Радиоволны, излученные антенной, представляют собой электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 3∙108 м/с. Длина волны λ [м] и частота f [МГц] связаны между собой соотношением:
λ = 300/f,
которым удобно пользоваться на практике.
Радиовещательные станции работают в диапазонах километровых (30…300 кГц), гектаметровых (300 кГцЗ МГц), декаметровых (330 МГц) и метровых (30…300 МГц) радиоволн.
Телевизионное вещание ведется в диапазонах метровых и дециметровых (3003000 МГц) радиоволн.
Диапазон частот, принимаемых приемниками звукового вещания, условно разбит на участки:
ДВ — 148…285 кГц (2027…1050 м),
СВ — 525…1607 кГц (571,4…186,7 м),
КВ — 3,95…26,1 МГц (75,9…11,49 м),
УКВ — 65,8…74 МГц (4,56…4,06 м),
FM — 87,5… 108 МГц (3,4…2,78 м).
Диапазон КВ разбит на поддиапазоны:
3.95…4.0 МГц — (поддиапазон 75 м);
5.95…6.20 МГц — (49 м);
7.16…7.36 МГц — (41 м);
9.500…9.775 МГц — (31 м);
11.700…11.975 МГц — (25 м);
15.10…15.45 МГц — (19 м);
17.7…17.9 МГц — (16 м);
21.45…21.75 МГц — (13 м);
25.6…26.1 МГц — (11 м).
В диапазонах ДВ, СВ и КВ радиовещание ведется с использованием амплитудной модуляции, а в диапазоне УКВ и FM — с использованием частотной. Радиосвязь может осуществляться с помощью поверхностных и пространственных радиоволн (рис. 11.1).
Рис. 11.1. Изображение поверхностных и пространственных волн
Поверхностная волна распространяется вдоль земной поверхности. Благодаря дифракции она огибает неровности земного шара (горы, здания и т. д.) и распространяется на расстояния, превышающие дальность прямой видимости.
Дифракцией радиоволн называют явления, возникающие при встрече радиоволн с препятствиями, когда волна огибает препятствие, отклоняясь от прямолинейного пути. Чем ниже частота сигнала, тем больше дальность распространения поверхностной волны.
Пространственная волна распространяется путем однократных или многократных отражений от ионосферы и земли.
В диапазоне ДВ устойчивый прием ведется на расстояниях до 2500…3000 км за счет распространения поверхностной волны. Качество приема мало зависит от времени суток и года. Но в этом диапазоне имеется высокий уровень атмосферных и промышленных помех. В этом диапазоне частот можно разместить мало радиостанций, поэтому радиопередатчики модулируют узким диапазоном частот (большей частью до 7 кГц) и используют их в основном для речевого вещания. Передача музыки в диапазоне ДВ отличается невысоким качеством (в основном за счет ослабления верхних частот спектра).
В диапазоне СВ расположено большое количество радиостанций, хотя качество музыкальных передач и здесь относительно невысокое (полоса частот модуляции не более 10 кГц). За счет поверхностной волны удается обеспечить надежный прием до 1000 км; в темное время суток прием существенно улучшается за счет отраженных от ионосферы (пространственных) радиоволн.
Кроме того, прием улучшается в зимние месяцы из-за уменьшения поглощения радиоволн земной поверхностью (увеличивается проводимость почвы). Но в этом диапазоне волн имеют место замирания сигнала. На расстояниях, где в течение круглых суток доминирует поле поверхностной волны, вообще замирания отсутствуют. Далее расположена зона ближних замираний, где с наступлением темноты принимаемое поле является результатом интерференции соизмеримых по амплитуде поверхностной и пространственной волн. Последняя вследствие нерегулярных флюктуаций в ионосфере непрерывно изменяет свою фазу.
Интерференция радиоволн это явление взаимного наложения радиоволн, приходящих в точку приема по разным путям. Если амплитуды радиоволн, приходящих по двум путям различной длины, одинаковы, то при совпадающих фазах результирующее поле удваивается, при противоположных фазах — равно нулю. В этой зоне наблюдаются замирания не только интерференционного, но и поляризационного происхождения (о поляризации радиоволн см. главу 10). Наиболее резко замирания выражены в более коротковолновой части диапазона СВ из-за больших случайных фазовых изменений интерферирующих волн.
В диапазоне КВ поверхностные волны сильно поглощаются почвой. Поэтому надежный прием в любое время суток обеспечивается только на небольших расстояниях примерно до 100 км. КВ имеют ограниченное применение для вещания ввиду большой загруженности этого диапазона, высокого уровня помех от радиостанций и относительно низкого качества KB-канала (глубокие и частые замирания). Наиболее типично применение КВ для вещания на труднодоступные удаленные районы, когда системы вещания на УКВ, СВ и ДВ оказываются непригодными из-за ограниченного радиуса действия. Вещание на КВ предусматривает обслуживание заданной территории с помощью отраженных от ионосферы (пространственных) волн. Электронная плотность ионосферы меняется в зависимости от времени суток и сезона, и замирания на КВ имеют интерференционное и поляризационное происхождение. Днем хорошо принимаются радиостанции, работающие на более коротких волнах (в поддиапазоне 25 м и меньше), а ночью условия приема оптимальны для поддиапазонов 75…31 м.
Передатчики в KB-диапазоне обычно модулируются в диапазоне звуковых частот, обеспечивающем качество лишь речевых передач.
В УКВ и FM-диапазонах ведется, как правило, художественное вещание. Применение частотной модуляции и относительно низкий уровень помех позволяют получить в этих диапазонах высококачественный радиоприем. Этим и объясняется применение стереофонического вещания в УКВ и FM-диапазонах, который, кроме того, позволяет выделить для вещательных радиостанций широкую полосу частот (в странах СНГ, например, стереофоническое вещание занимает полосу частот примерно 140 кГц).
Из-за малой длины волны радиоволны этого диапазона распространяются только на расстояние прямой видимости между антеннами. Если на пути распространения имеется препятствие, будь то лес, здание или холм, напряженность электромагнитного поля резко убывает. Естественно, возникает вопрос — где граница прямой видимости? Ответить на этот вопрос нетрудно: в том случае, если местность, над которой распространяются волны, представляет собой гладкую сферическую поверхность, например, море, степь ит. п., расстояние, где наступит предел прямой видимости, равно:
Rпр = 3,57∙(√h1 + √h2), км
где h1 — высота передающей антенны в м; h2 — высота приемной антенны в м.
Для наглядности на рис. 11.2 показаны условия приема на трех кораблях. Корабль в пункте А ведет уверенный прием в зоне прямой видимости, корабль в пункте В — на границе этой зоны. Антенна корабля в пункте С находится за пределами прямой видимости, в зоне «тени». Гораздо сложнее определить зону уверенного приема на пересеченной местности. Представьте себе, что перед вами имеется модель рельефа местности вокруг передающей станции (скажем, телецентра). Если теперь в точку, где должна находиться передающая антенна, поместить миниатюрную осветительную лампочку, то устойчивый прием будет там, где виден свет этой лампочки. В реальных условиях при малых затенениях лампочки будет какой-то прием, потому что УКВ обладают большей способностью огибать препятствия по сравнению со световыми волнами (так как у них длина волны больше, чем у света).
Рис. 11.2. Наглядная демонстрация распространения УКВ
Земная поверхность существенно влияет на напряженность поля в месте приема. Если антенны приподняты над гладкой плоской поверхностью земли, то последняя отражает радиоволны подобно тому, как зеркало отражает свет. К приемной антенне приходят две волны (рис. 11.3) — прямая и отраженная. Длина пути этих волн различна, следовательно, будут различны и их фазы. Если волны приходят к приемной антенне в одной и той же фазе, то напряженность поля достигает наибольшего значения. Наименьшее значение получается в случае прихода волн в противофазе (вспомните трансформатор: если две вторичные обмотки соединить согласно, т. е. конец первой обмотки соединить с началом второй обмотки, то напряжение на них будет равно сумме напряжений на отдельных обмотках. Если же обмотки соединить встречно, т. е. начало первой обмотки соединить с началом второй обмотки, то результирующее напряжение будет равно разности напряжений на этих обмотках). В результате по мере удаления от передатчика напряженность поля то возрастает, то резко падает, и лишь начиная с некоторого расстояния, убывает плавно. На метровых волнах при небольшой высоте приемной антенны плавное спадание поля начинается уже на расстоянии нескольких километров от передатчика.
Рис. 11.3. Длина пути прямой и отраженной волн различны
Наибольший интерес представляет распространение УКВ и FM над неровной поверхностью (покрытой горами, оврагами, лесами, строениями и т. п.). Над такой местностью отраженный от земли луч будет в месте приема ослаблен, так как земная поверхность представляет собой уже «кривое зеркало». Помимо этого луча в точку приема могут приходить волны, отраженные от соседних высоких зданий и гор. Над неровной поверхностью зависимость напряженности поля от расстояния и высоты неопределенна и почти не зависит от длины волны.
Характер влияния местности можно себе представить, глядя на рис. 11.4, а, где показан реальный профиль местности перед телецентром и результат измерений напряженности поля на этой местности (сплошная кривая на рис. 11.4, б).
Рис. 11.4. а) Характер влияния местности на распространение УКВ; б) изменение уровня напряженности поля от расстояния для этой горной местности
В начале трассы местность ровная и напряженность поля убывает плавно так же, как над плоской поверхностью (ср. сплошную и пунктирную кривую). На расстоянии 8 км местность приподнята и напряженность поля растет. За холмом напряженность поля резко падает, это — область тени. За следующим холмом напряженность поля немного выше, чем поле, которое должно быть над плоской поверхностью. Это объясняется тем, что данный холм благодаря своим определенным геометрическим размерам «работает» как ретранслятор. Падающие на него волны он переизлучает во все стороны, в том числе и в область тени.
Первый признак приема УКВ и FM за пределами прямой видимости — неустойчивый уровень сигнала. Он подвержен в этой зоне замираниям, продолжительность и глубина может быть самой различной. Распространение УКВ и FM здесь почти полностью зависит от электрических свойств атмосферы. Поскольку ее состояние часто неустойчиво, то и принимаемый сигнал будет неустойчив, изменяясь в сложной зависимости от погоды. За пределами прямой видимости имеется некоторое электромагнитное поле за счет огибания (дифракции) земной поверхности радиоволнами. Однако напряженность такого поля быстро уменьшается по мере увеличения расстояния, и тем быстрее, чем короче волна.
При высоте приемной антенны 10…20 м напряженность дифракционного поля на расстояниях свыше 100…150 км пренебрежимо мала по сравнению с напряженностью поля, полученной благодаря дальнему тропосферному распространению УКВ и FM.
Тропосферой называют область атмосферы до высоты 10 км. Она характерна тем, что в ней по мере увеличения высоты, как правило, наблюдается понижение температуры, давления и влажности. Диэлектрическая проницаемость воздуха находится в зависимости от этих параметров и также уменьшается с высотой. Кроме того, в тропосфере наблюдаются отдельные неоднородности с диэлектрической проницаемостью, отличающейся от диэлектрической проницаемости окружающего воздуха, например, облака.
Картину обычного распространения УКВ в тропосфере можно представить по рис. 11.5, а и 11.5, б. На рис. 11.5, а показано преломление траектории волны (рефракция), которое возникает из-за того, что скорость фронта волны в верхних слоях воздуха оказывается больше, чем у поверхности земли. Благодаря этому зона прямой видимости расширяется на 20 %. Из-за рассеивания и отражения волн метрового диапазона, происходящего на неоднородностях тропосферы (рис. 11.5, б), в точку приема приходит ряд волн со случайной фазой и амплитудой, в результате чего возникают замирания сигнала. Практически вся излучаемая энергия волн метрового диапазона проникает через толщину тропосферы и не возвращается на землю.
Рис. 11.5, а. Рефракция УКВ в тропосфере
Рис. 11.5, б . Пояснение замираний сигнала за счет отражения волн на неоднородностях тропосферы
Особо следует остановиться на распространении УКВ и FM в городах и обратить внимание на две особенности: повышенное ослабление поля по сравнению с открытой местностью и большая неоднородность напряженности поля в различных точках наблюдения, особенно внутри домов.
Так, внутри здания на 7-ом этаже в разных условиях поле может составлять от 6 до 40 % от напряженности поля над крышей, а в аналогичных условиях на 1 этаже — от 3 до 7 %.
Большая неоднородность поля в различных точках приема обусловлена интерференцией большого числа волн, отраженных от различных препятствий в пределах города. Уровень отраженных сигналов может составлять 50–60 % от прямого сигнала, что обусловливает значительные искажения передаваемого изображения в телевидении (многоконтурность). Наличие отраженных волн приводит также к изменению поляризации первичного поля. Так, если передающая антенна излучала волны с горизонтальной поляризацией (телевизионный прием), то при приеме в городских условиях обнаруживается вертикальная составляющая, уровень которой в среднем составляет 30 % от уровня горизонтальной составляющей.