретацию природы. В конце 1927 г. на пятом Сольвеевском Конгрессе разразилась битва с Бором, Борном и Гейзенбергом. Они настаивали, что неопределенность является неизбежной, но Эйнштейн не желал принять это положение и представил серию примеров в поддержку своей точки зрения. Однако Бор и его единомышленники отвечали на все эти возражения. В 1930 г. на шестом Сольвеевском конгрессе, последнем, в котором Эйнштейн принимал участие, вспыхнула полемика и вслед за этим в 1935 г. Эйнштейн со своими двумя коллегами по Институту, Борисом Подольским (1896—1966) и Натаном Розеном (1909—1995) написал работу на четырех страницах, в которой провозглашалась ложность квантовой теории. Эти принципиальные аргументы, известные сегодня, как парадокс Эйнштейна—Подольского—Розена (ЭПР-парадокс), были маленькой бомбой. Бор, глубоко взволнованный, немедленно стал диктовать ответ. Он, однако, понимал, что дело не столь просто. Он начинал с логической линии, затем изменял свой подход и начинал снова. Он не мог точно определить, в чем же была проблема. «Вы понимаете, что мы хотим сказать?» — спрашивал он Леона Розенфельда (1904-1974), американского физика-теоретика, который в то время был его ассистентом. Ричард Фейнман (1918—1988), лауреат Нобелевской премии по физике 1965 г. вместе с Джулианом Швингером (1918—1994) за метод особых расчетов, известный, как диаграммы Фейнмана, сказал в 1982 г. по поводу ЭПР-парадокса: «Когда я не могу охарактеризовать истинную проблему, тогда я считаю, что никакой истинной проблемы не существует». В настоящее время обсуждения этого парадокса проливает свет на определенные особенности квантово-механической интерпретации природы, которые не были достаточно оценены в прошлом и которые были изучены благодаря использованию лазерного света, получив несомненные подтверждения результатов, следующих из квантовой механики.

В 1936 г. Эйнштейн вынужден был заменить своего любимца В. Майера. Оказалось, что он, как только прибыл в Институт, не постеснялся дистанцироваться от своего шефа. Их сотрудничество выражалось лишь в одной работе, опубликованной в 1934 г., после которой интересы Майера обратились к чистой математике. Таким образом, Эйнштейн в 1936—1937 гг. взял двух новых ассистентов: Петера Бергмана (1915-2002) и Леопольда Инфельда (1893-1968). Он хотел, чтобы они продолжали работать с ним и далее, но возникли административные трудности. В конце концов должность Бергмана была утверждена, а Инфельда — нет. Эйнштейн смирился с этим, а Инфельд в течение лета 1937 г писал книгу. Когда эта книга, «Эволюция физики», вышла в 1938 г., она принесла авторам больше чем те шестьсот долларов, которые Эйнштейн просил для Инфельда от Института.

Совместная работа с Натаном Розеном 1937 г. содержала решение его уравнений поля, которые описывали гравитационные волны. Знаменитая работа в соавторстве с Б. Хофманом (1906—1986) и Л. Инфельдом была посвящена выводу уравнения движения частиц из уравнений гравитационного поля. Даже после своей отставки в 1945 г. Эйнштейн продолжал работать вплоть до самой смерти. Он умер в возрасте 76 лет 18 апреля 1955 г.

Важной характеристикой отношения Эйнштейна к фундаментальным проблемам физики было то, что он задавался вопросами лишь в отношении обоснованности тех концепций и соотношений, которые рассматривались как истинные. В этом отношении он был философом. Согласно его воззрениям, концепции являются свободными изобретениями и аксиомами и фундаментальные законы теории предположительны. Их нельзя вывести индуктивно из эксперимента или наблюдений. С другой стороны, теория должна делать возможным выводы и предсказания, которые можно проверить экспериментом, и это определяет ее ценность. Итак, наука требует трех видов человеческой активности: человеческой изобретательности, логико-математической дедукции, а также наблюдений и эксперимента. Согласно Эйнштейну, процесс создания развивается не только опытом и предварительно существующими теориями, но также чувством структурной простоты и математической красоты.