Разум VS Мозг. Разговор на разных языках

Бертон Роберт

Глава 11

Анатомия мысли

 

 

Незадолго до окончания моей неврологической подготовки д-р А., старший ординатор терапевтического отделения, а впоследствии заведующий известным медицинским факультетом, попросил меня присоединиться к его крупному проекту. Я спросил, что он планирует делать.

– Мы будем изучать алкоголизм.

– Но что именно вы хотите исследовать?

– Кровь, мочу, спинномозговую жидкость. Если бы наберем достаточно образцов, то, я уверен, мы обнаружим какие-то неизвестные отклонения. Это не имеет отношения к мозгу.

– И все же, что именно вы ожидаете найти? – спросил я снова.

Д-р А. пожал плечами.

– Узнаем, когда найдем.

Одна из базовых предпосылок биологических наук состоит в том, что детальное понимание анатомии и физиологии системы синонимично пониманию функции этой системы. Если вы знаете сокращающее усилие мышечного волокна и количество и тип мышечных волокон в конкретной мышечной группе, вы можете быстро подсчитать общее усилие, которое может приложить этот мускул. Если вы идете в тренажерный зал и качаете там мышцы, вы можете уверенно предсказать, что увеличенные мышцы бицепсов будут способны приложить большее усилие, чем они могли это сделать до тренировки с гирями. Зная соответствующую композицию мышечных волокон – процентное отношение быстросокращающихся и медленносокращающихся волокон, вы можете сделать достаточно точное предсказание, в спринте или в марафоне человек будет более успешен. Уравнение, общее для всех отраслей биологии: Анатомия + Физиология = Функция.

Применение этого уравнения к Великому Зазору – между мозгом и разумом – необязательно даст результат. Попытка использовать научные наблюдения, работающие на уровне объективного мозга, для объяснения действий субъективного разума приводит к ошеломляющей нейробиологической путанице, необоснованным интерпретациям и оторванным от реальности научным фантазиям.

 

Мозг Эйнштейна

Из журнала New Scientist за 2010 г.: «Мозг чрезмерных размеров для человека является тем же самым, что хобот для слона и вычурные хвостовые перья для павлина – нашей отличительной гордостью. Чем бы были мы без нашего превосходного, громадного, набитого нейронами мозга?» [194].

Правда ли, что больше означает лучше? Хотя мало кто действительно верит, что гениальность – это просто вопрос анатомии, было потрачено огромное количество времени – и рождено огромное количество фольклора – в попытках узнать, обладал ли Эйнштейн некоей анатомической особенностью, которая могла бы объяснить его гениальность. Когда оказалось, что вес и размер мозга Эйнштейна ничем не примечательны, ученым пришлось выдумывать более утонченные объяснения.

Защитник глиальных клеток Эндрю Куб сказал: «Гениальность Эйнштейна произрастает из богатства астроцитов, сконцентрированных в областях мозга, отвечающих за математику и язык» [195]. Но поскольку норма для абсолютного количества глиальных клеток не является точно установленной [196], трудно сказать, что означает «богатство астроцитов» (не говоря о том, что повышенное число астроцитов может быть вызвано другими причинами, в частности старой травмой, приведшей к образованию рубца в мозге). Пойдем дальше по пути абсолютных величин. Эйнштейн имел на 15 % больший объем нижней теменной области – части мозга, которую связывают с математическим мышлением и способностью визуализировать перемещения в пространстве. Но что для нас означает 15 %-ное увеличение области мозга? Даже высказывалось предположение, что в мозге Эйнштейна не хватало конкретной борозды (извилины), которая обычно проходит через теменную область мозга, что позволяло легче коммуницировать нейронам, расположенным по обе стороны от этой отсутствующей борозды [197].

Нет ничего нового в том, чтобы смотреть на размер и форму мозга как на мерило человеческого интеллекта. Наиболее известный из примеров прошлого – френология. Предложивший ее венский врач Франц Йозеф Галль заявлял, что может определить различные черты характера и интеллекта человека по форме выступов на его голове. Когда учение было в зените славы, прозвучало несколько экстраординарных заявлений. Целый ряд европейских френологов утверждали, что мозг умных людей больше и что другие расы глупее европеоидов из-за их предположительно более маленьких голов (основываясь на своем избирательном использовании измерений головы) [198]. Выступая в качестве свидетелей на судебных процессах, френологи описывали характеры обвиняемых. Другие использовали «шишкологию» в качестве формы психоанализа. (Признаюсь, у меня в офисе есть оригинальная френологическая голова Freda, отданная мне бывшим оксфордским профессором нейрохирургии. Когда я озадачен какой-либо идеей, я иногда нащупываю шишку недалеко от своей макушки, которая, по представлениям френологов, представляет место для теоретических размышлений. И у меня есть вмятина там, где должен быть центр, ответственный за выявление причин.) Несмотря на обширную критику и тотальное развенчание френологии еще в 1829 г., она время от времени возвращалась в моду на протяжении всего XIX века и исчезла приблизительно в то же самое время, когда обрел популярность фрейдистский психоанализ.

Сегодня мы высмеиваем френологию как образец псевдонауки. Но в то же время она преподнесла нам некоторые поучительные уроки. Ее создатель, д-р. Галль, почитается одним из первых в истории современности сторонников сопоставления областей мозга с конкретными функциями [199]. Предпосылка, лежащая в основе его теории – что различные зоны мозга выполняют различные задачи, – является центральным положением современной нейробиологии.

Однако фундаментальная проблема, как френологии, так и современной нейробиологии, состоит в том, чтобы определить, действительно ли данный конкретный метод измеряет то, что вы хотите измерить. Чтобы понять, как наше восприятие искажает наше понимание науки, посмотрите на оценку, данную френологии оксфордским профессором в 1859 г.:

«Если посмотреть хладнокровно, френология представляет собой всего лишь набор неожиданных отношений, изначально собранных и исследованных исключительно эмпирически, в полном отсутствии какой-либо теории. Из этого мало-помалу была выведена система, о которой можно только сказать, что на данный момент она представляет собой того сорта грубую связанность наблюдений, которая, невзирая на многочисленные неточности в деталях, дает уверенное ощущение чего-то настолько глубоко соотнесенного с истиной, что это невозможно отбросить как случайное совпадение или мечтательное заблуждение» [200].

Аргумент: слепой сбор данных привел к выявлению некоторых паттернов и корреляций, которые были интерпретированы как отражающие некую глубинную истину, несмотря на противоречия в деталях. Это очень похоже на д-ра А., надеявшегося собрать образцы крови, мочи и спинномозговой жидкости и посмотреть, что получится. Обнаружение закономерностей в компании чувств причинности и знания формирует впечатление априорного свидетельства близости истины.

Если предположить, что урок френологии был учтен, то можно было бы подумать, что мы научились в большей степени отдавать себе отчет в потрясающем разнообразии размеров и форм нормального мозга, как и в том, что корреляции и выводы из наблюдаемых корреляций могут быть случайны и ошибочны. Как бы не так: измерения региональных вариаций объема мозга, популяций клеток, толщины и общей плотности нейронных связей по-прежнему используются в качестве основных инструментов для сопоставления анатомии с личностными качествами, интеллектом и даже психическими заболеваниями! Поскольку на горизонте всегда сияют новые технологии, критике прежних подходов часто противопоставляется аргумент: «Было так, стало иначе. Теперь у нас есть усовершенствованные технологии, а те ребята из прошлого не знали, что творят».

Чтобы дать почувствовать ограниченность количественного подхода к психическим функциям, позвольте мне представить несколько прошедших экспертную оценку исследований с использованием размера и количества клеток мозга и их связей в качестве показателя различных психических качеств. И вновь повторю, что у меня нет цели критиковать отдельное исследование или исследовательскую группу, я хочу указать на общую ограниченность анатомического подхода к пониманию психики. И заметьте, пожалуйста, что именно благодаря хорошо продуманным исследованиям, открывающим новые аспекты анатомии, мы получаем представление о неотъемлемых ограничениях этих подходов.

 

Чем толще, тем лучше

Заголовок в Daily Mail за 2011 г.: «Люди с высоким интеллектом имеют более толстую «изоляцию» на «проводах» мозга» [201].

Поскольку мы склонны думать о мозге как о компьютере, становится все более модно смотреть на интеллект в контексте скорости обработки информации. Мы также знаем, что чем более толстая изоляция у периферических нервов (миелиновые оболочки), тем быстрее скорость передачи электрических импульсов. Скомбинировав эти две идеи, вы получите стартовую площадку для исследования, проведенного в 2011 г. Калифорнийским университетом в Лос-Анджелесе в попытке продемонстрировать, что степень толщины миелиновых оболочек (соответствующая увеличению скорости переработки информации) коррелирует с общим уровнем интеллекта.

Для проверки этой гипотезы группа нейробиологов Калифорнийского университета под руководством Пола Томпсона решила исследовать скорость обработки информации в мозге, используя новую технологию диффузной фМРТ с ультравысоким разрешением для измерения скорости проведения нервных импульсов в белом веществе. Они также посчитали, что хорошим способом определения наследственного компонента возможной корреляции между толщиной оболочек и интеллектом будет сравнение разнояйцевых и однояйцевых близнецов. Однояйцевые близнецы имеют близкие показатели коэффициента интеллекта, тогда как разнояйцевые имеют только половину общих генов и демонстрируют гораздо меньшую схожесть показателей IQ. Обнаружение того, что однояйцевые близнецы обладают большей схожестью толщины миелиновых оболочек и показателей IQ по сравнению с разнояйцевыми близнецами, указало бы на генетический компонент интеллекта.

Как они и предполагали, в ходе исследования было обнаружено, что более толстые миелиновые оболочки находятся в соответствии с лучшими показателями по некоторым субтестам интеллектуальных тестов и что корреляция наблюдалась у однояйцевых близнецов, но не наблюдалась у разнояйцевых. Разброс в показателях корреляции был воспринят как свидетельство разницы во влиянии генетики на различные когнитивные функции. По словам Томпсона, дисперсия толщины миелиновых оболочек в области мозга, работающей с логикой, математикой и визуальными пространственными навыками, на 85 % обусловлена генетикой [202]. Однако корреляция между толщиной миелиновых оболочек и показателями IQ была неоднородна. Так, не было обнаружено заметной корреляции между количеством миелина и вербальным IQ. Короче говоря, некоторые области интеллекта продемонстрировали ожидаемый результат, другие – нет.

Авторы так объясняют это несоответствие: «Возможно, невербальный интеллект, в отличие от вербального, теснее связан с физиологическими параметрами, такими как скорость проведения нервного импульса и степень миелинизации аксонов» [203]. Каков смысл этого аргумента? Для меня он противоречит базовым биологическим принципам: все равно, что сказать, что нервы левой руки могут быть более точно оценены в ходе исследования нервной проводимости, чем нервы правой руки. Такой аргумент станет универсальным спасительным объяснением любых непоследовательных результатов. Или, возможно, это проблема метода, который не подходит для задачи. Как сказано в обзорной статье 2011 г. о диффузной фМРТ, этот метод все еще является экспериментальным, трудным в использовании и клиническом применении. Группа, подготовившая обзор, рекомендовала воспринимать результаты, полученные этим методом, со здоровым скептицизмом [204].

Тем не менее авторы приходят к заключению, что «крупные проводящие пути белого вещества в высокой степени генетически обусловлены… и связаны с показателями интеллектуальной деятельности». В сопровождающем пресс-релизе от Института исследований мозга при Калифорнийском университете Томпсон говорит, что «целостность миелинового слоя является особенно многообещающей целью для манипулирования, поскольку в отличие от объема серого вещества она меняется на протяжении жизни. Выявление гена, способствующего увеличению количества миелина, обеспечит возможность применения методов повышения генной активности или искусственного добавления белков, код которых он содержит». По Томпсону, повышение интеллекта у людей, которые просто хотят сдать экзамен, находится «в области возможного» [205]. Ричард Хэйер, психолог-исследователь из Калифорнийского университета в Ирвайне, работавший с Томпсоном, сказал об исследовании: «Только потому, что интеллект сильно связан с генетикой, не надо думать, что его нельзя улучшить. Все наоборот. Если он генетически обусловлен, значит, он зависит от биохимии, а у нас есть множество способов влияния на биохимию».

Когда-то считалось, что мозг жестко смонтирован раз и навсегда. Конечно, такой «высеченный в камне» взгляд не мог объяснить, как мы учимся чему-то. Сегодня мы чаще говорим о нейропластичности – способности мозга менять себя. Нейрональные системы динамичны: обучение отражается в локальных изменениях объема мозга и соответствующих изменениях в нервных волокнах и синапсах. В противоположность пресс-релизу Калифорнийского университета, где утверждается, что серое вещество остается неизменным на протяжении жизни, мы имеем вполне достаточно доказательств, что количество серого вещества характерным образом увеличивается в процессе обучения. В эксперименте с обезьяной и граблями увеличение объема мозга в соответствующей области было замечено после недели обучения животного. Запоминание топографии Лондона, необходимое для получения лицензии таксиста, ведет к серьезному увеличению объема серого вещества в заднем отделе гиппокампа – области мозга, известной своей ролью в реализации функции пространственной ориентации [206].

Противореча пресс-релизу Калифорнийского университета, Томпсон признает, что наш мозг постоянно реконфигурируется в соответствии с опытом. «Миелинизация очень сильно меняется на протяжении жизни, реагирует на сенсорную стимуляцию или депривацию, факторы питания и обучения». Любопытно, что он даже представляет контраргумент собственному заключению. «Генетический эффект на архитектуру мозга не предполагает, что факторы окружающей среды не могут играть роль в изменениях миелинизация. Во многих случаях благоприятные генетические и средовые факторы сильно коррелируют. Например, талантливые индивидуумы могут искать такую деятельность и среду, которая, в свою очередь, способствует развитию и улучшает функции мозга».

Представьте себя одаренным музыкантом с генетической предрасположенностью наслаждаться музыкой. Вы случайно наткнулись на замечательную тубу в магазине подержанных инструментов и тратите большую часть своего свободного времени, упражняясь и слушая игру на тубе. Вскоре репрезентация тубы в вашем мозге усилится. Связи будут функционировать более гладко, обработка информации станет осуществляться быстрее – в конце концов именно так вы доводите свою игру на тубе до нужной скорости. В этом сценарии генетически определенная склонность в форме любви к музыке приведет к утолщению миелиновых оболочек в «центре тубы» в вашем мозге. Такое локальное изменение в мозге не будет отражать генетические компоненты, свойственные этой области или необходимые для обсуждаемого поведения. Прежде чем предполагать, что усиленные миелиновые оболочки могут улучшить интеллект, мы должны знать, была ли повышенная толщина миелиновых оболочек причиной повышенного интеллекта или, наоборот, это было сопутствующее явление – результат воздействия фактора, который одновременно повышает интеллект и, между прочим, воздействует на миелиновые оболочки.

Ранее я предлагал воспринимать каждое исследование как экспертное заключение на судебном процессе. Исследование Томпсона определенно квалифицировано как обоснованное экспертное свидетельство, поскольку оно прошло процедуру рецензирования и было опубликовано в одном из ведущих нейробиологических журналов. Оно постоянно приводится в качестве примера того, как функциональная визуализация мозга может обеспечить хороший суррогатный маркер интеллекта, и того, что «интеллект – это нечто, что мы наследуем» [207]. Несомненно, в интеллекте существует генетический компонент. Но он очень далек от безусловного генетического вклада типа «все или ничего», подразумеваемого в подобных утверждениях. Как неоднократно предупреждала нас история, редукционистские утверждения о природе человеческого поведения несут в себе огромный потенциал недобросовестного использования и злоупотребления. Помните, что подобные провалы в логике и неправильная трактовка вырванных из контекста и небесспорных фрагментов научных данных обеспечивают обоснование практики евгеники.

 

Уловка-22

[50]

Другая сторона уравнения «размер определяет познание» – это недавнее исследование, предполагающее, что «излишний мозг» порождает отвлекаемость [208]. Исследователи из Университетского колледжа Лондона использовали фМРТ для сравнения «легкоотвлекаемых» и «трудноотвлекаемых» людей. Отвлекаемость они измеряли следующим образом: участники исследования оценивали по предложенной шкале, насколько часто они пропускают дорожные знаки или забывают, зачем пришли в магазин. Было обнаружено, что респонденты с наибольшей степенью отвлекаемости имеют больший объем серого вещества в левой верхней теменной доле. Как повышенное число нейронов в определенной области мозга связано с нарушением внимания, на первый взгляд неясно, но руководитель исследования Риота Канаи предложил интригующее объяснение.

По мере развития из младенцев во взрослых у людей происходит приблизительно 50 %-ное снижение числа нейронов в коре нашего мозга. Хотя точный механизм и причины, стоящие за такого рода сокращением нейронов (прунингом), не слишком хорошо изучены, преобладает теория, что отсечение освобождает мозг от нейронных путей, которые могли быть полезны на ранних стадиях нашего развития, но становятся не нужны нам, когда мы налаживаем более сложные и отточенные способы когнитивной обработки информации. По мере того, как мы взрослеем, редко используемые или не используемые вовсе нейроны вычищаются ради создания физиологически и метаболически более эффективного мозга – метафорическим эквивалентом будет снятие строительных лесов после того, как строительство было завершено. Канаи предполагает, что больший объем серого вещества может быть не признаком повышенного функционирования, а скорее признаком менее зрелого мозга, отражающим, вероятно, небольшие нарушения в развитии. По словам Канаи, это согласуется с обнаружением увеличенного объема серого вещества у детей по сравнению со взрослыми и общим наблюдением, что дети легче отвлекаемы, чем взрослые.

Не важно, как вы относитесь к результатам исследования, вам следует восхититься той невероятной изобретательностью, с которой ученые способны использовать единственный параметр – объем мозга, – чтобы оценить и обретение новой информации, такой как двигательные навыки (как это увидели в увеличении премоторной коры обезьяны, обучавшейся использовать грабли) и наличие дефекта развития, нарушающего нормальное психическое функционирование. Команда исследователей справилась с нейропсихологическим аналогом попытки усидеть на двух стульях. Что особенно хитро в отношении этого аргумента – это то, что его нельзя ни доказать, ни опровергнуть. Поскольку прунинг может быть обнаружен только косвенно путем скрупулезного подсчета количества нейронов на единицу мозговой ткани, он не может быть измерен у живых субъектов. Представление о прунинге основывается на статистических подсчетах, и его невозможно выявить у живых субъектов.

Выводы Канаи поднимают еще одну проблему – проблему неизбежных ограничений использования данных, относящихся к одному моменту времени, для корреляции объема мозга с конкретной неврологической функцией. В исследовании Техасского университета крыс натренировали различать близкие низкочастотные тона. В процессе обучения слуховая область, отвечающая за обработку низкочастотных тонов, увеличилась в размере – в соответствии с идеей, что обучение приводит к генерации новых нейронов и/или нейронных связей. Однако приблизительно через месяц расширенные области сжались до своего исходного размера, хотя способность различать тона у крыс сохранилась. Если принять во внимание временный характер обучения, может оказаться, что обретение новых навыков связано с временным увеличением объема мозга, но, когда навык изучен, объем мозга возвращается к прежней норме.

У ведущего автора техасского исследования, Майкла Килгарда, есть объяснение, созвучное выводам Канаи. Мы учимся методом проб и ошибок. Так же ведет себя наш мозг. Он создает большое количество связей в попытках решить проблему. Как только оптимальное решение достигнуто, оставшиеся менее полезные связи становятся ненужными и удаляются. Таким образом, мы должны ожидать, что прунинг продолжается на протяжении всей жизни. Это природный способ избавления от обломков ошибочных проб. Расширяя это предположение, можно сказать, что размер мозга, как общий, так и локальный, динамичен, а не статичен. Полагаться на данные одного-единственного измерения – то же самое, что сделать быстрый снимок в середине напряженных скачек и судить по нему о том, кто будет победителем.

Вернемся к Эйнштейну. Можно сказать, что его интеллект, втиснутый в мозг обычного размера, является свидетельством более эффективного прунинга и исключительно отлаженного процесса обработки информации, результата того, что мысль продвигалась по широким магистралям, а не извилистым проселочным дорогам. Возможно, мозг Эйнштейна был огромным, когда осмысливал относительность, но потом резко сжался, как только Эйнштейн придумал формулу: Е=мс2. Кроме того, мы не имеем ни малейшего понятия, как происходит прунинг. Возможно, это функция глиальных клеток, и тогда повышенное количество глиальных клеток в его математическом центре свидетельствует о продолжавшемся прунинге, а не об особом эффекте глиальных клеток. Кроме того, если прунинг воздействует на связи, он может воздействовать и на толщину и целостность миелиновых оболочек. Короче, там, где существует множество возможных объяснений анатомических открытий, мы должны быть предельно осторожны. Любая обоснованная корреляция между глобальным и локальным размером мозга и конкретным качеством, в частности интеллектом, требует глубинного понимания флуктуаций в анатомии и физиологии, возникающих на протяжении жизни индивидуума, т. е. едва ли доступного исследователям технологического мастерства.

Однако поскольку у нас есть хорошие методы визуализации предполагаемых изменений в объеме мозга, они остаются фундаментальным инструментом нейробиологии. Попав не в те руки, представление результатов часто становится настоящим спектаклем. Одного особенно блестящего примера должно быть достаточно.

Мы учимся методом проб и ошибок. Так же ведет себя наш мозг. Он создает большое количество лишних связей в попытках решить проблему

Scientific American, май 2011 г.: «Религиозный опыт сокращает часть мозга» [209]. Университет Дюка провел фМРТ-исследование нескольких сотен мужчин и женщин средних лет с целью проверить влияние стресса на размер гиппокампа – мозговой структуры, играющей центральную роль в обработке эмоций, а также в формировании следов памяти. В прошлом исследования показывали, что атрофия (уменьшение) гиппокампа может быть связана с сильным стрессом, например у жертв пыток, заключенных концлагерей и т. п. В данном исследовании в дополнение к оценке общего повседневного стресса субъектов опрашивали о некоторых деталях их религиозных убеждений, конфессиональной принадлежности, были ли они возвратившимися к вере христианами или имели опыт религиозных переживаний, изменивший их жизнь. Результаты исследования таковы: значительных корреляций между собственной оценкой субъекта уровня своего стресса и размером гиппокампа замечено не было. Зато исследователи обнаружили определенные межиндивидуальные отличия, зависящие от религиозных убеждений. Заметная атрофия наблюдалась у респондентов, сообщивших об изменившем жизнь опыте религиозных переживаний. При этом большая атрофия наблюдалась у возвратившихся к вере протестантов, католиков и тех, кто не принадлежал ни к какой конфессии, в сравнении с протестантами, пришедшими к вере однажды.

Авторы заключают: атрофия гиппокампа в религиозных группах выборки может иметь отношение к стрессу! Они выдвинули теорию, что некоторые люди, принадлежавшие к религиозным меньшинствам, или те, кто отказывался от своих религиозных убеждений и затем возвращался к ним, испытывали более высокий уровень стресса. Это порождало выброс гормонов стресса, которые, как известно, сказываются со временем на объеме гиппокампа. Это может также объяснять тот факт, что как нерелигиозные, так и некоторые религиозные участники исследования имели меньший объем гиппокампа.

Если бы вы писали об этом исследовании для престижного научно-популярного журнала, такого как Scientific American, что бы вы написали? Вот что написал директор по науке Центра интегративной медицины Университета Томаса Джефферсона в Филадельфии, доктор медицины Эндрю Ньюберг:

«Это правдоподобная гипотеза. Авторы также указывают на некоторую ограниченность своих выводов, в частности, это касается небольшого размера выборки. Важнее, что причинно-следственные отношения между результатами исследования мозга и религией трудно установить однозначно. Возможно, например, что люди с меньшим объемом гиппокампа с большей вероятностью оказываются предрасположены к религии, что поворачивает причинно-следственный вектор в обратном направлении. Далее, может быть, что важными являются факторы, приведшие к изменившим жизнь событиям, а не эти переживания сами по себе. Поскольку атрофия мозга отражает все, что случается с человеком, невозможно с достаточной определенностью заключить, что наиболее интенсивные переживания были фактически тем самым событием, которое привело к атрофии мозга. Таким образом, существует множество потенциальных факторов, которые могли привести к указанным результатам. (Кроме того, несколько проблематично, что сам стресс не коррелирует с объемом гиппокампа, поскольку это была одна из потенциальных гипотез, заявленных авторами, и, таким образом, это ослабляет выводы.) Можно спросить: не оказывается ли так, что более религиозные люди страдают от большего неизбежного стресса, но их религия действительно помогает им успешнее от него защищаться? Религия часто упоминается как важный механизм, помогающий справиться со стрессом».

Его окончательное заключение:

«Это новое исследование является интригующим и важным. Оно заставляет нас больше задумываться о сложности взаимоотношений между религией и мозгом. Это поле научных знаний, называемое нейротеологией, может сильно продвинуть нас в понимании религии, духовности и мозга. Продолжительные исследования как острых, так и хронических воздействий религии на мозг будут очень ценны. На сегодняшний день мы можем быть уверены, что религия сказывается на анатомии мозга – мы только не знаем, как именно».

Забудьте о возможности каких-то интриг: Ньюберг – автор книги «How God Changes Your Brain: Breakthrough Findings a Leading Neuroscientist» [210]. Не обращайте внимания на шаткую логику – например, как можно утверждать, что общий уровень стресса не коррелирует с атрофией гиппокампа, и тем не менее предполагать, что стресс, скорее всего, является причиной атрофии гиппокампа у некоторых участников исследования, сообщивших об изменившем их жизнь религиозном опыте? Удивительнее всего альтернативная гипотеза Ньюберга о том, что размер гиппокампа может быть отражением стоящей за этим внутренней тенденции к религии. Это то же, что утверждать, что по размеру мозга можно судить, кем мы являемся: вернувшимися к вере протестантами или атеистами. Если такое точнейшее отнесение религиозного выбора с особенностями анатомии может считаться наукой, то френология – это Слово Божье.

В 2007 г. английское издание Королевского общества «Proceedings of the Royal Society» в своем флагманском биологическом научном журнале опубликовало критический разбор опубликованных за 25 лет результатов исследований связи между размером мозга и поведением. «Все мы знаем, что корреляция не отражает причинно-следственных связей, но причинность является контекстом, в котором неизбежно интерпретируются результаты» [211]. Авторы указывают, что нейробиологи игнорируют уроки истории, остаются невежественными в отношении прошлых и текущих исследований, ставящих те же самые вопросы, как правило, настойчивы в представлении неадекватного набора данных, не проводят соответствующих подтверждающих исследований, даже когда таковые доступны, ограничивают рассматриваемые корреляции теми, что подтверждают их гипотезы, и приводят корреляции в качестве доказательства причинно-следственной связи.

Приняли ли к сведению нейробиологи критику Королевского общества? Я дам вам возможность ответить на этот вопрос, предложив еще один – последний – пример анатомического метода, который был преподнесен в качестве значительного нейробиологического прорыва.

 

Максимальное подключение

В декабре 2010 г. New York Times сообщила, что группа исследователей из Гарварда и Массачусетского технологического института разработала метод раскрытия полной схемы соединений мозга. Чтобы довести метод до совершенства, они начали с того, что расслаивали мозг мыши на ультратонкие слои, которые могли быть видны только под электронным микроскопом. Фотографируя слои, а затем собирая композиционное изображение, можно открыть все связи каждой нервной клетки в нервной системе. Их целью было перенести этот метод на человека и таким образом «построить полную карту разума» [212]. Исследователи сказали, что этот проект, аналогичный проекту человеческого генома, будет открывать психическую конструкцию личности, открывая то, как хранятся воспоминания, кодируются личные качества и навыки. В сентябре 2010 г. Национальный институт здравоохранения выдал им $40 млн в грантах на развитие «Human Connectome Project» («Проект человеческого коннектома»).

Чтобы получить представление о масштабе этого проекта, подумайте о цифрах. На сегодня единственная доступная анатомическая схема нервных соединений принадлежит микроскопическому червю. Карта 300 нейронов и 7000 их соединений была проектом, обеспечившим авторов Нобелевской премией и занявшим более десятилетия для успешного завершения. В мозге мыши 100 млн нейронов, каждый обладает большим числом связей. Чтобы сохранить информацию о строении одного кубического миллиметра мышиного мозга, потребуется 1 петабайт (1000 Тб = 1 000 000 Гб) памяти – хранилище данных такого объема необходимо Facebook, чтобы хранить 40 млрд фотографий. Человеческий мозг с его 100 млрд нейронов и 100 трлн синапсов потребует миллион петабайтов памяти для хранения всех изображений. По словам Джеффа Лихтмана, гарвардского профессора молекулярной и клеточной биологии, соавтора проекта коннектома: «Мир пока еще не готов к массиву данных в миллион петабайтов, которым станет человеческий мозг, но это время придет».

Это кажется невероятным вызовом в вопросе сбора и хранения данных. Но даже если это препятствие удастся преодолеть, чему мы можем научиться? Исследователи предполагают, что моментальный снимок, сделанный в конкретный момент времени, обеспечит долговременную картину соединений в мозге. Хотя они с готовностью признают, что мозг пластичен и постоянно меняет свои связи. Но как заманчива перспектива создания схемы связей мозга!

Гэри С. Линч, нейробиолог из Калифорнийского университета в Ирвайне: «Не имея детального плана, мы никогда ничего не достигнем в наиболее фундаментальном и интересном вопросе, который в первую очередь привлекает каждого к нейробиологии: что такое мысль, сознание?»

Хорошо, допустим, у нас появилась полная схема мозговых связей, где отражена каждая связь каждого нейрона в каждый момент времени. Поскольку этот метод требует посмертного деконструирования и реконструирования ультратонких слоев ткани мозга, интервью с подопытным невозможно. Нам необходимо найти некоторый анатомический эквивалент выражения мысли или демонстрации настроения. Но отвратительные мысли не выглядят как злые нейроны, а хорошее настроение не представлено смайликом в синаптической везикуле. Мысли не сопровождаются этикетками или подвешенными пузырями с текстом, как в комиксах. Мы остаемся все с той же проблемой: мы можем знать о содержимом сознания, только напрямую общаясь с человеком.

Если Линч прав, и многих ученых нейробиология привлекает как путь к пониманию мышления и сознания, университетские консультанты по карьере должны учесть, что карьера исследователя мозговых связей не приведет наших будущих ученых ни на йоту ближе к ответам на эти вопросы. Методика Проекта человеческого коннектома, если достигнет успеха, может обеспечить наглядную и ценную схему изучения взаимодействия частей мозга. Но вера в то, что знания схемы соединений мозга скажут нам что-то о природе сознания, подобна попытке предсказать, какой звук будет издавать комплект динамиков, глядя на схему соединения компонентов системы. Даже располагая идеальным знанием того, как биты информации конвертируются в звуковые волны, вы не станете покупать стереосистему, основываясь на схеме соединений. Соединения нейронов не предсказывают качества осознанного опыта.

И все же Проект человеческого коннектома приветствуется с евангелистическим возбуждением. Посмотрите на TED-презентацию Себастьяна Сеунга, профессора нейроинформатики Массачусетского технологического института и со-создателя Коннектома [213].

Перед тем как начать свою речь, Сеунг попросил аудиторию проскандировать вместе с ним: «Я – это мой коннектом». Сеунг утверждает, что мысли, личные качества и воспоминания хранятся в связях между нейронами, а раз так, то мы сможем восстанавливать содержание памяти из структуры связей в мозге. «Воспоминания хранятся в виде серий синаптических связей в рамках коннектома. Последовательность нейронов, которую мы извлечем (с помощью коннектома), будет предсказанием нейронной активности, воспроизводящейся в мозге во время вызова воспоминания. И если все пройдет успешно, это будет первым примером чтения памяти из коннектома».

Из оптимистического прогноза Сеунга ускользнула проблема методологии узнавания содержания мысли при взгляде на цепь синапсов. Что за беда? Сеунг продолжал: если крионическая заморозка мозга сохраняет коннектом, воспоминания могут быть возрождены, – и закончил на высокой ноте: «Коннектомы будут символизировать поворотный пункт в истории человечества… Со временем эти новые технологии станут настолько мощными, что мы будем использовать их для познания себя. Я уверен, что это станет путешествием самопознания для каждого из нас».

Подведем итог. Сеунг предполагает, что мы можем напрямую считывать наши воспоминания со схемы наших нейронных связей, что эти воспоминания могут быть сохранены после смерти, если наши нейронные связи будут защищены от посмертных изменений, и что это исследование может быть поворотной точкой в истории человечества. Я не могу представить себе лучшего примера магического мышления, основанного на вере. Вера Сеунга: разум и его содержимое должны быть полностью представлены в наших синапсах и их связях.

Проект коннектома, очень даже возможно, принесет важную информацию для понимания болезней и психических расстройств. Но вера в то, что описание анатомии является эквивалентом описания мыслей и воспоминаний, – огромная ошибка. Понимание анатомии необходимо, но недостаточно для понимания разума.