Самая большая ошибка Эйнштейна

Боданис Дэвид

Часть IV

Расплата

 

 

Эйнштейн на своей любимой яхте. (Германия, 1920-е гг.)

 

Глава 12

Возникает напряжение

Эйнштейн был не одинок в своих сомнениях насчет необходимости поправки-лямбды для его гравитационного уравнения. Такие сомнения испытывал и русский математик Александр Александрович Фридман.

Ветеран Первой мировой войны, Фридман был мрачным человеком, и наружность его (висячие усы, маленькие круглые очоч-ки, кислое выражение лица, которое словно бы говорило: «Я так и знал, что дело обернется скверно») вполне соответствовала его унылому характеру. В конце 1914 года, через несколько месяцев после начала Первой мировой, Фридман писал своему любимому профессору Владимиру Андреевичу Стеклову, работавшему в Санкт-Петербургском университете: «Жизнь моя течет довольно ровно, если не считать таких случаев, как взрыв австрийской бомбы в полуметре от меня и последующее падение осколков на лицо и на голову. Но ко всему этому привыкаешь». Фридман решил учиться на пилота, поскольку, в несвойственном ему приступе оптимизма, «уверился, что сие занятие перестало нести в себе опасность». В ответном письме Стеклов замечал, что это, как ему кажется, чрезвычайно неудачная мысль.

Затем в переписке наступает перерыв, но вскоре Фридман уже благодарит жену профессора за теплые вещи, которые она ему прислала: они «действительно оказались весьма кстати» для регулярных полетов на большой высоте сквозь морозный зимний воздух. Совет профессора он проигнорировал. Впрочем, поблагодарил Стеклова за некоторые интересные дифференциальные уравнения, отправленные ему в письме. Правда, Фридман извинялся за недостаточную четкость решений, несколько поспешно отосланных им профессору: «Пожалуй, в моих обстоятельствах не так-то легко заниматься научными изысканиями». Зато он описал Стеклову те расчеты, которые предпринял, дабы определить наилучшие точки сброса бомб, которыми он угощал огромную австрийскую крепость в Перемышле (Пшемысле). Точность бомбардировки впечатлила (хотя и, конечно, встревожила) австрийских и немецких обитателей крепости.

Фридман отмечал также, что командование поручает ему вступать в воздушные бои с германским воздушным флотом – составной частью армии, где «организация и снаряжение превосходны», в отличие от русских войск, где «не хватает ни того, ни другого». Однажды германский самолет обрушил на Фридмана огонь нового оружия – скорострельного пулемета. («Расстояние между нашими машинами было чрезвычайно малым… Это создает ужасное ощущение».) Единственным оборонительным средством на самолете Фридмана оказался старинный карабин, который приходилось держать на расстоянии вытянутой руки из-за мощной отдачи, которую он порождал, выпуская единственную пулю. После завершения полетов Фридман получил за храбрость Георгиевский крест.

Пережив войну, революцию, контрреволюцию, контрконтрреволюцию, нищету, нехватку продуктов и топлива, эпидемии, он каким-то чудом наткнулся на статьи Эйнштейна. К тому времени Фридман уже преподавал в Институте инженеров путей сообщения, одновременно работая в Геофизической обсерватории – в городе, который еще недавно назывался Санкт-Петербургом, но теперь был переименован в Петроград (потом, все в том же XX веке, он станет Ленинградом и в конце концов вновь сделается Санкт-Петербургом). Фридман очень быстро разглядел в эйнштейновских статьях о теории относительности то, что показалось ему ошибкой. Но как ему, скромному питерскому преподавателю, прозябающему в далекой России, убедить хоть в чем-либо всемирно известного немецкого профессора?

Еще в 1917 году Эйнштейн понял, что его уравнение G = T предсказывает изменение размеров нашей Вселенной. Его такой сценарий не устраивал, а потому он вставил в уравнение поправку – пресловутую лямбду (Λ)… Между тем Фридман, пессимист по природе, в 1922 году обнаружил, что первоначальное уравнение Эйнштейна, исходное G = T, еще без всяких добавок, содержит в себе тысячи, миллионы возможных сценариев для самых разных, невероятных, вселенных.

И он принялся исследовать эти сценарии.

* * *

Из исходного эйнштейновского соотношения G = T неутомимый Фридман вывел ошеломляющий спектр возможных изменений пространства и «вещей» в нем во времени. В рамках некоторых таких сценариев, обнаружил Фридман, вселенная неуклонно растет – подобно вечно раздувающемуся шару. Но нашлись и другие сценарии (все они таились в математике исходного уравнения), при которых вселенная увеличивается в объеме до некоего конечного размера, а затем начинает уменьшаться, как если бы ее вещество со свистом выходило из нее через какой-то клапан. Все, что создали люди (или другие разумные обитатели такой вселенной), в конце концов исчезло, уничтожилось бы, и все их усилия стали бы совершенно бесполезными и бессмысленными.

Имелись и сценарии, по которым этот крах вселенной отнюдь не являлся ее концом: после схлопывания в точку она снова начинала расти. Все творения цивилизации к этому моменту окажутся безнадежно разрушенными, но зато теперь имелось сырье для того, чтобы начать снова. Фридман сделал прикидочные расчеты, и у него получилось, что такие пульсации могут повторяться примерно каждые 10 миллиардов лет.

Человек не впервые представлял себе такую последовательность событий – смерть и новое рождение Вселенной. Как писал сам Фридман, это «приводит на ум индуистскую мифологию, где говорится о циклах существования». Речь идет о вере в то, что Вселенная много раз создавалась и разрушалась. Фридман добавлял, что его решения, конечно же, носят предположительный характер и пока не подкреплены реальными результатами астрономических наблюдений.

С помощью друзей он изложил свои смелые предположения в краткой статье и (после того как лучший лингвист в их кругу исправил его ошибки в немецком, который у Фридмана был под стать французскому Эйнштейна) отправил ее в самый престижный физический журнал тогдашнего мира – Zeitschrift für Physik. Журнал быстро принял статью в печать (это произошло в 1922 году). Автор самонадеянно полагал, что его статья Эйнштейну очень понравится, ведь он, Фридман, показывал, что исходное эйнштейновское уравнение 1915 года (пресловутое G = T, без случайного тормоза в виде лямбды), по сути, уже содержит в себе эти необыкновенные результаты. И если Эйнштейн с ним согласится, то наконец сумеет избавиться от докучного и такого некрасивого параметра Λ.

Однако, добравшись в том же году до новых номеров Zeitschrift für Physik (в послереволюционной России это было нелегко), Фридман и его друзья с огромным изумлением обнаружили, что Эйнштейн, прочитав статью, написал ее автору настоящую отповедь! Результаты этого русского совершенно неприемлемы, отмечал создатель теории относительности. И дело тут не в какой-то небольшой ошибке. Эйнштейн просмотрел расчеты Фридмана и обнаружил в них серьезные промахи. «Содержащиеся в работе [Фридмана] результаты, которые касаются нестационарного мира, – гласило письмо Эйнштейна, опубликованное в журнале, – представляются мне сомнительными. Я абсолютно уверен, что приведенное решение не удовлетворяет [моим] уравнениям теории поля».

Фридман пришел в отчаяние. Подобный комментарий разбивал всякие надежды на дальнейшее продвижение в науке. Как этот великий человек мог так с ним поступить? Однако отправить в редакцию жалобу казалось непростительной дерзостью. И тогда Фридман и его друзья решили, что будет тактичнее написать Эйнштейну на его берлинский адрес. Фридман очень старался, сочиняя это послание (несомненно, вновь обратившись к друзьям за помощью по части немецкого).

Письмо Эйнштейну было вежливое, но ясное: «Позвольте мне представить Вам расчеты, которые я сделал… Если Вы найдете верными приведенные в моем письме выкладки, прошу Вас не отказать в любезности сообщить об этом в редакцию Zeitschrift für Physik. Возможно, в таком случае Вы сочтете нужным опубликовать поправки к своему заявлению».

Ответа он не получил – однако не по той причине, которой опасался.

Дело было вот в чем. Чуть раньше, но в том же 1922 году, произошло убийство Вальтера Ратенау, министра иностранных дел Германии, еврея по происхождению. Это событие вызвало неприкрытую радость в консервативных кругах всей страны. Уже тогда Эйнштейн осознал, что выдающимся евреям в Германии теперь грозит опасность. Вот ведь учредили какую-то Рабочую партию «Германские ученые за сохранение чистоты науки», призванную бороться с эйнштейновскими идеями. Ее первое собрание состоялось в берлинской филармонии. В коридоре повсюду виднелись свастики, а в фойе торговали антисемитскими брошюрками. Кое-кто из ненавистников Эйнштейна имел некоторое касательство к науке, но большинство из них не могли похвастаться образованностью. «Науке, которой мы некогда так гордились, сегодня учат евреи!» – возмущался несостоявшийся студент школы искусств по имени Адольф Гитлер.

Александр Фридман (начало 1920-х гг.) «Позвольте мне представить вам расчеты, которые я сделал…» – писал он Эйнштейну, не зная, к чему приведет подобная дерзость.

Чтобы дать ситуации время остыть, Эйнштейн откликнулся на давнее приглашение предпринять длительное морское путешествие. Когда письмо Фридмана пришло в Берлин, создатель теории относительности уже отплыл из Марселя в Японию (откуда писал сыновьям: «Из всех, с кем мне довелось встречаться, мне больше всего по душе японцы… Они скромны, умны, благожелательны, к тому же отлично чувствуют искусство»). Письмо Фридмана Эйнштейну не переслали. Но и после возвращения в Берлин (на следующий год) он русскому ученому не ответил.

Одной из причин стало обилие корреспонденции, которую Эйнштейн стал получать после того, как ему присудили Нобелевскую премию: эти груды писем затмевали его былой кошмар с орущим почтальоном. Но имелась и еще одна причина – противоречивая смесь славы и гордости.

Когда в 1917 году Эйнштейн впервые вставил в свое уравнение G = T лямбду, этот неуклюжий тормоз, он в глубине души полагал, что поступает неправильно. Ведь Творец не мог, создав Вселенную столь близкой к абсолютной простоте (ибо эти два математических параметра, G и T, с такой простотой объясняли все о структуре Вселенной), затем явить ее человечеству как нечто иное, нечто такое, что потребовало бы добавления лишней «произвольной» константы, необходимой для того, чтобы законы творения действовали.

Но все-таки, несмотря на дурные предчувствия, Эйнштейн внес поправку в свое уравнение. Теперь он оказался в тупике. На карте стояла его репутация, ведь все профессиональные физики ныне знали его уравнение именно в модифицированном виде. Играла тут роль и его собственная гордость. Он сам, сам лично внес пресловутую поправку, он сам все это проделал, пусть и после больших терзаний. И уже не может с легкостью отказаться от этой поправки, объявив во всеуслышание, что проявил слабость, что ошибался.

Вот почему он так небрежно просмотрел статью Фридмана: ему хотелось лишь отыскать в ней какие-то недочеты. И после того, как он нашел (или решил, что нашел) ошибку, он больше не проявлял никакого видимого интереса к этой теме.

Однако в мае 1923 года Юрий Александрович Крутков, коллега Фридмана, сумел выследить Эйнштейна в Нидерландах – через одного из эйнштейновских сотрудников, некогда преподававшего в России. Крутков был вежлив, но настойчив. Он гордо рассказывал сестре о том, что произошло дальше: «7 мая 1923 года, в понедельник, я вместе с Эйнштейном читал фридмановскую статью в Zeitschrift für Physik». Наступает 18 мая. «В пять часов… я разбил Эйнштейна в дискуссии о Фридмане. Честь Петрограда спасена!»

Эйнштейн поступил достойно: он вновь обратился к фридма-новской статье – и увидел, что в свое время отреагировал на нее чересчур бурно и на самом деле Фридман не допустил никаких математических ошибок. Эйнштейн написал в редакцию журнала, чтобы уладить дело: «В моем предыдущем письме я критиковал [работу Фридмана «О кривизне Пространства»]… Однако мои замечания… оказались основаны на ошибке, вкравшейся в мои собственные расчеты».

Впечатляющее, хоть и лаконичное признание. Однако Фридман в далекой России понимал, что ему следует по-настоящему привлечь Эйнштейна на свою сторону, если он, Фридман, хочет, чтобы его новые космические сценарии принимали всерьез. Но как это сделать? Единственный способ – предоставить Эйнштейну больше доказательств. Астрономических подтверждений фридмановской гипотезы пока нет, но… может быть, есть иной путь?

* * *

Ломая голову над тем, как бы убедить Эйнштейна в том, что лямбда не нужна, Фридман использовал остроумный метод решения задач, который мог бы показаться знакомым его немецкому коллеге. Новая фридмановская идея сводилась, по сути, к тому, что миниатюрные обитатели плоской поверхности (мы снова обращаемся к Флатландии) не в состоянии «сделать шаг назад» и увидеть весь свой мир в целом, зато они могут осуществлять всевозможные расчеты и предпринимать путешествия, не покидая своего мира, и эти расчеты и путешествия дают им нужную информацию. Фридман представил себе, что будет, если один из научно-исследовательских центров такого вот плоского мира отправит путешественника в экспедицию, призванную выяснить, как в действительности устроена их вселенная. «Постоянно придерживаясь одной и той же прямой линии и неустанно двигаясь в одном и том же направлении, – писал Фридман, – наш путешественник будет наблюдать, как характер окружающего ландшафта постепенно меняется на протяжении его странствия». Он набредет на незнакомые пейзажи, попадет в незнакомые города, мало напоминающие поселения его родины. Однако, приближаясь к родному городу, откуда он начал свой путь, путник заметит, что окрестности становятся все более похожими на те места, откуда он некогда пустился в свое долгое странствие. И наконец он войдет в свой город – с противоположной стороны!

Фридман отмечал: «Вернувшись в исходную точку, путешественник благодаря собственным наблюдениям обнаружит, что пункт, которого он достиг, в точности совпадает с пунктом, из которого он начал движение…» – тем самым доказав ограниченность сферы Вселенной, на поверхности каковой все они живут. С другой стороны, отмечал Фридман, если странник не увидит, что незнакомые города сменяются знакомыми, он поймет, что его мир не замыкается подобным образом. Тот факт, что он никогда таким способом не вернется в исходную точку, станет доказательством того, что его вселенная не является сферой.

Приключения флатландца (или наших двух воображаемых конькобежцев на финском льду) явно позволяют провести аналогию с нашей собственной трехмерной Вселенной, куда более крупной. Если мы снарядим посланцев и отправим их в путь, чтобы они произвели необходимые измерения (в будущем – при помощи сложнейших исследовательских кораблей, а сегодня – просто при помощи телескопов), по результатам этих измерений мы сумеем определить, какова истинная форма Вселенной. А это, в свою очередь, поможет выяснить, какие из обнаруженных Фридманом сценариев, подразумеваемых простым эйнштейновским уравнением G = T, описывают наш мир, а какие – не описывают. Да, в реальности мы не сможем осуществить это долгое и увлекательное путешествие, придуманное Фридманом. Но если наша Вселенная не искривлена, то все четыре угла каждого из гигантских прямоугольников, мысленно вычерченных в пределах Солнечной системы, окажутся прямыми. Если же имеет место вздутие, как у сферы (разумеется, мы не можем увидеть это невооруженным глазом или даже представить себе с помощью своего мозга, чьи возможности весьма ограничены), то все эти углы окажутся чуть больше 90°. И по мере увеличения или уменьшения степени этой кривизны углы также будут меняться. (См. рисунки из Главы 7.)

Фридман понимал, что физически слаб и хил. Нелегкий процесс выживания в России начала 1920-х отнюдь не способствовал исцелению от привычной депрессии. Но ведь в свое время он как-то пережил и участие в бомбежках австрийских крепостей, и воздушные бои с германскими асами. Он обладал немалыми душевными и умственными силами, к тому же верил, что его представления в чем-то совпадают с эйнштейновскими, ведь немецкий физик сам поговаривал некогда о подобных локальных измерениях углов и расстояний – измерениях, которые помогут разобраться в устройстве куда более обширных пространств. Они видели перед собой одну и ту же воображаемую картину! Может быть, если Фридман сумеет пересечь Европу и встретится со своим кумиром, этим великим мыслителем, вместе они продвинутся дальше?

И вот летом 1923 года Фридман решил, уподобившись своему миниатюрному путешественнику, в одиночку отправиться в Берлин. Он обязательно найдет господина Эйнштейна, поговорит с профессором и вновь пробудит в нем доверие к исходному равенству 1915 года.

Двадцать третий год оказался не таким уж плохим временем для путешествий по сравнению с началом Первой мировой, когда бедняга Фрейндлих предпринял свою астрономическую экспедицию в Крым. Впрочем, разница была невелика. В Веймарской республике уже началась бешеная инфляция. «Курсы валют устраивают какую-то дикую свистопляску, – писал Фридман домой. – …Три дня назад за доллар давали миллион марок, а сегодня он стоит 4 миллиона!». Плюс бедность, плюс нехватка продуктов, хотя и не на уровне послереволюционной России. Ему было в Европе неуютно. Тут все было иное. Даже пейзаж говорил, как далеко Фридман уехал от родины. «Германский лес наблюдать особенно грустно: деревья выстроены ровными шеренгами», – писал он. Сохранилась фотография Фридмана того периода: как всегда, уныло висящие усы и вид, как у побитого пса, но при этом дорогой двубортный пиджак и странная беретообразная шапочка, балансирующая на голове; слева под мышкой – растрепанная пачка бумаг, тогда как правая рука по-наполеоновски стискивает рубашку, словно он не очень представляет себе, куда ему эту руку девать. И при этом он пытается улыбаться.

Но вот наконец-то Фридман добрался до Берлина и даже до улицы, где проживал Эйнштейн. Но… «19 августа. Мое путешествие проходит не очень удачно: оказывается, Эйнштейн… отбыл из Берлина отдохнуть. Не думаю, что мне удастся с ним увидеться». Две недели спустя, в очередном письме друзьям, он сообщал, что все-таки надеется увидеть Эйнштейна. Но осуществиться его надежде было не суждено. Правда, в самом конце поездки в Германию, накануне возвращения в Россию, он посетил другого ученого, который отлично понимал, что такое горькое разочарование. 13 сентября 1923 года Фридман сумел попасть в Потсдамскую обсерваторию. «Я встретился там с астрономом Фрейндлихом. Это очень интересный человек. Мы поговорили с ним о строении Вселенной… Всех очень впечатлила моя борьба с Эйнштейном и то, что в конце концов я победил. Мне это очень приятно…»

Эйнштейн в это время находился не так уж далеко – вероятно, в своем загородном доме под Берлином. Но даже если бы Фрейндлих сообщил ему о приезде Фридмана, вряд ли Эйнштейн вернулся бы в город ради встречи с гостем из России. Он по-прежнему слишком цеплялся за «заплатку», которую прицепил к своей формуле в 1917 году. И он почти убедил себя самого в ее необходимости. В конце концов, неужели какой-то Творец (или даже набор законов физики) устроит Вселенную так, чтобы она столь безумно нарушала равновесие? Ведь если Фридман все-таки прав и исходное уравнение Эйнштейна верно, тогда Вселенная расширяется, а это означает, что в конце концов все выродится в бескрайнюю пустыню выгоревших звезд и безжизненных планет, которые будут все дальше разлетаться в стороны. Но как можно поверить в такой исход?! Ведь получается, все мечты, все планы людей в конце концов обречены на гибель – как и они сами, как все человечество. С другой стороны, если верен противоположный фридмановский вариант, иной предлагаемый им сценарий, эйнштейновское уравнение демонстрирует схлопывание Вселенной, из чего следует, что когда-то в будущем ночное небо засияет ужасающе ярко: все звезды галактики устремятся к ее центру. В это, честно говоря, тоже не хотелось верить.

В напечатанном на машинке черновике самоопровержения, подготовленного им для публикации в Zeitschrift für Physik, Эйнштейн замечал: невзирая на математическую корректность фри-дмановских выкладок, огромную долю описанных российским ученым разнообразных решений «составляют такие, для которых едва ли можно отыскать физический смысл». Потом он вычеркнул эту фразу. Но ему явно хотелось, чтобы Фридман оказался неправ.

Вся эта сумятица выматывала Эйнштейна. Как было бы хорошо найти четкое и ясное доказательство, которое навсегда освободило бы его от этой двусмысленности, показав, способны ли искривления пространства (предсказанные его исходным уравнением) жить по сценариям Фридмана! Но для этого потребовалось бы провести измерения в самых отдаленных участках космоса и установить, как там ведут себя звезды – удаляются от нас, приближаются к нам или же сохраняют неподвижность. Казалось, осуществить измерения для столь отдаленных объектов невозможно. Звезды – исполинские небесные жаровни, однако на Земле человек видит их лишь как крошечные точки света. Похоже, мы просто не в состоянии пронаблюдать какое-либо их движение: нам они кажутся неподвижными.

Вот если бы кто-нибудь сумел выяснить, как на самом деле живут далекие звезды… Но кому под силу решить эту задачу?

 

Интерлюдия 3

Свечи в небесах

В своем дневнике итальянский путешественник Антонио Пига-фетта так вспоминал ту минуту, когда он решил отправиться на поиски неведомого:

Оказавшись в Испании в год от Рождества Спасителя нашего тысяча пятьсот девятнадцатый, при дворе самого мирного из королей… я отважился… предпринять путешествие, дабы своими глазами увидеть некоторые из великих и страшных вещей, таящихся в океане.

Это решение привело к тому, что в 1519 году он пустился в далекое плавание вместе с Фернаном Магелланом. Предполагалось, что их флотилия достигнет восточноазиатских «островов пряностей» необычным путем – двигаясь не на восток, а на запад, через Атлантику, отыскав затем проход на другую сторону Американского континента, в неведомый океан, который, как полагали, там несет свои воды. Если все пройдет удачно, мореплаватели обогнут земной шар – впервые в истории человечества.

В каком-то смысле экспедиция действительно прошла успешно: Пигафетта вернулся в Испанию примерно через 3 года после отплытия. Правда, ему здорово повезло: из 240 путешественников уцелело лишь 18. А ведь одной из немаловажных целей экспедиции было благополучное возвращение назад всех ее участников… Плавание началось неплохо. На Атлантическом побережье Южной Америки они увидели настоящие чудеса: новые разновидности людей, невообразимые в Европе; рыб, способных выпрыгивать из воды («они летели дальше, нежели стрела, выпущенная из лука»), и этих прыгучих рыб преследовали хищники, которые упорно следовали за их тенью и хватали их, когда они плюхались обратно в воду. («Необычайное зрелище, которым пожелает насладиться всякий», – отмечал Пигафетта в своем дневнике.)

Но потом начались невероятной силы штормы, казалось, прошла целая вечность, когда Пигафетта наконец-то сделал запись, которую все они так ждали: «В среду, 28 ноября года 1520-го, мы вышли из вышеуказанного пролива [близ южной оконечности Южной Америки] и оказались в Тихом море».

Поначалу, вероятно, перспективы представлялись радужными, ведь путешественники плыли среди безбрежной морской глади, с виду совершенно спокойной. Но эта гладь никак не кончалась, на горизонте не было ни малейшего клочка суши («мы проделали не менее 4 тысяч лиг в открытом море»). На кораблях начался голод. («Мы съели старые галеты, обратившиеся в пыль и полные личинок… – пишет Пигафетта. – Мы съели бычьи шкуры, хранившиеся под парусами, и древесные опилки, и всех крыс».)

Как отыскать правильный путь? По звездам, как это обычно проделывали тогдашние мореплаватели? Но в ночном небе виднелись лишь немногие из знакомых созвездий, и путеводной Полярной звезды, этой верной подруги всех путешественников, там, конечно, не было, ведь они находились в Южном полушарии. Однако, глядя в незнакомое ночное небо, мореплаватели обнаружили, как отмечал Пигафетта, «два облака, несколько отстоящих друг от друга и слегка размытых». Эти облака светились «с немалой яркостью».

Что это – дар Господень? Какова бы ни была причина их возникновения, эти два таинственно сияющих облака ночь за ночью сохраняли одно и то же относительное положение, что и позволило уцелевшим участникам экспедиции, ориентируясь по ним, в конце концов найти путь домой. Сам Магеллан не вернулся: туземцы закололи его насмерть копьями на прибрежной отмели Мактана, одного из островов Филиппинского архипелага. Но эти сверкающие небесные маяки в итоге назвали в его честь – Большим и Малым Магеллановыми Облаками.

Четыре столетия спустя именно эти облака Эйнштейн намеревался использовать для того, чтобы решить, возвращаться ли к своему исходному уравнению (что настоятельно рекомендовал ему сделать российский математик Александр Фридман). Но это произойдет, лишь когда Магеллановы Облака удастся исследовать, прояснив некоторые их тайны. И тут на сцене появляется новое, довольно неожиданное лицо, тоже своего рода первопроходец.

* * *

Невдалеке от Бостона 1890-х годов, в одном из помещений верхнего этажа достославного здания Гарвардской обсерватории, располагались многочисленные вычислители. С их помощью анализировали большие стеклянные фотопластины, запечатлевшие ночное небо. Пластины держали в глубоком подвале и доставляли наверх механическим подъемником.

Впрочем, эти вычислители отнюдь не были электронными приборами. Так называли группы молодых женщин, сидевших за деревянными столами на втором этаже обсерватории. Работа этих дам состояла в том, чтобы обмерять детали, видимые на пластинках, и тщательнейшим образом заносить результаты обмеров в таблицы.

Эдвард Пикеринг, директор обсерватории, гордился своими очаровательными «компьютерами», которые он описывал почти как машины: «Можно добиться огромной экономии средств, прибегая к помощи неквалифицированной, а значит, недорогой рабочей силы. Конечно же, необходим внимательный надзор». Чтобы среди рабочей силы не возникало недовольства, он настаивал, чтобы его сотрудницы (кстати, из числа первых выпускниц американских университетов – ранее девушкам там не разрешалось учиться) не получали такого математического образования, которое могло бы вызвать у них искушение проделать работу за астрономов-мужчин. Кроме того, он им очень мало платил – всего лишь 25 центов в час, тогда как работницы хлопчатобумажной фабрики получали 15.) Его коллеги снисходительно выражали сложность астрономических расчетов в «девушко-часах» – или, если работа требовала заполнения большого количества таблиц, «килодевушко-часах».

Но, как известно, требуется двое, чтобы вы ощутили себя униженно: тот, кто вас унижает, и вы сами – кто волей-неволей принимает это. Лишь очень небольшая доля женщин разделяла мужское мнение по отношению к своему труду. Это видно по довольно неуклюжей, но бойкой песенке, которую они сочинили на мотив «Мы плывем по голубому океану» из оперетты Гилберта и Салливана «Корабль ее величества «Пинафор», или Возлюбленная матроса»:

Трудимся мы от зари до зари, вычисляем прилежно – смотри! Всё считаем в жизни мы так бе-зу-ко-риз-нен-но!

Из всех вычислительниц, трудившихся под началом Пикеринга, самой непокорной оказалась Генриетта Суон Ливитт. Никакой администратор, любитель манипулировать безответными созданиями, не мог ее приструнить и испортить ей настроение.

Среди работниц Пикеринга не поощрялась чрезмерная образованность, но Ливитт училась в Оберлинской консерватории (штат Огайо), а кроме того, в Рэдклиффском колледже (тогда это учебное заведение называлось Обществом высшего женского образования), где она получила отличные оценки по интегральному и дифференциальному исчислению и аналитической геометрии. Она прекрасно заполняла скучные таблицы, за которые засадил ее Пикеринг: на это у нее вполне хватало квалификации. Однако мисс Ливитт вовсе не устраивало то положение, которое она занимала, ей хотелось большего, что в конце концов и привело к столкновению с Пикерингом – и навсегда изменило течение жизни самого Эйнштейна.

Ливитт всегда испытывала приятное предвкушение, когда в Гарвардскую обсерваторию прибывали тщательно упакованные ящики из далекой Арекипы, что в Перуанских Андах. Именно там располагался гарвардский 24-дюймовый фототелескоп, «самый мощный инструмент подобного класса в мире», как горделиво замечал один из его операторов.

Некоторое время работой телескопа руководил брат Пикеринга, но после того, как бедняга начал присылать сообщения о гигантских реках и озерах на Марсе (которых больше никто не мог разглядеть при помощи тех же телескопов), Пикеринг заменил его другим своим коллегой мужского пола. Края были опасные: в Арекипе (по описанию американского туриста, зараженного империалистическими взглядами, типичными для того времени) обитали страшные метисы, а в не такой уж далекой Амазонии – и вовсе дикари. К тому же высота в 8 тысяч футов над уровнем моря угнетала. Да и работа была очень сложная. Никому и в голову не могла прийти мысль о том, чтобы отправить в Арекипу женщину, а уж позволить ей управлять телескопом…

Между тем, работая в обсерватории под Бостоном, вычисли-тельница Ливитт заметила кое-что любопытное касательно фотопластинок, присылаемых из Арекипы, особенно тех, которые изображали детали светящихся облаков, некогда направлявших путь Пигафетты и Магеллана. Мы привыкли, что наше Солнце всегда светит довольно-таки одинаково – то есть интенсивность его свечения день ото дня в общем-то не меняется. Так происходит из-за того, что слои «солнечного горючего» выгорают более или менее равномерно. А вот некоторые звезды, те, что сильно отличаются от Солнца, горят отнюдь не столь равномерно. Как в кипящем котле, давление, накопившееся в глубине, заставляет «крышку» (верхние слои звезды, состоящие из расщепленных атомов) «подскакивать», порождая длительные вспышки повышенной яркости. В каком-то смысле это «ослабляет давление», и поверхностные слои успокаиваются, так что лишь через несколько часов (или дней) температура снова повышается, приводя к новому всплеску яркости.

Генриетта Ливитт (1910-е гг.)

Ливитт заметила в меньшем из двух Магеллановых Облаков огромное количество звезд, которые горят именно таким образом. Сопоставляя пластинки, снятые с промежутком в несколько дней или недель, она обнаружила, что сияние этих звезд вовсе не так стабильно, как у нашего Солнца. Некоторые из них в какой-то момент сверкали ярко, затем меркли, а спустя несколько дней или недель снова разгорались. Первые пульсирующие звезды такого рода нашли в созвездии Цефея, поэтому подобные небесные объекты (переменные звезды) назвали цефеидами.

Если бы оказалось, что цефеиды, эдакие космические свечи, мерцают случайным образом, это означало бы, что Ливитт просто нашла в космосе нечто забавное, хоть и малопонятное. Но, похоже, тут была некая закономерность. И Генриетта стала думать об этих странных звездах всерьез. Когда она просила выслать ей больше снимков Магеллановых Облаков (эти запросы, разумеется, шли через Пикеринга, поскольку он больше никому не позволял связываться с начальником своего андского телескопа), неизменно приходили пластинки, которые показывали области, весьма насыщенные звездами: при каждом новом увеличении можно было разглядеть все больше и больше светил. Ливитт предположила, что Облака вовсе не находятся вблизи Земли: возможно, они принадлежат к звездному скоплению, расположенному на далеком расстоянии от нашей планеты.

Но вот насколько далеком? До Генриетты Ливитт никому не удавалось придумать линейку для измерения расстояний от Земли до самых дальних краев Вселенной, поскольку никто не сумел разработать метод оценки истинной яркости какой бы то ни было отдельной звезды. Непросто узнать подробности об отдельном огоньке, ненадолго вспыхивающем ночью посреди темного поля. Не очень яркий свет может идти от сильного фонаря, расположенного далеко, но с таким же успехом его мог породить более слабый фонарик, расположенный гораздо ближе к нам. Великое открытие Ливитт как раз и позволяло решить эту проблему, неизбежно возникающую при наблюдении звезд.

Склоняясь над фотопластинками в кирпичном здании обсерватории близ Бостона, Ливитт обнаружила, что можно рассортировать переменные звезды-цефеиды, как разные категории фонарей. Допустим, Малое Магелланово Облако очень далеко от нас. Сравним его с некоторым количеством фонариков, которые держат люди, стоящие в разных местах отдаленного луга. С нашей точки зрения кажется, что все они находятся на примерно одном и том же расстоянии от нас.

Ливитт заметила, что некоторые цефеиды пульсируют медленно – с периодом около 10 суток. Другие же мерцали быстрее – с периодом около 3 суток. Важнее всего то, что звезды, пульсировавшие относительно медленно, казались ярче на фотографиях, присланных из Арекипы. Поскольку она предположила, что все они находятся примерно на одном и том же расстоянии от Земли, это означало, что медленно пульсирующие звезды должны давать больше света, чем звезды, пульсирующие быстрее. Если вернуться к нашей аналогии с фонариками на далеком лугу, получится, что если те, которые включаются и выключаются с меньшей частотой, чем другие, выглядят ярче прочих, можно предположить, что они и на самом деле ярче.

Этого еще не достаточно для того, чтобы мы могли определить реальное расстояние до луга. Но допустим, мы сумели заполучить в свои руки один из этих фонариков (скажем, мигающий медленно) и выяснили, что он испускает свет, имеющий мощность два ватта. Если мы теперь, взглянув на этот дальний луг, заметим на нем огонек, пульсирующий с такой же частотой, мы будем знать, что он обладает мощностью два ватта. И в зависимости от того, насколько тусклым он покажется нам на расстоянии, мы сможем оценить это расстояние.

Так и с переменными звездами-цефеидами. По счастью, астрономы сумели измерить яркость одной цефеиды, находящейся на гораздо меньшем (и уже известном) расстоянии от Земли, и установить, сколько света она испускает на самом деле. Это позволило Генриетте Ливитт проградуировать свою космическую линейку. Если новооткрытая цефеида пульсировала с периодом, скажем, семь суток, то цефеиды, пульсирующие с таким же периодом в далеких Магеллановых Облаках, должны обладать такой же истинной яркостью. В зависимости от того, насколько тусклой эта далекая цефеида казалась по сравнению с близкой, Ливитт могла рассчитать, насколько далеко Магеллановы Облака находятся от Земли.

Замечательно было научиться проделывать это «в уме», не выходя из бостонской обсерватории. Когда поведение одной из звезд, которые изучала Ливитт, показалось ей особенно непонятным, она шутливо сказала коллеге: «Остается найти способ забросить в небо сеть и затащить эту штуковину к нам, иначе мы никогда в ней не разберемся!» Однако Ливитт понимала, что вообще-то ей не полагается проводить такие исследования. Одна из ее коллег-вычислительниц отмечала в дневнике: «Если бы мы только могли все время продолжать оригинальные исследования, смотреть на новые звезды, изучать их особенности и изменения, у нас была бы не жизнь, а мечта. Но мы вынуждены откладывать в сторону самое интересное».

Впрочем, Ливитт научилась обходить такие преграды. Однажды она сообщила Пикерингу, что собирается ненадолго уехать из Бостона на отцовскую ферму в Висконсине, но будет очень ему признательна, если он пришлет ей все ее личные записные книжки, чтобы она могла продолжать оказывать помощь обсерватории. Разумеется, незачем было сообщать ему, над чем она в действительности работает.

В 1906 году (Эйнштейн еще наслаждается семейной жизнью с Милевой, пытаясь при этом избавиться от работы в патентном бюро и подыскать себе что-нибудь более подходящее) Ливитт собрала воедино свои главные находки в статью, озаглавленную «1777 переменных звезд Магеллановых Облаков». Она показала, как наблюдение этих небесных объектов позволяет обрести «линейку» для измерения Вселенной; как ее цефеиды мерцают согласно четкому расписанию и как это мерцание соотносится с их истинной яркостью.

Это было фантастическое достижение. Пикеринг пришел в ярость. Генриетта была его подчиненной, простой вычислитель-ницей, всего лишь женщиной. Он пытался хотя бы частично опубликовать ее открытия под собственным именем (или выступить с докладом о них на конференции), но слухи об этом быстро распространялись в научном сообществе. Один из принстонских астрономов восхищался: «Как энергично мисс Ливитт расправляется с переменными звездами! За ее новыми открытиями трудно уследить!»

Пикеринг не мог этого вынести и попросту отстранил Ливитт от ее исследований, велев ей навсегда забыть о каком-то там изучении этих так называемых переменных звезд Магеллановых Облаков. Ей следует заняться тщательнейшим вычислением звездных координат в области Полярной звезды, заявил он. Вероятно, другие астрономы не считали эту работу такой уж важной, но Пикеринг отличался большой педантичностью и полагал, что эти таблицы непременно прославят его.

Ливитт неоднократно пыталась вернуться к любимому занятию. В 1912 году (в этот год Эйнштейн начинает сотрудничать с Гроссманом, который помогает ему заложить математические основы теории гравитации) ей удалось опубликовать статью, где излагалось еще больше подробностей о том, как использовать цефеиды для измерения истинных расстояний в дальнем космосе. После столь вопиющего нарушения служебной субординации Пикеринг поступил еще более жестоко. Он распорядился, чтобы впредь ей отказывали в новых фотопластинках из Анд, если на этих пластинках содержались изображения проклятых Магеллановых Облаков.

В 1921 году Ливитт умерла, так и не побывав в обсерватории, о которой мечтала много лет. Годом позже одна из ее коллегвы-числительниц предприняла эту поездку за нее. Пикеринг больше не директорствовал в Гарвардской обсерватории, и строгость тамошних порядков несколько ослабла.

Эта ее подруга доплыла до Южной Америки на пароходе, а дальше двинулась в глубь материка – по железной дороге, а затем в конном дилижансе. Наконец она добралась до верхней части долины, которая вела к Арекипе, городу, выстроенному из белого вулканического камня. Один из современников отмечал: «Издали кажется, будто весь город сделан из мрамора». На северо-востоке высился четырехмильный вулканический конус Эль-Мисти, на востоке громоздился вулкан Пичу-Пичу. Воздух уже был довольно разреженный, но ей предстояло подняться еще дальше: обсерватория находилась высоко над городом. Наконец добравшись до нее, она оказалась в полутора милях над уровнем моря, среди кристально-чистого андского воздуха.

Солнце зашло. Наступила прохладная ночь, и на темном небе стали появляться звезды – они сияли словно бриллианты. И тогда верная подруга Генриетты вынула дневник и записала: «Магелланово Облако (Большое) такое яркое! Глядя на него, я всегда вспоминаю бедную Генриетту. Как она любила Облака…»

 

Глава 13

Когда червонная дама черна

С осени 1923 года Эйнштейн пребывал в тумане некоторого замешательства и неуверенности. Его поразила нежданная статья Фридмана, где предполагалось, что его, эйнштейновские, первоначальные идеи об исходном уравнении G = T верны и кривизна всей Вселенной во времени меняется, так что скопления звезд и планет могут отдаляться друг от друга в ходе процесса, который и есть бесконечное расширение. А может быть, эта кривизна меняется иным образом, и в древних индуистских мифах заложена глубокая истина: вся Вселенная обречена проходить бесчисленные циклы расширения и сжатия, как если бы мы пребывали в невидимой замкнутой сфере, которая то надувается, то сдувается.

И в этой сложной ситуации Эйнштейн не нашел ничего лучше, как отложить размышления о статье Фридмана (по крайней мере, изгнать их из своего сознания), сделав вид, что обнаруженное русским ученым – всего лишь некая математическая возможность, не имеющая никакого реального физического смысла. Однако позже, в 1927 году, через 4 года после неудачного визита Фридмана в Берлин и через 5 лет после того, как коллега бедной Генриетты Ливитт добралась до гор близ Арекипы, эта передышка кончилась. В 1927 году Эйнштейн вновь попал в Брюссель на конференцию. Впервые он оказался на брюссельской конференции еще совсем молодым человеком, и приехал он тогда в столицу Бельгии из Праги, где в то время жил, мало кому известный, с Милевой. Теперь же его встречали как героя, и он легко забыл о гложущих его сомнениях насчет своего гравитационного уравнения – или, по крайней мере, попытался это сделать. Ему и без того было на чем сосредоточиться. Но в один из первых дней конференции к нему подошел хмурый грузный бельгиец лет тридцати с лишним и объявил, что обладает математическим доказательством расширения Вселенной.

Эйнштейн и Леметр (ок. 1930 г.)

Профессоров, даже менее известных, чем Эйнштейн, часто осаждают всякие сумасброды, а уж с Эйнштейном такое происходило постоянно. С годами он отлично научился немедленно давать им от ворот поворот, вежливо, но твердо. Здесь, в Брюсселе, это умение особенно ему требовалось, поскольку думал он совсем о другом – о новых областях науки. Но этого незнакомца оказалось не так-то легко отшить.

Мало того, что докучного собеседника Эйнштейна, как выяснилось, официально пригласили на конференцию (а значит, он наверняка имел хотя бы диплом в области физики), так он еще и носил высокий белый воротничок и черный шерстяной пиджак, что обличало в нем католического священника. Более того, он оказался иезуитом, а члены этого ордена, несмотря на догматичную преданность папе, столетиями проявляли большую активность в области астрономии.

Смирившись, Эйнштейн позволил этому толстяку (его звали Жорж Леметр) приступить к объяснениям. Оказывается, падре Леметр опубликовал статью в одном бельгийском журнале (может быть, профессор слышал о нем?), где разбирал следствия, вытекающие из эйнштейновских идей, пытаясь подставить в его формулу самые разные значения Λ. Наиболее интересные результаты получились при Λ = 0, так что уравнение возвращалось к своему исходному виду – к простому и столь изящному G = T.

Вспоминая об этой встрече несколько десятков лет спустя, Ле-метр заметил, что Эйнштейн с одобрением отозвался тогда о деталях его математического разбора, сказав, что они кажутся ему очень изобретательными и оригинальными. Но это были, по сути, не более чем вежливые банальности, какими знаменитый ученый пытался завершить надоевшую беседу. Не успел Леметр договорить, как Эйнштейн его прервал. Может, ваши расчеты и точны, сказал ему великий физик, «mais votre physique est abominable» («но ваши физические рассуждения совершенно неприемлемы»). С этими словами Эйнштейн уже хотел взять такси, чтобы поехать в лабораторию к Огюсту Пикару, прославленному специалисту по стратостатам, которого он условился посетить.

Большинство собеседников сочли бы это отказом от продолжения разговора. Но, как и почти все его европейские ровесники мужского пола, Леметр участвовал в Первой мировой войне (в его случае – копая траншеи, стреляя из пулемета и в конце концов дослужившись до артиллерийского офицера). Ему уже ничего не было страшно в жизни. И ничто не могло его смутить. А потому явную бестактность самого знаменитого ученого в мире, норовящего захлопнуть перед его носом дверцу такси, он решил рассматривать как возможность, а не как отказ. Иезуит ускорил шаг, прыгнул в то же такси и уселся рядом с Эйнштейном. Вероятно, профессору интересно будет узнать, каким образом он, Леметр, уже принял во внимание подобные замечания?

Профессору волей-неволей пришлось его выслушать: из едущего такси сбежать нелегко. А Леметр объяснил, что в его статье (и если Эйнштейн оказался бы подписан на почтенное издание Annales de la Société scientifi que de Bruxelles, он бы наверняка уже все это знал) приводится подробное экспериментальное подтверждение справедливости его выводов.

Сообщение встревожило Эйнштейна, и он прислушался к тому, что говорил этот странный иезуит, внимательнее. Когда-то он пренебрег работой Фридмана, провозгласив, что выкладки никому не ведомого русского – всего лишь математическая игра ума, которую не подкрепляют никакие астрономические факты. Теперь же другой образованный господин убеждал его: существует веское доказательство в пользу того, что Вселенная расширяется.

Объяснение пришлось скомкать, поскольку до лаборатории Пикара было недалеко. Леметр говорил о дипломной работе, которую он недавно сделал в Америке – одновременно в Гарварде и Массачусетском технологическом институте. Там он узнал удивительные вещи о переменных звездах под названием цефеиды. Он не знал, кто впервые их обнаружил, но эти звезды, разъяснял он, обладают способностью регулярно менять яркость, что дает нам вполне определенную информацию о происходящем в глубинах космоса. Похоже, они демонстрируют (представленные доказательства фрагментарны, но профессор наверняка поймет, насколько важным может оказаться это открытие), что звездные скопления удаляются друг от друга!

Эйнштейн не делал никаких грубых замечаний, но Леметр почувствовал, что его собеседник думает теперь о чем-то другом. «Казалось, он вообще был не очень-то хорошо осведомлен по части астрономических фактов», – позже вспоминал бельгиец. Такси остановилось. Эйнштейн вылез. Леметр так и не понял, удалось ли ему донести до великого физика свою идею.

Оказалось, что и да, и нет. Пятью годами раньше, в 1922-м, Эйнштейн отмахнулся от статьи Фридмана, заявив, что это всего лишь математика. Теперь же, в 1927-м, когда Леметр сообщил, что у него имеются подробные данные, подтверждающие гипотезу о расширении Вселенной (как раз то, что Эйнштейн просил у Фрид мана), великий физик отмахнулся и от них – как от неприемлемых с точки зрения физики. Эйнштейн понимал, что Леметр объяснил свои выкладки не очень-то ясно, к тому же сам великий физик вел себя так, словно не желал слышать никаких подробностей, как будто неполнота услышанных фактов и то, что их получили не самые знаменитые астрономы, означало, что на эти находки можно не обращать никакого внимания.

Нет, дело тут явно обстояло непросто. Вот одно полезное сравнение.

В рамках некоего гарвардского эксперимента по социопсихологии группе студентов быстро показывали набор специальных игральных карт с обращенными цветами – то есть черви и бубны были черными, а пики и трефы – красными. Таким способом исследовали человеческое восприятие. Когда карты демонстрировали медленно, студенты с легкостью замечали, в чем подвох. Когда же карты мелькали очень быстро, не позволяя разглядеть детали, студенты не замечали, что перед ними необычная колода, и чувствовали себя столь же непринужденно, как и в первом случае. Но когда карты показывались с некоей промежуточной скоростью (при которой испытуемые все-таки могли успеть заметить то, что им показывают, но им не хватало времени полностью проанализировать увиденное), результаты оказывались иными. Студенты ощущали ужасный дискомфорт. Они жаловались на головокружение или на внезапную усталость, а иногда по непонятным им самим причинам у них возникало острое желание выйти из комнаты. И все они хотели, чтобы эксперимент поскорее завершился.

В подобной ситуации как раз и оказался Эйнштейн после того, как он услышал о работе Фридмана, и теперь, после того, как он узнал об еще более детальных исследованиях Леметра. Их результаты угнетали его. Пока он еще не до конца уяснил себе все тонкости, но знал: что-то тут не так. И очень хотел, чтобы это ощущение поскорее прошло.

* * *

И дилемму эту Эйнштейну никак не удавалось разрешить. Слишком уж он был не готов признать свою ошибку. Слишком уж он зациклился на своей лямбде. Ему требовался кто-то с более высоким авторитетом, нежели никому не ведомый бельгийский священник или столь же безвестный русский математик. И такой человек был. В мировых астрономических кругах 1927 года имелся почитаемый едва ли не больше всех своих коллег директор знаменитой обсерватории, расположенной на вершине калифорнийской горы Вильсон, – Эдвин Пауэлл Хаббл. Во многом его можно считать полной противоположностью Эйнштейну.

Хаббл, как полагали многие, прошел суровую, мужскую школу жизни. В юности он, поговаривали, был настолько серьезным боксером, что чикагские спортивные антрепренеры даже выясняли, не желает ли он выступить против чемпиона мира в тяжелом весе – могучего Джека Джонсона. Хаббл тогда отклонил это заманчивое предложение; позже он стал строевым офицером и ближе к концу войны принял участие в едва ли не самых ожесточенных сражениях Первой мировой, потрясших Францию.

Он не очень любил говорить о войне, но иногда, поздними вечерами, признавался обожавшим его студентам и дипломникам, что «тяжелее всего было видеть, как падают раненые, и все равно продвигаться вперед, даже не останавливаясь, чтобы им помочь». По словам Хаббла, в войну его не раз оглушало взрывом, были тяжелые ранения (видимо, этим объяснялся его поврежденный правый локоть). Однажды, рассказывал Хаббл, он запутался в оснастке покачивающегося на ветру разведывательного воздушного шара, на котором летел. Конечно, он перепугался, но все-таки как-то вернул себе то, что некоторые именуют храбростью (сам-то он знал, что это обычный здравый смысл), и продолжал наблюдать сверху происходившее на поле битвы, зарисовывая расположение вражеских войск.

Увлекательное жизнеописание, но, похоже, назвать его абсолютно правдивым можно с большими натяжками. Хаббл был действительно человек высокий, крепкого телосложения, однако боксом он занимался лишь один семестр, когда учился в Чикагском университете, превосходном учебном заведении, которое при этом не славилось выдающимися спортивными победами своих студентов. Вряд ли спортивные менеджеры посчитали бы возможным выставить такого студента, как Хаббл, против чемпиона-тяжеловеса.

Армейские приключения Хаббла тоже не совсем соответствовали его рассказам. Да, его призвали в действующую армию, но его подразделение так никогда и не вступило в бой. В его военной карточке, которую он получил при демобилизации, есть графы «Бои», «Медали», «Ранения», и везде проставлено аккуратное чернильное «нет». Травма локтя, вероятно, была софтбольной, и получил он ее, когда недолгое время преподавал в старших классах одной кен-туккийской школы.

Но все-таки мечты в духе Уолтера Митти могут стать отличной мотивацией для реальных жизненных достижений. Хаббл действительно изучал астрономию и страстно хотел в ней преуспеть. В конце концов он оказался директором обсерватории, расположенной на горе Вильсон. Его предшественник умел ловко добывать деньги для обсерватории у богатых благотворителей (в их числе оказался бизнесмен Джон Д. Хукер), и на дикой вершине теперь гордо высились мощнейшие телескопы в мире, включая массивный стодюймовый телескоп, названный в честь Хукера. Телескоп был настолько тяжелый, что бесчисленные изогнутые фермы и противовесы, удерживавшие его в нужном положении, заставляли при взгляде на внутреннюю часть его купола вспомнить футуристический фильм Фрица Ланга «Метрополис», как раз вышедший на экраны в 1920-е годы.

Хаббл был настроен на успех еще и из-за того, что у него имелся соперник, у которого была мерзкая способность – он прекрасно видел истинное лицо Хаббла сквозь весь флер романтичного и героического образа, который он, Хаббл, старательно и на протяжении многих лет создавал. Ибо, несмотря на преувеличенный акцент англичанина (все эти «ну и ну-у» и «чер-ртовски отменно», которыми он обильно уснащал речь, изображая английского аристократа), на самом-то деле Хаббл родился на ферме в округе Озарк (штат Миссури). И в том же штате появился на свет Харлоу Шепли, еще один ведущий американский астроном. Шепли с подозрением относился к позерству Хаббла, но тоже жаждал успеха и признания.

Хаббл в ватной стеганой куртке – для наблюдений холодными ночами (1937 г.)

Соперничество между Хабблом и Шепли частенько подталкивало их к тому, чтобы использовать свое положение для распространения идей, которые каждый из них предпочитал называть собственными. К примеру, в 1924 году один шведский математик написал в Гарвардскую обсерваторию, сообщая, что континентальной Европы достигла новость о потрясающих работах профессора Ливитт по использованию переменных звезд-цефеид для измерения расстояний. Не могла бы госпожа Ливитт связаться с ним, чтобы изложить подробности?

Обычно такое послание из Швеции означает, что ученого-адресата рассматривают (по крайней мере, предварительно) как кандидата на Нобелевскую премию. Шепли к тому времени сменил Пикеринга на посту директора обсерватории. В ответ он написал, что, к несчастью, мисс Ливитт уже скончалась, но (поскольку ему известно, что Нобелевские премии не присуждаются посмертно), по счастливой случайности, именно он, Шепли, проделал основную работу по цефеидам, тогда как мисс Ливитт служила лишь, по сути, пассивным инструментом, выполнявшим его указания.

То была откровенная неправда, но поскольку Шепли теперь очень стремился всем сообщить об исследованиях Ливитт, якобы проведенных под его руководством, ее открытие переменных звезд-цефеид получило широкое признание. Это помогло Хабблу, все еще работавшему в обсерватории Маунт-Вильсон, сделать следующий шаг в изучении цефеид.

Астрономы того времени знали, что в нашей Галактике (Млечном Пути) имеется несметное количество звезд, парящих в пространстве практически стационарно. Однако никто не знал, имеется ли что-то за ее пределами. Уже удалось обнаружить странные световые клочки, названные туманностями: они не вписывались ни в какую очевидную классификацию, и большинство специалистов считало их газовыми облаками, существующими там и сям среди многочисленных звезд Млечного Пути.

Стодюймовый телескоп, установленный на горе Вильсон, был столь мощным, что Хаббл и другой астроном, его коллега Милтон Хьюмасон сумели получить весьма подробные снимки этих клочковатых туманностей. Некоторые из них, похоже, представляли собой все-таки не газ, а звездные скопления. Возник неизбежный вопрос: насколько далеко от нас они находятся?

Если бы загадочные туманности располагались сравнительно близко от Земли, это бы означало, что они – просто еще какие-то звезды, входящие в состав Млечного Пути. Тогда подтвердилась бы гипотеза о том, что Вселенная состоит из одной-единственной неизменной островной Галактики – нашей собственной. Если же таинственные «клочья тумана» располагаются гораздо дальше, можно было бы предполагать, что мы не так одиноки во Вселенной, как нам представлялось.

Хаббл отличался немалым трудолюбием, ибо понимал, что разрыв между его побасенками и реальными обстоятельствами его жизни ширится, и ему нужно побыстрее добиться чего-то значительного, иначе он уже не выберется из тупика, в который сам себя загнал. Он хорошо умел работать руками, а Хьюмасон еще лучше: это был весьма аккуратный и благоразумный человек, в подростковые годы зарабатывавший на жизнь в качестве погонщика мулов, доставляя на гору, по малопроходимым извилистым тропам, материалы для сооружения этой самой обсерватории. С помощью нескольких доброжелательных астрономов он занялся самообразованием, постепенно обучившись обращаться и с тяжелой техникой, и с деликатной фотографической аппаратурой.

Милтон Хьюмасон (ок. 1940 г.)

В 1925 году Хьюмасон и Хаббл, сопоставляя несколько снимков особенно клочковатой туманности в известном многим созвездии под названием Андромеда, увидели, что там имеется одна звезда, чье сияние меняется в точности как у переменных звезд, тщательно проанализированных Ливитт (или Шепли?). Период пульсации этой звезды составлял 31 день, то есть оказался настолько большим, что звезде, согласно таблицам Ливитт, полагалось обладать необычайной истинной яркостью. Но даже при наблюдении в мощнейший стодюймовый телескоп с его огромным увеличением она казалась крайне тусклой.

Как объект с такой большой истинной яркостью может выглядеть столь тусклым? Объяснение существовало только одно: сияние звезды ослабевает по мере того, как свет проходит колоссальное расстояние, отделяющее данный объект от Земли. Хаббл проделал необходимые вычисления. Астрономы часто пользуются единицей расстояния, именуемой световым годом (несмотря на название, это не мера времени, а дистанция, которую проходит свет за один год: около 9,5 триллиона километров). Наш Млечный Путь имеет в поперечнике, по-видимому, приблизительно 90 тысяч световых лет. В то время большинство астрономов сходились во мнении, что здесь-то и содержится вся сколько-нибудь значимая материя Вселенной. Но цефеида в Андромеде, согласно расчетам, находилась примерно в одном миллионе световых лет от нас!

Таким образом, получалось, что наша Галактика во Вселенной не одинока. Этот клочок светящейся материи представлял собой не облачко межзвездного газа и не кучку близких к нам звезд. Выходило, что Хаббл и Хьюмасон обнаружили целую колоссальную галактику, горделиво раскинувшуюся вдалеке от нашей и, несомненно, являющуюся частью исполинской небесной флотилии, причем эта флотилия растянулась в космическом океане гораздо дальше, чем мы представляли себе ранее.

Более того, существовал способ измерения того, насколько быстро движутся далекие галактики. Для этого следовало использовать эффект Доплера, хорошо известный ученым. Вначале его заметили применительно к звуковым явлениям. Когда мимо вас проносится по улице «скорая», вам кажется, что высота тона ее сирены меняется: если машина мчится в вашу сторону, тон выше, а как только машина начинает от вас удаляться, тон внезапно понижается. В каком-то смысле то же самое происходит и со светом, хотя здесь меняется уже не звук, а цветовые составляющие. Космический корабль, мчащийся к вам, будет казаться чуть голубее, чем если бы он оставался в неподвижности. Начав же удаляться от вас, он будет казаться чуть краснее (так называемое красное смещение). При небольших скоростях эффект проявляется слабо, но по мере их роста он становится все заметнее.

В то время некоторые астрономы уже начали изучать характер цветового смещения в различных звездных скоплениях. Именно этот эффект использовал Леметр в своих первых прикидках, которые он пытался растолковать Эйнштейну в брюссельском такси. Чем дальше звездные скопления, тем краснее их цвет, и это можно заметить с Земли. Объекты дальнего космоса действительно удаляются от нас.

Хьюмасон и Хаббл попросту проработали гипотезу Леметра о движении звезд более детально. У бельгийца не было таких точных сведений о космических расстояниях, как у них. Огромный телескоп, установленный на горе Вильсон, позволял американским астрономам идентифицировать пульсирующие цефеиды в настолько далеких галактиках, что эти подробности никогда не удалось бы разглядеть с помощью телескопа, который Фридман притащил в Крым, или с помощью телескопа, который приехал с Эддингтоном на остров Принсипи. Кроме того, полученные в обсерватории Маунт-Вильсон данные (к вящей радости Хаббла) едва ли удалось бы добыть, глядя в некогда считавшийся очень мощным 24-дюймовый телескоп, установленный на гарвардской исследовательской станции в Арекипе, куда Шепли посылал указания из своего Бостона. Диаметр зеркала хюьмасоновского телескопа составлял 100 дюймов, а значит, прибор мог собирать и фокусировать больше света. Хаббл не мог удержаться от колкостей в адрес своего вечного соперника Шепли, написав тому: «За прошедшие 5 месяцев я поймал 9 новых и 2 переменные… Следующий сезон тоже обещает быть увлекательным».

К 1929 году они завершили исследования. Хьюмасон, человек легкий, ничего не имел против того, чтобы Хаббл, этот видавший виды боксер и герой войны, опубликовал результаты лишь под одной, своей, фамилией (впрочем, печатно отдав должное и «большой поддержке» со стороны своего «ассистента» Милтона Хьюмасона). В статье приводилась аккуратная таблица, показывавшая, насколько далеко от нас располагаются 24 различные галактики. Кроме того, сообщались наиболее впечатляющие результаты по части того, как сдвиги в окраске этих объектов позволяют определить скорость их движения. Данные отличались немалой разрозненностью, но основной посыл казался вполне ясным: галактики разлетаются от нас, и чем дальше они от Земли, тем быстрее разгоняются.

Поскольку представленные доказательства были полнее, чем у кого-либо еще, а также благодаря убедительному голосу Хаббла и его умению создавать себе рекламу, о работах американцев узнало множество людей – и в США, и в Европе. О такой паблисити скромные Annales de la Société scientifi que de Bruxelles, в свое время опубликовавшие статью Леметра, могли только мечтать.

Новость пересекла Атлантический океан и настигла Эйнштейна в Берлине. Что ж, этому он сопротивляться уже не мог.

И тогда Эйнштейн дал всем понять, что лямбда умерла. Ее убил Хаббл – или, по крайней мере, он придал авторитетности открытиям, которые показывали: в этом параметре больше нет необходимости. Исходное уравнение Эйнштейна вновь засияло во всей своей первозданной красоте. Но душа Эйнштейна так никогда и не оправилась от этого потрясения.

* * *

Путешествовать в то межвоенное время было потруднее, чем сегодня. Лишь через два года Эйнштейн сумел добраться до Калифорнии. Он долго плыл на пароходе – сначала до Нью-Йорка, а потом через Панамский канал. Ему хотелось лично воздать должное Хабблу. Но и ему тоже воздали должное. Когда они с Эльзой в декабре 1930 года прибыли в Калифорнию, их судно встречали тысячи восторженных местных жителей, бесчисленные фотографы и даже оркестр, исполнивший песню, специально написанную в честь Эйнштейна.

Если Хаббл и раньше был вполне доволен, всего лишь притворяясь героем войны и чемпионом по боксу, то теперь, когда он оказался рядом с величайшим физиком мира, его гордость не знала удержу. Он рассылал приглашения на встречи с Эйнштейном почти всем сколько-нибудь значимым астрономам США. Эльза сводила мужа на огромное количество обедов с голливудскими звездами, отбирая эти мероприятия весьма эффективно, хотя и не очень вежливо: приглашения лились рекой, она все их принимала, а затем, в последнюю минуту, сама решала, какой из одновременных банкетов муж сочтет более престижным, и отказывалась от прочих. Однако приглашения от главных голливудских знаменитостей всегда воспринимались благосклонно. Эйнштейн посетил голливудскую премьеру «Огней большого города» вместе с Чарли Чаплином, звездой фильма. Разумеется, их окружали толпы поклонников и фотографов.

Эйнштейн и Чарли Чаплин на премьере «Огней большого города» (январь 1931 г.). Когда Эйнштейн осведомился у него, что означает весь этот ажиотаж, Чаплин кратко ответствовал: «Ничего».

Хаббл понимал, что на его собственное приглашение Эйнштейн непременно откликнется. Когда настал долгожданный день (29 января 1931 года, четверг), Хаббл оделся с большой тщательностью: как следует начистил ботинки; облачился в свои лучшие «оксфордские» брюки гольф (длиной чуть ниже колена, с широкими штанинами, которые снизу стянуты манжетами) и твидовый пиджак, захватил трубку, наверняка в последний момент проверил галстук, – и вот он был готов.

Посетителей обычно доставлял на вершину горы Вильсон старенький грузовичок, громко стрелявший глушителем. Ради Эйнштейна неугомонный Хаббл нанял изящный прогулочный седан «Пирс-эрроу». Фотографы и репортеры с киноаппаратами, проталкивавшиеся поближе, чтобы запечатлеть Эйнштейна и его жену в этом роскошном авто, видели рядом с великим физиком, справа, лучащееся неимоверным довольством лицо Эдвина Пауэлла Хаббла.

Он не отлипал от Эйнштейна в течение получаса, пока машина преодолевала крутые повороты дороги, карабкающейся вверх, да и позже, когда они осматривали 150-футовой высоты башню, где располагался солнечный телескоп (впрочем, встревоженному Хабблу ненадолго – и неохотно – пришлось расстаться с почетным гостем, когда тот отправился наверх в открытом одноместном лифте: тонкий трос тянул кабину на высоту 15-этажного дома). Когда же Эйнштейн благополучно спустился с верхушки башни (тем самым избежав газетных заголовков «Величайший гений мира погиб из-за некомпетентности астронома»), Хаббл уж больше не отпускал его. Он ни на минуту не отходил от Эйнштейна, пока они посещали главное здание обсерватории, а также помещения, где находились другие телескопы. И вот настала пора вступить под громадный купол, там размещался гигант со 100-дюймовым зеркалом. Едва Эйнштейн начал ловко взбираться по лесенке на самый верх (внизу порой открывался красивый вид на Лос-Анджелес, чья отдаленность устрашала), Хаббл тут же стал карабкаться рядом с ним. Фотографы остались внизу, бешено щелкая затворами. «Он буквально просочился туда, – позже написал один из коллег Хаббла. – Ему хотелось, чтобы его сфотографировали именно там, рядом с великим человеком».

После ужина, когда солнце наконец зашло и стали видны звезды, Хаббл препроводил Эйнштейна обратно под купол стодюймового телескопа, на сей раз уже не с целью съемки для прессы, а чтобы посмотреть в этот оптический прибор на планеты, туманности и звезды. И только Хаббл знал, что для него стало главным удовольствием – помогать Эйнштейну или знать, что Шепли придется в ближайшие дни прочесть об этом в газетах (ибо ему Хаббл почему-то «забыл» отправить приглашение).

Хаббл любил славу, однако все-таки не был таким уж эгоистом и понимал, что будет нечестно, если в торжествах того знаменательного дня не примет участия и Хьюмасон. Когда он рассказал Эйнштейну, что вот этот чер-ртовски отменный парень выполнил съемку для последующего расчета красного смещения (то есть получил те самые данные, которые показали, как быстро движутся галактики), Эйнштейн тут же устроился рядом с Хьюмасоном в еще одном из помещений обсерватории, дабы изучить исходные фотопластинки. Как мы помним, Эйнштейн провел немало лет в Бернском патентном бюро. Он всегда обожал мастерить, к тому же его отец и дядя, разумеется, всю его юность были буквально погружены в инженерное дело. Эйнштейн всегда с уважением относился к людям, умеющим работать руками. А у Хьюма-сона руки были такие же грубые и мозолистые, как и у Эйнштейна в молодости, когда он много занимался физическим трудом. Когда они уселись просматривать снимки, Эйнштейну стало ясно: этот человек не относится к своей работе спустя рукава – он работает честно, на совесть. Смещения не вызывали никаких сомнений. Целые галактики разлетались в стороны – с неуклонно возрастающей скоростью.

На следующий день, в библиотеке обсерватории, при огромном стечении фотографов и репортеров, Эйнштейн принес публичное покаяние. Читая свои записи вслух, на своем по-прежнему не очень-то совершенном английском он объявил: «Новые наблюдения Хаббла и Хьюмасона… касающиеся красного смещения света в отдаленных туманностях, заставляют предположить, что общая структура Вселенной не статична. Теоретические изыскания, предпринятые Леметром… демонстрируют гипотезу, которая хорошо вписывается в общую теорию относительности».

Это была впечатляющая новость. «Все, кто был в библиотеке, разом потрясенно охнули», – написал основной из репортеров Associated Press, отправленных освещать событие (агентство прислало несколько корреспондентов, ибо страну тогда начала охватывать маниакальная страсть к теории относительности). В статье, где официально сообщалось о том, что он изменил свои взгляды, Эйнштейн писал: «Примечательно, что новые факты, полученные Хабблом, делают общую теорию относительности менее запутанной (то есть лишают ее параметра Λ)…» Произошло возвращение к той красоте уравнений, которую он так любил.

Эйнштейн признал кончину лямбды, как только в 1929 году открытия Хаббла оказались достоянием научной общественности. Но его путешествие на гору Вильсон два года спустя, в 1931-м, официально закрепило это признание, ибо он заявил о нем во всеуслышание. В далекой Англии юмористический журнал Punch вскоре вышел с такими стишками:

Когда жизнь тебе кажется дряблой, Обратись, дружок, к доктору Хабблу, Вмиг изменит ее доктор храбрый И вернет ей упругость и стать!

Это наверняка пришлось по душе англофилу Хабблу, любителю пощеголять в брюках гольф. Но мы-то знаем, что на самом деле он был мальчишкой с фермы из округа Озарк (штат Миссури). Через несколько недель на страницах почтенной миссурийской газеты Springfi eld Daily News появился еще более отрадный заголовок:

Юноша, покинувший плато Озарк ради изучения звезд, заставил передумать самого Эйнштейна!

 

Глава 14

Наконец успокоиться

Да, Эйнштейн избавился от лямбды и наконец-то успокоился. «С тех пор как я ввел этот параметр, меня не переставала мучить совесть, – объяснял он позже. – Я никак не мог поверить, что такая уродливая штука может оказаться воплощенной в природе». Он испытал огромное облегчение, когда получил возможность признаться в этом не только самому себе.

Было уже слишком поздно извиняться перед Фридманом, поскольку этот печальный и скверно питавшийся русский несколькими годами раньше умер от тифа, так никогда и не узнав, насколько убедительно подтвердятся его идеи. Но тучный Леметр был еще жив, и Эйнштейн проявил по отношению к нему беспримерное великодушие. В 1933 году (через два года после событий на горе Вильсон), на калифорнийской конференции, Эйнштейн встал и объявил последние работы Леметра «самой красивой и наиболее удовлетворительной интерпретацией… из всех, какие мне доводилось слышать».

Позже, в том же 1933-м, снова оказавшись в Брюсселе, где они с Леметром познакомились в 1927-м, Эйнштейн уже не пытался захлопнуть перед священником дверцу такси: он провозгласил на очередной конференции, что отец Леметр «имеет нам сообщить нечто весьма интересное», чем заставил иезуита волей-неволей развить бешеную деятельность, ибо преподобный вообще понятия не имел, что собирается выступать. Когда Леметр все-таки сварганил импровизированный доклад и стал представлять его собравшимся, из аудитории послышался громкий шепот Эйнштейна, все еще говорившего по-французски с чудовищным швабским акцентом: «Ah, très joli; très, très joli» («Чудесно, просто чудесно»).

Эйнштейн радовался не только тому, что все-таки в конце концов подтвердилась справедливость его изначального простого и симметричного выражения G = T. Он увидел, что находки Хаббла позволяют нам ощущать себя флатландцами, которым удалось заглянуть за пределы своего мирка и узреть, что же происходит на самом деле. Мистеру Квадрату из сказочки Эдвина Эбботта понадобился для этого визит Шара. Фридман предлагал (тоже вполне метафорически) отправить путешественника по совершенно прямой линии, чтобы установить, сумеет ли тот таким манером вернуться домой. Ни этот, ни другой подход здесь, пожалуй, не годился. Однако несложная – и довольно давняя – идея картографов о том, чтобы просто заняться тщательным измерением треугольников и прямоугольников, дабы выяснить, не вспучены ли они, – эта идея (которую Гроссман некогда объяснил Эйнштейну) оказалась ближе к реальному решению, которым теперь мог воспользоваться Эйнштейн.

Сам Хаббл не совсем мог уяснить себе это решение. Он понимал, что его переменная звезда-цефеида в Андромеде предоставляет нам способ продемонстрировать, что наша Галактика является лишь одной из многих галактик (исполинских островов, каждый из которых состоит из миллиардов звезд), и они простираются в глубины космоса, до самых пределов чувствительности его новенького стодюймового телескопа, установленного в горах посреди безводной калифорнийской пустыни. А красные смещения, изученные Хьюмасоном, показали, что эти галактики движутся прочь от нас, причем весьма быстро, и что чем дальше они от нас, тем быстрее они летят.

На более глубокое понимание Хаббл не был способен: он первым признался бы, что отнюдь не теоретик. Из теорий Эйнштейна и без того можно было вывести множество странных следствий. Вряд ли многие сочли бы естественным, скажем, представление о ткани пустого пространства, которая сминается, если «проткнуть» ее, забравшись по приставной лесенке (не говоря уж о том, что взмах руки в воздухе заставляет окружающее пространство прогибаться и провисать). А эти новые открытия стали еще более ошеломляющими. Обнаруженное при помощи стодюймового телескопа разбегание от нас далеких галактик имело бы смысл, будь Вселенная создана именно на вершине калифорнийской горы, после чего (как при катастрофическом выбросе магмы) все стало бы двигаться «вовне», больше никогда не прекращая этого процесса. Но даже Хаббл, при всей своей нескромности, все-таки не мог до конца поверить, будто все далекие галактики нашей Вселенной знают, где он находится, и что он пребывает в центре всех будущих событий и, по сути, наблюдает, как эти события все больше удаляются от него.

Реальное объяснение заставляет смирить гордыню. Допустим, вы держите в руке ненадутый воздушный шарик белого цвета. Произвольным образом нанесите на него красным маркером десяток точек. Начните надувать шарик, и вы увидите, как точки станут удаляться друг от друга. Причем точки, находящиеся поблизости друг от друга, будут расходиться сравнительно медленно, а точки, отстоящие далеко друг от друга, – быстрее.

И неважно, откуда вы смотрите. Примите за отправной пункт точку, которая оказалась на верхушке шарика, рядом с вашим ртом. По мере надувания ближайшие к ней точки проделают сравнительно небольшой путь. А вот точки на противоположном полюсе будут двигаться гораздо быстрее, ибо их будет толкать весь объем выдыхаемого вами воздуха. А теперь зацепимся взглядом за какую-нибудь из этих далеких красных точек. Ближайшие к ней будут сдвигаться лишь на небольшое расстояние. Между тем самые далекие от нее будут преодолевать гораздо более значительную дистанцию.

Такие эффекты выглядят куда серьезнее, если вообразить, что вместо шарика мы имеем дело со всей Землей. Допустим, вы стоите близ лондонского парламента и видите на другом берегу Темзы чудесный буколический район Баттерси. Он начинает медленно уплывать от вас. Это не так уж удивительно, ибо вы наблюдаете, как Темза расширяется с чинной скоростью одна миля в час. Но по радио вы слышите сообщения о том, что Дублин при этом уносится прочь от вас со скоростью 100 миль в час, а Нью-Йорк (город еще более отдаленный) – со скоростью 3000 миль в час.

Картина имела бы физический смысл, обнаружься под Темзой какой-нибудь мощный лавовый поток, распирающий Землю: тогда центром такого процесса стал бы Лондон. Но поступают и другие сообщения, очень странные: нью-йоркский репортер Би-би-си настаивает, что ощущает, будто именно он сохраняет неподвижность. Берег Нью-Джерси неспешно отдаляется от него со скоростью миля в час, по мере того, как Гудзон медленно расширяется. Но город Торонто, находящийся дальше от Нью-Йорка, чем Нью-Джерси, удаляется со скоростью 300 миль в час, а еще более далекий Лондон – со скоростью 3000 миль в час.

Непонятно, каким образом и Лондон, и Нью-Йорк могут ощущать себя неподвижным эпицентром какого-то планетарного извержения лавы. Такое возможно, лишь если наша планета расширяется по всему объему. Происходящее на поверхности может показаться странным (все эти города, так неодинаково удаляющиеся друг от друга), но если представить себе Землю как большой воздушный шар или пляжный мяч, которые расширяются, картина выйдет вполне осмысленная. Города, находящиеся поблизости друг от друга, всегда раздвигаются медленно. А далекие города (далекие друг от друга точки на поверхности планеты) по мере расширения всей сферы отодвигаются друг от друга быстрее.

В сущности, именно это Милтон Хьюмасон и наблюдал, обратив телескоп в глубины космоса. Далекие галактики в этом смысле подобны точкам на нашем шарике или городам на поверхности нашей планеты. Мало того, что они раздвигаются: вне зависимости от того, в какой точке вы находитесь, близлежащие к вам точки движутся медленно, а более далекие – быстрее. Этот факт может означать лишь одно: трехмерное пространство, в котором мы обитаем и которое кажется нам нашей Вселенной во всей ее полноте, на самом деле представляет собой как бы поверхность чего-то еще – чего-то колоссального, ужасающего и, вероятно, невообразимого для нашего ограниченного ума. Двухмерная поверхность воздушного шарика расширяется в трехмерном пространстве: это мы понять можем. Но получается, что и наша трехмерная Вселенная, со всеми ее галактиками и планетами, должна расширяться в четырехмерном пространстве. С этим логическим следствием не в силах справиться наш ограниченный ум: по крайней мере, мы вряд ли сумеем наглядно представить себе, как все это происходит.

Открытие Хьюмасона стало для Эйнштейна воплощением давних надежд. Предсказание, содержавшееся в его исходном уравнении (которое он по ошибке отверг, несмотря на все попытки Фридмана и Леметра убедить его), оказывалось верным. Наша Вселенная – лишь поверхность чего-то наподобие гигантской сферы. По всей поверхности этой «сферы» разбросаны галактики, и в настоящее время они разлетаются – по мере того, как расширяется «сфера». Мы у себя в Млечном Пути не обладаем никакой уникальностью или избранностью – как и никакая другая галактика. По сути, мы лишь точки на поверхности расширяющегося воздушного шарика. Вообразить это трудно. Но нет никаких сомнений: измерения, проведенные в обсерватории Маунт-Вильсон, недвусмысленно показали нам, «флатландцам», что это именно так.

* * *

Тот период (1929-й и несколько последующих лет) ознаменовался для Эйнштейна сравнительным спокойствием и в личной жизни. Они с Милевой наконец достигли взаимопонимания, во многом благодаря Мишелю Бессо, выступившему в качестве посредника-умиротворителя. Эйнштейн считал, что будет только справедливо, если он отдаст Милеве всю свою Нобелевскую премию (он получил эти деньги в 1922 году). Основную часть суммы она вложила в недвижимость, сдаваемую внаем. Финансовая стабильность уменьшила ее раздражение, в результате чего и сам Эйнштейн сумел теснее сблизиться с сыновьями. После одного выходного, проведенного с мальчиками, Эйнштейн писал Милеве, что их хорошее поведение дает понять: «Ты знаешь, что делаешь, ты это доказала».

Его жизнь с Эльзой тоже налаживалась. Едва познакомившись с ней, он писал: «Я должен кого-нибудь любить, иначе мое существование беспросветно. И этот «кто-нибудь» – вы». После их женитьбы в 1919 году первоначальный всплеск страсти поугас, но с годами в их отношения постепенно вернулись теплота и любовь – неожиданно для них обоих. И хотя Эйнштейн продолжал заводить интрижки на стороне, он никогда не унижал ее, всегда проявлял щедрость, а кроме того, обладал как раз таким чувством юмора, какое ей нравилось. Эйнштейн осознал, что даже несовершенный брак (начавшийся как отношения, выстроенные с досады на другую женщину) может постепенно обрести свои приятные стороны. Эльза восхищалась им, была превосходной хозяйкой, гости при ней чувствовали себя непринужденно, к тому же у нее тоже имелось чувство юмора, очень милая ироничность, которая пришлась ему по душе.

Вот один пример. В декабре 1930 года, когда они прибыли в Калифорнию для того, чтобы он ознакомился с результатами Хаббла, в поджидавшей толпе имелось несколько десятков девушек-чирлидеров (в США они обычно входят в группы поддержки местных футбольных команд и т. п.). Это зрелище показалось супругам настолько нелепым, что Эльза решила провести смотр этих восторженных девиц – как если бы перед ней вытянулся в струнку почетный караул. Она прошествовала мимо них, одобрительно бормоча: «Хорошо. Очень хорошо», – чем немало позабавила мужа.

Ее ничто не могло смутить или озадачить. Однажды, посещая вместе с Эйнштейном Чикагский университет, она бойко рассказывала, как им с мужем понравился их недавний визит в Принстон, несмотря даже на трудности с летучими змеями (fl ying snakes). Интервьюеры замялись, и Эльза объяснила: эти летучие змеи кусали ее за руки. Смущение нарастало, и она добавила: эти змеи даже залетали ей под юбку! В этот момент сочла нужным вмешаться хозяйка мероприятия, владевшая и немецким, и английским. «Вы действительно говорите о летучих змеях?» – поинтересовалась она у фрау Эйнштейн по-немецки. Эльза отрицательно покачала головой: эти американцы бывают такими наивными! «Nein! – сказала она. – Ich spreche von Schnaken!» («Нет! Я говорю о комарах!»).

Дома, в Берлине, она старалась окружить мужа всевозможными удобствами. К примеру, Эйнштейн обожал свежую землянику, и жена старалась, чтобы земляника всегда была в их доме. На кухне их радовал голубой попугай. Они устраивали музыкальные вечера. К тому же Эйнштейн любил отдохнуть от занятий наукой, сидя за пианино или взяв в руки свою любимую скрипку. Правда, соседи не одобряли его энергичную ночную игру на кухне, облицованной кафелем и дававшей гулкое эхо.

И даже загородный дом, помнивший многочисленных эйнштейновских любовниц, часто приносил супругам отраду. Эйнштейн любил гулять, наслаждаясь прекрасными видами вместе с Эльзой и падчерицами – а также сыном Гансом Альбертом, который теперь более или менее примирился с отцом и однажды прикатил к ним на мотоцикле, к полному восторгу всех. Они ходили в лес за грибами. Соседский сынишка разрешал им позабавиться странной игрушкой под названием «йо-йо». Плодовые деревья, тенистая терраса, благоухание орегонской сосны и галисийской ели (в свое время Эйнштейн заказал для строительства дома именно эти материалы)… Когда-то Эйнштейн заметил в беседе с Гансом Альбертом, что его (вторая) жена – «не какой-то там светоч интеллекта», теперь же он с удовольствием отмечал, что «тем не менее у нее чрезвычайно доброе сердце».

Дочери Эльзы, судя по всему, в конфликтах матери и ее мужа приняли сторону отчима, сочтя, что с «папой Альбертом» вполне можно сосуществовать, не обращая внимания на его романы: плюсов от такого положения вещей оказывалось намного больше, чем минусов. Тем более что при острой необходимости Эйнштейн всегда готов был отступить, чтобы защитить свой брак. К примеру, в 1924 году он написал по уши влюбленной в него молоденькой выпускнице университета, что их отношения не имеют будущего и ей следует просто «найти кого-нибудь на десять лет моложе меня, кто будет любить тебя так же сильно, как я».

Семейная жизнь Эйнштейна стабилизировалась. Он достиг равновесия и в других областях жизни – или, по крайней мере, ему так казалось. Так, он теперь уже совершенно иначе реагировал на научные предположения человека, который некогда приводил его в такое раздражение своими доводами. Речь идет о Леметре.

В 1927 году, еще до того, как Эйнштейн принял решение избавиться от лямбды, он грубо обошелся с Леметром, не придав его работе сколько-нибудь серьезного внимания. Это обидело неопытного в научных спорах бельгийца, заставило его почувствовать некоторую отвергнутость. Но после того, как поддержка Эйнштейна (а также Эддингтона и других авторитетных специалистов) принесла священнику мировую и вполне мирскую славу, он вновь обрел уверенность в себе. И начал глубже всматриваться в динамику, которую извлек из первоначального уравнения Эйнштейна. Да, возможно, Вселенная расширяется, а может быть (согласно «индуистской» гипотезе Фридмана), она постоянно претерпевает циклы расширения и сжатия, словно пульсируя. Но все эти образы подразумевают, что процесс шел всегда – то есть что сотворения мира не было, как не будет и конца мира.

Если это так, то почему?

До конца жизни Леметр настаивал: то, что он тогда сделал, не имело никакого отношения к его религиозным убеждениям, ибо религия – это один путь к истине, а наука – другой. И та, и другая в общем-то могут действовать независимо друг от друга. Но бумаги, обнаруженные после его смерти, показывают: в юности, обучаясь в семинарии, еще только готовясь принять сан, он уже записал для себя: «Как подсказывает Книга Бытия, Вселенная началась со света».

Теперь, обретя новую уверенность в годы после памятного 1929-го, он начал различать очертания этой идеи за исходным уравнением Эйнштейна. Нельзя ли просто отправиться в прошлое и посмотреть, с чего все началось? Узнав о результатах, полученных в обсерватории Маунт-Вильсон, уже не следовало считать этот вопрос чисто теоретическим. Как показал Хьюмасон, некоторые галактики летят от нас так стремительно, что еще вчера они, быть может, находились к нам на миллиард миль ближе, а позавчера – на два миллиарда. Все галактики, лежащие за пределами нашей, когда-то были ближе. Словно бы когда-то давно в космосе разорвалась исполинская граната, и во все стороны полетели осколки – галактики. Мы прибыли на место происшествия очень поздно, и мы видим лишь эти разлетающиеся фрагменты. Но мысленно мы можем повернуть время вспять и добраться до исходного момента – до момента взрыва. Леметр назвал этот момент «Днем, когда не было Вчера».

Свои новые расчеты Леметр опубликовал в 1931 году. Разумеется, они более сложны, чем приведенное выше краткое изложение, ведь вместо того, чтобы представлять себе первородный «атом» как кусочек материи внутри какой-то области пространства, нам следует воображать себе само пространство и время, схлопывающиеся в куда более компактную и плотную точку. Наши математические расчеты, может, и точны, но наши образы (и слова, которые их описывают) вынуждены оставаться чем-то зыбким и метафорическим. Впрочем, Леметр все же попытался изобразить нужную картину: «Эволюцию Вселенной можно уподобить только что завершившейся череде фейерверков: мы видим немногочисленные клочья дыма, обрывки бумаги, горстки золы. Стоя среди остывшего пепла, мы наблюдаем, как гаснут светила, и пытаемся вспомнить исчезнувший блеск начала миров». Собственно, именно это Эйнштейн в 1933 году назвал «самой красивой и наиболее удовлетворительной интерпретацией из всех, какие мне доводилось слышать».

Гипотеза Леметра о происхождении Вселенной ошеломляла. Она сулила настоящий переворот в науке. И, подобно многим другим ключевым достижениям в теоретической физике XX века, она всем была обязана соотношению G = T.

Из этой реабилитации исходного гравитационного уравнения Эйнштейна проистекали и плюсы, и минусы. Хорошая новость состояла в том, что Эйнштейн (и все, кто понимал его уравнение) теперь явственно осознал одну из самых поразительных вещей, на какие способна наука: человек порой способен вывести формулу, которая оказывается умнее своего создателя. Иными словами, такие уравнения могут позволить давать потрясающе точные предсказания, о которых создатели уравнений даже не подозревали. Простой смертный, сидя в своем кабинете или бродя по улицам Цюриха и Берлина, при помощи чистого разума сумел прийти к идее равенства G = T… Но этот человек по имени Альберт Эйнштейн, и представить себе не мог, какие сногсшибательные предсказания начнут словно из рога изобилия сыпаться из этого выражения.

Еще больше Эйнштейну пришлось по душе, что его размышления вроде бы действительно показали: Вселенная устроена аккуратно и упорядоченно, в ее основе лежат необычайно четкие и ясные принципы. Эйнштейну всегда очень нравилась эта архитектурная цельность, это единство. Избавившись от лямбды, он получил подтверждение, что сия аккуратно устроенная реальность действительно существует вокруг нас, лишь ожидая, пока человек ее откроет.

Другое следствие носило куда менее позитивный характер.

Гению, как правило, приходится отчаянно биться, разрабатывая и продвигая свои идеи. Гений почти всегда выходит далеко за пределы общепринятых представлений, и ему нужны упорство и уверенность в том, что он прав. Однако при этом не помешает и известная гибкость: ваши первые революционные открытия должны соответствовать всей уже полученной исследователями фактической информации, относящейся к делу, а ваши дальнейшие работы не должны противоречить новым открытиям других ученых. Нужно уметь должным образом скользить по этой грани между гибкостью и упрямством.

Эйнштейн мог вот-вот нарушить это хрупкое равновесие. Когда-то он добавил в свое уравнение неуклюжий тормоз в виде лямбды лишь из-за того, что Фрейндлих и другие астрономы, работавшие в 1915–1916 годах, еще ничего не знали о расширении Вселенной. Если бы они тогда владели всей необходимой информацией, они бы не стали ему противоречить, и ему не понадобилось бы вводить поправку в свое уравнение. Он поклялся себе, что больше никогда не попадется на такую удочку. Он больше никогда не позволит, чтобы ограниченность эмпирических знаний заставила его разрушить то, что он считает чистой и прекрасной теорией.

Годы спустя он якобы признался коллеге: добавление лямбды стало «величайшей глупостью в моей жизни». Но насчет этого он заблуждался. Куда более серьезной ошибкой Эйнштейна стало возникшее у него после истории с лямбдой ощущение, будто он может игнорировать все эксперименты, которые, как кажется, опровергают то, что он считает верным. Он допустил эту ошибку, возражая Фридману и Леметру, но и во многом другом он ошибался точно так же. На протяжении дальнейших лет Эйнштейн не раз будет сталкиваться с эмпирическими данными, заставлявшими предположить, что Вселенная куда менее аккуратна и упорядоченна, чем он считал. И он ни разу не захочет поверить в эти доказательства. История с лямбдой сделала его необычайно упрямым, даже непреклонным и абсолютно не способным признавать противоречившие его теории факты – факты, касающиеся реального устройства космоса.