Приходилось ли вам хоть однажды задумываться над тем, как многообразен и прекрасен мир, окружающий нас? Сколь неповторим в нем каждый кустик, каждый цветок, каждое животное — одним словом, все то, что на языке науки именуется формами жизни? Но если мысль эта хотя бы раз вас посетила, то за ней должна была непременно последовать и другая: откуда и как появилось все это разнообразие, что, наконец, явилось основой многомиллионного сообщества животных, растений, микроорганизмов?

Сегодня ответ на данный вопрос ни для кого не составляет затруднений — это эволюция. Ей одной, и только ей, мы обязаны радостью созерцать столь разный, разный мир. Все явления осуществляются по своим законам, и эволюция — тоже. За открытие законов, по которым эволюция развивается, человечество благодарно целой плеяде выдающихся биологов, среди которых Ч. Дарвин занимает особое место.

Но вернемся вновь к неперестающему вот уже несколько тысячелетий поражать человечество многообразию живой природы. Вернемся, чтобы задать себе, казалось бы, весьма тривиальный вопрос: если эволюция столь разных организмов, приспособленных к существованию в разных условиях, оказалась возможной, не лежит ли в их основе какой-то общий принцип строения?

Да, лежит. Это клетка. Открытие клеточного строения организмов стало одним из самых крупных открытий XIX века в биологии.

Понимание сущности жизни невозможно без понимания элементарной единицы живых организмов — клетки. Именно в клеточном строении организмов выражается единство всего живого. Правда, истина эта только с высот современных знаний кажется прописной. Ее долгое время не понимали, не воспринимали даже самые выдающиеся умы. Согласитесь, сколь странно звучат сегодня слова гениального Льва Толстого (статья «О назначении науки и искусства»): «Ботаники нашли клеточку и в клеточках-то — протоплазму, а в протоплазме еще что-то, и в той штучке еще что-то. Знания эти, очевидно, долго не кончатся, потому что им, очевидно, и конца быть не может, и потому ученым некогда заняться тем, что нужно людям. И потому опять со времени египетской древности и еврейской, когда уже была выведена и пшеница, и чечевица, до нашего времени не прибавилось для пищи народа ни одного растения, кроме картофеля, и то приобретенного не наукой…».

Но пройдет совсем немного времени, и мир узнает, что именно изучение «клеточек», а в них еще каких-то «штучек» и явилось основой прогресса в биологии в XX веке.

Сколь полно оправдались эти надежды, нам с вами сегодня прекрасно известно. Вот она — клетка — таинственное начало всего живого на Земле: от простейшего организма, состоящего из единственной клетки, до самых высокоорганизованных и сложных. Разные по размеру и форме, все они построены по одному и тому же принципу.

Зарождение человека начинается со слияния мужской и женской зародышевых (половых) клеток — яйцеклетки и спермия.

Яйцеклетка человека была описана в 1827 году основателем эмбриологии академиком Карлом Бэром, прославившим русскую науку своими выдающимися открытиями. Она имеет округлую форму. Как и в каждой клетке, в ней четко определяются цитоплазма и ядро. Ее диаметр составляет 1/7 миллиметра (130–140 микрон). Вес ее — 0,0015 миллиграмма. В этом микроскопическом образовании содержится все, что мать передает по наследству своему будущему ребенку. Яйцеклетка защищена слоем клеток и так называемой (прозрачной) оболочкой. Сложное строение яйцеклетки особенно хорошо можно видеть под электронным микроскопом.

Сперматозоид — мужская зародышевая клетка — имеет вытянутую форму и значительно меньше по размеру, чем яйцеклетка. В нем различают головку (3–5 микрон длиной), среднюю часть (3–6 микрон) и хвост (30–50 микрон). По форме это не типичная клетка, но по существу — клетка, которая в процессе созревания освободилась от цитоплазмы и стала приспособленной к выполнению своих первоначальных функций — нахождению яйцеклетки и внедрению в нее, то есть к оплодотворению.

Впервые описание сперматозоида человека было сделано в 1667 году изобретателем микроскопа А. Левенгуком. Несмотря на то, что сперматозоид в 85 000 раз меньше яйцеклетки, по передаче наследственных свойств он практически равноценен ей.

Процесс созревания зародышевых клеток у мужчин и женщин неодинаков. У женщин ежемесячно (в среднем один раз в 28 дней) созревает одна яйцеклетка, причем половину этого срока яйцеклетка находится внутри яичника, в фолликуле, который после созревания лопается. И далее яйцеклетка продолжает развиваться (созревать) в яйцеводе, или фаллопиевой трубе. И так каждый лунный месяц. Эти процессы строго регулируются гормонами.

У мужчин образование семени происходит непрерывно. Образующееся семя накапливается в семенных пузырьках. Из нескольких миллионов сперматозоидов лишь немногие достигают яйцеклетки, а внутрь ее проникает только один. Процесс этот с физиологической точки зрения довольно сложный. Ведь сперматозоид должен растворить твердую оболочку яйцеклетки и проникнуть внутрь, чтобы содержащиеся в нем наследственные структуры объединились с таковыми яйцеклетки. При слиянии яйцеклетки и спермия одновременно срабатывает механизм «защиты», предохраняющий яйцеклетку от проникновения неограниченного количества спермиев.

Биология любого вида требует соблюдения принципа: на одну яйцеклетку — один сперматозоид, и не более. Оплодотворенная яйцеклетка должна «закрыть» возможность проникновения для других сперматозоидов после проникновения первого. Иначе нарушится генетическая целостность вида, его биологическая упорядоченность. Слияние зародышевых клеток обеспечивается сложными иммунологическими и ферментативными процессами. Но не будем на них останавливаться потому, что это больше область эмбриологии, а не генетики, хотя обе науки в этом вопросе очень близки друг к другу.

Длительное время о тонком строении зрелой яйцеклетки и, особенно о самом процессе оплодотворения судили на основании экспериментов на животных. Оставалось, однако, неясным — так ли это у человека?

И вот английский ученый Р. Эдвардс благодаря тончайшей технике и знанию физиологии воспроизводительной функции у человека поднял завесу над этим интимным процессом. Он не только получил живую яйцеклетку человека, но и осуществил искусственное оплодотворение в пробирке, обеспечил развитие зиготы (оплодотворенной яйцеклетки) на ранних стадиях до формирования зародышевого пузырька, а затем пересадил развивающийся материал в матку женщины. После вынашивания родился здоровый ребенок. Эта сенсация облетела весь мир: «Получен искусственный ребенок!» Конечно, он не искусственный, но факт сам по себе неординарный.

Однако вернемся снова к зачатию: два ядра (яйцеклетки и сперматозоида) слились в одно. После этого оплодотворенная яйцеклетка, или зигота, начинает делиться.

Да, все начинается с деления единственной клетки — оплодотворенного яйца. Начинается с одной клетки, а завершается гигантским количеством. Знаете, сколько клеток в теле взрослого человека? Около пятисот триллионов, или 5 · 1014. Здесь и нервные, и мышечные, и соединительнотканные, и кроветворные, и многие-многие другие, в том числе так называемые зачатковые, из которых формируются половые клетки. Одни из них не утрачивают способности к делению всю жизнь (например, клетки костного мозга, выбрасывающие ежесекундно в кровяное русло до 10 тысяч эритроцитов), другие навсегда расстаются с ней, едва приобретают специализацию (например, нервные клетки).

Но по каким законам производится эта загадочная специализация? Кто отдает приказ о дифференцировке клеток, какой механизм при этом включается? Почему одни из них «строят» сердце, другие — легкие, третьи — конечности?

Точного ответа на эти жгучие вопросы наука все еще не имеет. И кто знает, может, среди тех, кто сегодня робко входит в науку, найдется тот, кто будет смело подыскивать ключи к кладовой природы, за семью замками хранящей тайны клетки. Что ж, успеха ему — незнакомому и желанному!

Правда, и возможности у современного молодого исследователя значительно расширились. Он располагает сегодня и разнообразными методами прижизненного наблюдения за клеткой, и электронно-микроскопическими методами, позволяющими анализировать структуры, увеличенные в сотни тысяч раз. А возьмите, к примеру, способы культивирования клеток. Искусственно варьируя условия, подбирая методы регистрации отдельных событий, можно удивительно глубоко проникнуть в организацию и функцию каждой клетки.

Любопытство, трансформирующееся с возрастом в одно из самых прекрасных и плодотворных свойств у человека — любознательность, заставляло взрослых людей часами просиживать у микроскопа, терпеливо наблюдая, пользуясь словами Л. Н. Толстого, «те самые штучки, а в них что-то еще». И будем справедливы: годы и труд многих поколений исследователей понадобились для того, чтобы все они обрели названия, а их функция в жизнедеятельности клетки стала бы понятной. Вспомним-ка стандартную фразу: «Клетка состоит из ядра и цитоплазмы», хорошо известную нам по школьным урокам.

Рождение ее связано с XIX веком. В последней четверти прошлого века интерес к изучению ядра сильно возрос. В. Флемминг обнаружил в нем темно окрашивающиеся структуры. Ученый дал им имя «хроматин» (от греч. «хрома» — окраска). Описание этого уникального открытия относится к 1879 году. А всего лишь два года спустя другой ученый, Е. Захария, выявил, что хроматин ядра реагирует с кислотами и щелочами точно так же, как нуклеин, выделенный несколько ранее Ф. Мишером, тем самым Мишером, который открыл ДНК (о чем мы чуть позже поговорим подробнее). Отсюда Е. Захария делает вывод о том, что нуклеин и хроматин — одно и то же.

Вот как все переплетается в истории открытий!

На основе изучения хроматина в 80-х годах прошлого столетия сформировалось понятие о хромосомах. А о связи между ядром и наследственностью было известно уже к этому времени. Несколько ученых (среди которых наиболее ярким был О. Гертвиг) наблюдали проникновение спермия в яйцо и слияние их ядер. Нужно сказать, что хромосомы не спешили открывать исследователям своих тайн, постоянно загадывая им загадки.

В этот период (конец XIX века) интенсивно обсуждается и исследуется вопрос о клеточных механизмах передачи признаков из поколения в поколение. Здесь в первую очередь уместно упомянуть немецкого ученого Августа Вейсмана — профессора-зоолога Фрейбургского университета. Он эти механизмы изложил в своей книге «Зародышевая плазма. Теория наследственности». В труде ученый суммировал практически все аргументы в пользу того, что наследственное вещество локализуется в ядре, в его «хроматиновых гранулах». В этой теории были и логика, и доказательства (правда, немного), и противоречия. В своем первоначальном виде теория А. Вейсмана о зародышевой плазме была несовместима с менделевскими принципами расщепления признаков в потомстве.

Не будем останавливаться на недостатках. Даже с высоконаучных современных представлений о наследственности нельзя не признать таланта А. Вейсмана, предсказавшего принципиальные различия между половыми (зародышевыми) клетками и соматическими.

Наш дальнейший разговор о генетике невозможен, и вы сами убедитесь в этом, без термина «соматический». «Сома» в переводе с латинского означает «тело». Так что все клетки, из которых, как из кирпичей, построено наше тело, — соматические. Все они клетки-труженики, ибо всю жизнь возводят здание организма, время от времени обновляя его, заменяя старые, отжившие свое, на только что возникшие в итоге очередного деления.

Половые клетки выполняют только одну функцию — дать начало новому организму с набором наследственной информации от обоих родителей. И так от поколения к поколению до бесконечности.

Разница, как видите, между соматическими и половыми клетками принципиальная. Ее-то и выразил А. Вейсман. Его теория «непрерывности зародышевой плазмы» окончательно показала несостоятельность гипотезы пангенезиса Ч. Дарвина (как видите, и гении могут заблуждаться), согласно которой признаки и свойства родителей передаются потомству посредством мельчайших частиц (геммул), поступающих в половые клетки из всех других клеток организма.

Однако было бы ошибочно думать, что хромосомная теория наследственности получила в трудах А. Вейсмана свой завершенный вид. Еще многим и многим ученым предстоит поплутать в лабиринтах познания материальных основ наследственности. Безусловной его заслугой является то, что он отверг все попытки объяснения спонтанного возникновения наследственного вещества. Зародышевая плазма (или «идиоплазма», как ее называл сам А. Вейсман) явилась результатом долгого селективного эволюционного процесса.

В трудные для отечественной биологии лысенковские времена вейсманизм прочно окрестили реакционным учением. Медики моего поколения, изучавшие в вузах общую биологию в начале 50-х годов, прекрасно знают, что нам не приводилось даже элементарных объяснений гипотезы или теории А. Вейсмана о «зародышевой плазме», а учебники, где все это излагалось, были изъяты. Впрочем, считалось, что и хромосом-то вообще не существует. А если имя А. Вейсмана как-то и упоминалось, то лишь в недоброжелательном тоне или в ироническом смысле в связи с его опытами по обрезанию хвостов у мышей.

Что ж, ученый действительно ставил такие опыты, целью которых была проверка гипотезы о наследовании приобретенных признаков. С истинно немецкой педантичностью и скрупулезностью блестящего экспериментатора А. Вейсман обрезал хвосты у двадцати двух поколений мышей и предельно точно измерял их сам. Ни у одного потомка не обнаружено врожденного отсутствия или укорочения хвоста. Да, приобретенный признак — укорочение хвоста — мышами не наследовался.

Особенно активизировались работы по изучению наследственности в самом начале века. Так, цитоэмбриологические исследования выдающегося немецкого ученого Теодора Бовери, предоставившие науке убедительные доказательства индивидуальности и дифференциальной роли хромосом в процессах наследственной передачи и реализации признаков, стали истинным вкладом в биологию. Позднее, когда мир наконец-то «вспомнил» о выводах Г. Менделя, именно исследования Т. Бовери послужили их подтверждением. Произошло это выдающееся событие в 1902 году. А через год после опубликования работы Т. Бовери другой ученый (опять же цитолог — англичанин У. Сэттон) установил поистине сенсационный факт: менделевские закономерности наследования, признаков абсолютно точно соответствуют закономерностям «поведения» хромосом при оплодотворении и образовании половых клеток.

Буквально вслед, или, как говорят у нас на Руси, по пятам событий, потрясших основы естествознания, ученые разных стран начали независимо друг от друга сообщать в прессе о бесспорных доказательствах правоты гипотезы Сэттона — Бовери, объявивших хромосомы материальными носителями наследственных задатков, введенных в науку Г. Менделем еще в 1865 году.

Так, несколько абстрактно-математический гибридологический анализ наследственности, предложенный Грегором Менделем (о нем вы узнаете подробнее чуть позже), обрел вполне конкретный, осязаемый облик в клеточных структурах и процессах.

Основное назначение хромосом — передача точной информации от поколения к поколению. Это их удивительная способность, сформировавшаяся в процессе эволюции, как бы неразрывно связывает воедино на клеточном уровне вчера, сегодня и завтра, воссоздавая в новых организмах признаки и свойства ушедших. Не будем забывать: для того, чтобы понять, как именно осуществляется наследственность, понадобилась работа многих поколений ученых с их проницательностью, умением сравнивать, анализировать, сопоставлять изучаемые объекты, а подчас и смелостью, чтобы отстоять свои убеждения.

Генетика всегда была окружена тайной. Не сбросила она до конца своих загадочных одежд и поныне. По крайней мере перед большинством людей, знающих о ней приблизительно, понаслышке. Между тем вопросов, связанных непосредственно с генетикой, все еще не дающих многим покоя, предостаточно. Ну, например, такой: мальчик или девочка? Именно это нередко особенно волнует супругов. Кого же подарит им судьба: сына или дочку? Причем жена и муж в своих ожиданиях не всегда единодушны. Ну тут уж, как говорится, споры ни к чему, а решение столь жгучей проблемы, оказывается, следует целиком доверить Его Величеству Случаю. Родится девочка — прекрасно! Мальчик — великолепно!

Я близко знаю не одну и не две семьи, нескрываемое первоначальное огорчение которых по поводу пола появившегося на свет ребенка очень быстро исчезало. Со временем, как и положено, формировалась настоящая родительская любовь, а мысли о большей любви к ребенку другого пола у настоящих родителей никогда не бывает. Но мне известны и другие факты, когда, заждавшись сына (подумать только — пять девчонок подряд!) или не менее страстно желаемой дочки (в семье одни мальчики!), супруги каких только советов не наслушаются, полагая, что можно зачать ребенка определенного пола. Более образованные родители просят врача определить пол ребенка на ранних сроках беременности с тем, чтобы прервать ее, если будущий ребенок окажется нежелаемого пола.

— Все так, — вздыхал, как-то у меня в кабинете после отказа определить пол будущего ребенка у его жены один из обратившихся, — а я думал, вы мне поможете, ведь шесть дочек уже есть! Надо мной друзья смеются…

Но, может быть, медицина сегодня просто-напросто бессильна в установлении пола неродившегося ребенка? Ничего подобного! Уже на ранней стадии беременности пол плода диагностируется совершенно точно с помощью микроскопического анализа небольшого кусочка хориона (наружная зародышевая оболочка). Процедура взятия материала для исследования (ее называют биопсией) безвредна для вынашивания беременности и здоровья будущего ребенка.

— Все жена, — продолжал вслух сидящий у меня в кабинете мужчина.

— Почему же она? Пол ребенка зависит не от матери, а от отца, а уж если говорить точнее — от случая.

— ?!

Пришлось рассказать историю, которой охотно поделюсь и с читателями «Эврики».

В семье родителей моей мамы начало было щедрым на дочерей. Одна, вторая, третья, четвертая… Тяжело было жить, потому что на девочек в те времена (а это было до революции) не выделяли земельного надела.

— Батюшки, уж будет ли мальчик-то? — с надеждой вздыхали вокруг.

И он появился. А вслед за ним бабушка родила еще шестерых сыновей подряд. Это была большая и дружная семья: четыре дочки и семь сыновей! У моей же мамы пятеро сыновей, а она очень ждала дочку. Очень уж трудно было ей одной управляться с женскими делами в большой семье.

Конечно, случаи, аналогичные рассказанным здесь мною, весьма нечасты, поскольку в семьях, где детей не менее, а то и более трех, редко рождаются дети одного пола. Так что давайте лучше рассмотрим типичную для нашего времени семью, в которой, как правило, два ребенка. В таких семьях возможны три варианта сочетаний: две девочки, два мальчика, девочка и мальчик. Но количество семей каждого типа окажется одинаковым. Почему же некоторым родителям не «везет» в жизни, и они так и не дожидаются рождения ребенка страстно желаемого пола, а другие супруги оказываются в этом смысле гораздо счастливее?

Конечно, можно удивиться, что генетик без затруднения может дать ответ на этот все еще жгучий и таинственный для большинства людей вопрос: мальчик или девочка? Он всем говорит: «Либо мальчик, либо девочка!» И это не шутка. Но почему все же столь неопределенно?

Как известно, новая жизнь начинается со слияния двух половых клеток — отцовской и материнской, имеющих наполовину уменьшенный набор хромосом. Ведь если при этом зигота получила бы от того и другого родителя всю наследственную информацию, то родился бы человек, отягощенный, по сравнению с каждым родителем, ее двойным грузом. Такой младенец обладал бы наследственной информацией вчетверо большей, чем каждый из его бабушек и дедушек. А в конечном счете затянись подобный «просчет» на несколько поколений — и мы увидели бы существо, состоящее из одной наследственной информации. Но… Подобного существа никто никогда не видел. Потому что природа, в случае роковой ошибки, решительно ее исправляет, просто-напросто обрекая такую особь на гибель, руководствуясь раз и навсегда ею же установленным правилом: количество наследственной информации остается одним и тем же из поколения в поколение.

Но если так, то она, вероятно, располагает каким-то хитрым механизмом, с одной стороны, уменьшающим количество наследственной информации, а с другой — неизменно сохраняющим ее качество. Конечно, очевидность подобного вывода видна нам лишь с высот сегодняшнего дня, с пьедестала достижений нескольких поколений генетиков. Такова уж закономерность всех великих открытий.

«Виновата» ли в этом какая-то система? Действительно, такая морфологическая система существует. Имя ей хромосомы. Те самые хромосомы, над открытием которых столь потрудились ученые. В них (хромосомах) в линейном порядке один за другим расположены гены — единицы наследственного материала, ответственные за формирование какого-либо элементарного признака. Но здесь, пожалуй, единообразие, предусмотренное природой во имя продолжения жизни, и заканчивается.

У каждого вида наследственность разная и хромосомы различные. Одинакова лишь их функция — точнейшее воспроизведение всех наследственных свойств и их полномочное представительство в последующих поколениях.

У человека 46 хромосом, а точнее — двадцать три пары хромосом. Именно пары. Один набор хромосом (23) ребенок получает от матери, другой (тоже 23) — от отца. Двадцать две хромосомы у мужчин и женщин одинаковы и по строению, и по расположенным в них генах, а вот двадцать третья пара — особенная. Эти две хромосомы различаются между собой, потому что они определяют, какого пола родится человек. Поэтому их и называют половыми и обозначают как X (икс) — и Y (игрек) — хромосомы.

Хромосомная детерминация пола у человека достаточно простая. Женщины имеют две X-хромосомы, мужчины — одну X- и одну Y-хромосому. Следовательно, у женщины при гаметогенезе (образование половых клеток) и уменьшении числа хромосом наполовину все яйцеклетки будут иметь только X-хромосому. У мужчин же в процессе образования гамет (половых клеток) возникают два типа спермиев: либо с X-, либо с Y-хромосомой. Отсюда легко понять, от каких половых клеток зависит пол ребенка. Все яйцеклетки по половой хромосоме одинаковые (с X-хромосомой), а спермии разные. Следовательно, если яйцеклетка будет оплодотворена спермием, несущим X-хромосому, то возникнет будущий организм с двумя X-хромосомами, то есть женского пола, а если оплодотворение произойдет Y-несущим спермием, то набор половых хромосом будет XY, то есть мужской.

Таким образом, любая зародышевая клетка женщины способна дать жизнь существу того и другого пола. Все зависит от того, с какой мужской клеткой она сольется. С той, что несет начало мужского пола (Y-хромосому), или с той, что хранит в себе истоки женского (X-хромосому). Количество тех и других спермиев примерно одинаковое. А каким спермием будет оплодотворена яйцеклетка, это зависит от случая. Вот почему в семьях с двумя детьми и больше возможны разные комбинации рождения детей по полу (два мальчика, мальчик и девочка, две девочки). Небольшое отклонение от 50-процентного соотношения рождаемых мальчиков и девочек выявляется, если рассматривать большие группы младенцев. На каждые сто новорожденных девочек в целом по стране рождается сто шесть — сто семь мальчиков. Почему так?

Точного ответа на этот вопрос наука еще не нашла. Это предмет интересного исследования, загадка для тех, кто собирается глубже проникнуть в лабиринты и тайны механизмов оплодотворения и внутриутробного развития человека.

Рассказав о том, что секрет предопределения пола имеет в своей основе генетические закономерности, я должен, по-видимому, сделать некоторые пояснения. Дело в том, что, говоря о физико-химических или цитологических основах наследственности в точных терминах, мы нередко забываем, что сами генетические закономерности были выявлены благодаря скрупулезному изучению статистических данных их проявления. Так, возвращаясь к количеству родившихся детей в семье моей бабушки — четырех девочек и семи мальчиков, — можно легко установить статистический характер случайного появления на свет сначала одних дочерей, а затем сыновей.

Такая ситуация ничем не отличается от случайности, возникающей при подбрасывании монет — удовольствия, которому, большинство из нас самозабвенно предавалось в детстве. Тайна чередования «орла» и «решки» казалась нам в те годы удивительно захватывающей. Но, не понимая, как, по какому принципу «орел» и «решка» чередуются между собой, мучительно ожидая после очередной неудачи, когда же выпадет долгожданное счастье в виде «орла», мы все же подмечали главную особенность этой немудреной игры — чем больше подбросов, тем больше вероятность получить то, чего хочешь.

Так что, проецируя выводы, сделанные нами в детстве после очередной игры в «орла» и «решку», на предмет сегодняшнего разговора, можно с уверенностью сказать: ситуация с подбрасыванием монеты и угадыванием, на какую сторону она упадет, аналогична проявлению основного генетического закона — о независимом распределении хромосом при образовании зародышевых клеток.

Если вдуматься, то станет очевидным, что именно этот закон стоит на страже продолжения жизни в той ее оптимальной форме, которая больше всего отвечает требованиям эволюции. Разумеется, ошибаться может даже природа. Но, к счастью, такая ошибка бывает разовой, всего лишь трагическим отклонением от нормы.

Видите, как красиво и аккуратно сейчас можно разложить по полочкам все, что касается наследственности.

Но природа долго сопротивлялась столь логичному толкованию происходящих в ней явлений, будто в насмешку ставя один факт в противоречие с другим, а едва выявленные между ними связи тотчас же ломались, не выдерживая проверки опытом, практикой. Исчезали, уходили от пытливого взгляда исследователя признаки, чтоб вновь проявиться, подчиняясь неизвестным законам, в одном из поколений. Понадобились годы и годы, чтобы биология наконец-то утвердилась во мнении: наследственность может передаваться только через зародышевые клетки. Но вот как именно?

И опять вопрос, и опять загадка. Не успели «расправиться» с одной, а уж поджимает, требуя принять эстафету поиска, другая тайна. Каждый раз не менее жгучая и волнующая. И хотя уже никто не сомневался в том, что сохранение и передача свойств и признаков от родителей к детям обеспечивается наследственностью организмов, все еще оставалось неизвестным, как именно совершается это таинство.

Истоки великих открытий всегда имеют свою историю, хотя элементы предпосылок для открытий не всегда используются. Так произошло с открытием основных закономерностей наследования признаков, сделанных Грегором Менделем.

Хорошо известно, что, прежде чем прийти к своим выводам, он проанализировал большинство работ, выполненных до него в этой области ботаниками. А вот работы по изучению наследственности человека ему были неизвестны. Между тем еще в середине XVIII века французский ученый П. Мопертюи выявил наследование признаков у человека на примере альбинизма (все началось с негритянского мальчика-альбиноса) и шестипалости в семье одного из знаменитых немецких хирургов. П. Мопертюи доказал, что наследственные признаки передаются от отца и матери, а не только от отца через сперматозоид, как полагали в то время. Но беда в том, что основные научные работы этого ученого были посвящены другим вопросам, и потому по сути своей провидческие выводы, сделанные им по поводу наследования признаков, остались незамеченными.

Поучительной оказалась история с другой ранней работой по изучению наследственных признаков у человека. В 1814 году вышла в свет книга лондонского врача Джозефа Адамса «Трактат о предполагаемых наследственных свойствах болезней». Его научный труд был основан на собственных клинических наблюдениях. Годом позже монография была переиздана под другим названием — «Философский трактат о наследственных свойствах человеческой расы». Книга Д. Адамса не привлекла к себе внимания специалистов, очевидно, потому, что наследственность до Адамса в основном изучалась на растениях. Наблюдения над человеком как бы в «зачет» не шли. А между тем это — замечательная книга. Можно предположить, что если бы о выводах Адамса знали те, кто работал над проблемами наследственности, «добывая» доказательства на ботанической ниве, в том числе и Мендель, то открытие законов наследственности и их признание могли бы прийти гораздо раньше.

Но уж коли эту часть своего рассказа я начал с упоминания о «Трактате» Д. Адамса, то должен сказать, что еще задолго до рождения генетики опытные и вдумчивые врачи не могли не размышлять над проблемами наследственности. Именно они передавали тем, кто приходил им на смену, поистине бесценные наблюдения.

Что ж, одни собирали факты, другие пытались их осмыслить, и только третьим выпадало на долю редкое счастье прийти на основе сделанных обобщений к единственно верным выводам. Недаром же среди тех, кто посвятил свою жизнь науке, испокон веков бытует мнение: чтобы изучать природу, необходимо, во-первых, уметь ставить ей вопросы и, во-вторых, расшифровывать ее ответы. Но даже один и тот же вопрос, задаваемый природе в разное время, звучит по-иному. Его формулировка зависит от уровня знаний, которыми в данный момент обладает наука.

Что касается клинических наблюдений Адамса, то он сделал правильные генетические выводы из них, хотя и не в таких терминах, какими пользуемся мы теперь. Он предложил различать семейные и наследственные болезни.

Под семейными он подразумевал те, которые встречаются в семьях, но передача их не прослеживается непосредственно от родителей к потомкам. Речь идет о случаях, когда у здоровых родителей рождаются больные дети, когда есть больные и в других «ответвлениях» семьи. Совершенно очевидно, что это рецессивные болезни.

Наследственными же болезнями Адамс называл те, которые явно передаются от родителей детям. Это не что иное, как доминантные заболевания.

Именно Адамс впервые отметил, что браки между родственниками повышают частоту семейных (то есть рецессивных) болезней, что наследственные (доминантные) болезни не всегда проявляются сразу после рождения, но могут развиваться в любом возрасте, что с точки зрения риска для потомства безразлично, выражена болезнь клинически или нет.

Не будем, однако, пересказывать все содержание книги Адамса. Надеюсь, я уже убедил вас в том, что время генетических открытий близилось, а наука, работающая на них, все пополнялась не только фактами, но и обобщениями.

Не станем гадать, что было бы, если… Так или иначе, одно обстоятельство остается при этом неизменным: истина как бы высвечивается только перед взором тех, кто обладает качествами подлинного исследователя.

Подумать только, сколько поколений людей эмпирически занимались земледелием и скотоводством, улучшением сортов растений и пород животных, но только гений Грегора Менделя разглядел в природе не случайность, а повторяющуюся закономерность.

Задатки наследственных признаков не смешиваются, не растворяются в организме. Они сохраняются как независимые дискретные единицы, передающиеся из поколения в поколение. Более того, каждый признак имеет как бы своего «полномочного представителя» в организме и отвечает за то, чтобы последний, как эстафета, был бы передан следующему поколению.

Две зрелые половые клетки (материнская и отцовская), объединяясь, дают зиготу — исток нового организма, поровну одаривая его наследственными задатками признака (факторами, то есть генами).

Конечно, половой способ размножения — не единственный в природе. Существуют и другие. Садоводам, например, имеющим дело с растениями, размножающимися черенками, это хорошо известно. И они же знают, насколько стабильно сохраняют полезные признаки такие растения, десятки и даже сотни лет передавая их неизменными из поколения в поколение. Думаю, что эта чрезвычайно полезная в данном случае стабильность не требует разъяснений: началом для будущего растения являются соматические клетки, которые после размножения и дифференцировки и формируют в дальнейшем целый организм, точно воспроизводя все достоинства — признаки исходного.

Для расшифровки законов наследственности должно было прийти время Грегора Менделя. И оно пришло. Но почему оно все-таки наступило? Разве до него ученые не задумывались над «поступками» зародышевых клеток? Разве не пытались понять, в силу каких причин при определенных видах скрещивания признак исчезал, при других — появлялся?

Ну конечно же, задумывались, конечно, спрашивали, конечно, пытались понять, выявить то Нечто материальное, что и было ответственно за передачу признака из поколения в поколение. Более того, тысячи блестяще исполненных, виртуозных по чистоте опытов, осуществленных ботаниками И. Келльрейтером, Т. Найтом, М. Саржэ, Ш. Ноденом, работавшими с различными растениями, подвели их к той позиции, с которой Г. Менделю и открылось это Нечто. Но… никому из них так и не хватило изобретательности в интерпретации полученных данных. И что особенно важно, никто из них не сопоставлял с собственными выводами выводы коллег, отстаивал лишь свою, личную точку зрения. Г. Мендель прекрасно знал работы предшественников, был знаком с особенностями проведения их опытов, и, кто знает, может быть, именно это побудило его начать собственный эксперимент.

Что же принял Грегор Мендель за ту самую точку опоры, которая позволила ему, если не перевернуть мир, то по крайней мере увидеть его в столь необычном ракурсе, который открыл исследователю сокровенный механизм изнутри?

Прежде всего, свою гипотезу в понимании законов наследственности: наследование признаков обусловлено наследованием задатков. Эта гипотеза позволила естествоиспытателю уложить все разрозненные факты в стройную теорию, подтвержденную расчетами. Испытатель выделил для себя семь пар признаков (он работал с горохом), альтернативных по своему характеру, и проследил их проявление в потомстве, предположив, что при слиянии в одну клетку мужское и женское начала привносят в нее только задатки каждого из многочисленных признаков будущего организма. Он убедился, что задатки эти передаются независимо друг от друга из поколения в поколение.

Но разве его предшественники не наблюдали наследственные признаки в потомстве опытных растений? — предвижу я читательский вопрос.

Наблюдали, конечно. Только они видели проявление наследственности вообще, а Г. Мендель — конкретное проявление конкретных признаков. Он словно накрыл свой небольшой садовый участок в монастырском саду в городе Брно (всего-то по нашим меркам неполных две с половиной сотки) невидимой миру сетью, поймав ею ускользавшие прежде от всех наблюдателей особенности проявления признаков. Но если уж пользоваться языком аллегорий, то вполне уместно употребить и такое сравнение: ученый «сплел» эту сеть, пользуясь методом статистического анализа, который (тоже впервые среди всех естествоиспытателей) применил к чисто биологическим явлениям.

На этом, собственно, и закончилась в естествоиспытании эра чистого описательства явлений наследственности в потомстве гибридов, эра поиска степени сходства между родительскими формами и их потомками сразу по многим признакам. С опытов Г. Менделя, а точнее — после переоткрытия описанных им законов в 1900 году, начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Г. Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве. Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно «помеченные» исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.

Но тут первопроходца подстерегла опять очередная западня в виде каверзного «почему?».

В самом деле, почему так, а не иначе выразилось в потомстве распределение прослеживаемых признаков? Ведь по логике вещей гены присутствовали в гибридах в ином соотношении, а именно, как 1:1. Так отчего же признаки проявляли себя по-иному?

Вот тогда-то Мендель и обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. И он нашел его в них, поскольку те, кого исследователь почитал за авторитеты, пришли (на основании экспериментов) в разное время и каждый по-своему к общему заключению; гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, что наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. «Проверяя алгеброй гармонию» происходящих изменений в полученных поколениях гороха, ученый даже ввел буквенные обозначения, отметив заглавной буквой доминантное, а строчной — рецессивное состояние одного и того же гена.

Вот так приблизительно представляется нам сегодня ход рассуждений исследователя: если растение с доминантным признаком, унаследованным от родителей и обозначенным как АА, скрещивать с растением рецессивным (также унаследовавшим свои признаки от предыдущих поколений) — аа и это скрещивание произойдет, то потомство получит «имя» Аа и будет представлять собой одинаковые растения, доминантные по характеру.

Пройдет время, и ученые всего мира назовут этот вывод законом (правилом) единообразия гибридов первого поколения.

Ну а что произойдет, если такие гибриды скрещивать между собой? — наверняка подумали сейчас читатели. Вот и перед Менделем в свое время возникла та же проблема. А раз проблема интересует исследователя, он обязательно захочет разрешить ее. Как? Конечно, с помощью эксперимента. Но поскольку прослеживаемые признаки кодировались теперь Менделем буквенным обозначением, то он, как и ожидал, узнал математически достоверный ответ.

Вот он: скрещивание способно дать два типа гамет по мужской линии (А, а) и два типа гамет по женской — и тоже А, а. Значит, согласно данной схеме полученное потомство в алгебраическом выражении представится как АА, Аа, аА и аа. Что же отсюда следует? Какой вывод надлежит в такой ситуации сделать исследователю?

Тот единственный, к которому в свое время пришел Мендель: три растения нового поколения обладают геном А, доминирующим над геном а. Но ведь естествоиспытатель получил еще и растение аа, в котором ярко проявился рецессивный признак…

Таким образом, подытожил свой труд великий Мендель, из четырех растений только одно будет иметь рецессивный признак и три — доминантный. Это и есть знаменитое соотношение признаков 3:1. То самое соотношение, против которого так упорно и долго «сражались» в своих работах, и совсем не научными методами, многие противники менделизма. Опровержение вывода Менделя для них означало бы ни много ни мало, как утверждение собственной концепции, гласившей, что приобретенный признак можно «втиснуть» в хромосому и обратить в наследуемый. Как только не сокрушали «крамольный» вывод скромного настоятеля монастыря из Брно маститые «ученые», каких только эпитетов не напридумывали ему, дабы унизить, высмеять. Но время решило по-своему.

Гены комбинируются независимо, и в виде единиц наследственности передаются из поколения в поколение — этот вывод ученого сегодня известен всему миру.

Да, Грегор Мендель не был признан современниками. Слишком уж простой, бесхитростной представилась им схема, в которую без нажима и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же в концепции Менделя были и уязвимые места. Так по крайней мере представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из «виновниц» его неудач была ястребинка.

Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка — чрезвычайно неудобное для искусственного скрещивания растение. Очень мелкое. Приходилось напрягать зрение, а оно стало все больше и больше ухудшаться (может быть, от этой работы, а может быть, в связи с возрастом). Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки, возражения профессора Негели (главного оппонента Менделя) были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.

Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б. Л. Астауров, первый президент Всесоюзного общества генетиков и селекционеров имени Н. И. Вавилова: «Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности. Сам Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой „апогамии“. Неудача кропотливых и напряженных опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования.

Прошло еще несколько лет, и Грегор Мендель ушел из жизни (1884), не предчувствуя, какие страсти будут бушевать вокруг его имени и какой славой оно в конце концов будет покрыто».

Да, слава и почет придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не «уложившейся» в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве.

Думаю, что молодежи было бы поучительно и интересно почитать, к счастью сохранившуюся до наших дней, переписку Менделя и Негели. Столько уважения к коллеге, столько такта и аргументированности в каждом письме, что невольно подчиняешься захватывающему размышлению ученых найти причину расхождения опытов, проведенных на одном и том же объекте. Я иногда представляю себе тяжело больного, теряющего зрение Менделя, склонившегося все над теми же грядками, на которых он так счастливо экспериментировал с горохом, и взрастивших ему ястребинку, столь огорчившую исследователя. Старый, обремененный нелегкими обязанностями настоятеля монастыря человек, уходящий из жизни с горьким сознанием, что ему не удалось завершить задуманное.

Не знаю почему, но образ Менделя сливается в моем представлении с образом великого русского хирурга Николая Ивановича Пирогова или с образом другого великого естествоиспытателя — Луи Пастера. Вероятно, дело здесь вовсе не в схожести характеров, обликов. Они были настолько разными по своим научным интересам, в своих внешних проявлениях, что любое сравнение было бы неуместным или натяжкой. Их общность в ином — в одержимости, в глубочайшей честности и преданности науке, которые всегда отличают истинных ученых. Все это предполагает безоговорочное уважение к оппоненту. Единственный аргумент для них в самом весомом доказательстве — факт.

Думаю, что бедой Менделя была и крайне скудная взаимоинформированность наук того времени. Ведь, по сути дела, Мендель, основоположник генетики, бился за ее признание один-единственный на своем крошечном ратном поле. Насколько же ему было б легче, знай он о работах того же Адамса, опубликовавшего к тому времени пионерскую работу о наследовании признаков у человека. Но Мендель не был знаком с этой работой. А ведь Адамс на основе эмпирических наблюдений за семьями с наследственными заболеваниями, как я уже упоминал выше, фактически сформулировал понятие наследственных задатков, подметив доминантное и рецессивное наследование признаков у человека. Но ботаники не слышали о работе врача, а тому, вероятно, выпало на долю столько практической лечебной работы, что на абстрактные размышления просто не хватало времени. В общем, так или иначе, но генетики узнали о наблюдениях Адамса, только приступив всерьез к изучению истории генетики человека.

Напрашивается и другое объяснение прискорбного непризнания Менделя: слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому еще не готов. И лед тронулся лишь спустя 35 лет, когда генетика начала решительно отвоевывать себе позиции в ряду прочих естественных наук.

В 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчетов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно развеялись.