ИССЛЕДОВАНИЯ ОКЕАНА ИЗ КОСМОСА В ВИДИМОМ И БЛИЖНЕМ ИНФРАКРАСНОМ ДИАПАЗОНАХ
В видимом и ближнем инфракрасном диапазонах спектра электромагнитное излучение Мирового океана представляет собой отраженное поверхностью или рассеянное его водной толщью излучение Солнца. Температура океана не превышает нескольких десятков градусов Цельсия, поэтому в силу действия известных физических законов собственное излучение океана в рассматриваемых диапазонах практически отсутствует.
Активные оптические методы достаточного развития пока не получили, поэтому исследования Мирового океана из космоса в этом диапазоне спектра можно проводить только на освещенной стороне Земли (когда, собственно, и возможно изучение солнечного излучения, отраженного океаном). Прозрачность чистой безоблачной атмосферы здесь довольно высока, и мешающее воздействие атмосферы при исследованиях в надир или вблизи от этого направления невелико.
Простейшим, но одним из наиболее информативных методов исследования Мирового океана из космоса в видимом диапазоне спектра, не требующим, по существу, никакого оборудования, является метод визуальных наблюдений с борта космического корабля или пилотируемой орбитальной станции. Результаты исследований при этом могут быть перенесены на специально подготовленные планшеты или просто зарисованы. В некоторых случаях наблюдаемые космонавтами явления могут быть сфотографированы с помощью фотоаппаратов и, таким образом, строго задокументированы.
Первыми визуальными наблюдениями Мирового океана из космоса были наблюдения космонавтов первых пилотируемых космических кораблей. Еще Ю. А. Гагарин после своего исторического полета говорил, что голубой цвет океана при наблюдении из космоса не кажется неизменным. При взгляде на океан с орбиты хорошо видны районы, имеющие различную окраску, отчетливо выделяется прибрежная полоса, можно разглядеть рельеф дна на мелководье. Опыт работы в космосе многих других советских и американских космонавтов также свидетельствует о высокой информативности визуальных наблюдений Мирового океана с космических высот.
Методика визуальных исследований Земли из космоса проста и не отличается существенно от методики обычных аэровизуальных наблюдений. Цветовые оттенки суши, облаков и акваторий приблизительно те же, что и при наблюдениях Земли с высоты 10 км. Хорошо различимы оттенки различных цветов, однако тестовые измерения зрения космонавтов, выполненные при полетах космических кораблей «Союз-3» − «Союз-5» и других, показали, что контрастная чувствительность зрения космонавтов во время полета снижается, как правило, на 10 − 20 %. В условиях космического полета на 20 − 25 % также снижается по сравнению с земными условиями восприятие яркости цветов, особенно красных оттенков.
Поле зрения космонавта при наблюдении им Земли из космоса определяется размерами иллюминатора космического корабля и расстоянием от иллюминатора до глаза космонавта. Например, при диаметре иллюминатора 30 см и его расстоянии от глаза тоже 30 см поле зрения космонавта при наблюдении Земли составляет 60°. При необходимости космонавт может еще варьировать положением этого поля зрения (сканировать им), перемещаясь относительно иллюминатора.
При наблюдении Мирового океана из космоса особенно хорошо заметны большие изменения цветового тона океана в океанических фронтальных зонах − там, где соприкасаются водные массы разной степени насыщенности красящими взвесями, на границах крупных течений, на мелководье. Так, например, теплые воды тропиков бедны жизнью и имеют насыщенный сине-зеленый цвет, а холодные воды умеренных широт имеют ярко выраженный зеленый оттенок, обусловленный высокой концентрацией различных микроводорослей, и поэтому зоны смешения этих вод отчетливо заметны.
Лучше всего, по данным бортинженера ОКС «Салют-6» В. Рюмина, проводить визуальные наблюдения цвета океана при высоком положении солнца, когда цветовые контрасты океанских вод особенно заметны. При низком солнце весь океан кажется однотонным, темно-голубым, но зато лучше проявляются поверхностные явления, вихри, течения, следы внутренних волн.
Список наблюдаемых глазом из космоса явлений и объектов довольно велик. С высоты нескольких сотен километров уверенно определяются границы конусов выноса мутных речных вод в море, просматривается рельеф дна на мелководье, определяются характеристики мезомасштабных, т. е. имеющих размеры порядка нескольких сот километров, океанических вихрей, различается даже тип планктона в биопродуктивных районах, замечаются кильватерные следы судов и т. д.
При наблюдении Мирового океана из космоса исследования ведутся в широком, непрерывно изменяющемся диапазоне углов зрения и условий освещенности. Глаз космонавта при этом просматривает обширную площадь поверхности океана и выделяющиеся на его фоне объекты рассматриваются более детально. В силу высоких адаптационных характеристик человеческого зрения космонавту удается разглядеть и зафиксировать в памяти многие интересующие детали, даже если их время наблюдения не превышает нескольких секунд. Избирательная способность человеческого зрения и логический анализ данных наблюдений вооружают космонавта-исследователя такими возможностями комплексного восприятия наблюдаемых явлений, которые в настоящее время не могут быть достигнуты никакой аппаратурой.
Высокая ценность визуальных наблюдений Мирового океана из космоса определяется совершенством человеческого глаза как измерительного инструмента, а также способностью человека мгновенно перерабатывать воспринимаемые изображения, отделять существенное от несущественного, подмечать новые черты в хорошо известном, улавливать загадочные и необычные явления. Особенно резко увеличиваются наблюдательные способности космонавтов при их хорошей предварительной подготовке, и вполне вероятно, что в недалеком будущем в составе экипажей орбитальных станций появятся космонавты-океанологи.
Значительно увеличивается эффективность визуальных наблюдений океана из космоса и в условиях длительного полета, при многократных наблюдениях одного и того же района. Космонавты в этом случае сразу узнают знакомые районы и подмечают происшедшие в них изменения. Это обстоятельство отмечалось многими космическими экипажами и особенно основными экипажами ОКС «Салют-6».
Иногда космонавты при наблюдении океана замечали такие явления и объекты, что ставили в тупик специалистов по оптике океана. Еще при полетах на первых космических кораблях было замечено, что космонавты хорошо различают малоразмерные объекты на океанском фоне, даже такие небольшие, как отдельные корабли. Долгое время это казалось нереальным, но потом ученые разобрались в этом явлении и поняли, что недооценивали адаптационные характеристики человеческого зрения, выяснили, что в условиях космического полета острота зрения у космонавтов может заметно повышаться.
Несколько раз космонавты докладывали, что отчетливо видели в океане подводные океанические хребты на глубинах несколько сот или даже тысяч метров. Специалисты по оптике утверждают, что это невозможно, поскольку даже самая прозрачная океанская вода полностью поглощает солнечный свет в слое толщиной всего несколько сот метров (следовательно, напрямую видеть дно океана на больших глубинах невозможно). Анализ этих интересных данных показывает, что, по-видимому, в этом случае космонавты наблюдают некоторое другое явление, связанное каким-то образом с рельефом океанского дна или просто на него похожее.
Возможно, так проявляются при наблюдении из космоса неровности рельефа океанской поверхности, связанные, как выяснилось, с рельефом дна и открытые в последнее время с помощью космических альтиметров. А может быть, это проявляются вертикальные движения океанских вод, отслеживающие подводный рельеф и делающие скрытое видимым при их выходе на поверхность. Вероятно и то, что с орбиты просто видны вариации пространственного распределения минеральных и органических взвесей, которые могут концентрироваться в океанском слое скачка плотности воды на глубинах 30 − 100 м.
На этих глубинах в летнее время в океане развивается слой резкого изменения плотности воды и в нем могут накапливаться различные примеси. При наблюдении с большой высоты (из космоса) пространственное распределение этих взвесей, которое носит случайный характер, может иметь такую структуру, что воспринимается как изображение каких-то знакомых космонавтам объектов (в данном случае горных хребтов, которые они видят на каждом витке, пролетая над настоящими горами). Однако возможен и просто обман зрения, подобно тому, как долгое время, например, астрономы отчетливо «видели» в телескопы «каналы» на Марсе, но которых там на самом деле не оказалось.
Науке еще предстоит здесь многое выяснить.
При исследовании поверхности Мирового океана под малыми углами визирования и вблизи границ солнечного блика космонавты иногда наблюдают неровности рельефа океанской поверхности в виде отдельных валов и впадин. Так, по данным третьего основного экипажа ОКС «Салют-6» В. Ляхова и В. Рюмина, на одном из витков они видели в Индийском океане в 250 − 300 км от побережья Африки какое-то «вздыбливание» воды. Узкая полоса «вздыбленной» воды имела в длину около 100 км, а в ширину − всего 1,5 − 2 км. От нее была даже заметна тень на воде или что-то в этом роде. У космонавтов было такое впечатление, будто в океане столкнулись два вала и поднялись высоко вверх.
Что это за интересное явление, увиденное космонавтами, океанологи тоже пока однозначно не могут объяснить. Возможно, это видимое с орбиты проявление внутренних океанских волн, может быть, это упомянутые неровности рельефа океанской поверхности, а, вероятно, это результат гидродинамического взаимодействия океанских течений. Во всяком случае, явления эти очень интересуют океанологов и для их ясного понимания необходимо провести еще много дополнительных экспериментов.
В самое последнее время стали развиваться так называемые визуально-инструментальные методы исследования Мирового океана из космоса, расширяющие возможности человеческого зрения. В самом простом случае при этом могут использоваться бинокли и зрительные трубы, например, для исследования небольших по масштабам явлений или объектов. Возможности наблюдения Мирового океана при низкой освещенности и на ночной стороне орбиты значительно расширяются с применением приборов ночного видения с оптико-электронным усилением света.
Для получения космонавтами точных колориметрических оценок исследуемых объектов можно также использовать соответствующие приборы. В простейшем случае ими могут быть обычные таблицы цветности морских вод или наборы кювет с водой различной окраски (типа широкоизвестных в классической океанологии шкал цветности Фореля−Уля). Для более точных измерений цвета вполне применимы оптико-электронные колориметры.
В общем, визуальные исследования Мирового океана из космоса пока проходят период методического становления, но уже сейчас ясно, что они могут при соответствующей организации принести много полезного и интересного для океанологии.
Одним из наиболее отработанных методов исследования поверхности Земли из космоса является космическое фотографирование. Специально сконструированные для работы в космосе фотоаппараты устанавливают на борту автоматических ИСЗ и пилотируемых ОКС, и к настоящему времени уже получены сотни тысяч фотографий поверхности Земли, в том числе и фотографий океана.
Даже обычная черно-белая, а тем более цветная фотография, может содержать в себе много океанологической информации. Практически на космической фотографии океана может быть запечатлено многое из того, что может увидеть глаз космонавта, за исключением самых малоконтрастных объектов. С другой стороны, информационные возможности современной фотографии в ряде случаев шире возможностей человеческого зрения, и с помощью специальных видов фотографии можно зарегистрировать то, что не видно невооруженным глазом.
При получении информации о Мировом океане в виде фотоизображений дешифрируемость тех или иных океанических объектов зависит от величины их контраста (или относительного превышения яркости). На некотором фоне объект виден только тогда, когда его контраст больше некоторой пороговой величины, определенной для конкретных условий. Для различных наблюдательных систем величина этого порога существенно различна. Так, глаз человека, несмотря на некоторое снижение его контрастной чувствительности в условиях невесомости, различает объекты, имеющие контраст порядка 1 − 2 %. Фотографические же и телевизионные системы в этом смысле гораздо менее чувствительны и их пороговые значения контраста лежат в пределах 10 − 20 %.
Это обстоятельство, кстати, является причиной того, что на многих сделанных космонавтами фотографиях не дешифрируется ряд океанологических объектов, которые ими были замечены и сфотографированы в сеансах визуальных исследований Мирового океана.
Существующие космические фотографические системы имеют фокусные расстояния съемочных объективов порядка нескольких единиц или десятков сантиметров. Съемка производится на пленку шириной от 6 до 30 см, что позволяет на одном кадре запечатлеть с хорошим пространственным разрешением поверхность Мирового океана площадью до нескольких миллионов квадратных километров. Разрешающая способность современных фотографических систем довольно высока, и на полученных с их помощью фотографиях дешифрируются океанические объекты с линейными размерами порядка нескольких метров.
При черно-белой съемке на изопанхроматическую пленку как бы измеряется относительная яркость объектов в широком диапазоне длин волн (400 − 800 нм). При этом объекты, имеющие одинаковую интегральную яркость, но различную цветность, например, с синим или красным оттенком, неразличимы, что хорошо известно всем знакомым с основами фотографии. Чтобы подчеркнуть различие в спектральных образах разных природных образований, можно проводить синхронную съемку в двух или трех зонах спектра.
Например, при съемке в областях спектра, которые соответствуют чувствительности зрительных рецепторов человеческого глаза − синей, зеленой и красной, получается цветное изображение объекта в естественных цветах. На использовании этого принципа и трехслойных светочувствительных фотоматериалов построена вся обычная цветная фотография, которая является аналогом трехцветного человеческого зрения и по своим информационным характеристикам примерно ему соответствует. В последние годы при проведении фотосъемок Земли из космоса стали широко использоваться новые, более информативные методы исследования, в первую очередь спектрозональная и многозональная съемки.
При спектрозональной съемке с использованием многослойных фотоматериалов применяются принципы обычной цветной фотографии, но спектральная чувствительность слоев выбирается такой, чтобы лучше выявить объекты, интересующие ученых. Для съемки Мирового океана из космоса один из слоев фотопленки можно сделать чувствительным к лучам ближнего инфракрасного диапазона с длинами волн до 1 мкм. В результате можно решить ряд интересных задач, которые недоступны для визуальных или обычных фотографических методов.
В первую очередь к ним относятся, например, задачи по обнаружению и исследованию нефтяных загрязнений Мирового океана и по оценке его биопродуктивности. В ближнем инфракрасном диапазоне чистая вода полностью поглощает падающий на нее свет, а загрязненная вода хоть и немного, но его отражает. Аналогично влияет на отражение воды в этом диапазоне и содержание в воде водорослей и других взвесей. Поэтому пятна нефтяных загрязнений Мирового океана и его районы с высоким содержанием различных примесей проявляются на спектрозональных снимках (например, на отечественных пленках типа СН-6, СН-8) в виде характерных розовых пятен.
Еще более высокими возможностями выделения тонких спектральных отличий различных природных образований обладают методы многозональной фотосъемки, основанные на проведении синхронной съемки природных объектов в нескольких узких спектральных интервалах. Разработанный специалистами СССР и ГДР многозональный космический фотоаппарат МКФ-6 является одним из наиболее совершенных аппаратов подобного класса. При его помощи съемка поверхности Земли может осуществляться одновременно в шести зонах спектра.
В первых экспериментах по исследованию земных ресурсов использовались зональные светофильтры, имевшие максимумы пропускания света на длинах волн 480, 555, 600, 665, 730 и 840 нм. Ширина каждой съемочной зоны была довольно небольшой и не превышала 40 км. Кривые спектральной чувствительности всех съемочных диапазонов фотоаппарата МКФ-6 приведены на рис. 4. При съемке с высоты 250 км каждый снимок охватывает поверхность Земли площадью 115 × 165 км с разрешением на местности порядка 10 − 20 м. В аппарате МКФ-6 используются различные типы фотоматериалов и для их фотометрической калибровки в каждый кадр в момент съемки впечатывается фотометрический клин.
Первые летные испытания фотоаппарата МКФ-6 были проведены в 1976 г. при полете космического корабля «Союз-22» в рамках эксперимента «Радуга», а в настоящее время этот аппарат устанавливается уже в качестве штатного на всех ОКС типа «Салют».
Рис. 4. Кривые спектральной чувствительности съемочных диапазонов фотоаппарата МКФ-6
Анализ и интерпретация фотоизображений Мирового океана, полученных в отдельных зонах, производится с использованием четырехзонального проектора МСП-4, с помощью которого осуществляется проекция на специальный экран увеличенных совмещенных изображений. При этом изображение на экране МСП-4 можно получить в реальных или условных цветах.
Использование многозональных принципов фотосъемки Мирового океана позволяет регистрировать довольно тонкие вариации цвета океанской поверхности и решать, в частности, задачу изучения распределения зон повышенной биопродуктивности океана в масштабах всей Земли. Естественно, для решения этих задач многозональные космические фотоаппараты должны иметь высокие абсолютные (до 15 − 20 %) и относительные (до 3 − 5 %) точности фотометрических измерений, что вполне достижимо при современном развитии этого направления.
Однако при всех своих достоинствах фотографические методы исследования Земли из космоса имеют один существенный недостаток, связанный с необходимостью доставки экспонированных фотоматериалов на Землю для их последующей обработки. Особенно это касается методов исследования Мирового океана, которые из-за быстрой изменчивости протекающих в нем процессов должны иметь высокую оперативность и периодичность поступления информации.
Для решения многих задач океанологии и, что особенно важно, для прогноза тех или иных явлений в Мировом океане океанологам необходимо получать информацию с запаздыванием не более нескольких часов и с периодичностью до нескольких раз в сутки. Естественно, в этом случае фотографические методы помочь океанологам не могут и данная проблема может быть решена только с использованием телевизионных систем.
Первые телевизионные изображения поверхности Земли из космоса были получены еще в начале 60-х годов, при запусках первых метеорологических ИСЗ. Хотя эти изображения имели низкое пространственное (порядка 1 − 2 км) и спектральное (8 − 16 градаций интегральной яркости в области спектра 500 − 800 нм) разрешение, они позволяли определять участки Мирового океана, покрытые льдом, выделять мелководные участки, изучать крупные океанские течения и т. д.
Наиболее широкое распространение за прошедшие годы получили так называемые телевизионные системы с механическим сканированием луча. В такой системе (рис. 5) развертка изображения поверхности Земли вдоль трассы полета ИСЗ осуществляется за счет движения самого ИСЗ, а в поперечном направлении − за счет качания приемной телевизионной трубки или специального зеркала.
Пространственное разрешение в этой телевизионной системе определяется мгновенным полем зрения оптической системы, а спектральное − характеристиками разделительных фильтров и чувствительностью приемников излучения. Ширина полосы обзора зависит от высоты полета ИСЗ и угла качания поворотного зеркала. Информация с телевизионной системы может передаваться на Землю в реальном масштабе времени или записываться на бортовом магнитофоне для ретрансляции в подходящий момент при пролете ИСЗ над пунктом связи.
В начале 70-х годов появились многоканальные космические сканирующие системы, имеющие пространственное разрешение лучше 100 м и спектральное разрешение − лучше 100 нм. С помощью этих приборов можно уже получать информацию, сопоставимую по своим фотометрическим и другим характеристикам с информацией фотографических систем.
Телевизионные изображения поверхности Земли, переданные, например, ИСЗ «Лэндсат», имели пространственное разрешение около 70 м при площади кадра 185 × 185 км. Электромеханическая сканирующая телевизионная система этого ИСЗ производила синхронную съемку поверхности Земли в четырех зонах видимого и ближнего инфракрасного диапазонов спектра (в зонах длин волн 0,5 − 0,6; 0,6 − 0,7; 0,7 − 0,8 и 0,8 − 1,1 мкм), что позволяло после соответствующей обработки на ЭВМ получать изображения подстилающей поверхности в так называемых условных цветах с хорошей цветовой градацией различных природных образований.
С помощью этой системы можно было уже решать значительно более широкий круг океанологических задач. В специальной научной литературе приведены данные о том, что на некоторых изображениях, переданных ИСЗ «Лэндсат», определены районы Мирового океана, загрязненные нефтепродуктами и отходами промышленных предприятий, обнаружены неизвестные ранее районы повышенной биопродуктивности, выделены мелководные участки, зоны смешения речных и морских вод, обнаружены следы внутренних волн и т. д.
Рис 5. Принцип работы многозональной телевизионной сканирующей системы: 1 − качающееся зеркало, 2 − зеркальный объектив, 3 − светофильтры, 4 − приемники излучения
При этом можно отметить, что съемка в коротковолновом диапазоне (0,5 − 0,6 мкм), где поглощение света в океанской воде минимально, позволяет наилучшим образом решать задачу изучения подводного рельефа и биопродуктивности вод, а съемка в длинноволновых диапазонах (0,7 − 0,8 и 0,8 − 1,1 мкм) − более отчетливо выделять поверхностные эффекты. Наконец, совместная обработка данных коротковолновых и длинноволновых диапазонов способствует эффективному обнаружению поверхности океана, загрязненной нефтепродуктами.
К достоинствам космических телевизионных систем относится также и возможность простого ввода информации в ЭВМ, где она может быть обработана (по довольно сложным алгоритмам) для устранения геометрических, фотометрических и других искажений. При обработке видеоинформации на ЭВМ можно получить окончательные результаты в любой картографической проекции с использованием данных произвольного числа спектральных зон, что значительно повышает информативность данных дистанционного зондирования.
С применением космической фото- и телеинформации удалось уже решить ряд интересных задач океанологии. Одной из них является, например, задача обнаружения и исследования динамики упомянутых выше внутренних волн. Эти волны возникают в океане на глубинах несколько десятков метров, там, где происходит изменение плотности глубинных слоев воды. Внутренние волны определяют прохождение звука в толще океанских вод, безопасность плавания подводных судов. Как считают многие специалисты, внутренние волны явились причиной гибели несколько лет назад американской атомной подводной лодки «Трэшер».
Изучение этих волн традиционными контактными методами требует больших затрат времени и привлечения многих НИС. На космических же фотографиях они иногда непосредственно видны и можно измерить их некоторые параметры. Внутренние волны развиваются в глубинах океана и непосредственно на поверхности не наблюдаются, но ряд связанных с ними специфических явлений позволяет обнаруживать их на космических фотографиях. Можно назвать по крайне мере три характерных вида взаимодействия внутренних волн с поверхностным слоем океана, которые делают их видимыми.
Колебательные перемещения частиц воды во внутренних волнах могут достигать поверхности океана и там, взаимодействуя с течением и ветром, способны влиять на форму и распределение ряби и мелких волн. При этом на поверхности океана будут наблюдаться перемежающиеся полосы ряби и гладкой воды.
Такую картину на поверхности океана можно иногда видеть даже невооруженным глазом при наблюдении океана с высокого берега. Ширина таких полос может достигать нескольких сотен метров, а длина − многих километров. Измерения с помощью НИС показали, что под покрытыми рябью полосами находятся гребни внутренних волн, а под гладкими участками − впадины. Полосы ряби и гладкой воды по-разному отражают солнечные лучи, что и приводит к их проявлению на космических фотографиях.
С движением частиц воды во внутренних волнах при их выходе на поверхность может быть связано неравномерное распределение поверхностно-активных веществ, влияющих на форму поверхностных волн и отражательные свойства поверхности океана.
В прибрежных районах, особенно там, где поверхностный слой океана сильно замутнен, обнаружение внутренних волн на фотографиях связано с тем, что на гребнях волн более прозрачные воды нижнего слоя поднимаются ближе к поверхности (на космических фотографиях эти гребни проявляются более темным тоном). В ложбинах внутренних волн слой мутной воды толще и поэтому выглядит на фотографиях светлее.
На многих космических фотографиях, полученных экипажами космических кораблей «Союз» и «Аполлон», ОКС «Салют» и «Скайлэб», видны проявления внутренних волн. Эти волны обнаружены, например, у побережья Колумбии, у Галапагосских островов, у Камчатки, в Арафурском море и ряде других районов.
Однако несмотря на общую высокую информативность, ни фотографические, ни телевизионные методы в современном виде не могут помочь в решении некоторых задач океанологии, которые требуют высокого спектрального разрешения первичной информации. К числу этих задач относится, например, задача изучения распределения хлорофилла в глобальном масштабе. Если качественную картину его распределения в Мировом океане можно еще получить с помощью фототелевизионных методов, то для количественных оценок необходимы более тонкие спектральные методы.
Хлорофилл − это зеленое вещество, преобразующее солнечный свет в биомассу. Хлорофилл − основа жизни на Земле, он входит в состав растений суши и микроскопических океанских водорослей − фитопланктона. Поэтому задача изучения его распределения чрезвычайно важна, и решить ее можно дистанционными методами.
Из лабораторных исследований известно, что хлорофилл имеет две четко выраженные полосы поглощения солнечного света. Одна из них, более сильная, лежит в сине-фиолетовой области спектра и соответствует излучению с длинами волн 0,42 − 0,46 мкм, а другая − в красной области и соответствует волнам длиной 0,66 − 0,70 мкм. В области 0,5 − 0,6 мкм хлорофилл интенсивно отражает падающий свет, и это определяет его насыщенный зеленый цвет (как и зеленый цвет всех растений). Если провести точные измерения спектра излучения света, рассеянного океанской толщей, то по характеристикам этого спектра можно оценить концентрацию хлорофилла, содержащегося в воде, или фитопланктона.
Такова основная идея дистанционных измерений этого океанологического параметра, но на практике она встречается с некоторыми трудностями. Во-первых, в ряде случаев синяя полоса хлорофилла в спектре излучения морской воды просто не видна. Она замаскирована поглощением растворенного органического вещества, концентрация которого хотя и коррелирует с содержанием хлорофилла, но мешает измерениям. Во-вторых, при использовании данного метода космических исследований необходимо учитывать искажающее влияние атмосферы. Для уменьшения этого влияния необходимо точно измерять интенсивность излучения океанской поверхности в узких, шириной 10 − 15 нм, спектральных диапазонах вблизи полос поглощения. Решить эту задачу можно с помощью многоканальных спектрофотометров, обладающих достаточным быстродействием.
Первые космические спектрофотометрические исследования поверхности Мирового океана с целью оценки его биопродуктивности выполнялись с борта ОКС «Салют-6» при использовании болгарского ручного спектрофотометра «Спектр-15» и с помощью ИСЗ «Интеркосмос-20» и «Интеркосмос-21», имевших на борту 13-канальный спектрофотометр МКС-13, разработанный специалистами СССР и ГДР. Спектрофотометр МКС-13 работает в семи «морских» каналах, центрированных относительно длин волн 415, 450, 485, 535, 570, 620 и 675 нм, и в шести «атмосферных» каналах, центрированных относительно длин волн 758, 760, 763, 777, 794 и 823 нм. Ширина «морских» каналов на уровне 50 % интенсивности сигнала была выбрана равной 10 нм, а «атмосферных» − 1,5 нм.
Такой выбор зон позволяет оценивать интенсивность радиации в полосах поглощения хлорофилла и вблизи них и определять поглощение солнечной радиации в атмосфере, что необходимо для корректировки данных «морских» каналов. Первые результаты обработки данных зондирования Мирового океана при помощи спектрофотометра МКС-13 подтвердили принципиальную возможность использования этого метода для изучения распределения фитопланктона в глобальном масштабе.
В сентябре 1978 г. был запущен американский экспериментальный ИСЗ «Нимбус-7», на борту которого вместе с другими приборами было установлено многоканальное спектрофотометрическое сканирующее устройство для изучения распределения цветовых характеристик Мирового океана в прибрежных зонах. Этот прибор давал изображения океана в пяти зонах спектра − на длинах волн 443; 520, 550, 670 и 750 нм. Для обработки информации, полученной с помощью этого прибора, были разработаны довольно эффективные алгоритмы, позволяющие устранить мешающее влияние атмосферы. Применение этого прибора для определения концентрации хлорофилла показало, что ее можно определять с точностью до 50 %, а это вполне сопоставимо с точностью обычных контактных методов и удовлетворяет потребности практики.
По современным оценкам, перспективность спектральных методов при изучении распределения жизни в Мировом океане не вызывает сомнений. Аппаратуру, построенную на использовании изложенных выше принципов, предполагается устанавливать на проектируемых океанологических ИСЗ «Сисат-2», «МОС-1», ОКС «Спейслэб» и других КА, запуски которых намечены на вторую половину 80-х годов.
Все перечисленные оптические методы исследования Мирового океана из космоса являются, по своей сути, пассивными методами и основаны на изучении солнечного излучения, отраженного поверхностью океана или рассеянного его водной толщей. Активные методы, связанные с облучением океана с борта ИСЗ, для работы в этой области спектра долгое время не разрабатывались из-за серьезных ограничений энергетического характера, однако в последнее время стали появляться сообщения о возможности и перспективности зондирования Мирового океана из космоса с помощью так называемых лидаров, или лазерных локаторов оптического диапазона. Как показывают предварительные оценки, с помощью этих приборов можно будет очень точно решать задачи космической альтиметрии (с точностью до нескольких сантиметров) и, кроме того, при применении лидаров, работающих в сине-зеленой области спектра, можно будет проводить глубинное зондирование океанских вод вплоть до глубин несколько десятков или даже сотен метров.